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Abstract. We present the participation of LIMSI in Task 2 of the 2014
ShARe/CLEF eHealth Evaluation Lab. We used a hybrid approach based
on a rule-based system and supervised classifiers depending on the prop-
erties of the attributes. The rule-based system identified course, severity
and body location attributes based on the annotations of the training set
and resources obtained from the UMLS. The Heideltime system was used
to identify the dates. A MaxEnt model was trained to detect negation
and uncertainty based on the disorder and surrounding words. A Decision
Tree detected the relation to document time based on the position of the
disorder in the document and on the words in the current sentence. Our
system obtained a global 5th position out of ten ranked teams (accuracy
of 0.804), and ranked 2nd for the detection of the relation to document
time (accuracy of 0.322).
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1 Introduction

Medical records contain a wealth of information on patients covering their hos-
pital stays, including health conditions, diagnoses, performed tests, treatments.
A large part of this information is held in free text. Information extraction from
free text medical records now has a long history [5, 16, 22]. While these earlier
text analysis systems aimed at a detailed representation of text contents, more
recent shared tasks (e.g., i2b2/VA 2010 [21]) have generally handled medical
entities such as medical problems (aka disorders) as atomic. This was the case of
the 2013 ShARe/CLEF eHealth T2 task [19] which required to detect disorders
spans and their concept unique identifiers (CUIs).

In contrast, the 2014 ShARe/CLEF eHealth T2 shared task [11] focuses on
the attributes of such disorders. According to the task guidelines [4], the at-
tributes can be divided into five categories: anatomical information concerning
the location of the disorders in the body (BL), assertions on the disorder concern-
ing negation and uncertainty indications (NI, UI), clinical information describing
the disorder severity (SV) and its course (CC), contextual information to iden-
tify the subject who experiences the disorder (SC) and the condition (CC) in
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which the disorder exists, and temporal information including the time expres-
sion related to the disorder (TE) and the temporal relation between the disorder
and the time of the document (DT).

General methods to perform this task include knowledge-based methods
which specify in which condition an attribute should be recognized for a given
disorder mention, e.g. by detecting terms in lexicons or by matching lexico-
syntactic patterns; and machine-learning based methods which learn to detect
the presence of an attribute from a feature representation of each disorder men-
tion. The overall approach of the LIMSI team is hybrid: depending on the prop-
erties of the attributes, we used rule-based methods relying on linguistic and
terminological resources (BL, SV, CC, TE) or supervised classifiers (NI, UI,
DT) to identify and normalise disorder attributes.

This paper is organized as follows. In Sec. 2 we present related work on
attribute recognition in clinical texts. Then, we detail the materials and methods
we used according to the attributes in Sec. 3. Results are presented and discussed
in Sec. 4.

2 Related Work

Negation (NI), uncertainty (UI), subject (SC) and conditional existence (CO)
were part of the task to address in the i2b2/VA 2010 [21] and i2b2 2012 [18]
challenges, under one category called “assertion”. Most of the top-ten ranked
systems obtained a high F-measure around 0.93, using supervised methods or
hybrid systems.

Temporal expressions (TE) and relations (including that in DT) were ad-
dressed in the i2b2 2012 challenge [18], albeit in a slightly different way. Tempo-
ral expressions were to be detected anywhere in the text and did not need to be
related to a specific disorder. Each event needed to be anchored to the patient
timeline through a temporal relations. Events included “problems”, which were
close to the “disorders” addressed in the present task. Besides, temporal relations
targets could to be any event or temporal expression, including the admission
or discharge dates. The top-ten systems obtained F-measures of 0.45–0.66 for
finding the normalized value of a temporal expression (Timex3), and 0.43–0.69
for temporal relations between any pair of events.

Anatomical parts (BL) have been included in manual annotations in a few
corpora, including MiPACQ [1] and Quaero [13]. Roberts et al. [14] report an
F-measure of 0.86 for extracting the anatomical site of an actionable finding in
radiology reports.

3 Materials and Methods

3.1 Data

The corpus used for the 2014 ShARe/CLEF eHEALTH evaluation lab consists
of de-identified plain text EMRs from the MIMIC II database, version 2.5 [15].
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Table 1. Description of the corpora

Training Test

Documents 299 133
Words 182,056 153,558
Distinct CUIs 1,356 1,141

Table 2. Statistics of classes for each attribute from the training corpus

Attribute Classes

Body Location (BL) null (5,131), C0000726 (403), C0003501 (295), C0225897
(271), C0278454 (215), C0026264 (208), C0018787
(183), C0817096 (172), C0024109 (134), C0031050 (127),
C0007226 (103), C0018792 (101), etc.

