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Abstract. We report on a project with the goal of creating a proactive system 
that attempts to reduce the propensity to mind wander (MW) by optimizing 
learning conditions (e.g., text difficulty and value) for individual learners. Our 
previous work had shown that supervised classification based on individual at-
tributes could be used to detect the learning condition with the lowest MW 
rates. Here we test the model by comparing MW rates for the predicted optimal 
conditions to MW rates from a random control condition or in the condition 
with the overall best MW rate across all learners. Our results suggest that our 
method is better than these non-adaptive alternatives in certain contexts. 
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1 Introduction 

Learner models are at the core of intelligent tutoring systems (ITS). The development 
of ITSs has been influenced by cognitive learner models [1,2], and in recent years 
there has been a rise in ITSs that have been informed by affective models [3,4,5]. The 
cognitive-affective state of engagement is of particular interest for this project. En-
gagement has been defined as an enjoyable state of involvement in a learning activity 
or task with focused attention and intense concentration [3]. Engagement is necessary 
for learning since learners have to attend to information in order to learn. Mind wan-
dering (MW) pertains to instances where engagement is disrupted and learners invol-
untarily shift their attention from their task towards unrelated thoughts. MW can be 
detrimental to learning [6, 7] because of this lapse in attention. Thus, to facilitate 
learning, it is important to develop systems that can either sustain engagement by 
reducing the propensity of MW behaviors or respond when a learner becomes disen-
gaged due to MW. Not all learners exhibit the same MW behaviors when placed in 
the same learning environments [8]. Some learners experience lower MW rates com-
pared to others depending on the context of the learning activity. For example, in a 
situation where the learning materials are considered difficult some individuals may 
be able to sustain attention and remain engaged, while others may disengage as their 
attention drifts towards thoughts unrelated to the task. With this in mind, we have 
begun developing a method that adapts the learning environment according to 
measures of individual attributes in an effort to reduce MW behaviors during a learn-
ing session. Our intention is to select optimal learning materials based on these 
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measures, with the purpose of reducing the propensity to MW. For example, learners 
would be assessed for attributes such as reading comprehension or scholastic aptitude 
and would then be placed in a learning environment and provided with materials 
based on those attributes with the goal of reducing the propensity to MW. The goal of 
this paper is to evaluate the performance of such a system by comparing our method 
to two non-adaptive alternatives. 

1.1 Related Work 

A variety of learner models have been employed in ITSs since their inception. Exam-
ples of cognitive models include: knowledge tracing models [9, 10], item response 
theory models [11], and knowledge space models [12]. Recent research of alternatives 
to cognitive models includes affective models [13, 14], meta-cognitive models [15], 
and models of disengagement [16] (see [17] for a review of recent models). Advanc-
ing the groundwork laid by studies that have investigated the relationship between 
affect and learning [3], [see 18 for a review, 19], recent research along these lines has 
led to the development of Reactive affect-sensitive ITSs that attempt to sense affec-
tive states related to learning and respond accordingly [20, 21, 22]. One example of 
this type of system is Affective AutoTutor [23]. This system detects the cognitive-
affective states of the learner (i.e., boredom, confusion) based on conversational mod-
eling, facial cues, and body language and alters the dynamics of the tutoring session 
through dialog moves designed to address specific affective states.  

Although there are no analogous reactive systems that respond to MW, there have 
been attempts to develop automatic MW detectors. Drummond and Litman [24] used 
acoustic-prosodic features extracted from learners’ utterances during a spoken learn-
ing task to discriminate episodes of low “zoning out” from episodes of high “zoning 
out”, obtaining an accuracy of 64%. With a similar goal in mind, Bixler and D’Mello 
[25] recently attempted to automatically detect MW during reading on a computer 
screen using eye movements. They were able to detect MW with an accuracy of 72% 
(expected = 61%). A similar system, called GazeTutor [4], used an eye tracker to 
detect when users looked away from the screen for an extended period of time, which 
was taken to imply attentional disengagement. Although GazeTutor didn’t definitive-
ly detect instances of MW, it attempted to re-engage learners with interventions when 
attentional disengagement was detected. Thus, research is steadily moving towards 
systems that are able to identify and respond appropriately to MW with the goal of 
sustaining engagement and improve learning. 

Conversely, Proactive strategies attempt to facilitate affective states that would be 
beneficial for learning or avoid states that would be detrimental for learning. One 
example of a system that used a proactive strategy is ConfusionTutor [26], which 
attempted to induce a state of confusion during learning as there has been evidence 
that suggests a positive correlation between learning gains and confusion [27].  

