
Automatic Assembly of Adaptive User-Interfaces via
Dynamic Discovery and Deployment of Profile Providers,

Decision Makers and Component Repositories

Effie Karuzaki

 Institute of Computer Science, Foundation of Research and Technology Hellas (FORTH)
karuzaki@ics.forth.gr, as@ics.forth.gr

Abstract. In this thesis, we focus on automatic coarse-grained composition
of adaptive user interfaces relying on task trees. To achieve this goal we collect
multiple user and context profiles from independent providers, and supply con-
solidated profiles to independent decision makers (DMs) according to their own
profile models. Each DM chooses the best-fit component for a given task ac-
cording to the supplied user and context profile. To enable an unambiguous
naming scheme for components across repositories we propose the notion of
globally unique task identifiers. Selected components are downloaded from the
repositories and are assembled into the finally delivered user interface.

1 Introduction & Related Work

The term “adaptation” in computer science refers to changing aspects of an interactive
system to best fit individual users, based on their personal information and the context
of use. This is very important nowadays as the ever-growing computer market targets
an ever-widening set of users with different backgrounds, tastes and needs. Through
the years, several architectures [3-6], methods and tools have been proposed for build-
ing adaptive user interfaces. In [1], an engineering paradigm to automate UI adapta-
tion is discussed. User interface plasticity is defined in [2], along with an architecture
supporting it. The later was evolved to include run-time adaptation [3] and served as a
base for CAMELEON [4], a reference framework trying to cover every adaptation
need. Although CAMELEON works well for large-scale systems, it’s too painful to
adopt in smaller ones as developers have to model every aspect of the user interface
and its behavior in many levels. Other approaches shift adaptivity towards individual
widgets [7-9], promoting a more fine-grained UI design philosophy. These are usually
difficult to adopt for large systems, since they are based on small UI elements and
developers have design the whole UI from scratch. Finally, frameworks exist that
describe user interfaces using description Languages (UIDLs) and task modelling [10,
11]. These techniques suggest very detailed UI descriptions, thus they are painful for
large-scale systems. More recent work has proposed adaptation through extensible
and modular frameworks, a rather promising approach for future interaction systems
(small and large) as it focuses on reusability. For example, MyUI [12] exploits a set of
repositories of device profiles, individualization, adaptation and interaction patterns to

achieve UI adaptation during use, focusing on accessibility. MyUI supposes a com-
mon format for all design patterns and a common format among adaptation rules.

Collecting user and context information is an important part of the adaptation pro-
cess. Towards this direction, many approaches have been proposed in the literature,
utilizing common user and context models among the profile providers and the re-
spective consumers. In the context of semantic web, the FOAF (Friend of a friend)
ontology has been proposed for describing persons and their activities in a uniform
manner. Although it has had limited adoption on the web1, many propositions [13-15]
are based on it for consolidating multiple user profiles. Virtual User Modelling and
Simulation Standardisation project cluster [16] define a common vocabulary to avoid
confusion among relative terms and user characteristics. Finally, [17] presents an
approach for merging generic user and context profiles based on given priorities.

In our approach, application developers provide a coarse-grained task tree. The
term coarse-grained is used to denote our focus on comprehensive dialogue compo-
nents rather than on individual widgets. For the adaptive tasks, decision makers
(DMs) select the most fitting UI components and we use them to assemble an adapted
UI. DMs, Profile Providers and UI components can be developed externally and reg-
istered to our system repositories. The overall architecture is given in Fig.1, where the
system backbone is depicted as a gray box. Notice that the application optionally has
an internal UI in addition to the one assembled by our system. Additionally, an op-
tional internal decision making mechanism is used to cover content adaptation needs.

2 Contributions

There	 are	 three	 main	 contributions	 that	 this	 dissertation	 aims	 to	 achieve:	
• A	 methodology	 for	 collecting	 user	 and	 context	 profiles	 from	 independent	 distrib-‐

uted	 providers	 and	 assembling	 them	 into	 a	 unified	 user	 profile	 and	 a	 unified	 con-‐
text	 profile	 that	 will	 be	 passed	 to	 independent	 distributed	 decision	 makers,	 with-‐
out	 imposing	 model	 restrictions	 to	 the	 providers	 or	 DMs.	

1 http://en.wikipedia.org/wiki/FOAF_(ontology)

Fig. 1. The overall system architecture (gray box).

