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Abstract. We present a question answering system over linked data. We use nat-
ural language processing tools to extract slots and SPARQL templates from the 
question. Then, we use semantic similarity to map a natural language question to 
a SPARQL query. We combine important words to avoid loss of meaning, and 
compare combined words with uniform resource identifiers (URIs) from a 
knowledgebase (KB). This process is more powerful than comparing each word 
individually. Using our method, the problem of mapping a phrase of a user ques-
tion to URIs from a KB can be more easily solved than without our method; this 
method improves the F-measure of the system. 
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1 Introduction 

Question answering (QA) systems (QASs) find the answers to natural language (NL) 
questions by analyzing huge corpora. In the big data era, this property of QA is increas-
ingly necessary. Two popular types of QAS are those based on information retrieval 
(IR) and those based on knowledgebases (KBs). 

Most IR-based QASs use the following general strategy [1, 2, 3]:  1) analyze the 
question and translate the questions into the queries for IR, 2) retrieve a small passages 
including answers of the document collection by using IR technology, and 3) extract 
answer candidates and select the final answer. Typically, the question analysis module 
involves NL processing (NLP) such as part-of-speech (POS) tagging and dependency 
parsing. 

Recently, very large, structured, and semantically-rich KBs have become available; 
examples include Yago [4], DBpedia [5], and Freebase [6]. As an increasing quantity 
of resource description framework (RDF) data are published in linked form, intuitive 
ways of accessing the data are becoming increasingly necessary. DBpedia forms the 
nucleus of the web of linked data [7]; it inter-connects large-scale-RDF data sources 
with 2.46 billion subject-predicate-object triples. Several QASs use RDF data; exam-
ples include Aqualog [8], Feedback, Refinement and Extended VocabularY Aggrega-
tion (FREyA) [9], Template-Based SPARQL Learner (TBSL) [10] and the ontology-

1236



based QAS Pythia [11]. Most KB-based QASs use the following general strategy 
[8,9,10,11,12,14]: 1) analyze the question, 2) map the entity and predicate from user 
question to the words in a KB, 3) formulate and select queries, and 4) search queries 
and extract answers. Strategies of KB-based QASs are not much different from those 
of IR-based QASs, but require that the user’s phrase be translated to words that exist in 
a KB. 

In FALCON [1], an IR-based QAS, the question is parsed to extract the expected 
answer type and an ordered list of keywords that are used to retrieve relevant text pas-
sages. However, the keyword search lacks a clear specification of the relations among 
entities.  

Translating NL questions into SPARQL query requires performing both a disambig-
uation task and a mapping task. DEep Answers for maNy Naturally Asked questions 
(DEANNA) [12] is based on an integer linear program to solve several disambiguation 
tasks jointly: segmentation of questions into phrases; mapping of phrases to semantic 
entities, class and relations; and construction of SPARQL triple patterns.  

In this paper, we aim to solve the problem of translating the NL question into a 
SPARQL query to search for the answer in the KB. To improve the F-measure of the 
system, we use linguistic information about the user question, and semantic similarity 
for translating the NL words into the words in the KB.  

We used semantic similarity based on Explicit Semantic Analysis (ESA) [13] for 
mapping predicates in the user NL question to predicate uniform resource identifiers 
(URIs) in the KB. ESA converts target strings to semantic vectors that can convey their 
explicit meaning as weighted vectors of Wikipedia concepts, so calculating the similar-
ity of two vectors reveals the semantic relatedness of the two strings from which the 
vectors were generated. We also increased the effectiveness of mapping the NL words 
to URIs by concatenating additional-information to the predicate. 

However, previous work did not use our approach in this problem of using semantic 
vectors from Wikipedia. FREyA uses a method that generates suggestions with string 
similarity and hierarchy defined in an ontology, scores them again using string similar-
ity algorithms, then maps them to high-scoring concepts in the ontology. PowerAqua 
[14] includes a linguistic component part, an element mapping component (PowerMap), 
a triple mapping component, and a merging and ranking component. PowerMap pro-
vides automatic mapping for inter-ontology concepts and semantic relevance analysis; 
it calculates semantic relatedness as the distance between corresponding senses in 
Wordnet’s graph. 