Conditional Class (CO) false (10,993), true (560), null (1)
Course Class (CC) unmarked (10,887), increased (234), decreased (186), im-

proved (101), worsened (67), resolved (63), changed (12),
null (3), no (1)

DocTime Class (DT) overlap (6,851), before overlaps (2,814), before (1,391),
after (442), unknown (55)

Generic Class (GC) false (11,553), null (1)
Negation Indicator (NI) no (9,349), yes (2,205)
Severity Class (SV) unmarked (10,344), moderate (671), severe (410), slight

(128), null (1)
Subject Class (SC) patient (11,467), family member (72), other (13),

donor other (1)
Temporal Expression (TE) none (8,094), date (3,266), duration (131), time (62),

overlap (1)
Uncertainty Indicator (UI) no (13,539), yes (1,014), null (1)

The EMR documents were extracted from the intensive-care unit setting and
included discharge summaries, electrocardiography reports, echography reports,
and radiology reports.

The training set contained 299 documents and a total of 182,056 words, while
the test set contained 133 documents and a total of 153,558 words (see Tab. 1).
In Tab. 2, we give a few statistics for each attribute in the training corpus.

3.2 System Design

Three types of methods were used in our system depending on the properties of
an attribute:

– (i) because unbalanced distributions are hard to process (see Tab. 2), at-
tributes with a very large majority class (SC, CO, GC) were not addressed
minimally: the majority value was systematically returned for such attributes;1

1 Subject Class=patient; Conditional Class=false; Generic Class=false.
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– Attributes with more variation were handled with either

• (ii) human-designed resources and rules if clear clues could be collected
and organized to make a decision for such attributes (CC, BL, SV, TE);

• or (iii) supervised classification if some of the clues played a less cate-
gorical role in decision-making (NI, UI, DT).

We detail below the methods used for attributes with more variation: rule-based
detection of temporal expression (Sec. 3.3), resource-based detection of body
location, severity and course (Sec. 3.4), supervised detection of negation and
uncertainty (Sec. 3.5), and supervised detection of DocTime class (Sec. 3.6).

3.3 Rule-Based Detection of Temporal Expression

To identify the temporal expressions, we used the rule-based temporal tagger
Heideltime [17] that we tuned for clinical texts during the 2012 i2b2 challenge [9].
This tuned version of Heideltime includes linguistic patterns specific to medical
and especially clinical temporal expressions, such as postoperative day four, day
of life, etc. For the CLEF-eHealth challenge, we only used the date expressions
Heideltime recognises, since the other temporal expressions (duration and time)
were too rare in the training set and their recognition decreased the performance
of our system on that corpus.

3.4 Resource-Based Detection of Body Location, Severity and
Course

The recognition of the terms for the attributes body location (BL), course (CC),
and severity (SV), was based on resources specifically built for each attribute.

Since course and severity were marked with fairly regular clues in the training
corpus (see Tab. 2), we used the annotations of the training set as resources to
identify linguistic expressions related to these two attributes.

Terminological resources used for the recognition of terms referring to body
locations were built from the training annotations as well as from UMLS Metathe-
saurus terms from selected source vocabularies. During preliminary experiments
on the training set, we observed that terms found in some UMLS vocabularies
tend to decrease the quality of the annotation. For this reason, we only consid-
ered UMLS terms obtained from four source vocabularies:

– Health Level Seven Vocabulary (HL7),
– Metathesaurus Forms of FDA National Drug Code Directory (FDA),
– University of Washington Digital Anatomist (UWDA),
– and UMLS Metathesaurus specific terms (MTH).

Ambiguous annotations such as “a” or “his” occurring in the training annota-
tions were removed from the body location resource we used. We considered the
CUIs as fine-grained semantic tags associated to the BL terms.

82



These resources were used by the TermTagger Perl module2 to recognise
SV and CC mentions and BL terms. The clinical texts were also semantically
tagged with the CUIs associated to BL terms. Term tagging is integrated in the
Ogmios platform [10] which first performs POS-tagging with GeniaTagger [20].
For each disorder mention, a post-processing step selected the BL, SV and CC
terms found in the sentence where the disorder occurs.

3.5 Supervised Detection of Negation and Uncertainty

System Description. Based upon an empirical analysis of the training corpus,
we prepared a list of clues we found relevant to detect negation and uncertainty:

– Negation clues: negative, no, not, without, denies, deny ;
– Uncertainty clues: appear, assess, could, evaluate, likely, may, possible, possi-

bility, possibilities, prior, probable, questionable, somewhat, suggesting, sus-
picion, unknown. We also marked the PATIENT/TEST subsection header
as an uncertainty clue, since we observed that disorders in this subsection
were associated with an uncertainty indicator in the training corpus.

