
ISOFT at QALD-4: Semantic similarity-based question
answering system over linked data

Seonyeong Park, Hyosup Shim, and Gary Geunbae Lee

Department of Computer Science and Engineering,
Pohang University of Science and Technology, Pohang, Gyungbuk, South Korea

{sypark322, hyosupshim, gblee}@postech.ac.kr

Abstract. We present a question answering system over linked data. We use nat-
ural language processing tools to extract slots and SPARQL templates from the
question. Then, we use semantic similarity to map a natural language question to
a SPARQL query. We combine important words to avoid loss of meaning, and
compare combined words with uniform resource identifiers (URIs) from a
knowledgebase (KB). This process is more powerful than comparing each word
individually. Using our method, the problem of mapping a phrase of a user ques-
tion to URIs from a KB can be more easily solved than without our method; this
method improves the F-measure of the system.

Keywords: Question answering, SPARQL, Semantic similarity

1 Introduction

Question answering (QA) systems (QASs) find the answers to natural language (NL)
questions by analyzing huge corpora. In the big data era, this property of QA is increas-
ingly necessary. Two popular types of QAS are those based on information retrieval
(IR) and those based on knowledgebases (KBs).

Most IR-based QASs use the following general strategy [1, 2, 3]: 1) analyze the
question and translate the questions into the queries for IR, 2) retrieve a small passages
including answers of the document collection by using IR technology, and 3) extract
answer candidates and select the final answer. Typically, the question analysis module
involves NL processing (NLP) such as part-of-speech (POS) tagging and dependency
parsing.

Recently, very large, structured, and semantically-rich KBs have become available;
examples include Yago [4], DBpedia [5], and Freebase [6]. As an increasing quantity
of resource description framework (RDF) data are published in linked form, intuitive
ways of accessing the data are becoming increasingly necessary. DBpedia forms the
nucleus of the web of linked data [7]; it inter-connects large-scale-RDF data sources
with 2.46 billion subject-predicate-object triples. Several QASs use RDF data; exam-
ples include Aqualog [8], Feedback, Refinement and Extended VocabularY Aggrega-
tion (FREyA) [9], Template-Based SPARQL Learner (TBSL) [10] and the ontology-

1236

based QAS Pythia [11]. Most KB-based QASs use the following general strategy
[8,9,10,11,12,14]: 1) analyze the question, 2) map the entity and predicate from user
question to the words in a KB, 3) formulate and select queries, and 4) search queries
and extract answers. Strategies of KB-based QASs are not much different from those
of IR-based QASs, but require that the user’s phrase be translated to words that exist in
a KB.

In FALCON [1], an IR-based QAS, the question is parsed to extract the expected
answer type and an ordered list of keywords that are used to retrieve relevant text pas-
sages. However, the keyword search lacks a clear specification of the relations among
entities.

Translating NL questions into SPARQL query requires performing both a disambig-
uation task and a mapping task. DEep Answers for maNy Naturally Asked questions
(DEANNA) [12] is based on an integer linear program to solve several disambiguation
tasks jointly: segmentation of questions into phrases; mapping of phrases to semantic
entities, class and relations; and construction of SPARQL triple patterns.

In this paper, we aim to solve the problem of translating the NL question into a
SPARQL query to search for the answer in the KB. To improve the F-measure of the
system, we use linguistic information about the user question, and semantic similarity
for translating the NL words into the words in the KB.

We used semantic similarity based on Explicit Semantic Analysis (ESA) [13] for
mapping predicates in the user NL question to predicate uniform resource identifiers
(URIs) in the KB. ESA converts target strings to semantic vectors that can convey their
explicit meaning as weighted vectors of Wikipedia concepts, so calculating the similar-
ity of two vectors reveals the semantic relatedness of the two strings from which the
vectors were generated. We also increased the effectiveness of mapping the NL words
to URIs by concatenating additional-information to the predicate.

