

Workshop Approaching Twenty Years of

Knowledge Tracing (BKT20y)

Knowledge Tracing is an extremely popular method for student modeling because of its
capability to infer a student’s dynamic knowledge state in real time as the student is
observed solving a series of problems (Corbett & Anderson, 1995). After its
introduction in 1995, many extensions to the original technique have been proposed to
improve its predictive accuracy. Variants include: fitting model parameters to
individuals rather than populations (e.g., Lee & Brunskill, 2012; Yudelson, Koediger, &
Gordon, 2010), contextualizing model parameters based on past and current usage of
an intelligent tutoring system (Baker, Corbett, & Aleven, 2008, Baker et al., 2010;
GonzálezBrenes, 2014; Pardos et al., 2010) and on latent characteristics of students
and problems (Khajah et al, 2014), clustering similar students and sharing parameters
among them (Pardos et al, 2012), soft sharing of parameters via hierarchical Bayesian
inference (Beck & Chang, 2007; Beck, 2007), and considering knowledge state as a
continuous variable (SohlDickstein, 2013; Smith et al., 2004).

As we approach twenty years since the introduction of Knowledge Tracing, what
lessons have we learned? This workshop's motivation is to open the floor for the
discussion of the recent advances in Knowledge Tracing and student modeling in
general, take stock of the promises and failures of current approaches, and work
toward developing integrated approaches.

We gratefully acknowledge the following members of the workshop program
committee:

Albert Corbett, Carnegie Mellon University
Neil Heffernan, Worcester Polytechic Institute
Zachary Pardos, University of California, Berkeley
Steve Ritter, Carnegie Learning, Inc.

The BKT20y workshop organizers
Michael Yudelson

José P. González-Brenes
Michael Mozer

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

115

Table of Contents BKT20y

FULL PAPERS

Choosing Sample Size for Knowledge Tracing Models

Derrick Coetzee

117

A Unified 5-Dimensional Framework for Student Models

Yanbo Xu and Jack Mostow

122

The Sequence of Action Model: Leveraging the Sequence of

Attempts and Hints

Linglong Zhu, Yutao Wang and Neil Heffernan

130

Using Similarity to the Previous Problem to Improve Bayesian

Knowledge Tracing

William Hawkins and Neil Heffernan

136

Is this Data for Real?

Rinat B. Rosenberg-Kima and Zachary A Pardos

141

The Effect of Variations of Prior on Knowledge Tracing

Matti Nelimarkka and Madeeha Ghori

146

POSTERS

A Brief Overview of Metrics for Evaluation of Student Models

Radek Pelánek

151

A Comparison of Error Metrics for Learning Model Parameters in

Bayesian Knowledge Tracing

Asif Dhanani, Seung Yeon Lee, Phitchaya Phothilimthana and Zachary

Pardos

153

Prediction of Student Success Using Enrollment Data

Nihat Cengiz and Arban Uka

155

Expanding Knowledge Tracing to Prediction of Gaming Behaviors

Sarah Schultz and Ivon Arroyo

157

Evaluating Student Models

Adaeze Nwaigwe

159

Additionally, the workshop scheduling will include the full talk “EEG Helps Knowledge
Tracing!” based on the following paper:

Xu, Y., K.-M. Chang, Y. Yuan, and J. Mostow. EEG Helps Knowledge Tracing!
In Proceedings of the ITS2014 Workshop on Utilizing EEG Input in Intelligent
Tutoring Systems. 2014: Honolulu, p. 43-48.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

116

Choosing Sample Size for Knowledge Tracing Models ∗

Derrick Coetzee
University of California, Berkeley

dcoetzee@berkeley.edu

ABSTRACT
An important question in the practical application of Bayesian
knowledge tracing models is determining how much data is
needed to infer parameters accurately. If training data is
inadequate, even a perfect inference algorithm will produce
parameters with poor predictive power. In this work, we
describe an empirical study using synthetic data that pro-
vides estimates of the accuracy of inferred parameters based
on factors such as the number of students used to train the
model, and the values of the underlying generating param-
eters. We find that the standard deviation of the error is
roughly proportional to 1/

√
n where n is the sample size,

and that model parameters near 0 and 1 are easier to learn
accurately.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Measurement,Theory.

Keywords
Educational data mining,knowledge tracing,sample size

1. INTRODUCTION
Simple Bayesian knowledge tracing models a student’s ob-
served responses to a sequence of items as a Markov process,
with their knowledge state as a hidden underlying variable.
If values are given for the four standard parameters, learn-
ing rate, prior, guess, and slip, the likelihood of a particular
set of response sequences can be computed. Using standard
search procedures like expectation maximization (EM), the
parameter set giving the highest likelihood for a given set of
sequences can be determined, provided that the procedure
converges to the global maximum.

∗This work published at the BKT20y Workshop in conjunc-
tion with Educational Data Mining 2014. The author waives
all rights to this work under Creative Commons CC0 1.0.

However, even if the procedure identifies the global maxi-
mum correctly and precisely, the resulting parameters may
not reflect the actual parameters that generated the data;
this is a sampling error effect. It’s clearest with very small
samples, such as samples of size 1, but exists with larger sam-
ples as well. Empirical studies with synthetic data generated
from known parameters show that the inferred parameters
for a given data set can differ substantially from the gen-
erating parameters, and this same issue would arise in real
settings. An understanding of the magnitude of sampling
error in a particular scenario can help to explain why the
resulting model does or does not make effective predictions.
Moreover, by providing a means to describe the distribution
of possible generating parameter values, the uncertainty of
calculations based on those parameters such as predictions
can also be determined.

2. RELATED WORK
For simple problems, such as identifying the mean value of
a parameter in a population, or the proportion of the popu-
lation falling into a subgroup, there are simple and well-
understood statistical approaches for determining sample
size based on statistical power. Such analytic approaches
are not immediately applicable to the problem of minimiz-
ing the HMM error function because of its complexity and
high dimensionality.

Falakmasir et al [2] have noted that training time increases
linearly with the size of the training set. Choosing an ap-
propriate sample size for a certain desired level of accuracy
can thus help to reduce training time, which is important
both for research and in some real-time interactive tutor
applications.

Nooraei et al [3] found that using only the 15 most recent
data points from each student to train a knowledge trac-
ing model yielded root mean-square error during prediction
comparable to using the student’s full history. For one data
set, the most 5 recent items sufficed. Our study conversely
does not vary the number of items per student, but instead
varies the number of students and the four parameters gen-
erating the data. By allowing sample size to be reduced
to meet a desired accuracy, our work offers an orthogonal
method of further reducing training time.

De Sande [8] has suggested that as samples become larger,
models with small parameter sets may no longer be rich
enough to capture the sample’s complexity. Thus our exclu-

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

117

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0
.1
5
0

0
.1
5
5

0
.1
6
0

0
.1
6
5

0
.1
7
0

0
.1
7
5

0
.1
8
0

0
.1
8
5

0
.1
9
0

0
.1
9
5

0
.2
0
0

0
.2
0
5

0
.2
1
0

0
.2
1
5

0
.2
2
0

0
.2
2
5

0
.2
3
0

0
.2
3
5

0
.2
4
0

0
.2
4
5

M
o
re

P
ro

p
o

rt
io

n
 o

f
sa

m
p

le
s

Inferred learning rate

Figure 1: Given the fixed model learn=0.2,
prior=0.4, guess=0.14, slip=0.05, we generated
10000 samples with 1000 students each, and for each,
inferred all four parameters using EM. The distribu-
tion of the inferred learning rate parameter over the
samples is above. The mean differs by 3× 10−6 from
the true generating parameter 0.2. The standard
deviation is 0.01121, and the orange line shows the
expected height of each bar if the proportions pre-
cisely followed a normal distribution. Scipy’s nor-
maltest [7] rejects that the distribution is perfectly
normal (p < 0.0002), and a small amount of negative
(left) skew is visible; the median is 0.00016 smaller
than the mean. But the distribution is close enough
to normal for our purposes.

sive reliance on a simple four-parameter BKT model even
for very large samples is a limitation of our approach.

3. METHODOLOGY
In our experiments we relied on a simple standard Bayesian
knowledge tracing model with four parameters: learning
rate, prior, guess and slip. There is only one value for
each parameter, and no specialization by student or prob-
lem. Each synthetic student responded to five items; we
do not vary this parameter in this study, since Nooraei et
al [3] report that increasing this parameter has diminishing
returns, but future work may investigate it.

We generate separate datasets for each of our experiments.
In each case, we enumerate a sequence of models (each spec-
ified by values for learn, prior, guess, slip, sample size), and
for each of those models, we generate a large number of
random samples consistent with that model. For example,
for a particular model, we may generate 1000 samples each
containing 1000 students.

We then run EM on each sample to find the parameter set
giving the maximum likelihood value. All parameters are
permitted to vary during the search. EM is run starting
at the generating parameters and run until fully converged
(within 10−12 or until 100 iterations are complete). Start-
ing at the generating parameters is not feasible in a realistic
setting, but here it allows EM to run quickly and consis-
tently reach the global minimum. As shown in Figure 1, the
parameter values inferred from these samples approximate
a normal distribution with a mean equal to the generating
parameter.

Finally, we take all samples generated from a single model
and, for each parameter, record the mean and standard devi-
ation of the inferred values for that parameter. We chose the
number of samples generated for each model large enough
so that these statistics remain stable under repeated runs.
Mean values for each parameter were consistently near the
generating parameter, typically within at most 0.1 standard
deviations. Standard deviation provides an estimate of vari-
ation in the inferred parameter values, and is plotted. Dif-
ferent models yield different standard deviation values.

Because of the very large number of large samples involved
in this approach, we use the fastHMM C++ BKT library
designed by Pardos and Johnson [5] to quickly generate
datasets and perform EM, invoked from a Matlab script.

3.1 Varying one parameter
In our first experiment, we start with typical, plausible val-
ues for all four parameters: learn=0.2, prior=0.4, guess=0.14,
slip=0.05. These values are consistent with prior work that
found large guess and slip values (> 0.5) to be implausible in
most scenarios [6], and in our 5-problem scenario, the chance
of learning the material by the end is about 67%, which is
reasonable.

Then, for each of the four parameters, we hold the other
parameters at their single plausible value, and vary the re-
maining parameter from 0 to 1 in steps of 0.01. This results
in 404 total parameter sets.

For each parameter set, we generate 1000 random samples
of 1000 students each. In this experiment, the number of
students is fixed at 1000, which is large enough to consis-
tently produce a standard deviation not exceeding 0.03 —
this avoids the boundary effects near 0 and 1 that would
occur for very small samples.