• A	 methodology	 for	 searching,	 rating	 and	 selecting	 the	 most	 qualified	 decision	
maker	 for	 each	 task,	 based	 on	 user	 and	 context	 profiles.	

• The	 idea	 of	 adaptive	 UI	 composition	 from	 distributed	 UI	 components	 based	 on	
coarse-‐grained	 task	 trees,	 using	 distributed	 decision	 makers	 and	 profiles	 along	
with	 a	 system	 proposition	 that	 brings	 this	 idea	 to	 life.	

3 Distributed Profile Management

Adaptation relies on user and context profiles. Today, user information can be re-
trieved from existing profiles in applications, social networks etc. The context of use
can be retrieved from several services (e.g. gps) and sensors. We propose a mecha-
nism for collecting and merging user and context profile information from distributed
providers into a unified user profile and a unified context profile, while enabling pro-
viders to keep their own profile models and allowing user control over the retrieved
information. No common models among the DMs or profile providers are supposed
either. For example, a provider may refer to user hobbies as “user.hobbies”, another
one as “user.interests”, while a DM may require it as “personal_info.free_time”. Each
DM passes their model to the profile manager and the latter translates, transforms and
merges the acquired profiles into unified ones that will conform to the DM’s model. A
lexicon web service is used to provide synonyms for both model and profiles’ attrib-
utes. Synonyms in the model are then matched to synonyms in profiles, and common
ones indicate matching of attributes, e.g. “interests” matches “hobbies”. Because at-
tributes may have different meanings based on the profile structure, e.g. “name” can
be found under “user.name” or “user.pet.name”, DMs should also provide a set of
rules describing the alternative acceptable structures for each attribute that may be
conflicted. The profile manager then uses the common synonyms along with the
structure rules to produce a unified profile that matches the given DM model (Fig.2).

Fig. 2. Profile translation and transformation according to a given model

4 Task Model and Distributed Decision Making

Adaptive applications allow the realization of a task in alternative ways, depending on
user and context profiles. We propose the assembly of adaptive user interfaces based
on task trees, where one or more tasks can be realized via a user interface component
retrieved from a repository. To avoid mismatches of tasks across components, we
introduce the notion of globally unique task identifiers (GUTIDs). Tasks can be either
adaptive, i.e. be realized through alternative UI components, or non-adaptive, i.e.
bound to predefined components specified by the application developer. Adaptive
tasks are assigned to a DM to find the UI component best matching the user and con-
text needs. Thus, two challenges are raised: i) how to rate DMs, i.e. choose the DM
that exploits most of the provided profiles while covering most of its model; and ii)
how a DM can choose a UI component fitting the given application task tree. For the
first challenge, a DM rating process is proposed (Fig.3). The idea is to rate the DMs
based on two metrics, coverage and utilization. Utilization is produced per DM by the
profile manager and refers to the percentage of the available profile information uti-
lized by the given DM model. Coverage is computed by the given DM to reflect
whether the information found in providers is enough for making good adaptation
decisions. An equation provided by the application is then used to compute the final
score. For the second challenge, a set of criteria must be met, first being the coverage
of the given task. UI components have their own sub-task tree, which should match
the application task tree and provide suitable hooks to allow further UI composition.
Components are also expected to implement the API required by the application for
the given tasks, ensuring their proper linkage to the application core. Finally, DMs
contain rules expressing the adaptation logic for suggesting the component best fitting

Fig. 3. The process of choosing a suitable decision maker

the given profiles. No restrictions about the rule representation or the implementation
language are posed; however, all DMs have to be registered in a directory, expose
their capabilities and implement a common API to allow their uniform handling.

5 User Interface assembly

Once suitable components are selected for all adaptive tasks, we can proceed in as-
sembling the final UI. In Fig.4, an example UI synthesis is sketched: T1 is a non-
adaptive task, thus bound to a specific component (A). (A) must have hooks to enable
other UI components to be attached under T1 and T2. Conversely, T4 is adaptive, thus
can be covered by alternative UI components (B and C). Our system finds a suitable
DM to pick the best fitting component for this task, say component B. Thus, comp. B
is downloaded from its repository and linked to the corresponding hook (T4 hook)
inside comp. A. Tasks 6, 7, 10 and 11 are not covered yet, so our system repeats the
component-finding process until all application tasks correspond to a UI component.