1237



2 System Description 

2.1 Overall system architecture 

 
Fig. 1. Overall proposed QA system: processes are described in the text 

 
We built our system by extending TBSL [10]. We added more question analysis tech-
niques and ESA for measuring semantic similarity. The user question was translated 
into a SPARQL query in several steps (Fig. 1). We must extract the slots and the 
SPARQL template. The SPARQL templates correspond directly to the internal struc-
ture of the question [10]; they specify the query’s “select” or “ask” clause, its filter and 
aggregation functions, and the number and forms of its triples. Each slot has three com-
ponents: a proxy variable; the type of intended URI (class, property or resource); and 
the NL expression. The proxy variable is replaced with the appropriate URI after it is 
identified. The translation steps with examples are: 
1. NL question:  

In which country does the Nile start? 
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2. Slot : 
 <?x, resource, Nile> <?c, class, country> <?p, property, start > 

3. SPARQL Template: 
SELECT ?x WHERE {?x ?p ?y . ?x rdf:type ?c} 

4. Slot with URI : 
 < res:Nile, resource, Nile> <dbo:country, class, country> <dbo:sourceCountry, 
property, start> 

5. SPARQL query: 
PREFIX dbo: <http://dbpedia.org/ontology/> 
PREFIX res: <http://dbpedia.org/resource/> 
SELECT DISTINCT ?x WHERE{  
res:Nile dbo:sourceCountry ?x .  
?x rdf:type dbo:Country .}  
 

2.2 Slot extraction 

We use NL analysis to extract slots. Given NL question inputs, we classify questions 
to detect question-type keywords (e.g., “who”, “what”, “when”, “where”, and “how”). 
The heuristics to extract slots and templates differ slightly among question types. After 
the question is classified, the question is analyzed at the word, syntactic, and semantic 
levels. For these analyses, we used ClearNLP1, which is available in github. Addition-
ally, we used open NLP2 for chunking. For named entity (i.e., resource) disambigua-
tion, we used AIDA3. Additionally, we used keywords of questions provided by Ques-
tion Answering over Linked Data (QALD-44) organizers. Using the result of NL anal-
ysis, we developed several rules to extract slots. 

First, we check all words in the NL question and find a word to maximize the appro-
priateness score (eq. 1), which will become a class (i.e., answer type). The class is a 
type of proxy variable x that the question seeks. 

 	 	  () 																																						=  () +  () + (), (1) 

where   is word i in the question,  () is the pre-defined weight when the 
POS of  is NN or NNS; otherwise  () is 0.  () is the pre-defined 
weight when   is a dependency of the main verb; otherwise 	 ()  is 0. 	()	is the pre-defined weight when  is a head of question type; otherwise () is 0. We determine appropriateness scores by analyzing the answer type in 
QALD-4 training data and UIUC data [15]. The following heuristic is used to extract 

                                                           
1 http://clearnlp.wikispaces.com/ 
2 https://opennlp.apache.org/ 
3 https://www.mpi-inf.mpg.de/yago-naga/aida/ 
4 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=task1&q=4 
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the class in all question types. If the class is not found, we regard pre-defined class (e.g., 
place) as type of proxy x followed by question-type keywords (e.g., “where”). 

Heuristics Class Extraction 
Input S – Natural language question 
Output c – Class  
Initialize class c as null; the appropriateness score of 
null is 0; the number of words in the NL question is 
n 
1: For all words in the NL question 

1: Calculate the appropriateness score of wi and 
the appropriateness score of current c 
2: Compare the appropriateness score of wi and 
the appropriateness score of current c 
3:   Update current c as the lemma of wi if the 
appropriateness score of wi > current c 

2:Endfor 
3:Return c  

 
When the named entities or noun phrases consist of more than one word, we use a 

dependency parser and a chunker to concatenate words in the noun phrase into one 
word before applying the heuristic rules. For example, first we use AIDA or given key-
words to detect the named entity (i.e., resource). Named entities are usually subjects or 
objects in the NL questions. We used the dependency parser to concatenate “Walt” and 
“Disney” to “Walt Disney”, which we regard as one word. 

We use AIDA and given keywords to extract the named entity. We use the chunker 
to extract the noun phrases and our heuristics to extract the class and then apply the 
chunker to obtain the predicate between the subject and object (Fig. 2). First, we extract 
entities as a subject and object, for example, “television show” and “Walt Disney”. To 
extract the predicate between them, we use the dependency parser to detect the head of 
each word. We finally extract the predicate, which is a chunk that includes the two 
heads. If the heads are the same word, we regard the head as the predicate. If the two 
heads are not in the same chunk, we concatenate two chunks into the predicate.  

 
Fig. 2. Example of extracting a predicate: processes are described in the text 
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After the QALD-4 deadline passed, we added graph-based reduction rules (Fig. 3) to 
extract slots.  