However, previous work did not use our approach in this problem of using semantic
vectors from Wikipedia. FREyA uses a method that generates suggestions with string
similarity and hierarchy defined in an ontology, scores them again using string similar-
ity algorithms, then maps them to high-scoring concepts in the ontology. PowerAqua
[14] includes a linguistic component part, an element mapping component (PowerMap),
a triple mapping component, and a merging and ranking component. PowerMap pro-
vides automatic mapping for inter-ontology concepts and semantic relevance analysis;
it calculates semantic relatedness as the distance between corresponding senses in
Wordnet’s graph.

1237

2 System Description

2.1 Overall system architecture

Fig. 1. Overall proposed QA system: processes are described in the text

We built our system by extending TBSL [10]. We added more question analysis tech-
niques and ESA for measuring semantic similarity. The user question was translated
into a SPARQL query in several steps (Fig. 1). We must extract the slots and the
SPARQL template. The SPARQL templates correspond directly to the internal struc-
ture of the question [10]; they specify the query’s “select” or “ask” clause, its filter and
aggregation functions, and the number and forms of its triples. Each slot has three com-
ponents: a proxy variable; the type of intended URI (class, property or resource); and
the NL expression. The proxy variable is replaced with the appropriate URI after it is
identified. The translation steps with examples are:
1. NL question:

In which country does the Nile start?

1238

2. Slot :
 <?x, resource, Nile> <?c, class, country> <?p, property, start >

3. SPARQL Template:
SELECT ?x WHERE {?x ?p ?y . ?x rdf:type ?c}

4. Slot with URI :
 < res:Nile, resource, Nile> <dbo:country, class, country> <dbo:sourceCountry,
property, start>

5. SPARQL query:
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
SELECT DISTINCT ?x WHERE{
res:Nile dbo:sourceCountry ?x .
?x rdf:type dbo:Country .}

2.2 Slot extraction

We use NL analysis to extract slots. Given NL question inputs, we classify questions
to detect question-type keywords (e.g., “who”, “what”, “when”, “where”, and “how”).
The heuristics to extract slots and templates differ slightly among question types. After
the question is classified, the question is analyzed at the word, syntactic, and semantic
levels. For these analyses, we used ClearNLP1, which is available in github. Addition-
ally, we used open NLP2 for chunking. For named entity (i.e., resource) disambigua-
tion, we used AIDA3. Additionally, we used keywords of questions provided by Ques-
tion Answering over Linked Data (QALD-44) organizers. Using the result of NL anal-
ysis, we developed several rules to extract slots.

First, we check all words in the NL question and find a word to maximize the appro-
priateness score (eq. 1), which will become a class (i.e., answer type). The class is a
type of proxy variable x that the question seeks.

 	 	  () 																																						=  () +  () + (), (1)

where  is word i in the question,  () is the pre-defined weight when the
POS of  is NN or NNS; otherwise  () is 0.  () is the pre-defined
weight when  is a dependency of the main verb; otherwise 	 () is 0. 	()	is the pre-defined weight when  is a head of question type; otherwise () is 0. We determine appropriateness scores by analyzing the answer type in
QALD-4 training data and UIUC data [15]. The following heuristic is used to extract

1 http://clearnlp.wikispaces.com/
2 https://opennlp.apache.org/
3 https://www.mpi-inf.mpg.de/yago-naga/aida/
4 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=task1&q=4

1239

the class in all question types. If the class is not found, we regard pre-defined class (e.g.,
place) as type of proxy x followed by question-type keywords (e.g., “where”).

Heuristics Class Extraction
Input S – Natural language question
Output c – Class
Initialize class c as null; the appropriateness score of
null is 0; the number of words in the NL question is
n
1: For all words in the NL question

1: Calculate the appropriateness score of wi and
the appropriateness score of current c
2: Compare the appropriateness score of wi and
the appropriateness score of current c
3: Update current c as the lemma of wi if the
appropriateness score of wi > current c

2:Endfor
3:Return c

When the named entities or noun phrases consist of more than one word, we use a

dependency parser and a chunker to concatenate words in the noun phrase into one
word before applying the heuristic rules. For example, first we use AIDA or given key-
words to detect the named entity (i.e., resource). Named entities are usually subjects or
objects in the NL questions. We used the dependency parser to concatenate “Walt” and
“Disney” to “Walt Disney”, which we regard as one word.