In this experiment, we focus on the variance of our estimates
of the parameter that is being varied, and don’t consider
variance of the other (fixed) parameters.

3.2 Interactions between parameters
In this experiment, similiar to the first, we hold three pa-
rameters fixed (learn=0.2, prior=0.4, guess=0.14), and vary
slip between 0 and 1 in steps of 0.01. This gives 101 pa-
rameter sets. For each, we generate 1000 random samples of
1000 students each. However, in this experiment we exam-
ine variance of our estimates of all four parameters, rather
than just the one being varied (slip). This experiment helps
to demonstrate to what extent varying one parameter can
affect the difficulty of accurately inferring other parameters.

3.3 Varying sample size
In our third experiment, we fix the value of all four pa-
rameters, but vary the sample size in powers of two from
2 to 2097152. For sample sizes below 10000, we generate
1000 samples of that size, while for those above we generate
100 samples. The parameter values are heuristically chosen
based on the prior experiments above to generate large error
values (but not necessarily the worst possible error). We ex-
amine how variation of our estimates of all four parameters
varies with sample size, and identify any trends.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

118

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
d

 d
ev

 o
f

in
fe

rr
ed

 p
ar

am
et

er
s

Generating parameter value

Learning rate Prior Guess Slip

Figure 2: Variation of inferred parameters, based on
underlying generating parameter. For each curve,
all parameters other than one being examined are
fixed at plausible values. Values near 0 and 1 are
the easiest to infer accurately, and each parameter
exhibits a unique pattern.

3.4 Interaction between sample size and pa-
rameters

In our final experiment, we vary both the learning rate (from
0 to 1 in steps of 0.01) and the sample size (between the val-
ues 1000, 10000, 100000) at the same time. This enables us
to examine whether there is any interaction between param-
eters and sample size. For 1000 and 10000 students we use
1000 samples, while for 100000 students we use 100 samples,
to reduce runtime.

4. RESULTS
4.1 Varying one parameter
As described in section 3.1, in this experiment we vary each
parameter between 0 and 1 while holding the other parame-
ters fixed, and examined how the variation in our inference
of that parameter changed with its value. As shown in Fig-
ure 2, parameters with values near 0 or 1 are easier to ac-
curately estimate, while those with values in the 0.4 to 0.8
range are more difficult to infer. Each parameter exhibits a
unique pattern, with prior behaving worst for small values,
guess behaving worst for values in the middle, and learning
rate performing worst for the largest values. Slip is unique
in having two peaks in its curve near 0.5 and 0.8.

4.2 Interactions between parameters
As described in section 3.2, in this experiment we vary slip
between 0 and 1 while keeping the other parameters fixed,
and examine how the variation of all four inferred parame-
ters varies, as shown in Figure 3. All variance values exhibit
a strong, complex dependence on the slip parameter—in par-
ticular there is a dramatic and unexpected drop from large
variance to small variance around slip=0.85. We conclude
that the variance of an inferred parameter depends not only
on the value of that parameter, but also the values of other
parameters.

4.3 Varying sample size
We fix the parameters at the values empirically determined
in section 4.1 to give maximum variance (roughly based on

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
d

 d
ev

 o
f

in
fe

rr
ed

 p
ar

am
et

er
s

Slip parameter value

Learning rate Prior Guess Slip

Figure 3: As the slip parameter is varied and
the other parameters are held fixed (learn=0.2,
prior=0.4, guess=0.14), the error in our inference
of all other parameters varies in a strong and com-
plex fashion, indicating interactions in the inference
of different parameters.

the maximums of the curves, with prior and guess at 0.5, and
learning rate and slip at 0.67). Because section 4.2 suggests
that there are interactions between parameters, this may not
give the worst-case variance possible of all combinations, but
it is a reasonable starting point for realistic values.

As described in section 3.3, sample size is varied in powers of
two from 2 to 2097152. Figure 4 shows the result, suggesting
that (except for very small samples) the standard deviation
of the error is roughly proportional to n−0.5, or 1/

√
n, where

n is the sample size. For these particular parameter values,
slip is consistently inferred most accurately, learning rate is
inferred least accurately, and guess and prior are between
the two and are similar.

4.4 Interaction between sample size and pa-
rameters

In our final experiment, as described in section 3.4, we vary
both the learning rate and the sample size at the same time.
The standard deviation curves for the three sample sizes are
then plotted on the same plot, each divided by the 1/

√
n

factor, where n is the sample size, as shown in Figure 5.
The curves are nearly identical, and we find no evidence
of interaction between parameters and sample size, but we
can’t rule out interaction for other combinations of parame-
ter values. This also offers additional evidence for the 1/

√
n

trend from the previous section.

5. DISCUSSION
Because accuracy is good for parameter values near 0 and 1,
this implies that for large enough samples, boundary effects
(in which the distribution of error is skewed because values
outside of the 0-1 range are not permitted) are not a serious
concern.

Interactions between parameters are complex, suggesting
that attempting to characterize error in each parameter in-
dependently is unlikely to yield good predictions of error.
Moreover, attempts to model these interactions analytically

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

119

y = 0.4215x-0.533

R² = 0.9963

0.0001

0.001

0.01

0.1

1

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6St
d

 d
ev

 o
f

in
fe

rr
ed

 p
ar

am
et

er
s

Sample size (number of students)

Prior Learn Guess Slip

Figure 4: Accuracy of inferred parameters, based on
sample size (training set size), with fixed parame-
ters (prior=guess=0.5, learning=slip=0.67). This is
a log-log plot, and (once the y = 0.1 level is reached)
the lines each remain straight and have slope of
roughly -0.5. This suggests that the standard de-
viation of the error is roughly proportional to 1/

√
n,

where n is the sample size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
d

 d
ev

 o
f

in
fe

rr
ed

 le
ar

n
in

g
ra

te
s

(N
o

rm
al

iz
ed

 b
y

sa
m

p
le

 s
iz

e)

Learning rate

1000 students 10000 students 100000 students

Figure 5: Here we vary learning rate from 0 to 1,
and also vary sample size between the values 1000,
10000, and 100000. The resulting standard devia-
tions are divided by 1/

√
n to normalize for improve-

ment in error due to increased sample size. The
resulting curves are nearly identical; the curve for
100000 students appears noisier only because of a
lower number of samples (100 instead of 1000). We
find no evidence of interaction between sample size
and the learning rate.

may be challenging because they cannot be fit well by low-
degree polynomials. A more viable strategy is to form a
conservative estimate of error by conducting a grid search
of parameter sets that are plausible in a given scenario. On
the other hand, once the range of variances at a particular
(sufficiently large) sample size is characterized, Figure 4 and
Figure 5 show that altering the sample size has a uniform
and predictable effect on the error.

The main result that standard deviation is proportional to
1/
√
n suggests that, in order to decrease the margin of error

in the estimate of a parameter by a factor of 2, an increase
in sample size by a factor of 4 is required. Additionally,
Figure 4 shows that achieving even a single valid significant
digit in the learning rate requires sample sizes of 1000 stu-
dents or more. This suggests that studies using BKT with
less than 1000 students should be considered carefully for
sampling error.

5.1 Confidence Intervals and Decreasing Train-
ing Time

As noted in Figure 1, provided that the sample size is large
enough, the distribution of samples is approximated well
by a normal distribution, and the standard deviations com-
puted in synthetic simulations such as the preceding ones
can be used to compute confidence intervals containing the
true generating parameters (e.g. 95% of possible values are
within two standard deviations). Parameters used in these
simulations can be set either by using domain knowledge,
and/or by conservatively selecting values that give poor ac-
curacy.

To use our results to decrease training time for a large data
set, one approach is to create many small samples (e.g. 100
of size 1000) by sampling uniformly randomly with replace-
ment from the full data set. By training on these, we can
estimate the variance of our estimates of each parameter at a
sample size of 1000. Then, given a desired level of accuracy
and a desired probability of achieving it, we can use 1/

√
n

to estimate the best final sample size. If the estimated sam-
ple size exceeds the data size, this suggests that more data
needs to be gathered.

6. IDENTIFIABILITY PROBLEM
Although we have in this work considered a particular gen-
erating parameter set to be the correct and desired param-
eters, BKT exhibits an Identifiability Problem [1] in which
there are an infinite family of four-parameter solutions that
make the same predictions. This creates the risk that a solu-
tion that appears to be far from the generating parameters
is actually very close to an equivalent parameter set (or an
equivalent solution is).

Van de Sande [9] more specifically characterized BKT (in
its HMM form) as a three-parameter system in which two
systems having the same slip, learning rate, and A value will
yield the same predictions, where A is given by

A = (1− slip− guess)(1− prior).

One way to address the issue is to perform both data gener-

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

120

ation and parameter search in this reduced three-parameter
system; this would be similar to our current approach, but
error in the A parameter is more difficult to interpret. In-
tuitively, we expect search in a lower-dimensional space to
give better accuracy with the same amount of data. How-
ever, Van de Sande also notes that the algorithm form of
BKT has no analytic solution, and so the degree to which
BKT is underdetermined may depend on the specific appli-
cation.

Beyond the underdetermined nature of BKT, there are also
information-theoretic bounds that limit the accuracy of in-
ferring parameters regardless of the system. In particular,
given a collection of at least k different parameter sets, and
student data that can only take on < k values, there is
no procedure that can reliably infer the generating param-
eters without error. As the size of the data continues to
decrease, the minimum possible error increases. Although
these bounds are general, they typically apply only to very
small data sets.

7. CONCLUSIONS AND FUTURE WORK
We’ve only explored a small part of the space of input pa-
rameters that can affect inferred parameter accuracy; the
possible interactions between parameters are complex and
not fully understood. It would also be useful to examine
different sizes of problem sets, scenarios where different stu-
dents complete different numbers of problems, models where
parameters such as learning rate and guess/slip are per prob-
lem, and models where priors are measured per student (as
in Pardos and Heffernan [4]).

Although it seems intuitive that insufficient sample size can
lead to poor parameter estimates with poor predictive power,
this deserves verification: it’s not clear which errors will
damage prediction and which are benign. An empirical syn-
thetic study that examines prediction accuracy could assess
this cheaply. Going a step further, it would be useful to
simulate an interactive tutoring system and assess a cost
function that penalizes the system for both incorrect assess-
ment of mastery, and for failing to assess mastery when it
is reached. By applying weights to these error types, the
simulation could represent the real-world cost of inaccurate
parameters in such a system.