They were then used to mark as negated or uncertain the part of a sentence
following such a clue, thereby implementing a simplified scope detection method.

In order to detect negated and uncertain disorders, we designed two distinct
models based upon the Maximum Entropy framework [2, 7] as implemented in
the Wapiti toolkit3 [12]: one model for negation identification (NI), and one for
uncertainty identification (UI). Our models rely on both surface and external
features:

– Surface features: (i) the whole entity, (ii) each token from the entity as a
bag of words, (iii) the capitalization of each token among four schemas (all
in upper case, all in lower case, combination of upper and lower case, not
relevant), and (iv) the three tokens preceding the entity to process;

– External features: (i) the Concept Unique Identifier (CUI) of the whole en-
tity as found in the UMLS Metathesaurus [3], and (ii) whether the part of
the sentence where the entity is found is negated or uncertain, based upon
negation and uncertainty clues found before the current entity.

Example. For the entity “Allergies to Drugs” in the sentence “Patient recorded
as having No Known Allergies to Drugs”, we used the following features:

– Whole entity: Allergies to Drugs;
– Tokens from the entity (bag of words): Allergies, to, Drugs;
– Capitalization of each token: Mm, mm, Mm (i.e., the first and third tokens

combine lower and upper case while the second token is only in lower case);
– Three tokens preceding the entity (bag of words): having, No, Known;
– CUI of the entity: C0013182 ;
– Part of the sentence where the entity is found being marked as negated or

uncertained: NEG (the clue “no” was found in the left context of the entity).

2 http://search.cpan.org/~thhamon/Alvis-TermTagger/
3 http://wapiti.limsi.fr/
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3.6 Supervised Detection of Temporal Relation to Document Time

The Document Time attribute encodes the temporal relation between a disorder
and the date of the document. Clinical reports often follow the chronological
order of reported events. A study of the training corpus confirmed this principle.
It also showed that the document structuring into sections often goes together
with specific distributions of temporal relations in each section. For example,
typically, the Chief Complaint section covers past disorders, the Pertinent Re-
sults section describes disorders which overlap the hospital stay, and the Medi-
cations on Discharge section mention disorders that may occur after discharge.
We therefore emphasized the use of document structure as an important clue to
determine the temporal relation of a disorder. To do so, we compiled a list of the
most frequent section headers found in the training corpus, and encoded it as
patterns to detect 26 section types. We also modeled the position of a disorder
in a document as both its character offset and its relative position by cutting
the text into five equal-sized bins. In principle, verb tense should also contribute
to relative time positioning; unfortunately we could not test it for want of time.

We addressed this sub-task as a supervised classification task with four
classes: before, before overlaps, overlap, after. For each disorder, we
collected the following features:

– position in the text (absolute and discretized in five equal bins);
– document type, section type, and their conjunction;
– tokens in the sentence, as a bag of words.

The conversion of sentences into bags of words considered the absence or presence
of each word with at least 10 occurrences in the set of sentences for each class.

We tested several classifiers of the Weka toolkit [8] by training and testing
them in ten-fold cross-validation on the training set (see Tab. 3): majority class
(ZeroR: overlap), set of rules operating on only one feature (OneR: operates
on conjoined feature document type+section type), Näıve Bayes (NB), Decision
Tree (J48, confidence threshold 0.4, minimal number of instances per leaf 10),
k Nearest Neighbors (kNN with k = 1, 3, 5), SVM (SMO with polynomial kernel).
The best results on the training set before the submission were obtained by the

Table 3. Document Time attribute: performance on training set with various classi-
fiers (ten-fold cross validation). Results marked in bold have been obtained after the
submission.

Classifier ZeroR OneR NB J48 kNN: k = 1, 3, 5 SVM

Accuracy 0.593 0.739 0.788 0.814 0.842, 0.823, 0.813 0.844

decision tree, which was therefore used as the classifier for the test corpus. We
can see in Tab. 3 that although slightly better results could be achieved after the
submission with similarity-based classifiers such as kNN or SVM, the obtained
range seems to be close to the maximum that can be obtained with the current
features.
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3.7 Submissions

We submitted two system outputs based upon the predictions performed by the
previous systems. The only difference between the two submissions pertained to
the Temporal Expression attribute: the first submission only focused on classes
date and none which were most often found with this attribute (see Tab. 2),
while the second submission also took into account the less represented time
and duration classes.

