UNED at CLEF RepLab 2014: Author Profiling

Jacinto Jesus Mena Lomena and Fernando Lépez Ostenero
jmena48@alumno.uned.es
flopez@lsi.uned.es

UNED NLP & IR Group
Juan del Rosal, 16
28040 Madrid, Spain
http://nlp.uned.es

Abstract. This paper describes a learning system developed for the
RepLab 2014 author profiling task at UNED. The system uses a vot-
ing model, which employs a small set of features based mainly on the
tweet text information such as POS tags, number of hashtags or number
of links. In the unofficial run, the feature set was increased with Twit-
ter metadata such as number of followers or retweet speed. The system
achieved good results in author categorisation, although its performance
in author ranking was low.

1 Introduction

This paper describes the participation of UNED in RepLab 2014 where we tack-
led the author profiling task focused on classifying and ranking Twitter profiles
using their tweet streams.

Twitter constitutes one of the main sources of data relevant for online rep-
utation management because of the spontaneity and immediacy. Although not
all the tweets have the same impact. The way in which a post may affect the
reputation of a company often depends on who published it. The author pro-
filing task aims at classifying authors by type of their activity and identifying
the influential ones, those whose tweets are more likely to propagate quickly and
widely through the network and to produce a greater effect. So the final goal is
to build a ranking list of the selected Twitter profiles.

The paper is organised as follows. The applied approach is introduced in
Section 2 briefly describing the features considered and the learning process.
Sections 3 explains the configurations of the model for author categorisation and
author ranking. In Section 4, we report the results obtained for each subtask.
Finally, in Section 5, we conclude and outline possible improvements of the
system in the future.

2 Proposed Approach

2.1 Features

The model uses the following set of features:

1537

http://nlp.uned.es

Bag of Words: a feature set based on a Weka filter called StringtoWordVector
was built. It contains a vector of occurrences of words in a document. We used
the default configuration of this Weka filter.

This feature is important to determine the most important words which
decide the classification of Twitter profiles in the Author Categorisation subtask.
This feature could be more discriminant if it is used taking in consideration the
domain information to divide the classification algorithm.

Number of sentences: The system used GATE [1] with the SentenceSplitter
resource to get a feature with the number of sentences. We used a specific Sen-
tenceSplitter for each language, one for English and other one for Spanish.

POS information: Seven features were built based on the POS tags. We used
the GATE POS Tagger with the OpenNLP framework and different models
for each language. Before running the POS tagging, we preprocessed the tweet
contents to remove hashtags, mentions, and URLs, using regular expressions.
After getting the POS tags, we considered a set of the following features that
exploit the number of adverbs, verbs, adjectives, nouns, pronouns, foreign words,
and abbreviations. This follows the previous work by [7] where the number of
POS elements were considered for measuring polarity. These features, in our
opinion, could characterise the author’s writing style and could be useful useful
in author categorisation.

Number of links: We have built a regular expression method to count the number
of links in the tweet.

Similar to the point above, we consider this feature useful for the author
categorisation subtask, because it reflects stylistic characteristics of the user’s
writing.

Number of hashtags: Following [3,4], we included a process based on regular
expressions to count the number of hashtags.

The hypothesis is that the number of hashtags could be indicative of the
relevancy of a tweet, as the more hashtags there are, the more topics will be
involved.

Number of mentions: Again, based on the work in [3], we included the count the
number of explicit mentions of users of the form user.

For instance, for the following tweet it would be generated the value of 6
mentions for this feature:

still waiting on @MeganBerry’s #fbumpf contribution :)
kevinGEEdavis @MerlinUWard @MimiOrtega Qjeremarketer Q@AmyVernon
@IAmMrSid

Number of smileys: The system considered the number of smileys, based on the

experience of [2]. In order to count smileys, we manually built a dictionary using
information extracted from Wikipedia.