 
Fig. 3. Overall steps to map a graph-based reduction: processes are described in the 

text 
 
1. Initialize dependency graph: We obtain a dependency graph from the result of 

the dependency parser. Each node has information such as word surface form 
and lemma form, and each edge represents a dependency relation. 

2. Determine reduction policy tag by reduction rules: We give four policy tags, 
remove (OMT), merge (MRG), reverse (REV), and remain (REM) to each node 
followed by rules that check information such as the POS of the head, the de-
pendent of the POS, the dependency-label (e.g., SUB or OBJ) and the word of 
the dependent and the head.  

3. Apply Reduction policy: We apply four reduction policies to the initial depend-
ency graph to reduce it.  

These graph-based reduction rules improve our total system F-measure in the QALD-
4 test dataset, but they still have limitations. First, devising rules to determine tags is a 
difficult task. Moreover, we determine each node as subject, predicate or object by the 
distance from “question-type keywords” (e.g., “who”, “what”, “when”, “where”, and 
“how”). For a question such as “Give me all movies with Tom Cruise.”, the slots are 
difficult to extract. 
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2.3 SPARQL Template extraction 

We used lexical information from each question to extract the appropriate SPARQL 
template. 

· Template for a Boolean question: ASK WHERE { ?x ?p ?y. } 

Using lexical information, we detect whether the question is a “wh-question”. If the 
question is a “yes/no question”, it does not include “question-type keywords”. We 
regard each question as a “yes/no question” if it contains neither question type words 
nor “list-question keywords” (e.g., “Give”, “List”). 

· Template for a simple question: SELECT DISTINCT ?x WHERE { ?x ?p ?y . (Op-
tion:?x  rdf:type ?c.)}  

We define the basic query template as above. Optionally, we used  ?c (replaced with 
class) if the class is exactly correct. Our class detections module works well for a 
“which” question or a “who” question. We usually include only one triple. We use 
lexical information (conjunction such as “and” and relative pronoun such as “who”) 
and a dependency parser to extract n triples, but this remains a difficult task. We 
must extract more than one triple to successfully translate the NL question into a 
SPARQL query in some cases. However, we cannot extract n triples in many cases 
such as “Give me all films produced by Steven Spielberg with a budget of at least 
$80 million.”, because it does not include a conjunction or relative pronoun explic-
itly; to extract n triples is a difficult task to complete by only using heuristics. 

· Template for including an aggregation function question: We used the “aggregation” 
attribute, which indicates whether any operations beyond triple pattern matching are 
required to answer the question. We define “aggregation” functions as “count”, fil-
ter” and “order”, and define the modifier target as a proxy that is the target of the 
aggregation function. We used three types of functions, for example:  

 
─ COUNT: SELECT COUNT (DISTINCT ?x) WHERE { ?x ?p ?y. } 

─ ORDER: SELECT DISTINCT ?x WHERE {?x ?p ?y. } ORDER BY DESC(?x) 
OFFSET 0 LIMIT n 

─ FILTER: SELECT DISTINCT ?x WHERE {?x ?p ?y .  FILTER (?y <1950)}  

Some words indicate the types of functions to use. We define these words as “aggre-
gation indicators”. For example, if the sentence contains “How many” we extract 
COUNT template and extract the target, i.e., the head of the “many”. If the question 
contains a superlative, we infer that the question requires an ORDER operation. If 
the question contains a comparative, we infer that the question requires a FILTER 
operation. We use the head-dependency relation of an “aggregation indicator” to 
detect the targets of these types of operations and the constant (e.g., 1950) that the 
filter uses.  
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2.4 Mapping  the proxy variable to the URI 

 
Fig. 4. Overall steps to map the Proxy to the URI: processes are described in the text 

 
The process (Fig. 4) for mapping proxy variables to URIs entails the following seven 
steps:  

1. Identify resource/class URIs from noun Phrases: We use noun phrases delivered 
from the slot extraction module to identify URIs from the KB; normal noun 
phrases are regarded as class type URIs, and proper noun phrases are regarded 
as resource-type URIs. We built an inverted index of all resource/class type 
URIs from DBpedia; consequently, the actual mapping is performed by search-
ing the inverted index with variant forms of NPs, which were generated by heu-
ristics in capitalization and white spacing; this process works well. To map 
quickly, we used lucene5. 

                                                           
5  http://lucene.apache.org/ 
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2. Search the NL pattern: We used PATTY6 to map NL predicates to the words in 
the KB. However, in most cases, the PATTY pattern repository failed to map 
the predicates from the questions into the appropriate words in KB. 