Another important direction is extending our results to real-
world data. There are a few approaches. One is to use a
very large real-world data set and use its inferred param-
eters as the ground-truth generating parameters, then ex-
amine smaller subsets to determine whether parameters are
inferred less accurately. If the BKT model is appropriate,
we expect to observe similar relationships between sample
size and variance as with our synthetic data. This approach
can be compared to one experiment of Ritter [6] (Figure 4),
in which they took a large real data set and computed mean-
squared error using the best-fit parameters on subsets with
smaller number of students ranging from 5 to 500.

There are other approaches to real-world validity. One would
be a survey of prior BKT applications, to identify whether
there is a consistent relationship between sample size and
reported prediction accuracy. A third approach would be a
controlled experiment in which two groups of very different

sizes each use an ITS, the BKT is trained on the result-
ing data, and then the groups continue to use the ITS and
their learning performance is examined (note however that
asymmetric group sizes limit statistical power).

Finally, an analytical model that can explain some of our
empirical results—such as the skewed normal distribution
of inferred parameter values, the improvements in parame-
ter inference near 0 and 1 parameter values, or the 1/

√
n

relationship between sample size and standard deviation—
would be a valuable contribution.

8. ACKNOWLEDGMENTS
We thank Zachary A. Pardos for his fastHMM C++ BKT
library [5], for providing helpful comments on this work, and
for designing the assignment which inspired it.

9. REFERENCES
[1] J. E. Beck and K.-M. Chang. Identifiability: A

fundamental problem of student modeling. In
Proceedings of the 11th International Conference on
User Modeling, UM ’07, pages 137–146, Berlin,
Heidelberg, 2007. Springer-Verlag.

[2] M. H. Falakmasir, Z. A. Pardos, G. J. Gordon, and
P. Brusilovsky. A spectral learning approach to
knowledge tracing. In 6th International Conference on
Educational Data Mining (EDM 2013)., pages 28–35.
International Educational Data Mining Society, 2013.

[3] B. B. Nooraei, Z. A. Pardos, N. T. Heffernan, and
R. S. J. de Baker. Less is more: Improving the speed
and prediction power of knowledge tracing by using less
data. In M. Pechenizkiy, T. Calders, C. Conati,
S. Ventura, C. Romero, and J. C. Stamper, editors,
EDM, pages 101–110. www.educationaldatamining.org,
2011.

[4] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In P. D. Bra,
A. Kobsa, and D. N. Chin, editors, UMAP, volume
6075 of Lecture Notes in Computer Science, pages
255–266. Springer, 2010.

[5] Z. A. Pardos and M. J. Johnson. Scaling cognitive
modeling to massive open environments (in
preparation). 2015.

[6] S. Ritter, T. K. Harris, T. Nixon, D. Dickison, R. C.
Murray, and B. Towle. Reducing the knowledge tracing
space. In T. Barnes, M. C. Desmarais, C. Romero, and
S. Ventura, editors, EDM, pages 151–160.
www.educationaldatamining.org, 2009.

[7] SciPy v0.13.0 Reference Guide: scipy.stats.normaltest.
http://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.normaltest.html, May 2013.
[Online; accessed 24-April-2014].

[8] B. Van de Sande. Applying three models of learning to
individual student log data. In 6th International
Conference on Educational Data Mining (EDM 2013).,
pages 193–199. International Educational Data Mining
Society, 2013.

[9] B. Van de Sande. Properties of the bayesian knowledge
tracing model. Journal of Educational Data Mining,
5(2):1–10, 2013.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

121

A Unified 5-Dimensional Framework for Student Models
Yanbo Xu and Jack Mostow

Carnegie Mellon University Project LISTEN
RI-NSH 4103

5000 Forbes Ave, Pittsburgh, PA 15213
{yanbox, mostow}@cs.cmu.edu

ABSTRACT
This paper defines 5 key dimensions of student models: whether
and how they model time, skill, noise, latent traits, and multiple
influences on student performance. We use this framework to
characterize and compare previous student models, analyze their
relative accuracy, and propose novel models suggested by gaps in
the multi-dimensional space. To illustrate the generative power of
this framework, we derive one such model, called HOT-DINA
(Higher Order Temporal, Deterministic Input, Noisy-And) and
evaluate it on synthetic and real data. We show it predicts student
performance better than previous methods, when, and why.

Keywords

Knowledge tracing, Item Response Theory, temporal models,
higher order latent trait models, multiple subskills, DINA.

1. Introduction
Morphological analysis [1] is a general method for exploring a
space of possible designs by identifying key attributes, specifying
possible values for each attribute, and considering different
combinations of choices for the attributes. Structuring the space
in this manner compares different designs in terms of which
attribute values they share, and which ones differ. Characterizing
the space of existing designs in terms of these attributes exposes
gaps in the space, suggesting novel combinations to explore.

Some prior work on student modeling has used this approach to
characterize spaces of possible knowledge tracing models.
Knowledge tracing (KT) [2] generally has 4 or 5 parameters: the
probability slip of failing on a known skill; the probability guess
of succeeding on an unknown skill; the probability knew of
knowing a skill before practicing it; the transition probability
learn from not knowing the skill to knowing it; and sometimes the
transition probability forget from knowing the skill to not
knowing it, usually assumed to be zero.

Mostow et al. [3] defined a space of alternative parameterizations
of a given KT model, based on whether they assigned each
knowledge tracing parameter a single overall value, a distinct
value for each individual student and/or skill, or different values
for different categories of students and/or skills. Thus the number
of values to fit is 4 if using a single global value for each
parameter, but with separate probabilities for each <student, skill>
pair, the number of values to fit is 4 × # students × # skills. This
work ordered the space of possible parameterizations of a single

model by the number of values to fit.

Xu and Mostow [4] factored the space of different knowledge
tracing models in terms of three attributes: how to fit their
parameters, how to predict students’ performance from their
estimated knowledge, and how to update those estimates based on
observed performance. We will use this factoring in Section 3.2.

Section 2 introduces the proposed framework. Section 0 describes
HOT-DINA, a novel knowledge tracing method that the
framework inspired. Sections 4 and 5 evaluate HOT-DINA on
synthetic and real data, respectively. Section 6 concludes.

2. A Unified 5-Dimensional Framework
We characterize student models in terms of these five dimensions:

Temporal effect: skills time-invariant vs. time-varying.
• Static, e.g. IRT [5] and PFA [6]
• 2 or more fixed time points, e.g. at pre- and post-test
• Dynamic, e.g. KT [2]

Skill dimensionality: single skill vs. multiple skills at a step.
Credit assignment: how credit (or blame) is allocated among
influences on the observed success (or failure) of a step. Mostow
et al. [3] define a space of KT parameterizations. Corbett and
Andersen [2] originally fit KT per skill. Pardos and Heffernan [7]
individualized KT and fit parameters per student. Wang and
Heffernan [8] simultaneously fit KT per student and per skill. In
contrast, multiple-skills models require combination functions to
assign credit or blame among the skills. Product KT [9] assigns
full responsibility to each skill and multiplies the estimates.
Conjunctive KT [10] assigns fair credit or blame to skills and
multiplies the estimates. Weakest KT [11] credits or blames the
weakest skill and takes the minimum of the estimates. LR-DBN
[12] apportions credit or blame and performs logistic regression
over the estimates. We summarize credit assignment methods as:

• Contingency table
o Per student
o Per skill
o Per <student, skill>
o Per student + per skill

• Binary or probabilistic
o Conjunctive (min)
o Independent (product)
o Disjunctive (max)

• Other
o Compensatory (+)
o Mixture (weighted average)
o Logistic regression (sigmoid)

Higher order: treat static student properties as latent traits or not.
We say IRT [5] models “higher order” effects because it estimates
static student proficiencies independent of skill properties such as
skill difficulty in 1PL (1 Parameter Logistic), skill discrimination
in 2PL, and skill guess rate in 3PL. De la Torre [13] first
combined IRT with static Cognitive Diagnosis Models such as

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

122

NIDA (Noisy Inputs, Deterministic And Gate) [14-16] and DINA
(Deterministic Inputs, Noisy And Gate), and proposed higher
order latent trait models (HO-NIDA and HO-DINA). Xu and
Mostow [17] used IRT to estimate the probability of knowing a
skill initially in a higher order knowledge tracing model (HO-KT).
Noise: how to represent errors in model, or discrepancies between
what a student knows versus does. KT assumes students may
guess a step correctly even though they don’t know its underlying
skill(s), or slip at a step even though they know its skill(s). Such
“noise” is also characterized in other models, including single-
skill KT variants such as PPS (Prior Per Student) [7] and SSM
(Student Skill Model) [8], and IRT models such as 3PL. NIDO

and DINO respectively add noise either before or after combining
estimates of multiple skills. We refer to these noise modeling
methods as:

• None
• Slip/Guess
• NIDO (noisy input, deterministic output)
• DINO (deterministic input, noisy output)

Table 1 summarizes student models in the proposed unified 5-
dimensional framework. Note that we only discuss known
cognitive models (e.g. Q-matrix) in this paper, so we omit
methods that discover unknown cognitive models [18, 19].

Table 1. A unified 5-dimensional framework for student models

Student models Temporal
effect

Skill
dimensionality

Credit
assignment

Higher order
effect Noise model

IRT 1PL (Rasch model) [5]
IRT 2PL (2 Parameter Logistic) [5]

Static

Single skill Per student +
per skill Latent trait None

IRT 3PL (3 Parameter Logistic) [5] Slip/Guess
LLM (Linear Logistic Model) [16]

Multiple skills

Sigmoid
No latent trait

None LFA (Learning Factor Analysis) [20]
PFA (Performance Factor Analysis) [6]
NIDA [14-16] Product NIDO
DINA [14-16] DINA
LLTM (Linear Logistic Test Model) [21] Sigmoid

Latent trait
None

HO-NIDA [13] Product NIDO
HO-DINA [13] DINO
KT [2]

Dynamic

Single skill

Per skill
No latent trait

Slip/Guess
PPS (Prior Per Student) [7] Per student
SSM (Student Skill Model) [8]

Per student +
Per skill HO-KT [17] Latent trait

DIR (Dynamic IRT 1PL) [22] None
KT+NIDA [23]

Multiple skills

Product

No latent trait
NIDO Product KT [9]

CKT [10]
Weakest KT [11] Minimum
KT+DINA [23] Product DINO LR-DBN [12] Sigmoid
HOT-NIDA [Section 0] Product Latent trait NIDO
HOT-DINA [Section 0] DINO

Table 2. Comparative framework to train, predict and update multiple-skills models

Student models Train Predict Update

CKT

Train skills separately.
Assign each skill full

responsibility.