1.2 The Current Project 

We recently took a step towards developing a proactive strategy to reduce MW by 
selecting learning materials that lead to reduced MW rates for individual learners [8]. 
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MW rates were estimated with learner responses to auditory probes while learners 
read instructional texts on a computer screen. Each text was either an easy or difficult 
version and was manipulated to have either low or high value with respect to its 
weight on a subsequent test. Each learner read a total of four texts: one of each com-
bination of difficulty and value. Supervised learning methods were used to build 
models that used individual attributes to predict the texts that would result in the low-
est MW rate for that learner. Each model was built on data from the other learners 
(i.e., N – 1) and was then applied to the learner that was held out. The best models 
were moderately successful, resulting in an accuracy of 64% (expected = 53%). The 
next step, and the focus of our current research, is to further investigate how effective 
our method is at personalizing the learning environment in order to reduce MW. 

There are many ways to evaluate the effectiveness of a personalized system. Sev-
eral empirical evaluation methods are mentioned by Chin [28], such as experimental 
comparisons between systems with and without learner models or evaluating the ac-
curacy of each learner model. Gena [29] covers strategies for evaluating user-adaptive 
systems, which includes additional strategies such as user-centered evaluation through 
questionnaires and interviews, observational evaluation through user observation and 
log files, and predictive evaluations such as expert reviews. Similar evaluation meth-
ods are suggested specifically for ITSs by Mark and Greer [30]. Due to the early na-
ture of this project, we opted for a preliminary analysis that takes advantage of exist-
ing data in lieu of a more time consuming experimental study.  

The present work describes an investigation of the effectiveness of our method to 
prevent MW [8]. We used existing data which identified the MW rate of each learner 
for four different learning materials that varied in difficulty and value. To evaluate 
our method, we then selected a MW rate for each learner based on the model’s predic-
tion of the learning materials with the lowest MW rate (i.e., individual best). We then 
compared these to MW rates derived from two non-adaptive alternative methods. The 
first alternative was to determine the learning materials with the lowest MW rate on 
average across all learners and select those learning materials for each learner (i.e., 
overall best). The second alternative was to simply select learning materials for each 
learner at random (i.e., random). 

2 Data and Methods 

What follows is a description of the data collection and analyses for the current 
project. For a more detailed description of data collection, see [8]. 

2.1 Data Collection 

Undergraduate students (N = 187) from two U.S. universities learned about research 
methods topics from four texts (i.e., experimenter bias, replication, causality, and 
dependent variables) presented on a computer screen. Each text contained 1500 words 
on average (SD = 10) and were split into 30-36 pages. The difficulty and value of 
each text was manipulated. The difficulty manipulation consisted of presenting either 
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an easy or a difficult version of each text. Value was manipulated based on the weight 
assigned to each text on a subsequent posttest. Learners read all four texts with one 
text in each one of the four conditions: 2 (difficulty: easy vs. difficult) × 2 (value: 
high vs. low). The success of the manipulations was confirmed with self-reports of the 
perceived difficulty and perceived value of the texts (see [31]). During the task, learn-
ers’ MW was measured along with several individual attributes.  

Mind Wandering was measured through auditory probes (i.e. a beep) on nine 
pseudorandomly chosen “probe pages” per text, a standard and validated method for 
collecting online MW reports [6]. The MW rate for each text was then obtained by 
computing the proportion of “Yes” responses to probes. 

Individual Attribute measures were collected for use as features in our models. 
The following measures were collected: (a) reading comprehension, (b) reading flu-
ency, (c) working memory ability, (d) interest in research methods, (e) general bore-
dom proneness, (f, g) boredom in academic situations (underwhelmed and over-
whelmed), (h) scholastic aptitude, and (i) prior knowledge. Scores of all measures 
were standardized by school to alleviate any large discrepancies due to demographic 
differences between schools. 

Procedure. Learners began the task by proceeding through one of two 24 item 
multiple choice pretests (counterbalanced between pre and posttest across all learners) 
and several individual attribute measurements. After being given instructions on the 
learning task, they studied four texts (one at a time) on a page-by-page basis, using 
the space bar to navigate forward. The title of the text and the corresponding weight 
of the test questions (value manipulation) were explicitly presented before each text. 
After learners studied all four texts, they were presented with the remaining 24 item 
posttest and remaining individual attribute measures. 