1538

Buenos dias :) A por un fin de semana increible lleno de color
amigs ;) http://ow.ly/i/2EXp7

Language: We used the language label provided by the Replab 2014 organisers
as a feature of the classifier.

This feature is used mainly to determine the set of words to be considered
as Bag Of Words.

In the unofficial run, we included two new features, based on Twitter meta-
data. For that, we used Twitter4J, a Java Wrapper for Twitter REST API. We
built the following new features:

Number of followers: For each profile, we queried Twitter about the number of
followers of every profile in the training and test data sets.

The idea was to use this feature in the Author Ranking substask to generate
weight values the application of which is described below.

Retweet speed: We examined the last retweet of each author. The retweet speed
was calculated as follows using the creation date, number of retweets and the
creation date of the last retweet:

(LastRT CreationTime — TweetCreationTime)
NumberOfRT

(1)

avgTime =

In order to sort elements, we built a weight measure which was calculated using
the following formula:

Numberof Followers

(2)

This formula tries to relate the retweet speed with the number of followers.
The aim is to capture those cases when, given two profiles, for instance, one
with 1,500 followers and the other with 1,600, the former has more activity in
terms of tweets propagation and retweet speed than the latter. So the under-
lying hypothesis is that it is more relevant a profile with a smaller number of
followers and higher speed, than a profile with a bigger number of followers and
lower speed. One run was configured with this weight parameter. Regarding this
feature, the bigger the weight value is, the more important is a profile.

Due to Rate limiting, we only managed to obtain retweet speed information
for about 50% of profiles. In order to use it as a feature, an empty value for the
feature was taken to build the classifier for the Author Category subtask. For
Author Ranking, an average speed was assigned, multiplied by the number of
followers.

ight =
werg AverageRT speed

2.2 Learning Process and Confidence Methods

The learning process of our system is composed of a voting system, a set of
classifiers and a method to resolve the ties by means of confidence scores.

1539

We divided the training data set into 5 subsets, each containing 20% of data.
601 tweets provided by the organisers with each profile were also split in five
parts. The classifiers were trained considering each tweet as an instance instead
of grouping all the data related to one profile in one instance. Four of the subsets
were used to train the system employing the following Weka algorithms:

— ZeroR Algorithm

— RandomTree Algorithm [5]

— RandomForests Algorithm [8,6]
— Nave Bayes Algorithm

These four algorithms allowed covering 80% of the data set. The remaining 20%
was used to create a confidence score table.

That training set partition had nearly 300,000 tweets. We iterate tweet per
tweet and stored (in a relational database) 4 rows per each tweet as confidence
information. As result of that we had a table with close to 1,200,000 (per each
Replab 2014 subtask) rows to query information about confidence. The following
formula was used to solve those cases when at least three classifiers decided the
same:

ightClassi ficati t,al
con fidence(cat, algs) — Z nRightClassification(cat, alg)

3)

algealgs nClassifications(cat, alg)

Where cat is the category for which the confidence value has to be calcu-
lated and algs is a set of algorithms the result of which was the category cat.
nRighClassification is a function with the number of correct classifications for
this category produced by this algorithm, and nClassifications is a function
which counts the number of classifications for that category.

The confidence scores are used to decide which category is more plausible
after training. Figure 1 reproduces the architecture of the confidence score com-
ponent. This figure shows how the confidence scores table is populated with the
outcomes of the algorithms, based on the training data.

Figure 2 illustrates how the confidence score information is used to disam-
biguate the results and decide which class value should be assigned to a profile.

3 Algorithms

In this section, we describe the algorithm configurations. Table 1 provides an
overview of the Author Categorisation algorithms, specifying the kind of data
used in each of them. “_AC” in the runs identifiers indicates the “Author Cate-
gorisation task”, while “_ AR” stands for “Author Ranking”.

3.1 Author Categorisation

1540

208 Tralning Set

20% Training Set 20% Training Set 20% Training Set 20% Training Set
/ A\ / A
Zeroft RandomTree RandomForests Maive Bayes
\
)
Processed Processed Processed
! A
Confidence Table
Fig. 1. Confidence Score Component
ZeroR RandomTree RandomForests Naive Bayes
\
Confidence Table

Processed

Processed |

Tied?