Multiply skill estimates.
Update skills together. Bayes’
equations assign responsibility.

Product KT

Update skills separately, each with
full responsibility.

Weakest KT
(Blame weakest,

credit rest) Minimum of skill
estimates.

Weakest KT
(Update weakest

skill) Update only the weakest skill. HOT-NIDA
HOT-DINA
[Section 3.2]

Train skills together.
Assign each skill full

responsibility.
Multiply skill estimates.

KT+NIDA/DINA Update skills together, each with
full responsibility.

LR-DBN Train skills together. Logistic
regression assigns responsibility.

Logistic regression on
skill estimates.

Update skills together. Logistic
regression assigns responsibility.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

123

Table 2 (adapted from [4]) expands Credit assignment in terms
of how to train, predict and update skills, e.g. to assign full
responsibility to every skill, blame the weakest skill and credit
the rest, update only the weakest skill, or use logistic function.

The tables suggest transformations of models along the
dimensions in the framework. For example, Dynamic IRT [22]
varies student proficiency by time, transforming static IRT to
dynamic. KT+NIDA/DINA [23] varies skill estimates by time,
transforming static NIDA/DINA to dynamic. HO-
NIDA/DINA/KT adds latent traits, transforming
NIDA/DINA/KT to higher order. LLM [16] and LLTM [21]
change the combination function, transforming conjunctive
models to logistic models. In Section 0 we generate a novel
student model by transforming HO-KT to a multi-skill model.

3. A Higher-Order Temporal Student Model
to Trace Multiple Skills: HOT-DINA
Xu and Mostow [17] extended the static IRT model into HO-KT
(Higher Order Knowledge Tracing), which accounts for skill-
specific learning by using the static IRT model to estimate the
probability Pr(knew) of knowing a skill before practicing it. By
generalizing to steps that require conjunctions of multiple skills,
we arrive at a combined model we call HOT-DINA (Higher
Order Temporal, Deterministic Input, Noisy-And). Note we can
transform it into HOT-NIDA simply by changing its noise type.

3.1 HOT-DINA = IRT + KT + DINA
Let {Y(0), Y(1) , …, Y(t), …} denote a sequential dataset recorded
by an intelligent tutor system, where Ynj

(t) = 1 iff student n
correctly performs a step that requires skill j at time t. KT is a
Hidden Markov Model (HMM) that models a binary hidden
state K(t) indicating if the student knows the skill at time t. The
probability of knowing the skill is knew at time t = 0, and then
changes based on the student’s observed performance on the
skill, according to the standard KT parameters slip, guess, learn,
and forget (usually set to zero).

KT can fit these four parameters (taking forget = 0) for each
<student, skill> pair, but the resulting large number of values to
fit is likely to cause over-fitting. Thus, Corbett and Andersen [2]
originally proposed to estimate knew per student, and learn,
guess and slip per skill. IRT assumes a latent trait that represents
a student’s underlying proficiency in all the skills. For example,
the Two Parameters Logistic (2PL) IRT model assumes that the
probability of a student’s correct response is a logistic function
of a unidimensional student proficiency θ with two skill-specific
parameters: discriminability a and difficulty b (see Equation 1).

𝑃 𝑌 = 1 =
1

1 + exp (−1.7𝑎(𝜃 − 𝑏))

Equation 1. The logistic function of 2PL model
The two skill parameters determine the shape of the IRT curve.
As a student’s proficiency increases beyond the skill difficulty,
the student’s chance of performing correctly surpasses 50%. The
skill discriminability reflects how fast the logit (log odds)
increase or decrease when the proficiency changes. Thus IRT
fits parameters individually on each dimension, without losing
the information from the other. HO-KT uses 2PL to estimate
knew in KT, by fitting student specific proficiency θn, skill
discriminability aj and skill difficulty bj. It then uses KT to trace
each skill, by fitting skill-specific learnj, guessj and slipj. Thus,
HO-KT models students’ initial overall knowledge before they
practice any skills; then it updates its estimates of students’

knowledge of each individual skill by observing additional
practice on the skill. It also models two attributes of the skills,
difficulty and discriminability, which are assumed to be
constants that do not change over time.

To incorporate DINA into HO-KT, we still model a hidden
binary state in each step to indicate whether a student knows the
overall skill used in the step, denoted as ηnj

(t) for student n with
skill j at time t. However, we also model a hidden binary state
αnk

(t) to indicate whether student n knows skill k at time t. Given
a matrix Q = {Qjk}, indicating whether the overall skill j
requires skill k, we conjoin the skills as follows:

𝜂!"
! = (𝛼!"

!)!!"
!

! ! !

Equation 2. Conjunction of skills in HOT-DINA
This formula gives us the DINA (Deterministic Input, Noisy-
And gate) structure [15], with the conjunction as the “and” gate
and guess and slip as the noise. Thus by combining HO-KT with
DINA, we obtain the HOT-DINA higher order temporal model
to trace multiple skills. Figure 1 shows how the plate diagram
for HOT-DINA integrates IRT, KT, and DINA.

Figure 1. Graphical representation of Higher-Order

Temporal DINA (HOT-DINA) to trace multiple skills

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

124

Equation 3 shows the formula for using 2PL to estimate the
probability knew of a student knowing a skill at time t = 0:

𝑃 𝑘𝑛𝑒𝑤!" = 𝑃 𝛼!"
(!) = 1

=
1

1 + exp (−1.7 𝑎!(𝜃! − 𝑏!))

Equation 3. 2PL to estimate knew in HOT-DINA
Equation 4 shows the formula for tracing the skills with skill-
specific learn and zero forget:

𝑃 𝛼!" ! = 1 𝛼!" !!! = 0 = 𝑙𝑒𝑎𝑟𝑛!

𝑃 𝛼!" ! = 0 𝛼!" !!! = 1 = 𝑓𝑜𝑟𝑔𝑒𝑡! = 0

Equation 4. Knowledge tracing of skills in HOT-DINA
Equation 5 shows the likelihood of a student’s performance
given the hidden state η(t) and the skill-specific guess and slip:

𝐿 𝑌!"
! = 1| 𝜂!"

! = 𝑔𝑢𝑒𝑠𝑠!
!!!!"

!
×(1 − 𝑠𝑙𝑖𝑝!)

!!"
!

𝐿 𝑌!"
! = 0| 𝜂!"

! = (1 − 𝑔𝑢𝑒𝑠𝑠!)
!!!!"

!
×𝑠𝑙𝑖𝑝!

!!"
!

Equation 5. Likelihood in HOT-DINA

3.2 How to Train, Predict, and Update
Following the organization of Table 2, Section 3.2.1 details how
HOT-DINA trains the skills together and assigns each skill full
responsibility; Section 3.2.2 specifies how HOT-DINA predicts
student performance by using a product of skill estimates; and
Section 3.2.3 shows how HOT-DINA updates the weakest skill.

3.2.1 Training the model with MCMC
We estimate the parameters of HOT-DINA using Markov Chain
Monte Carlo (MCMC) methods, which require that we specify
the prior distributions and constraints for every parameter. We
assume that student general proficiency θn is normally
distributed with mean 0 and standard deviation 1. The skill
discrimination an is positive and uniformly distributed between 0
and 2.5, while the skill difficulty bn is also normally distributed
with mean 0 and standard deviation 1. Learn has prior Beta
(1,1), whereas guess and slip have uniform prior from 0 to 0.4.

Thus, the priors on each parameter are:

𝜃! ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

𝑏! ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)

𝑎! ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5)

𝑙𝑒𝑎𝑟𝑛! ~ 𝐵𝑒𝑡𝑎(1, 1)

𝑔𝑢𝑒𝑠𝑠! ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4)

𝑠𝑙𝑖𝑝! ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4)

We use the following conditional distributions for each node:

𝛼!"
! |𝜃! ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖({1 + exp −1.7 𝑎! 𝜃! − 𝑏! }!!)

𝛼!"(!)| 𝛼!" !!! = 0 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑒𝑎𝑟𝑛!)

𝛼!"(!)| 𝛼!" !!! = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1)

𝑌!"
(!)|𝜂!" ! = 0 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑔𝑢𝑒𝑠𝑠!)

𝑌!"
(!)|𝜂!" ! = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑠𝑙𝑖𝑝!)

Given η as a conjunction of α, the likelihood of Y given η, the
conditional independence of α(0) given θ, and of α(t) given α(t-1),
the posterior distribution of θ, a, b, α, η, learn (l), guess (g) and
slip(s) given Y is

𝑃 𝜽,𝒂,𝒃,𝜶,𝜼, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝜼,𝜶 𝑃 𝜶 ! 𝜽,𝒂,𝒃

(𝑃 𝜶 ! 𝜶 !!! , 𝒍)𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)
!

! ! !

3.2.2 Predicting student performance
For inference, we introduce uncertainty to ηnj, and rewrite the
Equation 2 as follows:

𝑃 𝜂!"
! = 1 =

1
exp −1.7𝑎! 𝜃! − 𝑏!

!!"!

! ! !

𝑃 𝜂!"
! = 1 = (𝑃(𝛼!"

! = 1))!!")!
! ! ! for t = 1,2,3…

Equation 6. Conjunction of skills in HOT-DINA inference

Then we predict student performance by using Equation 7:

𝑃 𝑌!"
! = 1 = 1 − 𝑠𝑙𝑖𝑝! 𝑃 𝜂!"

! = 1 + 𝑔𝑢𝑒𝑠𝑠!(1

− 𝑃 𝜂!"
! = 1)

Equation 7. Prediction in HOT-DINA

3.2.3 Updating estimated skills
We update the estimates of latent states η and α after observing
actual student performance. The estimate of knowing a skill or a
subskill should increase if the student performed correctly at the
step. It is easy to update a skill by using Bayes’ rule, as shown in
Equation 8. The posterior P(ηnj

(t) = 1|Ynj
(t) = 1) should be higher

than P(ηnj
(t) = 1) if and only if (1-slipj) > guessj.

𝑃 𝜂!"
! = 1 𝑌!"

! = 1

=
𝑃 𝑌𝑛𝑗

𝑡 = 1 𝜂𝑛𝑗
𝑡 = 1) 𝑃 𝜂𝑛𝑗

𝑡 = 1

𝑃 𝑌𝑛𝑗
𝑡 = 1

 =
(!!!"#$!) ! !!"

! ! !

(!!!"#$!) ! !!"
! ! ! !!"#$$! !! ! !!"

! ! !