2.2 Supervised Machine Learning 

We used measurements of the individual attributes to predict the learning materials 
(in terms of difficulty and value) that would result in the least amount of mind wan-
dering using supervised learning. Models were built for 34 machine learning algo-
rithms from the WEKA machine learning software [32]. These included lazy-learners, 
Bayesian models, decision trees, support vector machines, regression models, etc. 
There were two additional parameters. The first parameter was the minimum allowa-
ble difference (i.e., threshold) between a learner’s standardized MW rate for the best 
and worst materials (i.e., a difference of .0, .25, or .5 standard deviations between the 
highest and lowest MW rates). The second parameter was the specific classification 
task. The task was to classify the optimal learning materials between low and high 
difficulty texts, low and high value conditions, or any of the 4 conditions. Leave-one-
person-out cross validation was used to evaluate each data set. Models were built on 
all learners except for a hold out learner and then tested on the hold out learner; this 
process was repeated for all learners. This method ensures that the training and testing 
set for each model are learner-independent. The Kappa statistic was taken as the 
measure of classifier accuracy. A kappa value of 1 indicates perfect agreement, while 
a kappa value of 0 indicates agreement was no better than chance. 
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2.3 Comparison Analysis 

The best performing models for each classification task were identified based on the 
highest kappa. The best model for both the difficulty and difficulty/value classifica-
tion tasks was built with a decision stump classifier, while the best model for value 
was built with a simple logistic classifier. These models were then used to assess how 
our method of assigning materials to learners would perform compared to non-
adaptive methods. To illustrate how each MW rate was computed for the comparison, 
consider a hypothetical situation with 4 learners being compared in the difficulty clas-
sification task (Table 1). Individual best MW rates are based on model predictions; in 
this example, the model predicted that the best materials would be the difficult texts 
for learners 2 and 3, and the easy texts for learners 1 and 4 (note that the model erred 
for learners 1 and 2). Overall best MW rates are the MW rates for each learner with 
the materials that resulted in the lowest MW rate on average across participants; these 
are the easy texts for this example. Random MW rates are the MW rates for each 
learner with materials chosen at random; in this example, learner 2 is randomly as-
signed difficult texts, while learners 1, 3, and 4 are randomly assigned easy texts. 
Note that in this case, both the overall best and individual best conditions predicted 
the materials with the lowest MW rate for half the learners, which resulted in compa-
rable average MW rates of about 0.45.  
 
Table 1. MW rates (proportions of yes to total probe responses) for 4 hypothetical learners by 
classification (easy and difficult) and comparison groups.  

Learner Easy Difficult Individual Best Overall Best Random 

1 0.61 0.39 0.61 – Easy 0.61 – Easy 0.61 – Easy  
2 0.28 0.56 0.56 – Difficult 0.28 – Easy 0.56 – Difficult  
3 0.67 0.44 0.44 – Difficult  0.67 – Easy 0.67 – Easy  
4 0.22 0.61 0.22 – Easy 0.22 – Easy 0.22 – Easy  
Average 0.44 0.50 0.46 0.45 0.52 

3 Results 

Table 2 lists the average standardized MW rates for each of these conditions based on 
the complete data set. Our initial step was to assess the accuracies of the classification 
results when considering all four types of learning materials: difficulty (easy and dif-
ficult) × value (low and high). We compared the MW rates of the best performing 
model (i.e., at the threshold of .25 sd’s) which resulted in a kappa of .11 (observed 
accuracy of 34%, expected accuracy of 26%). The MW rates were significantly lower 
for the individual best condition compared to the random condition, t(140) = -2.1, p = 
.04, but not significantly different from the overall best condition. 

We then collapsed across value and then difficulty and conducted similar analyses 
for each. Value, at the threshold of .25 sd’s, resulted in a kappa of .16 (observed accu-
racy of 59%, expected accuracy of 51%). The MW rates in the individual best condi-
tion were not significantly different from either the random or the overall best condi-
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tion.  Difficulty at the threshold of .5 sd’s, resulted in a kappa of .24 (observed accu-
racy of 64%, expected accuracy of 53%). The MW rates in the individual best condi-
tion were significantly different from the random condition, t(97) = -2.4, p = .02, but 
not different from the overall best condition . 
  
Table 2. Standardized MW rate means by classification task (standard deviations in parenthe-
ses). Lower numbers are preferred. 