Majerity
Result

Confidence
Result

Fig. 2. Using the Confidence Scores

1541

Table 1. Runs submitted for the Author Profiling task.

System ID # Classifiers Characteristics

ORM_UNED_AC_1 4 basic configuration
ORM_UNED_AC_2 domain information
ORM_UNED_AC_3 confidence scores
ORM_UNED_AC_4 confidence scores + Twitter info
ORM_UNED_AR_3 followers + retweet speed

= 00 00 0o

Basic configuration This is the first and the simplest system configuration
(ORM_UNED_AC_1) for author categorisation that consists only of classifica-
tion algorithms without taking into account information about the domain. The
4 classifiers were fed with a small set of features which included BoW, POS,
hashtags, mentions, links, smileys, and language. The classification result was
obtained by applying a basic voting algorithm using majority rule.

In order to avoid the bias towards the most frequent class (Undecidable),
a threshold was applied. The majority class label (Undecidable) was assigned
only if it was supported by 80% or more votes. Below that threshold (80%), we
classified the profile as another majority class, distinct from Undecidable.

We used 4 classifiers which classified a profile tweet by tweet. For each profile,
we generated 4 class values per tweet, producing near 2400 class values per
profile. This information was used to obtain the majority result of the voting
algorithm.

Basic configuration with domain features This configuration
(ORM_UNED_AC.2) includes information about the profile domain. Algo-
rithms were defined to consider the domain element and decide which algorithm
should be used. The same set of features as in the basic configuration, although
choosing different classifiers depending on the domain.

As before, we used a threshold to avoid the bias towards the most frequent
class (Undecidable), setting it at the same value. This configuration produced 8
classifiers.

Confidence scores model This configuration used information about confi-
dence of classifiers algorithms when their results are close to a tie. We submitted
the results of this configuration as ORM_UNED_AC_3.

The confidence information was used to decide the outcome of the classifica-
tion. In case of a tie, we calculated confidence scores using the equation 3. We
used the same feature set and threshold as in the basic configuration.

Confidence scores and social information model We built a last configu-
ration using a new kind of information, social information (ORM_UNED_AC_4)
after the official deadline for submitting results.

1542

This configuration, for which we can report an unofficial result, is similar to
the simple confidence score model described above, but using two new features:
number of followers and retweet speed.

We applied to the annotations with the Undecidable class the same threshold
as in the basic configuration.

3.2 Author Ranking

For the Author Ranking subtask, we submitted one official run: ORM_UNED_AR _3
(see Table 1). The developed algorithm is described below.

Basic configuration We used the following features:
— Class value of opinion_maker /non_opinion_maker
— Number of followers

— Retweet speed

The weight function defined in Equation 2 was used to sort the ranking
results.

4 Results

Table 2 reports the scores obtained in the author categorisation subtask Awver-
age Accuracy and Fi(R,S). The results of the SVM baseline provided by the
organisers are also included for reference.

Table 2. Results of the runs submitted to the Author Categorisation subtask.

Run AverageAccuracy Fi (R, S) Rank
SVM baseline 0.461 0.368 2
ORM_UNED_AC_1 0.392 0.323 6
ORM_UNED_AC_3 0.391 0.325 8
ORM_UNED_AC_2 0.371 0.356 11

The test set contained three domains. We employed two domains and in order
to assign a value to the third class, we selected one of the classifiers built using
the training dataset. Tables 3, 4, 5 report the scores obtained for the evaluation
metrics used in the author category subtask: Reliability (R), Sensitivity (R) and
Fi(R,S) for each domain. For the automotive and banking domains we also
include scores of the baselines for reference.