Equation 8. Bayes’ rule to update η in HOT-DINA
Although we could update HOT-DINA by assigning full
responsibility to each skill, it would be interesting to update the
weakest (or say hardest) skill since HOT-DINA fits the
parameter ‘difficulty’ for each skill. Thus, we update the skill
that is the hardest among all the required skills in a step:

𝑃 𝜂!"
! = 1 𝑌!"

! = 1

= 𝑃 𝛼!"!
! = 1|𝑌!"

! = 1 𝑃(𝛼!"
!

!!!!
= 1)

for 𝑘 = argmax!: !!" ! ! 𝑏!.

Equation 9. Update the hardest skill in HOT-DINA
In short, we extend HO-KT to the HOT-DINA higher order
temporal model, which traces multiple skills. We use the
MCMC algorithm to estimate the parameters, and update the
estimates of a student knowing a skill given observed student
performance. How well does the HOT-DINA model work? To

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

125

evaluate it, we performed a simulation study. Section 4 now
describes the study and reports its results.

4. Simulation Study
To study the behavior of HOT-DINA, we generated synthetic
training data for it according to the priors and conditional
distributions defined in Section 3.2.1. Section 4.1 describes the
synthetic data. One purpose of this experiment was to test how
accurately MCMC can recover the parameters of HOT-DINA,
as Section 4.2 reports. It is important not only to test how well a
method works, but to analyze when and why. Thus another
purpose was to determine how many students and observations
are needed to estimate the difficulty and discriminability of a
given number of skills, as Section 4.3 explains.

4.1 Synthetic Data
We use the following procedure to generate the synthetic data,
with all the variables as defined in Section 3.2:

1. We chose K = 4 and J = 14, which results in a 14 × 4 Q
matrix. The Q matrix, as shown below, indicates that we
generate the skills by combining all the possible skills.
𝐐!

=

1 0 0
0 1 0

0 1 1
0 1 0

1 0 0 0 1 1 1 0
0 1 1 0 1 0 1 1

0 0 1
0 0 0

0 0 1
1 0 0

0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1

2. We randomly generated θn from Normal (0,1) for n = 1,..,N.

3. We chose a, b and l as shown in Table 3.

Table 3. True value of skill-specific discrimination, difficulty
and learning rate in synthetic data simulation

k 1 2 3 4
a 1.5 1.2 1.9 1.0
b -0.95 1.42 -0.66 0.50

learn 0.8 0.6 0.5 0.3

4. We randomly generated g and 1-s from Unif(0,0.4) and

Unif (0.6,1) respectively, as shown in Table 4.

Table 4. True value of skill-specific guess and not slip
parameters in synthetic data simulation

j 1 2 3 4 5 6 7
guess 0.35 0.40 0.13 0.15 0.29 0.39 0.10
1-slip 0.67 0.66 0.67 0.90 0.65 0.60 0.61

j 8 9 10 11 12 13 14
guess 0.40 0.15 0.16 0.38 0.11 0.26 0.35
1-slip 0.81 0.74 0.76 0.73 0.83 0.89 0.85

5. We chose N = 100, T = 100, randomly picked one skill at
each step, and simulated sequential data with size of 10,000.

4.2 Results
We used OpenBUGS [24] to implement the MCMC algorithm
of HOT-DINA. We chose 5 chains starting at different initial
points. We monitored the estimates of skill discrimination 𝒂 and
difficulty 𝒃 to check their convergence, when all the chains
appear to be overlapping each other. As a result, we ran the
simulation for 10,000 iterations with a burn-in of 3000.

Table 5 reports the sample means and their 95% confidence
interval for parameter estimates 𝒂, 𝒃 and le𝒂rn respectively.
We also report the Monte Carlo error (MC error) and sample

standard deviation (s.d.) to assess the accuracy of the posterior
estimates for each parameter. MC error, which is an estimate of
the difference between the estimated posterior mean (i.e. the
sample mean) and the true posterior mean, should be less than
5% of the s.d. in order to obtain an accurate posterior estimate.

Table 5. Estimates of skill-specific discrimination, difficulty,
and learning rate (N = 100, T = 100, K = 4, J = 14)

k a 𝒂 (95% C.I.) s.d. MC_error
1 1.50 1.33 (0.36, 2.43) 0.65 0.03216
2 1.20 1.23 (0.12, 2.43) 0.72 0.03561
3 1.90 1.85 (0.22, 2.73) 0.64 0.03146
4 1.00 0.98 (0.19, 2.12) 0.58 0.02870
k b 𝒃 (95% C.I.) s.d. MC_error
1 -0.95 -0.95 (-2.15, -0.04) 0.50 0.02339
2 1.42 1.51(0.90, 2.21) 0.45 0.01936
3 -0.66 -0.69 (-1.81, -0.63) 0.42 0.01990
4 0.5 0.5 (0.05,1.18) 0.38 0.01691
k learn 𝒍𝒆𝒂𝒓𝒏 (95% C.I.) s.d. MC_error
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04

We calculated Root Mean Squared Error (RMSE) of the
estimates of the continuous variables𝒈𝒖𝒆𝒔𝒔 , 1- 𝒔𝒍!𝒑 , and
𝜽. We report the accuracy of recovering the true value of the
latent binary variable α in Table 6.

Table 6. Estimation RMSE of skill-specific guess, not slip,
and student specific proficiency; Prediction accuracy of a

student mastering a subskill (N = 100, T = 100, K = 4, J = 14)

 𝒈𝒖𝒆𝒔𝒔 1-𝒔𝒍!𝒑 𝜽
RMSE 0.0103 0.0196 0.9183
 𝜶
Accuracy 99.38%

From the results, we can see that the MCMC algorithm
accurately recovered the parameters we used in generating the
synthetic data for HOT-DINA. In addition to seeing how
accurately it can estimate the parameters, we are also interested
in finding out how many observations would be sufficient for
the training algorithm to recover the hidden variables. Therefore,
we conducted the study we now describe in Section 4.3.

4.3 Study Design
HOT-DINA requires data from enough students to rate the
difficulty and discriminability of each skill, and data on enough
skills to estimate the proficiency of each student. So we fixed
the number of skills at K = 4, and varied the number of students
N or the number of steps observed from each student T, to
discover how many observations would be sufficient to estimate
the parameters. In particular, we evaluated each model on how
accurately it estimated the latent binary state α¸ which indicates
if a student masters a skill. We generated the data by using the
same parameters as in Section 4.1. Besides the general HOT-
DINA model that accounts for multiple skills, we also studied
the single-skill model by shrinking the number of skills J to
equal K, and set Q as an identity matrix. Thus we specified the
HOT-DINA model to be a HO-KT model alternatively.

We increased N, the number of students, from 10 to 1000, and
T, the number of observations per student, from 5 to 100. Table

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

126

7 and Table 8 respectively show the accuracy of estimating the
latent state α in HO-KT and HOT-DINA. Both tables show a
trend of increasing accuracy when N or T increases (though at
the cost of longer training time, roughly O(N2×T)).

Table 7. Accuracy of estimating the latent binary states α
with different N and T (K = J = 4)

T
N

5 10 20 50 100

10 71.01% 80.81% 83.01% 93.11% 96.16%

20 72.32% 82.74% 86.52% 94.06% 97.33%

50 73.58% 83.79% 87.34% 95.27% 98.90%

100 77.55% 84.43% 88.08% 95.81% 99.41%

200 76.52% 84.02% 89.48% 97.26% NA

500 78.13% 84.34% 92.50% NA NA

1000 80.10% 84.59% NA NA NA

Due to the lack of sampling ability of OpenBUGS for high
dimensional dynamic models, we have no available scores to
show for N×T bigger than 10,000. We can see that the multiple
skill model predicts better than the single-skill model because
the average number of observations per skill in the former one is
larger than the latter. As observed in both tables, it is more
efficient to increase T, than N, to get a better estimate. Both of
the models reach the best prediction accuracy score (> 99%)
when N = 100 and T = 100. In order to obtain an accuracy >
90% for K = 4 skills, the least amount of data we need for HO-
KT is N = 10 with T ≈ 50 observations as shown in Table 7, for
HOT-DINA is N = 10 with T > 20 observations, as shown in
Table 8.

Table 8. Accuracy of estimating the latent binary states α

with different N and T (K = 4, J = 14)

T
N

5 10 20 50 100

10 72.07% 75.57% 91.14% 96.90% 98.10%

20 74.32% 83.60% 91.56% 97.46% 98.53%

50 76.55% 84.71% 92.62% 97.52% 98.98%

100 77.80% 86.82% 93.83% 97.67% 99.82%

200 79.92% 88.78% 94.26% 99.41% NA

500 82.15% 89.95% 98.61% NA NA

1000 83.58% 92.34% NA NA NA

Next we apply the proposed model to real data logged by an
algebra tutor. We evaluate the model fit and compare it against
two baselines.

5. Evaluation on Real Data
We apply HOT-DINA to a real dataset from the Algebra
Cognitive Tutor® [25]. Because of limited time, we chose a
subset of the data, by crossing out the “isolated” algebra tutor
steps. An “isolated” step here means a step that requires one
skill all its own. We grouped the remaining steps that require the
same multiple skills into one skill, resulting in J = 15 distinct
skills that require K = 12 subskills. Following the study design

in Section 4.3, we randomly chose N = 50 students with T = 100
in order to obtain enough data for the MCMC estimation.

Table 9. Data split of the Algebra Tutor data: training on I
and IV, and testing on II and III

 Skill group A Skill group B
Student group A I II
Student group B III IV

We split the 50 students into two groups of 25, and split the 15
skills into two groups of 8 and 7. As shown in Table 9, we
combine data from I (student-group-A practicing on skill-group-
A) and IV (student-group-B practicing on skill-group-B) to
obtain the training data. Accordingly, we combined the data
from II and III to obtain the test data. As a benefit of the data
split, we are able to test the models on unseen students for the
same group of skills, and also test on the unseen skills for the
same group of students.

We compared HOT-DINA with the conjunctive minimum KT
model [11] since it showed the best prediction accuracy among
all the previous KT based methods [4]. It fits KT parameters by
blaming each skill that is required at a step, predicts student’s
performance by the weakest skill, and updates only the weakest
skill. Accordingly, we updated the most difficult skill in HOT-
DINA as discussed in Section 3.2.3. As two baseline models, we
fit per-skill KT and per-student KT. Comparing HOT-DINA
with these two baselines also allows us to discuss some more
interesting research questions later in this section.