We use AIDA and given keywords to extract the named entity. We use the chunker
to extract the noun phrases and our heuristics to extract the class and then apply the
chunker to obtain the predicate between the subject and object (Fig. 2). First, we extract
entities as a subject and object, for example, “television show” and “Walt Disney”. To
extract the predicate between them, we use the dependency parser to detect the head of
each word. We finally extract the predicate, which is a chunk that includes the two
heads. If the heads are the same word, we regard the head as the predicate. If the two
heads are not in the same chunk, we concatenate two chunks into the predicate.

Fig. 2. Example of extracting a predicate: processes are described in the text

1240

After the QALD-4 deadline passed, we added graph-based reduction rules (Fig. 3) to
extract slots.

Fig. 3. Overall steps to map a graph-based reduction: processes are described in the

text

1. Initialize dependency graph: We obtain a dependency graph from the result of

the dependency parser. Each node has information such as word surface form
and lemma form, and each edge represents a dependency relation.

2. Determine reduction policy tag by reduction rules: We give four policy tags,
remove (OMT), merge (MRG), reverse (REV), and remain (REM) to each node
followed by rules that check information such as the POS of the head, the de-
pendent of the POS, the dependency-label (e.g., SUB or OBJ) and the word of
the dependent and the head.

3. Apply Reduction policy: We apply four reduction policies to the initial depend-
ency graph to reduce it.

These graph-based reduction rules improve our total system F-measure in the QALD-
4 test dataset, but they still have limitations. First, devising rules to determine tags is a
difficult task. Moreover, we determine each node as subject, predicate or object by the
distance from “question-type keywords” (e.g., “who”, “what”, “when”, “where”, and
“how”). For a question such as “Give me all movies with Tom Cruise.”, the slots are
difficult to extract.

1241

2.3 SPARQL Template extraction

We used lexical information from each question to extract the appropriate SPARQL
template.

· Template for a Boolean question: ASK WHERE { ?x ?p ?y. }

Using lexical information, we detect whether the question is a “wh-question”. If the
question is a “yes/no question”, it does not include “question-type keywords”. We
regard each question as a “yes/no question” if it contains neither question type words
nor “list-question keywords” (e.g., “Give”, “List”).

· Template for a simple question: SELECT DISTINCT ?x WHERE { ?x ?p ?y . (Op-
tion:?x rdf:type ?c.)}

We define the basic query template as above. Optionally, we used ?c (replaced with
class) if the class is exactly correct. Our class detections module works well for a
“which” question or a “who” question. We usually include only one triple. We use
lexical information (conjunction such as “and” and relative pronoun such as “who”)
and a dependency parser to extract n triples, but this remains a difficult task. We
must extract more than one triple to successfully translate the NL question into a
SPARQL query in some cases. However, we cannot extract n triples in many cases
such as “Give me all films produced by Steven Spielberg with a budget of at least
$80 million.”, because it does not include a conjunction or relative pronoun explic-
itly; to extract n triples is a difficult task to complete by only using heuristics.

· Template for including an aggregation function question: We used the “aggregation”
attribute, which indicates whether any operations beyond triple pattern matching are
required to answer the question. We define “aggregation” functions as “count”, fil-
ter” and “order”, and define the modifier target as a proxy that is the target of the
aggregation function. We used three types of functions, for example:

─ COUNT: SELECT COUNT (DISTINCT ?x) WHERE { ?x ?p ?y. }

─ ORDER: SELECT DISTINCT ?x WHERE {?x ?p ?y. } ORDER BY DESC(?x)
OFFSET 0 LIMIT n

─ FILTER: SELECT DISTINCT ?x WHERE {?x ?p ?y . FILTER (?y <1950)}

Some words indicate the types of functions to use. We define these words as “aggre-
gation indicators”. For example, if the sentence contains “How many” we extract
COUNT template and extract the target, i.e., the head of the “many”. If the question
contains a superlative, we infer that the question requires an ORDER operation. If
the question contains a comparative, we infer that the question requires a FILTER
operation. We use the head-dependency relation of an “aggregation indicator” to
detect the targets of these types of operations and the constant (e.g., 1950) that the
filter uses.