4 Results and Discussion

4.1 Evaluation Metrics

The official evaluation measure is the overall average accuracy, where the accu-
racy of each attribute is defined as

Accuracy =
Correct

Total
(1)

where Correct is the number of entities with correctly predicted value and Total
is the number of entities in the gold standard annotations.

4.2 Results on the Training Set

To estimate the performance of the system, two methods can be used. Admit-
tedly, the method which best helps predict future results on unseen data consists
in using cross-validation, i.e., preparing a system based on a subset of the train-
ing data and testing it on the rest, repeating the process on different splits
of the training data. This is easy to do for machine-learning systems: Table 3
showed the accuracy obtained on the Document Time attribute with ten-fold
cross-validation on the training set.

For knowledge-based systems however, it is more cumbersome to use multiple
splits of the same dataset since the human knowledge engineer / system developer
cannot “forget” the data she has seen in a previous split to prepare a new version
of the system. Working on one split is possible although less predictive of future
results. What we present here is simply the application of the system modules
prepared on the training set and tested on the training set itself. While this is not
in principle highly predictive of future results, it often gives an idea of where the
system stands. Table 4 shows the overall results obtained this way, while Table 5
provides detailed information for each attribute. The obtained results are likely
to be optimistic, especially for machine-learning systems, which generally tend
to overfit the training data. We return to them when examining the results on
the test data.
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Table 4. Results on the training set

Submission Accuracy F-measure Recall Precision

#1 0.884 0.684 0.674 0.693
#2 0.882 0.682 0.677 0.686

Table 5. Detailed results on the training set for each attribute. The δ value for each
attribute represents its difference to the best system.

Method Attribute Accuracy F-measure Recall Precision

Default value
GC 1.000 0.000 0.000 0.000
SC 0.992 0 0.000 0.000
CO 0.950 0 0.000 0.000

Resource-based
SV 0.877 0.420 0.573 0.332
CC 0.859 0.388 0.832 0.253
BL 0.511 0.375 0.404 0.350

Rule-based
TE (#1) 0.692 0.071 0.040 0.289
TE (#2) 0.678 0.104 0.065 0.258

MaxEnt
NI 0.966 0.905 0.827 0.998
UI 0.989 0.936 0.884 0.994

Decision tree DT N/A N/A N/A N/A

4.3 Global Results

Table 6 shows the official results we achieved on the test set. Our first submission
ranked 6th out of 12 submissions, and 5th out of 10 participants. We can see
that the overall accuracy is not much lower than that obtained on the training
data (−0.08)—however, recall, precision, and F-measure are much lower (they
are divided by two).

Table 6. Official results on the test set

Submission Accuracy F-measure Recall Precision

#1 0.804 0.315 0.303 0.330
#2 0.801 0.315 0.290 0.333

4.4 Detailed Results per Attribute

Table 7 displays the detailed results we achieved on the test set for each attribute.
For the Temporal Expression (TE) attribute, we indicate the results we achieved
for both submissions. For the other attributes, there is no difference between
submissions #1 and #2. We also indicate the δ value between our submissions
and the best submission for each attribute.
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Table 7. Detailed results on the test set for each attribute. The δ value for each
attribute represents its difference to the best system.

Method Attribute Accuracy δ F-measure Recall Precision

Default value
GC 1.000 -0.000 0.000 0.000 0.000
SC 0.984 -0.011 0.000 0.000 0.000
CO 0.936 -0.042 0.000 0.000 0.000

Resource-based
SV 0.900 -0.082 0.395 0.282 0.663
CC 0.853 -0.118 0.281 0.172 0.765
BL 0.504 -0.293 0.277 0.248 0.313

Rule-based
TE (#1) 0.839 -0.025 0.092 0.186 0.061
TE (#2) 0.806 -0.058 0.126 0.156 0.106

MaxEnt
NI 0.902 -0.067 0.722 0.879 0.612
UI 0.801 -0.159 0.026 0.018 0.044

Decision tree DT 0.322 -0.006 0.322 0.322 0.322

The results for attributes handled through default values or resources are
very close to those obtained on the training set. Surprisingly, the accuracy ob-
tained for the rule-based TE attribute is much better on the test set than on
the training set. A possible explanation could be related to the fact that the test
set only contained discharge summaries whereas the training set also contained
echography, ECG and radiography examination reports, with maybe more reg-
ular temporal expressions in the discharge summaries.