Table 10 and Table 11 respectively show the models’ prediction
accuracy and log-likelihood on the test data. We report the
majority class because of the unbalanced data. HOT-DINA beat
the two baselines in predicting the student performance, and also
obtained the maximum log-likelihood on the test data. The per-
student KT model obtained the worst scores on both measures. It
predicted student performance almost as poorly as majority class
because it misclassified almost all the data in the minority class.

Table 10. Comparison of prediction accuracy on real test
data

 Overall
Accuracy

Accuracy on
Correct Steps

Accuracy on
Incorrect Steps

HOT-DINA 82.48% 96.63% 27.27%
Per-skill KT 80.87% 94.02% 29.60%
Per-student KT 79.63% 99.74% 1.20%
Majority class 79.60% 100.00% 0.00%

Table 11. Comparison of log-likelihood on real test data

 Log-likelihood
HOT-DINA -2021.04
Per-skill KT -2075.67
Per-student KT -2464.74

We are also interested in three other hypotheses comparing
HOT-DINA with KT. We describe them, test them, and show
the results as follows.

1. HOT-DINA should predict early steps more accurately than
KT since its estimate of knew reflects both skill difficulty
and student proficiency, not just one or the other. In fact
HOT-DINA beat KT throughout, as Figure 2 shows.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

127

Figure 2. Accuracy on student’s 1st, 2nd, 3rd, … test steps
2. HOT-DINA should beat KT on sparsely trained skills

thanks to student proficiency estimates based on other
skills. As Figure 3 shows, HOT-DINA tied or beat KT
throughout.

Figure 3. Skills sorted by amount of training data
3. HOT-DINA should beat KT on sparsely trained students

thanks to skill difficulty and discriminability estimates
based on other students. As Figure 4 shows, HOT-DINA
beat KT throughout.

Figure 4. Students sorted by amount of training data

Thus, HOT-DINA outperformed the two baselines in model fit.
It also beat them as specified by the three hypotheses above.

6. Contributions, limitations, future work
In this paper we make several contributions. We defined a 5-
dimensional framework for student models. We showed how
numerous student models fit into it. We described the new
combination of IRT, KT, and DINA it suggests in the form of

HOT-DINA. We specified how to train HOT-DINA by using
MCMC, how to test it by predicting student performance, and
how to update estimated skills based on observed performance.

HOT-DINA uses IRT to estimate knew based on student
proficiency and skill difficulty. Thus it does not need training
data on every <student, skill> pair, since it can estimate student
proficiency based on other skills, and skill difficulty and
discriminability based on other students. Likewise, it should
estimate knew more accurately than KT for skills and students
with sparse training data. HOT-DINA uses KT to model
learning over time, and DINA to model combination of multiple
skills underlying observed steps (unlike conventional KT and
with fewer parameters than CKT [10] or LR-DBN [12]).

Tracing multiple skills underlying an observed step requires
allocating responsibility among them for its success or failure.
DINA simply conjoins them, a common method but inferior to
others. Future work includes using the best known method [4],
which we didn’t use here because the logistic regression it
performs is non-trivial to integrate with MCMC.

We evaluated HOT-DINA on synthetic and real data, not only
showing that it predicts student performance better than previous
methods, but analyzing when and why.

We reported a simulation study to test if training could recover
model parameters, and to determine the amount of data needed.
HOT-DINA requires data on enough students and skills to
estimate their proficiency and difficulty, respectively. We
explored how its accuracy varies with the number of test steps
and the amount of training data per student and per skill. These
analyses were correlational, based on variations that happened to
occur in the training data. Future work should invest in the
computation required to vary the amount of training data to
establish its true causal effect on accuracy.

Evaluation on real data from an algebra tutor showed that HOT-
DINA achieved higher predictive accuracy and log likelihood
than KT with parameters fit per student or per skill. This
evaluation was limited to a single data set and two baselines (not
counting majority class). Future work should compare HOT-
DINA to other methods – notably the Student Skill model [8],
which is similar in spirit – and on data from other tutors.

We assumed that student proficiency is one-dimensional. Future
work can test if k dimensions capture enough additional variance
to make it worthwhile to fit k times as many parameters.

Finally, our choice of 5 dimensions is useful but limiting.
Additional dimensions may provide useful finer-grained insights
into the models covered by the current framework, and expand it
to encompass other types of student models, e.g. where the
cognitive model is unknown and must be discovered [18, 19].

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation through Grants 1124240 and 1121873 to Carnegie
Mellon University. The opinions expressed are those of the
authors and do not necessarily represent the views of the
National Science Foundation or U.S. government. We thank
Ken Koedinger for his algebra tutor data.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

128

REFERENCES
[1] Zwicky, F. Discovery, Invention, Research - Through the
Morphological Approach. 1969, Toronto: The Macmillian
Company.

[2] Corbett, A. and J. Anderson. Knowledge tracing: Modeling
the acquisition of procedural knowledge. User modeling and
user-adapted interaction, 1995. 4: p. 253-278.

[3] Mostow, J., Y. Xu, and M. Munna. Desperately Seeking
Subscripts: Towards Automated Model Parameterization.
Proceedings of the 4th International Conference on Educational
Data Mining, 283-287. 2011. Eindhoven, Netherlands.

[4] Xu, Y. and J. Mostow. Comparison of methods to trace
multiple subskills: Is LR-DBN best? [Best Student Paper
Award]. Proceedings of the Fifth International Conference on
Educational Data Mining, 41-48. 2012. Chania, Crete, Greece.

[5] Hambleton, R.K., H. Swaminathan, and H.J. Rogers.
Fundamentals of Item Response Theory. Measurement Methods
for the Social Science. 1991, Newbury Park, CA: Sage Press.

[6] Pavlik Jr., P.I., H. Cen, and K.R. Koedinger. Performance
factors analysis - a new alternative to knowledge tracing.
Proceedings of the 14th International Conference on Artificial
Intelligence in Education (AIED09), 531-538. 2009.

[7] Pardos, Z. and N. Heffernan. Modeling individualization in
a Bayesian networks implementation of knowledge tracing.
Proceedings of the 18th International Conference on User
Modeling, Adaptation and Personalization, 255-266. 2010. Big
Island, Hawaii.

[8] Wang, Y. and N.T. Heffernan. The student skill model.
Intelligent Tutoring Systems - 11th International Conference,
399-404. 2012. Chania, Crete, Greece. Springer.

[9] Cen, H., K.R. Koedinger, and B. Junker. Comparing Two
IRT Models for Conjunctive Skills. Ninth International
Conference on Intelligent Tutoring Systems, 796-798. 2008.
Montreal.

[10] Koedinger, K.R., P.I. Pavlik, J. Stamper, T. Nixon, and S.
Ritter. Avoiding problem selection thrashing with conjunctive
knowledge tracing. In Proceedings of the 4th International
Conference on Educational Data Mining. 2011: Eindhoven, NL,
p. 91-100.

[11] Gong, Y., J.E. Beck, and N.T. Heffernan. Comparing
knowledge tracing and performance factor analysis by using
multiple model fitting procedures. Proceedings of the 10th
International Conference on Intelligent Tutoring Systems, 35-44.
2010. Pittsburgh, PA. Springer Berlin / Heidelberg.

[12] Xu, Y. and J. Mostow. Using logistic regression to trace
multiple subskills in a dynamic Bayes net. Proceedings of the
4th International Conference on Educational Data Mining, 241-
245. 2011. Eindhoven, Netherlands.

[13] de la Torre, J. and J.A. Douglas. Higher-order latent trait
models for cognitive diagnosis. Psychometrika 2004. 69(3): p.
333-353.

[14] Junker, B. and K. Sijtsma. Cognitive assessment models
with few assumptions, and connections with nonparametric item
response theory. Applied Psychological Measurement, 2001.
25(3): p. 258-272.

[15] de la Torre, J. DINA Model and Parameter Estimation: A
Didactic Journal of Educational and Behavioral Statistics, 2009.
34(1): p. 115-130.

[16] Maris, E. Estimating multiple classification latent class
models. Psychometrika, 1999. 64(2): p. 197–212.

[17] Xu, Y. and J. Mostow. Using item response theory to
refine knowledge tracing. In Proceedings of the 6th
International Conference on Educational Data Mining, S.K.
D’Mello, R.A. Calvo, and A. Olney, Editors. 2013, International
Educational Data Mining Society: Memphis, TN, p. 356-357.

[18] González-Brenes, J.P. and J. Mostow. What and when do
students learn? Fully data-driven joint estimation of cognitive
and student models. In Proceedings of the 6th International
Conference on Educational Data Mining, S.K. D’Mello, R.A.
Calvo, and A. Olney, Editors. 2013, International Educational
Data Mining Society: Memphis, TN, p. 236-239.

[19] González-Brenes, J.P. and J. Mostow. Dynamic cognitive
tracing: towards unified discovery of student and cognitive
models. Proceedings of the Fifth International Conference on
Educational Data Mining 2012. Chania, Crete, Greece.

[20] Cen, H., K. Koedinger, and B. Junker. Learning factors
analysis – a general method for cognitive model evaluation and
improvement. Proceedings of the 8th International Conference
on Intelligent Tutoring Systems, 164-175. 2006. Jhongli,
Taiwan.

[21] Fischer, G.H. The linear logistic test model. In G.H.
Fischer and I.W. Molenaar, Editors, Rasch Models:
Foundations, Recent Developments, and Applications, 131-155.
Springer: New York, 1995.

[22] Wang, X., J.O. Berger, and D.S. Burdick. Bayesian
analysis of dynamic item response models in educational testing.
Annals of Applied Statistics, 2013. 7(1): p. 126-153.

[23] Studer, C. Incorporating Learning Over Time into the
Cognitive Assessment Framework. Unpublished PhD, Carnegie
Mellon University, Pittsburgh, PA, 2012.

[24] Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. The
BUGS project: Evolution, critique and future directions.
Statistics in Medicine, 2009. 28: p. 3049–306.

[25] Koedinger, K.R., R.S.J.d. Baker, K. Cunningham, A.
Skogsholm, B. Leber, and J. Stamper. A data repository for the
EDM community: the PSLC DataShop. In C. Romero, et al.,
Editors, Handbook of Educational Data Mining, 43-55. CRC
Press: Boca Raton, FL, 2010.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

129

The Sequence of Action Model: Leveraging the Sequence

of Attempts and Hints
Linglong Zhu

Department of Computer Science
Worcester Polytechnic Institute

100 Institute Road, Worcester, MA

lzhu@wpi.edu

Yutao Wang
Department of Computer Science

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA

yutaowang@wpi.edu

Neil T. Heffernan
Department of Computer Science

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA

nth@wpi.edu

ABSTRACT

Intelligent Tutoring Systems (ITS) have been proven to be

efficient providing student assistance and assessing their

performance when they do their homework. Researchers have

analyzed how students’ knowledge grows and predict their

performance from within intelligent tutoring systems. Most of

them focus on using correctness of the previous question or the

number of hints and attempts students need to predict their future

performance, but ignore the sequence of hints and attempts. In

this research work, we build a Sequence of Actions (SOA) model

taking advantage of the sequence of hints and attempts a student

needed for the previous question to predict students’ performance.