Classification Task Individual 

Best Overall Best Random N 

Difficulty × Value -.01 (.87) -.03 (.87) .13 (.93) 141 

Value -.05 (.79) -.01 (.80) -.01 (.81) 141 

 
Difficulty .07 (.72) .09 (.75) .17 (.75) 98 

 
These preliminary results show that the models built on a small suite of individual 

attributes chose learning materials for each learner that were optimal in terms of re-
sulting in the least amount of MW when compared to placing learners into a random 
learning condition except when collapsing across value. However, we were unable to 
choose materials with reported instances of MW that were statistically less than those 
chosen in the overall best condition across all learners.  

We next wanted to take a close look at those individuals whose best model condi-
tion was different than the overall best condition to gain further insight into how the 
mind wandering behaviors differ between these conditions (see Table 3). The anal-
yses described above were repeated after removing learners with the same individual 
best and overall best condition. For example, if the model predicted a learner should 
be given low difficulty materials, which is the overall best condition, then that leaner 
would not be included in the following analysis. For each analysis, the sample size 
was considerably culled resulting in low power, however, the results of significance 
are still reported. When considering all four types of learning materials (i.e., difficulty 
× value value) at the threshold of .25 sd’s, the MW rates for the individual best condi-
tion were higher than the rates for the overall best condition, t(40) = .799, p = .43.  
When considering only value at the threshold of .25 sd’s, the rates for the individual 
best condition were lower than the overall best condition, t(51) = -1.5, p = .13. When 
considering only difficulty at the threshold of .5 sd’s, the rates for the individual best 
condition were lower than the overall best condition, t(18) = -91, p = .38. 

 
Table 3. Standardized MW rate means by classification task for learners that differed on MW 
rates for the individual best and overall best conditions (standard deviations in parentheses) 

Classification Task Individual 

Best Overall Best Random N 

Difficulty × Value .20 (.78) .09 (.82) .28 (.92) 41 

Value .07 (.81) .17 (.80) .12 (.82) 52 

 
Difficulty .14 (.84) .24 (.97) .17 (.90) 19 
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This second analysis shows that when the individual best condition differs from the 
overall best condition of all learners, there are some drastic differences in the amount 
of MW rates. When collapsing on value or difficulty (separately), the individual best 
condition outperforms the overall best condition.  However, when considering the 
difficulty × value classifications, this trend is reversed where the overall best produces 
the least amounts of mind wandering.   

4 Discussion 

The goal of this project is to take strides towards creating a personalized learning 
environment in which a learner is provided with materials that reduce the propensity 
to MW. While there have been a few encouraging projects that attempt to take such 
proactive steps toward enhancing the learning experience by adapting the learning 
environment [see 33 for a review], this project’s focus on attempting to proactively 
sustain engagement by reducing the likelihood that learners would MW based on a 
rather small number of individual attribute measures is novel. We showed that our 
method performs either better than or at least as well as two non-adaptive alternatives 
for choosing learning materials that will lead to a reduced MW rate. This is an initial 
step towards developing a system sensitive to learners’ needs in terms of sustaining 
engagement.  The next step would be to implement an experiment to test the generali-
zability of the claim that the method described here is, in fact, an effective method to 
incorporate into a preventative learning environment. Another possibility is to assess 
an expanded set of individual attribute measures. An exploration of additional 
measures could determine a specific set of features that are best able to predict a con-
dition with an optimal MW rate. 

Two limitations are apparent. First, it is possible that learners reported MW rates 
incorrectly, which could decrease the accuracy of our method. However, learner self-
reports are used extensively in previous studies as there is not currently a good alter-
native for tracking MW [6]. Second, these findings are based on learners reading texts 
on research methods in a laboratory setting. Future work could boost claims of gener-
alizability by incorporating different topics and other modes of information delivery. 

This research takes a step towards tailoring a learning environment in order to re-
duce the rate of MW and potentially increase engagement. Systems exist that are sen-
sitive to various states of the learner and take a reactive approach by adapting to the 
needs of the learner in a variety of contexts [21, 22, 23]. This project takes a proactive 
approach to addressing the needs of the learner by assessing their attributes and iden-
tifying learning materials that would potentially produce the least amount of MW. 
This method need not be limited to addressing MW behaviors during a leaning ses-
sion. It would be beneficial for future work to assess how this method could be ap-
plied to addressing other cognitive affective states, such as boredom or confusion, 
which also have an influence on learning. 
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