3. Retrieve predicate URI candidates: We determine that the predicate URI is a 
word from the user’s phrase; this word is translated to words extracted from the 
KB. We collect predicate URI candidates occurring in triples that have a re-
source or class that was previously identified as a subject or object. Queries to 
retrieve predicates are structured as follows:  

<SPARQL Query for collecting predicate URI candidates from resource> 
SELECT DISTINCT ?p WHERE { 
{<IDENTIFIED_RESOURCE_URI> ?p [] .}  
UNION{[]?p<IDENTIFIED_RESOURCE_URI>.} 
} 

<SPARQL Query for collecting predicate URI candidates from class> 
SELECT DISTINCT ?p WHERE { 
{?x ?p []. ?x rdf:type <IDENTIFIED_CLASS_URI>.} UNION 
{[] ?p ?x. ?x rdf:type <IDENTIFIED_CLASS_URI>.} 
}  

4. Choose a string from the NL against which to measure the semantic relatedness: 
Pattern matching alone is insufficient to translate predicates in the NL question 
to predicate URIs. The slot extraction phase delivers several strings for measur-
ing the semantic relatedness. Each string includes a different set of classes that 
restrict the meaning of the predicate. Restricting the meaning of the predicate 
helps ESA to choose the most relevant predicates. For example, the NL question 
"In which country does the Nile start?" requires the predicate URI "sourceCoun-
try" for class type: Country. Measuring the semantic relatedness using the string 
"start" did not assign a high score to the desired predicate URI, but using the 
string "start country" did. Adding class information such as “start country” to 
the predicate is better than using only a predicate such as “start” to represent the 
user intention and semantic meaning of the question.  

5. Rank predicate URI candidates by semantic similarity: Calculate the semantic 
relatedness between each predicate URI in the KB and the string from the ques-
tion. 

6. Choose n-best predicate URI candidates: Choose n-best similar predicate URIs 
from the KB. We experimentally determined n many times. In our cases, n > 2 
was not helpful; it decreased the precision much more than it increased the re-
call. 

7. Query generation with n-best predicates: Replace the slots with identified URIs 
and complete the query. This process identifies the proxy variables that the 
question requires. 

                                                           
6  http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/patty/ 
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3 Experiment 

We used the QALD-4 test dataset for task 1 to evaluate the proposed method and used 
DBpedia 3.97 as the KB. We mainly compare two approaches. One (P) uses only pattern 
matching to identify resource/class/predicate URI, and the other (P+ESA) combines 
pattern matching to identify the resource/class URI and ESA to identify the predicate 
URI. The latter yielded a higher F-measure than did the former. Additionally, we added 
graph-based reduction rules to the latter, and this P+ESA+graph approach yielded the 
highest F-measure. We used the ESA open library8. The test dataset includes 31 simple 
questions, four yes/no questions and 15 questions with aggregation. 

4 Results and Discussion 

To evaluate the QA system, we used global precision, recall and F-measure (Table 1). 
Graph-based reduction reduces the parse tree by applying predefined reduction rules. 
P+ESA+graph yielded a higher F-measure than did P+ESA. Graph-based reduction is 
in initial development; we will continue to improve it. We do not have results for graph-
based reduction in Tables 2-4. In this section, we mainly compare our semantic simi-
larity approach and pattern matching approach. We usually used pattern matching (e.g., 
capitalization and white spacing) to map a class and resource. However, most predicates 
cannot be mapped using pattern matching, so we used ESA when mapping the NL 
predicate to the predicate URI in the KB. We show the number of questions that were 
answered successfully by predicate mapping using ESA (Table 2) and pattern matching 
(Table 3). The proposed method of computing semantic similarity achieved higher pre-
cision and recall than did the previous pattern matching approach (Tables 2, 3). 
 

Table 1. Evaluation results for the QALD-4 test dataset. 
Method Total SPARQL 

generation 
Correct Partially 

Correct 
Global 
Recall 

Global 
Precision 

Global  
F-measure 

P                 50 0 0 0 0.00 0.00 0.00 
P + ESA 50 28 10 3 0.26 0.21 0.23 

P+ESA+graph 50 31 16 2 0.36 0.33 0.34 
 

Table 2. Precision (P) and recall (R) using ESA to map the NL predicate to the appro-
priate predicate URI in the KB. Bold: only answers found; underlined italic: several 
candidate answers found (some not appropriate); normal: no answers found. 