A two step modeling methodology is put forward in the work and

is a combination of Tabling method and the Logistic Regression.

We compared SOA with Knowledge Tracing (KT) and Assistance

Model (AM) and combinations of SOA/AM and KT. The

experimental results showed that the Sequence of Action model

has reliably better predictive accuracy than KT and AM and its

performance of prediction is improved after combining with KT.
Keywords

Knowledge Tracing, Educational Data Mining, Student Modeling,

Sequence of Action, Assistance Model, Ensemble.

1. INTRODUCTION
One of the student modeling tasks is to trace the student’s

knowledge by using student’s performance. Corbett and Anderson

(1995) put forward the well-known Knowledge Tracing (KT)

based on their observation that the students’ knowledge is not

fixed, but is assumed to be increasing. KT model makes use of

Bayesian network to model students’ learning process and

predicate their performance.

A variety of extensions of KT model are put forward in

recent years. Baker, Corbett, and Aleven (2008) build a contextual

guess and slip model based on KT that provides more accurate

and reliable student modeling than KT. Pardos and Heffernan

extends KT four parameters model to support individualization

and skill specific parameters and get better prediction of students’

performance. Qiu and Qi et al. find that forgetting is a more likely

cognitive explanation for the over prediction of KT when

considering the time students take to finish their tasks.

Alternative methods to KT model have been developed. For

example, in order to generate adaptive instructions for students,

Pavlik Jr., Cen, and Koedinger (2009) put forward the

Performance Factor Analysis (PFA) model that can make

predictions for individual students with individual skills. Gong,

Beck, and Heffernan (2010) compared KT with PFA using

multiple model fitting procedures and showed that there are no

real differences in predictive accuracy between these two models.

However, little attention is paid to the data generated when

students interact with computer tutors. Shih, Koedinger, and

Scheines (2010) utilize Hidden Markov Model clustering to

discover different strategies students used while working on a ITS

and predict learning outcomes based on these strategies. Their

work is based on a dataset that consists of a series of transactions

and each transaction is a <Student, Step, Action, Duration> tuple.

This model takes into account both students’ action, attempt or

help request, and action duration. The experimental results of

their Stepwise-HMM-Cluster model shows that persistent

attempts lead to better performance than hint-scaffolding strategy.

Some papers have shown the value of using the raw number of

attempts and hints. In fact, the National Educational Technology

Plan cited Feng, Heffernan, and Koedinger’s work (2006) and the

User Modeling community gave it an award for best paper for

showing that the raw number of hints and attempts is informative

in predicting state test scores. Wang and Heffernan (2011) built

an Assistance Model (AM) and generated a performance table

based on students’ behavior of doing the previous question.

Hawkins et al.(2013) extended AM by looking at students’

behavior for the two previous questions.

These educational data mining models that utilize the

number of assistance students request and the number of attempts

they make to predict students’ performance have ignored the

sequencing of students’ interaction with ITS. Consider a thought

experiment. Suppose you know that Bob Smith asked for one of

the three hints and makes one wrong answer before eventually

getting the question correct. What if someone told you that Bob

first made an attempt then had to ask for a hint compared to the

first requesting a hint and then making a wrong attempt. Would

this information (whether he started with an attempt or a hint) add

value to your ability to predict whether Bob will get the next

question correct? We suspected that a student who first makes an

attempt tends to learn by himself and has higher probability to

master the knowledge and answer the next same question correct.

In our previous work, we showed a Sequence of Action

(SOA) model that made use of information about the action

sequence of attempts and hints for a student in previous question

better predicted the correctness of a current question.. We

reported experimental results of an improvement upon the KT

model. However, we later found a mistake in that experiment. So

this paper serves as a correction of the previous results and as a

formal presentation of the SOA model to the community. We

present the SOA model and compare it to the KT model and the

Assistance model, as well as the combined models to see if

knowing sequence of action information does improve upon a

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

130

standard Knowledge Tracing model, or even upon knowing

number of hints and number of attempts alone.

The raw data and experiment result is available online:

https://sites.google.com/site/assistmentsdata/projects/zhu2014.

1.1 The Tutoring System and Dataset
The data we used originated from the ASSISTments platform, an

online tutoring system for K12 students that gives immediate

feedback to teachers, students, and parents. The ASSISTments

gives tutorial assistance if a student makes a wrong attempt or

asks for help. Figure 1 shows an example of a hint, which is one

type of assistance. Other types of assistance include scaffolding

questions and context-sensitive feedback messages, known as

“buggy messages.”

Figure 1 shows a student who asked for a hint (shown in

yellow and also indicated by the button says “Show hint 2 of 4”),

but it also shows that the student typed in eight and got feedback

that this was wrong. Though Figure 1 shows the number of hints

and attempts, interestingly you cannot tell whether the student

asked a hint first or made an attempt first. This paper’s argument

is that information is very important.

ASSISTments records all the details about how a student

does his or her homework and tests from which scientists can get

valuable material to investigate students’ behavior and their

learning process. These records include the start time and end

time of a problem, the time interval between an attempt, if he or

she asks for a hint, the number of attempts a student makes, the

number of hints a student asks for, as well as the answer and result

for each attempt a student makes.

Figure 2 shows an example of a detailed sequence of action

recorded by the system. The row in blue means that the answer is

correct, the row in red means that the answer is wrong, and the

row in orange means the student asked for a hint. We can see that

this student answered correctly on his first attempt for the first

problem PRAQM5U. The sequence of action is ‘a’ (‘a’ represents

an attempt). For the second problem PRAQM2W, he asked three

hints continuously before making the correct answer. The

sequence of action is ‘hhha’ (‘h’ represents a hint). For the third

problem PRAQM2F, he alternatively asked for hints and made

attempts, and the sequence of action is ‘hahaha’. For the last

problem PRAQZPN, he made one wrong attempt before making

the correct answer and its action sequencing is ‘aa.’

We used data from one Mastery Learning class. Mastery

Learning is a strategy that requires students to continually work

on a problem set until they have achieved a preset criterion

(typically three consecutive correct answers). Questions in each

problem set are generated randomly from several templates and

there is no problem-selection algorithm used to choose the next

question.

Sixty-six 12-14 year-old, 8th grade students participated in

these classes and generated 34,973 problem logs. We only used

data from a problem set for a given student if they had reached the

mastery criterion. This data was collected in a suburban middle

school in central Massachusetts. Students worked on these

problems in a special “math lab” period, which was held in

addition to their normal math class.

If a problem only has one hint, the hint is the answer of the

problem and is called the bottom hint. After a student asks for a

bottom hint, any other attempt is meaningless because he or she

already knows the answer. In the experiment, we only consider

the problem logs that have at least two hints. And the answer will

be marked as incorrect if students ask for a hint or the first attempt

is incorrect. Moreover, we excluded such problem logs where: 1)

students quit the system immediately after they saw the question

and the action logs were blank ,or 2) after they requested hints,

but did not make any attempts and no answer was recorded.

Here we only consider the question pairs that have the same

skill and skills having only one question were removed because

they do not help in predicting. Questions of the same skills were

sorted by start time in ASSISTments. We split equally 66 students

into six groups, 11 students in each, to run 6-fold cross validation.

We trained the SOA model and the KT model on the data from

five of the groups and then computed the prediction accuracy on

the sixth group. We did this for all six groups.

2. INDIVIDUAL MODELS

2.1 KT
Knowledge Tracing (KT) is one of the most common methods

that are used to model the process of student’s knowledge gaining

and to predict students’ performance. The KT models is an

Hidden Markov Model (HMM) with a hidden node (student

Figure 1. Assistance in ASSISTments. Which is first:

asking for a hint or make an attempt?

.

Figure 2. Students’ action records in ASSISTments

.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

131

https://sites.google.com/site/assistmentsdata/projects/zhu2014

knowledge node) and an observed node (student performance

node). It assumes that a skill has four parameters; two knowledge

parameters and two performance parameters. The two knowledge

parameters are: prior and learn. The prior knowledge parameter is

the probability that a particular skill was known by the student

before interacting with the tutor. The learn parameter is the

probability that a student transits from the unlearned state to the

learned state after each learning opportunity, i.e., after see a

question. The two performance parameters are: guess and slip.

Guess is the probability that a student will guess the answer

correctly even if the skill associated with the question is in the

unlearned state. Slip is the probability that a student will answer

incorrectly even if he or she has mastered the skill for that

question.

The goal of KT is to estimate the student knowledge from his

or her observed actions. At each successive opportunity to apply a

skill, KT updates its estimated probability that the student knows

the skill, based on the skill-specific learning and performance

parameters and the observed student performance (evidence). It is

able to capture the temporal nature of data produced where

student knowledge is changing over time. KT provides both the

ability to predict future student response values, as well as

providing the different states of student knowledge. For this

reason, KT provides insight that makes it useful beyond the scope

of simple response prediction.

2.2 Assistance Model
Motivated by the intuition that students who need more assistance

have lower probability possessing the knowledge, Wang and

Heffernan (2011) built a purely data driven “Assistance” model to

discover the relationship between assistance information and

students’ knowledge.

A parameter table was built in which rows represent the

number of attempts a student required in the previous question

and columns represent the number of hints the student asked for.

Each cell contains the probability that the student will answer the

current question correctly. The attempts are separated into three

bins: one attempt, small number of attempts (2-5 times), and large

numbers of attempts (more than five attempts). Hints are separated

into four bins: no hint, small number of hints (1, 50%], large

number of hints [50%, 100%), and all hints where students for all

hints. Table 1 shows the parameter table gained from our dataset.

As with Wang and Heffernan’s experimental results, the

parameter table confirms that students requiring more assistance

to solve a problem probably have less corresponding knowledge.