UI components deliver parts of a user interface which can be reused by other apps
to cover specific UI needs. Each UI component is tagged as top-level, contained or
both, reflecting the type of the top-level container they use (in java it would be
JFrame or JPanel). All components need to implement a common interface (API) to
enable their uniform handling. Their implementation may be hand-written or derived
from UI generator tools. It is part of this thesis is to provide directions to generators
for producing components compatible with our system. Components should be regis-
tered in component repositories, carrying metadata describing the task(s) they deliver,
the platform they target, the URL for downloading their binaries, etc. Repositories can
be distributed as well, with some of them even being private. Finally, a directory ser-
vice will provide information about which components reside in each repository.

6 Current progress and further research

The presented work is a thesis started three years ago (February 2011) and will be
completed in the next 16 months. Currently, the entire system has been carefully de-
signed and a profile manager for user profiles retrieved from social networks is devel-

Fig. 4. An example of UI synthesis based on task trees.

oped. Algorithms for finding and ranking DMs and the syntax for describing match-
ing tree structures have been sketched, and we have experimented with prototype test
cases in Java (Desktop & Android) for UI synthesis. To this end, UI components (re-
alized as jars) are downloaded from a URL and are assembled together into a final UI.

Further work remains to be done for the implementation of context profile utiliza-
tion, decision making, dynamic component discovery and automatic UI assembly
based on task trees, including matching component sub-task trees to the application
task tree. Open research questions include ways in which the decision makers will
refer to UI components, what properties each UI component will have and what in-
formation should a GUTID contain. Further research includes enabling run-time UI
component substitution, ultimately targeting to dynamic and on-demand UI creation.

7 References

1. Savidis, A., Stephanidis, C., (2004) Unified user interface development: the software engi-
neering of universally accessible interactions. UAIS (3-4) (pp 165-193) (2004)

2. Thevenin, D., Coutaz, J. (1999) Plasticity of User Interfaces: Framework and Research
Agenda. Interact99, (pp. 110–117)

3. Calvary, et.al. (2003). A Unifying Reference Framework for Multi-Target User Interfaces,
IWC 15(3) (pp. 289-308).

4. Calvary, G. et al(2002) The CAMELEON Reference Framework, Deliverable D1.1
5. Jaquero,V., Vanderdonckt, J., Montero, F., González,P. (2008). Towards an Extended

Model of User Interface Adaptation: The ISATINE Framework. IFIP (pp. 374–392)
6. (1992)Arch: A Metamodel for the Runtime Architecture of An Interactive System, The

UIMS Developers Workshop, SIGCHI Bulletin, 24(1), ACM Press
7. Calvary, G. et al (2004). Towards a new generation of widgets for supporting software

plasticity: the “comet”. EHCI-DSVIS, (pp. 306-324)
8. Jabarin, B., T. C. Graham, N. (2003) Architectures for Widget-Level Plasticity. DSV-IS

2003.
9. Crease, M., Gray, P., Brewster, S., (2001). A Toolkit of Mechanism and Context Inde-

pendent Widgets, Proceedings of DSVIS, (pp. 127-141)
10. Paterno, F., Mancini, C., Meniconi, S. (1997). ConcurTaskTrees: A Diagrammatic Nota-

tion for Specifying Task Models, INTERACT ’97 (Pages 362 – 369)
11. Pribeanu, C. (2005). An Approach to Task Modeling for User Interface Design. WEC(5)

5-8.
12. Peissner, M., Häbe, D., Janssen, D., Sellner, T. (2012). MyUI: Generating Accessible User

Interfaces from Multimodal Design Patterns. EICS ’12 (pp. 81-90).
13. Golbeck, J., & Rothstein, M. Linking social networks on the web with FOAF: a semantic

web case study. In AAAI’08 (pp. 1138–1143). AAAI Press (2008).
14. Raad, E., Chbeir, R., & Dipanda, A. User Profile Matching in Social Networks. In

NBiS’10 pp. 297–304, (2010)
15. Orlandi, F., Breslin, J., & Passant, A. Aggregated, interoperable and multi-domain user

profiles for the social web. SEMANTICS ’12 p. 41 (2012).
16. Kaklanis, N, et al. An Interoperable and Inclusive User Modelling concept for Simulation

and Adaptation. In Proceedings of the 20th UMAP (2012).
17. Bettini, C., & Riboni, D. Profile aggregation and policy evaluation for adaptive internet

services. In MOBIQUITOUS 2004, pp. 290–298 (2014)