 R = 1 0 < R < 1 R = 0 
P = 1 10 0 0 
0 < P < 1 3 0 0 
P = 0 0 0 15 

 
                                                           
7 http://dbpedia.org/ 
8 http://ticcky.github.io/esalib/ 
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Table 3. Precision (P) and recall (R) using pattern matching to map the predicate to the 
appropriate predicate URI in the KB. Bold: only answers found; underlined italic: sev-
eral candidate answers found (some not appropriate); normal: no answers found. 

 R = 1 0 < R < 1  R = 0 
P = 1 0 0  0 
0 < P < 1 0 0  0 
P = 0 0 0  28 

 
We successfully extracted slots and templates for 38 of the 50 questions. We finally 

generated 28 SPARQL queries using P+ESA and 31 SPARQL queries using 
P+ESA+graph. Among them, we used P+ESA to extract 10 correct answers and three 
partially correct answers (Table 1). We used P+ESA to map 13 NL predicates to ap-
propriate predicate URIs in the KB without graph-based reduction (Table 2). The num-
ber of appropriate mapping results was the same as the result of the whole system. We 
used pattern matching to map three NL predicates to the appropriate predicate URIs in 
the KB (e.g., we can match “are spoken in” to “spokenIn”). We used both PATTY and 
the pattern matching (e.g., white spacing and capitalization). PATTY failed to map 
predicates in all cases. The pattern matching mapped only three appropriate predicate 
URIs but could not map classes and resources in the three questions, so we did not 
generate SPARQL queries from them and obtained no answer (Tables 1, 3). 

Consequently, we focused on using P+ESA. We successfully extracted slots and 
templates for 38 questions and then generated 28 SPARQL queries. Many of the queries 
failed to map the proxy variables to the appropriate URIs for some of them; this is a 
difficult task. We analyzed error cases to learn ways to improve the global F-measure 
(Table 4). 
 

Table 4. Analysis of Error Cases 
Error Case Example Solution 

Failed to de-
tect entity in 
sentences 
and map to a 
correct re-
source/class 
URI in the 
KB. 

How many James Bond movies are there? 
- “James Bond” was given by the analysis 

result, but “James Bond movies” was re-
quired to map. 

How deep is Lake Placid? 
- Several entities have the same name and 

no additional information was provided 
that could help to select the correct one.  

Provide multi-
ple analysis re-

sults and try 
them one by 

one if required. 

Failed to 
map to a 
correct pred-
icate URI in 
the KB. 

Does the Isar River flow into a lake? 
- “flow into” was extracted from the sen-

tence. However, it was mapped to “river-
Mouth”, instead of “inflow” 

Where was Bach born? 
- NL predicate “was born place” was 

mapped to the predicate URI “death-
Place” in the KB. 

 

These are cases 
that require cer-
tain inferences 
for mapping to 
the correct pred-
icate URI. The 
semantic relat-
edness measure 
currently in use 

1246



 is based on 
TF/IDF and is 
not sophisti-
cated enough. 
More sophisti-
cated measuring 
similarity 
method may be 
useful. 

Failed to ex-
tract correct 
triple pat-
terns. 

What was Brazil’s lowest rank in the FIFA 
World Ranking? 

- “FIFA Word Ranking” should be treated 
as a predicate, but the cue gave a wrong 
hint that this should be treated as a re-
source. 

Give me the grandchildren of Bruce Lee. 
- Complex predicate “grandchildren” in the 

user question should be handled as a com-
posite of the predicate “children”. 

A dictionary for 
implicit predi-
cates or com-
plex predicates 
may be useful. 

5 Conclusions and future work 

Using a dependency parser and other NLP, we extracted appropriate slots for SPARQL 
queries. We used prepositions to find URIs as well as nouns and adjectives, which are 
known as the most useful terms to find keywords. Additionally, we combined pattern 
matching with semantic similarity based on ESA to identify URIs. To improve the ESA 
result, we compared not only the predicate with predicate URIs in DBpedia but also 
concatenated the predicate with additional information to increase the concreteness of 
the meaning representation. This approach is more accurate than the pattern matching 
approach. By concatenating additional information to the predicate, we increased the 
effectiveness of mapping proxies to URIs. Our approach is domain-independent; con-
sequently, it can be adapted easily to other KBs such as Yago2 and Freebase. 

The proposed system in this paper is our initial system, and we will continue to de-
velop it. In future work, we will develop our graph-based reduction rules, extract slots 
by reducing the number of nodes in the dependency parse tree and will use machine-
learning algorithms. Furthermore, we will develop methods to select valid answers 
among the answer candidates. 
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