1242

2.4 Mapping the proxy variable to the URI

Fig. 4. Overall steps to map the Proxy to the URI: processes are described in the text

The process (Fig. 4) for mapping proxy variables to URIs entails the following seven
steps:

1. Identify resource/class URIs from noun Phrases: We use noun phrases delivered
from the slot extraction module to identify URIs from the KB; normal noun
phrases are regarded as class type URIs, and proper noun phrases are regarded
as resource-type URIs. We built an inverted index of all resource/class type
URIs from DBpedia; consequently, the actual mapping is performed by search-
ing the inverted index with variant forms of NPs, which were generated by heu-
ristics in capitalization and white spacing; this process works well. To map
quickly, we used lucene5.

5 http://lucene.apache.org/

1243

2. Search the NL pattern: We used PATTY6 to map NL predicates to the words in
the KB. However, in most cases, the PATTY pattern repository failed to map
the predicates from the questions into the appropriate words in KB.

3. Retrieve predicate URI candidates: We determine that the predicate URI is a
word from the user’s phrase; this word is translated to words extracted from the
KB. We collect predicate URI candidates occurring in triples that have a re-
source or class that was previously identified as a subject or object. Queries to
retrieve predicates are structured as follows:

<SPARQL Query for collecting predicate URI candidates from resource>
SELECT DISTINCT ?p WHERE {
{<IDENTIFIED_RESOURCE_URI> ?p [] .}
UNION{[]?p<IDENTIFIED_RESOURCE_URI>.}
}

<SPARQL Query for collecting predicate URI candidates from class>
SELECT DISTINCT ?p WHERE {
{?x ?p []. ?x rdf:type <IDENTIFIED_CLASS_URI>.} UNION
{[] ?p ?x. ?x rdf:type <IDENTIFIED_CLASS_URI>.}
}

4. Choose a string from the NL against which to measure the semantic relatedness:
Pattern matching alone is insufficient to translate predicates in the NL question
to predicate URIs. The slot extraction phase delivers several strings for measur-
ing the semantic relatedness. Each string includes a different set of classes that
restrict the meaning of the predicate. Restricting the meaning of the predicate
helps ESA to choose the most relevant predicates. For example, the NL question
"In which country does the Nile start?" requires the predicate URI "sourceCoun-
try" for class type: Country. Measuring the semantic relatedness using the string
"start" did not assign a high score to the desired predicate URI, but using the
string "start country" did. Adding class information such as “start country” to
the predicate is better than using only a predicate such as “start” to represent the
user intention and semantic meaning of the question.

5. Rank predicate URI candidates by semantic similarity: Calculate the semantic
relatedness between each predicate URI in the KB and the string from the ques-
tion.

6. Choose n-best predicate URI candidates: Choose n-best similar predicate URIs
from the KB. We experimentally determined n many times. In our cases, n > 2
was not helpful; it decreased the precision much more than it increased the re-
call.

7. Query generation with n-best predicates: Replace the slots with identified URIs
and complete the query. This process identifies the proxy variables that the
question requires.

6 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/patty/

1244

3 Experiment

We used the QALD-4 test dataset for task 1 to evaluate the proposed method and used
DBpedia 3.97 as the KB. We mainly compare two approaches. One (P) uses only pattern
matching to identify resource/class/predicate URI, and the other (P+ESA) combines
pattern matching to identify the resource/class URI and ESA to identify the predicate
URI. The latter yielded a higher F-measure than did the former. Additionally, we added
graph-based reduction rules to the latter, and this P+ESA+graph approach yielded the
highest F-measure. We used the ESA open library8. The test dataset includes 31 simple
questions, four yes/no questions and 15 questions with aggregation.

4 Results and Discussion

To evaluate the QA system, we used global precision, recall and F-measure (Table 1).
Graph-based reduction reduces the parse tree by applying predefined reduction rules.
P+ESA+graph yielded a higher F-measure than did P+ESA. Graph-based reduction is
in initial development; we will continue to improve it. We do not have results for graph-
based reduction in Tables 2-4. In this section, we mainly compare our semantic simi-
larity approach and pattern matching approach. We usually used pattern matching (e.g.,
capitalization and white spacing) to map a class and resource. However, most predicates
cannot be mapped using pattern matching, so we used ESA when mapping the NL
predicate to the predicate URI in the KB. We show the number of questions that were
answered successfully by predicate mapping using ESA (Table 2) and pattern matching
(Table 3). The proposed method of computing semantic similarity achieved higher pre-
cision and recall than did the previous pattern matching approach (Tables 2, 3).