4.5 Discussion

For highly unbalanced attributes (GC, SC, CO), the decision not to process these
attributes and to select the majority class instead proved good: we achieved our
better accuracy values on these three attributes. We notice that most teams did
the same for GC (which did not vary at all in the training set), four other teams
did the same for CO (ranking #5 before 2 teams), and one other team did so for
SC (ranking #5 before 4 teams). For SC, the distance to the best team, which
obtained near-perfect results, is only 0.009; for CO, it was 0.042: there is more
to gain there with a more precise strategy.

For attributes relying on lists, the resource-based approach obtained mod-
erate results. For example, the CUIs for the Body Location attribute encom-
pass a high number of distinct values, which makes it difficult to detect with
high accuracy. The simple dictionary-based method that we used to detect BL
mentions with a co-occurrence based method to associate them to a disorder
underperformed compared to other participants (−0.29 wrt. the best system).
The detection of CC and SV attributes based uniquely on clue words found in
the training set also underperformed wrt. other participants, both ranking last
with differences of respectively −0.12 and −0.08 wrt. the best system.

The choice we made to process the Temporal Expressions with the Heideltime
tool and specifically designed rules allowed us to achieve an accuracy of 0.839,
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with a small δ of 0.025 wrt. the first system. The addition of the less represented
time and duration classes was detrimental to this module.

The MaxEnt model we designed for negation identification performed well,
achieving a 0.902 accuracy with a small δ of 0.067 wrt to the first system on
this attribute (the maximum amplitude of accuracy on this attribute is of 0.207
between the first and the last system). However, the MaxEnt model we created
for uncertainty identification obtained quite low results with an accuracy of
0.801, our system ranking last on this attribute. Given its similarity of design to
the negation identification module and the very low precision and recall scores
it obtained, we suspect this might be due to a bug in this module.

The detection of the DT attribute (temporal relation to document time)
with an emphasis on the position of the disorder in the document structure
(section type and relative position in document) performed on par with the best
system. Its use of the document type as one of the features may have helped
it perform well on the test set, which only contained discharge summaries, in
contrast to the training set which included four types of documents. We have
seen in further experiments on the training set that the use of similarity-based
classifiers (kNN or SVM) instead of the decision tree might improve its results.
Besides, it currently does not take into account verb tense, which can be expected
to be an important clue for this attribute.

Finally, let us note that the accuracy scores obtained by the participants on
the test corpus of this temporal relation task are the lowest among all attributes.
They are much lower than those obtained on the training set (0.81 for our clas-
sifier in 10-fold cross-validation). They are also much lower that those obtained
in the i2b2 2012 challenge on temporal relation detection (F-measures of the
ten best systems in the 0.43–0.69 range) [18]. Our own work in the i2b2 2012
challenge [6] studied the relative recall of our classifiers. The temporal relations
of i2b2 2012 that were closest to the DT attribute of the present task were those
between an event and the admission (AD) or discharge (DD) date. For these two
relations, we obtained F-measures, recalls and precisions of respectively (0.86,
0.80, 0.94) and (0.63, 0.51, 0.83) (see Figure 4 in [6], relations timex3 event
dd hc and timex3 event ad hpi), also much higher than the scores for the
DT attribute. However, the events in i2b2 2012 included more event types than
only disorders, which may change the difficulty of the task.

5 Conclusion and Perspectives

We designed several systems to address the disease and disorder template filling
task of ShARe/CLEF eHealth 2014. We chose the method to use (either rule-
based or supervised approach) depending on the characteristics of each attribute:
resource-based for attributes (e.g., BL) where a dictionary was an important
component, rule-based where patterns were important (TE), based on supervised
machine learning where the determination of the attribute value was based on
distributions of features and relied on a study of their context (e.g., NI and DT).
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While we achieved a high accuracy by using default values in the case of
very unbalanced attributes, we consider that this is not satisfactory. A better
study of contexts occurring near disorders should allow us to highlight clues
that could be used either to produce rules or to train statistical models (taking
into account the specific distribution of values of these attributes). The resource-
based methods that we used probably need to be complemented with additional
features to take better account of their context of occurrence. The supervised
methods obtained high accuracies on the NI and UI attributes. The accuracy on
the DT attribute was low for all participants, pointing at it as the hardest of all
attributes: our system performed on par with the top system on this attribute,
and we discussed directions to improve it further.
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18. Weiyi Sun, Anna Rumshisky, and Özlem Uzuner. Evaluating temporal relations in
clinical text: 2012 i2b2 challenge overview. J Am Med Inform Assoc, 20(5):806–813,
Sep-Oct 2013.
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