1543

Table 3. Algorithms submitted for the author category subtask: automotive domain.

automotive
System Reliability Sensitivity F-measure
Baseline-SVM 0.275 0.531 0.362
ORM_UNED_AC_3 0.248 0.557 0.343
ORM_UNED_AC_2 0.241 0.582 0.341
ORM_UNED_AC_1 0.256 0.409 0.314

Table 4. Algorithms submitted for the author category subtask: banking domain.

banking

System

Reliability Sensitivity F-measure

Baseline-SVM

ORM_UNED_AC_3
ORM_UNED_AC_2
ORM_UNED_AC_1

0.295 0.508

0.256 0.658
0.282 0.340
0.289 0.389

0.373
0.369
0.308
0.332

Table 5. Algorithms submitted for the author category subtask: miscellaneous domain.

System

miscellaneous

Reliability Sensitivity F-measure

ORM._UNED_AC_3
ORM_UNED_AC_2
ORM_UNED_AC_1

0.465 0.361 0.407
0.437 0.417 0.427
0.423 0.527 0.469

1544

4.1 Author Ranking Results

Table 6 reports the Average Accuracy obtained in the Author Ranking subtask
evaluation, the position in the official RepLab 2014 ranking. For reference, it
also includes the baseline provided by the organisers that uses the number of
followers.

Table 6. Results of the system submitted for the Author Ranking subtask.

System Average Accuracy Rank
Followers 0.378 14
ORM_UNED_AR._3 0.349 15

5 Conclusions and Future Work

We described the algorithms submitted to the RepLab 2014 Author Profiling
task, where we tackled both author categorisation and author ranking.

Author categorisation was our main focus at RepLab 2014. We submitted
three official and one unofficial run. Our proposal was based on a voting system
featuring a method to calculate confidence scores to solve ties in votes. However,
the results obtained with the confidence method were not as good as we expected,
as they were surpassed by the basic configuration. Nevertheless, although the
confidence method got the worst results in Average Accuracy, it turned out the
best in F-measure not only among our runs, but also considering the rest of the
Author Categorisation task participants.

Future work in author categorisation is going to focus on selecting new fea-
tures and improving on the whole system in order to make processing more
efficient. Furthermore, we will have to refine the confidence formula to avoid
setting a threshold for the majority “Undecidable” class.

Regarding author ranking, the bad results can be partly explained by the
lack of information for building the ranking. Due to the Twitter Rate Limit, we
failed in getting necessary information about the followers and retweet speed for
all the profiles. So in case of profiles without this information, they were assigned
an average value. This distortion might have affected the system’s outcome.

For author ranking, future work will focus on getting more information from
Twitter, although the first step, of course, will be to improve the query process
to cope with the Twitter Rate Limit.

References

1. Cunningham, H., Maynard, D., Bontcheva, K.: Text processing with gate. Gateway
Press CA (2011)

1545

. Filgueiras, J., Amir, S.: Popstar at replab 2013: Polarity for reputation classification
. Greenwood, M.A., Aswani, N., Bontcheva, K.: Reputation profiling with gate. In:
CLEF (Online Working Notes/Labs/Workshop) (2012)

. Martin, T., Spina, D., Amigé, E., Gonzalo, J.: Uned at replab 2012: Monitoring
task

. Meina, M., Brodzinska, K., Celmer, B., Czokéw, M., Patera, M., Pezacki, J., Wilk,
M.: Ensemble-based classification for author profiling using various features

. Mosquera, A., Ferndndez, J., Gémez, J.M., Martinez-Barco, P., Moreda, P.: Dlsi-
volvam at replab 2013: Polarity classification on twitter data. In: Working Notes of
CLEF 2013 Evaluation Labs and Workshop (2013)

. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and trends
in information retrieval 2(1-2), 1-135 (2008)

. Saleiro, P., Rei, L., Pasquali, A., Soares, C., Teixeira, J., Pinto, F., Nozari, M., Félix,
C., Strecht, P.: Popstar at replab 2013: Name ambiguity resolution on twitter

1546