Table 1. Evaluation results for the QALD-4 test dataset.
Method Total SPARQL

generation
Correct Partially

Correct
Global
Recall

Global
Precision

Global
F-measure

P 50 0 0 0 0.00 0.00 0.00
P + ESA 50 28 10 3 0.26 0.21 0.23

P+ESA+graph 50 31 16 2 0.36 0.33 0.34

Table 2. Precision (P) and recall (R) using ESA to map the NL predicate to the appro-
priate predicate URI in the KB. Bold: only answers found; underlined italic: several
candidate answers found (some not appropriate); normal: no answers found.

 R = 1 0 < R < 1 R = 0
P = 1 10 0 0
0 < P < 1 3 0 0
P = 0 0 0 15

7 http://dbpedia.org/
8 http://ticcky.github.io/esalib/

1245

Table 3. Precision (P) and recall (R) using pattern matching to map the predicate to the
appropriate predicate URI in the KB. Bold: only answers found; underlined italic: sev-
eral candidate answers found (some not appropriate); normal: no answers found.

 R = 1 0 < R < 1 R = 0
P = 1 0 0 0
0 < P < 1 0 0 0
P = 0 0 0 28

We successfully extracted slots and templates for 38 of the 50 questions. We finally

generated 28 SPARQL queries using P+ESA and 31 SPARQL queries using
P+ESA+graph. Among them, we used P+ESA to extract 10 correct answers and three
partially correct answers (Table 1). We used P+ESA to map 13 NL predicates to ap-
propriate predicate URIs in the KB without graph-based reduction (Table 2). The num-
ber of appropriate mapping results was the same as the result of the whole system. We
used pattern matching to map three NL predicates to the appropriate predicate URIs in
the KB (e.g., we can match “are spoken in” to “spokenIn”). We used both PATTY and
the pattern matching (e.g., white spacing and capitalization). PATTY failed to map
predicates in all cases. The pattern matching mapped only three appropriate predicate
URIs but could not map classes and resources in the three questions, so we did not
generate SPARQL queries from them and obtained no answer (Tables 1, 3).

Consequently, we focused on using P+ESA. We successfully extracted slots and
templates for 38 questions and then generated 28 SPARQL queries. Many of the queries
failed to map the proxy variables to the appropriate URIs for some of them; this is a
difficult task. We analyzed error cases to learn ways to improve the global F-measure
(Table 4).

Table 4. Analysis of Error Cases
Error Case Example Solution

Failed to de-
tect entity in
sentences
and map to a
correct re-
source/class
URI in the
KB.

How many James Bond movies are there?
- “James Bond” was given by the analysis

result, but “James Bond movies” was re-
quired to map.

How deep is Lake Placid?
- Several entities have the same name and

no additional information was provided
that could help to select the correct one.

Provide multi-
ple analysis re-

sults and try
them one by

one if required.

Failed to
map to a
correct pred-
icate URI in
the KB.

Does the Isar River flow into a lake?
- “flow into” was extracted from the sen-

tence. However, it was mapped to “river-
Mouth”, instead of “inflow”

Where was Bach born?
- NL predicate “was born place” was

mapped to the predicate URI “death-
Place” in the KB.

These are cases
that require cer-
tain inferences
for mapping to
the correct pred-
icate URI. The
semantic relat-
edness measure
currently in use

1246

 is based on
TF/IDF and is
not sophisti-
cated enough.
More sophisti-
cated measuring
similarity
method may be
useful.

Failed to ex-
tract correct
triple pat-
terns.

What was Brazil’s lowest rank in the FIFA
World Ranking?

- “FIFA Word Ranking” should be treated
as a predicate, but the cue gave a wrong
hint that this should be treated as a re-
source.

Give me the grandchildren of Bruce Lee.
- Complex predicate “grandchildren” in the

user question should be handled as a com-
posite of the predicate “children”.

A dictionary for
implicit predi-
cates or com-
plex predicates
may be useful.

5 Conclusions and future work

Using a dependency parser and other NLP, we extracted appropriate slots for SPARQL
queries. We used prepositions to find URIs as well as nouns and adjectives, which are
known as the most useful terms to find keywords. Additionally, we combined pattern
matching with semantic similarity based on ESA to identify URIs. To improve the ESA
result, we compared not only the predicate with predicate URIs in DBpedia but also
concatenated the predicate with additional information to increase the concreteness of
the meaning representation. This approach is more accurate than the pattern matching
approach. By concatenating additional information to the predicate, we increased the
effectiveness of mapping proxies to URIs. Our approach is domain-independent; con-
sequently, it can be adapted easily to other KBs such as Yago2 and Freebase.

The proposed system in this paper is our initial system, and we will continue to de-
velop it. In future work, we will develop our graph-based reduction rules, extract slots
by reducing the number of nodes in the dependency parse tree and will use machine-
learning algorithms. Furthermore, we will develop methods to select valid answers
among the answer candidates.

Acknowledgments. This work was partly supported by the ICT R&D program of
MSIP/IITP [10044508, Development of Non-Symbolic Approach-based Human-Like
Self-Taught Learning Intelligence Technology] and the National Research Foundation
of Korea (NRF) [NRF-2014R1A2A1A01003041, Development of multi-party antici-
patory knowledge-intensive natural language dialog system].

1247

References

1. Harabagiu, S. M., Moldovan, D. I., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R.
C., ... & Morarescu, P. (2000, November). FALCON: Boosting Knowledge for Answer En-
gines. In TREC (Vol. 9, pp. 479-488).

2. Harabagiu, S. M., Maiorano, S. J., & Pasca, M. A. (2003). Open-domain textual question
answering techniques. Natural Language Engineering, 9(3), 231-267.

3. Lee, G. G., Seo, J., Lee, S., Jung, H., Cho, B. H., Lee, C., ... & Kim, K. (2001, November).
SiteQ: Engineering High Performance QA System Using Lexico-Semantic Pattern Matching
and Shallow NLP. In TREC.

4. Suchanek, F. M., Kasneci, G., & Weikum, G. (2007, May). Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web (pp.
697-706). ACM.

5. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., ... & Bizer,
C. (2013). DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia.
Semantic Web Journal.

6. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008, June). Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data (pp. 1247-1250).
ACM.

7. Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. Syn-
thesis lectures on the semantic web: theory and technology, 1(1), 1-136.

8. Lopez, V., Uren, V., Motta, E., & Pasin, M. (2007). AquaLog: An ontology-driven question
answering system for organizational semantic intranets. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(2), 72-105.

9. Damljanovic, D., Agatonovic, M., & Cunningham, H. (2012, January). FREyA: An interac-
tive way of querying Linked Data using natural language. In The Semantic Web: ESWC
2011 Workshops (pp. 125-138). Springer Berlin Heidelberg.

10. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A. C., Gerber, D., & Cimiano, P.
(2012, April). Template-based question answering over RDF data. In Proceedings of the
21st international conference on World Wide Web (pp. 639-648). ACM.

11. Unger, C., & Cimiano, P. (2011). Pythia: Compositional meaning construction for ontology-
based question answering on the Semantic Web. In Natural Language Processing and Infor-
mation Systems (pp. 153-160). Springer Berlin Heidelberg.

12. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., & Weikum, G. (2012,
July). Natural language questions for the web of data. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (pp. 379-390). Association for Computational Linguistics.

13. Gabrilovich, E., & Markovitch, S. (2007, January). Computing Semantic Relatedness Using
Wikipedia-based Explicit Semantic Analysis. In IJCAI (Vol. 7, pp. 1606-1611).

14. Lopez, V., Fernández, M., Motta, E., & Stieler, N. (2012). PowerAqua: Supporting users in
querying and exploring the Semantic Web. Semantic Web, 3(3), 249-265.

15. Xin, L., & Dan, R. (2002, August). Learning question classifier. In Proceedings of the 19th
International Conference on Computational Linguistics, Taipei (pp. 556-562).

1248