Table 1. Assistance Model parameter table, average across six

folds

attempt= 1 0<attempt<6 attempt>=6

hint_percent = 0 0.8410 0.7963 0.7808

0<hint_percent<=.5 0.6286 0.6933 0.6741

.5<hint_percent<1 0.4494 0.6290 0.6522

hint_percent = 1 0.4293 0.6147 0.6218

2.3 The Sequence of Action Model
The Sequence of Action (SOA) model we present takes advantage

of the order information about how students make attempts and

ask for hints. Different students have different sequences of

actions. Some students answered correctly only after one attempt

and some students kept trying many times. Some students asked

for hints and made attempts alternatively and we believe they

were learning by themselves. In the data, there are 217 different

sequences of actions. Intuitively, students’ actions reflect their

study attitude and this determines their performance. Based on the

assumption that students who make more attempts tend to master

knowledge better than students who ask for more hints, we

divided them into five categories or bins: (1) One Attempt: the

student correctly answered the question after one attempt; (2) All

Attempts: the student made many attempts before finally getting

the question correct; (3) All Hints: the student only asked for hints

without any attempts at all; (4) Alternative, Attempt First: the

students asked for hints and made attempts alternatively and made

an attempt at first; and (5) Alternative, Hint First: the students

asked for hint and made attempts alternatively and asked for a hint

first. Table 2 shows the division and some examples of the action

sequences in each category.

Table 2. Sequence of Action Category and Examples

Sequence of Action Category/

Bin Name
Examples

One Attempt/Bin ‘a’ a

All Attempts/Bin ‘a+’ aa, aaa, …, aaaaaaaaaaaa

All Hints/Bin ‘h+’ ha, hha,…, hhhhhhha

Alternative, Attempt First/Bin ‘a-

mix’
aha, aahaaha,…, aahhhhaaa

Alternative, Hint First/Bin ‘h-

mix’
haa, haha,…, hhhhaha

Notice that each sequence ends with an attempt because in

ASSISTments, a student cannot continue to next question unless

he or she fills in the right answer of the current problem. In Table

2, ‘a’ stands for answer and ‘h’ stands for hint. An action

sequence “ahha” means that a student makes an attempt and then

asks for two hints before he or she types the correct answer and

moves on to the next question.

2.3.1 Sequence of Action Tabling
After dividing all of sequence of actions into five categories, we

use a Tabling method, which gets the next percent correct directly

from the training data. For each fold, one table is generated by the

tabling method by counting the number of total appearance and

the number of next correct of each bin. After counting, a next

correct percent is calculated by dividing Next Correct Count by

Total Count of Bin.

Table 2. Next correct percent table of training group of fold 1

Bin

Name

Total

Count

Next Correct

Count

Next Correct

Percent

 ‘a’ 22964 19157 0.834

‘a+’ 3538 2690 0.760

 ‘h+’ 335 172 0.513

 ‘a-mix’ 2030 1318 0.649

‘h-mix’ 72 37 0.513

Table 3 shows the table computed for fold 1. Tables for other

folds are similar. From Table 3, we can see that the percent of

next-question-correct is highest among students only using one

attempt since they master the skill the best. They can correctly

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

132

answer the next question with the same skill. For students in ‘a+’

bin, they are more self-learning oriented, they try to learn the skill

by making attempts over and over again. So they get the second

highest next-question-correct percent. But for students in the ‘h+’

category, they do the homework only relying on the hints. It is

reasonable that they don’t master the skill well or they don’t even

want to learn, so their next-question-correct percent is very low.

The alternative sequence of action reflects students’ learning

process. Intuitively, these students have positive attitudes for

study. They want to get some information from the hint based on

which they try to solve the next problem. But the results for the

two alternative categories are very interesting. Though students in

these two categories alternatively ask for hints and make attempts,

the first action somewhat decides their learning altitude and final

results. For students who make an attempt first, if they get the

question wrong, they try to learn it by asking for hints. But for

students who ask for a hint first, they seem to have less confidence

in their knowledge. Although they also make some attempts, from

the statistics of action sequence, they tend to ask for more hints

than making attempts. The shortage of knowledge or the negative

study attitude makes their performance as bad as the students

asking exclusively for hints first.

2.3.2 Logistic Regression
In this section, we are going to introduce the second part of the

SOA model that makes use of a logistic regression model and

information we get from the first part of SOA, i.e., tabling

method.

Even though the next correct percentage we get from the

tabling method indicates that the action of sequence can reflect

the trend of next correct percentage, the table is very rough and is

not intelligent enough to be used to predict students’ performance.

However, we can use it as a feature in our logistic regression

prediction model.

The dependent variable Next Correct of the logistic

regression model has two states: correct and incorrect. The

independent variables are Skill_ID and Credit (the next correct

percentage generated by the tabling method). Skill_ID was treated

as a categorical factor, while Credit was treated as a continuous

factor. There are totally 51 skills of the data. As mentioned in

before, there are six folds and each fold has their own next correct

percentage table.

We used Binary Logistic Regression in SPSS to train the

model. Logistic coefficients are fitted through Expectation

Maximization of at most 20 steps. Parts of coefficients of the first

fold are shown in Table 4.

Table 4. Coefficients of logistic regression model of fold 1

Parameters Value

β0(Intercept) -1.679

β1,0(skill_id 16) 0.322

β1,1(skill_id 17) -0.007

β1,2(skill_id 24) 20.168

……. ……

β1,50(skill_id 371) 0.470

β2(Credit) 3.286

3. MODEL COMBINATION
Since the SOA model uses completely different information from

KT, we expected a potential improvement from combing SOA

results with the predictions from KT. We combined models using

two different methods.

The first method was simply average the SOA and KT

predictions. Presumably, if a group of models have high

accuracies and uncorrelated errors, we can get lower error by

averaging them. To compare with the combination of AM model

and KT model, we also computed the average of these two

models.

The second method was a linear regression model with

student performance as the dependent variable. This method takes

into account the fact that different models’ predictions may have

different weight in the final prediction. If one of the models is

more useful than the other, this method will allow us to learn

which model should be weighted more heavily. SPSS was used to

train linear regression models. The function for KT and AM is:

-0.322+0.639*AM_prediction+0.769*KT_prediction;

The function for KT and SOA is:

-0. 004+0. 687*SOA_prediction+0. 321*KT_prediction;

We did not combine AM and SOA, because both of them use

information about hints and attempts. From the functions, we can

tell that SOA weights heavier than KT, which indicates that SOA

is more useful than KT in making a prediction.

4. EXPERIMENTAL RESULTS

4.1 Compare AM, SOA and KT
To evaluate how well each of the individual models (SOA,

AM, KT) and the combined models fit the data, we used three

metrics to examine the predictive performance on the unseen test

set: Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE) and Area Under ROC Curve (AUC). Lower values for

MAE and RMSE and higher values for AUC indicate better

model fit.

Table 5. Prediction accuracy of KT, SOA, AM and Ensemble

 MAE RMSE AUC

AM 0.3007 0.3844 0.5795

SOA 0.2871 0.3767 0.6786

KT 0.2939 0.3790 0.6735

LR(AM, KT) 0.2874 0.3759 0.6824

LR(SOA, KT) 0.2878 0.3762 0.6813

AVG(SOA,

KT)
0.2876 0.3757 0.6836

Table 5 shows values of the three metrics from a six-fold

across validation, which are calculated by averaging

corresponding numbers obtained from each validation. As with

Wang and Heffernan’s results (Wang & Heffernan, 2011), the

performance of linear regression combination of AM and KT,

called as LR(AM, KT) is better than AM itself, which indicates

information about the number of hints and attempts improves the

prediction of KT model. Overall, the combination of any two

models have higher prediction accuracy and this is especially true

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

133

that for the average ensemble of SOA and KT, called as

AVG(SOA, KT), which has better accuracy than the other two

combinations. Also, the linear regression of AM and KT has

better prediction accuracy than linear regression combination of

SOA and KT. However, from the two tailed paired t-test results

shown in Table 6, the statistical difference between any two pairs

of model combinations are not significant.

To examine whether there is significant difference between

these models, we performed a 2-tailed paired t-test. The p values

are shown in Table 6. We observe that most of the differences

between two models are reliable, except for when we compare

some AM and KT combined models with SOA and KT combined

models. Both SOA and AM use the information about students’

actions of hints and attempts. There might be a chance that SOA

and LR(AM, KT) have some prediction overlap.

Table 6. Reliability when compare KT, SOA, AM, and

Ensemble

 MAE RMSE AUC

AM vs SOA 0.000 0.000 0.000

AM vs KT 0.000 0.000 0.000

AM vs LG(AM, KT) 0.000 0.000 0.000

AM vs LR(SOA, KT) 0.000 0.000 0.000

AM vs AVG(SOA, KT) 0.000 0.000 0.000

SOA vs KT 0.000 0.000 0.037

SOA vs LG(AM, KT) 0.298 0.030 0.083

SOA vs LR(SOA, KT) 0.000 0.001 0.006

SOA vs AVG(SOA, KT) 0.020 0.000 0.003

KT vs LR(AM, KT) 0.000 0.000 0.000

KT vs LR(SOA, KT) 0.000 0.000 0.000

KT vs AVG(SOA, KT) 0.000 0.000 0.000

LR(AM, KT) vs LR(SOA, KT) 0.265 0.296 0.469

LR(AM, KT) vs AVG(SOA,

KT)
0.271 0.138 0.079

LR(SOA, KT)vs AVG(SOA,

KT)
0.258 0.001 0.010

4.2 Further Analysis for SOA and KT
From the last section, we observed the best model is the

AVG(SOA,KT) model. In order to better investigate this

combination, we ran student level and skill level analysis.

Tables 7 and 8 shows the student level result across 66

students to account for the non-independence of their actions.

Take MAE as an example, for each student; a MAE is calculated

based on all data available for that student. Then an average value

for MAE is computed based on MAE of all students. Table 8

shows the t-test p value for each pair of these three models, where

the remaining degrees of freedom on all the tests is 65.

Table 7. Student Level accuracy of KT, SOA and Ensemble

 MAE RMSE AUC

KT 0.2939 0.3790 0.6738

SOA 0.2871 0.3767 0.6786

AVG(KT, SOA) 0.2905 0.3765 0.6811

Table 8. Student level reliability of difference of KT, SOA and

Ensemble

 MAE RMSE AUC

KT vs SOA 0.0000 0.0000 0.0551

KT vs AVG 0.0000 0.0000 0.0000

SOA vs AVG 0.0000 0.0698 0.0698

Note that there is no significant difference of AUC between

KT and SOA. We interpret these results by pointing out that

RMSE and AUC are metrics that are optimized for measuring

different things, and so this is quite possible.

Table 9 and 10 shows the skill level result across all 51

skills. From Table 9 we observe a very low AUC value for all the

models, which indicates these models do not make a good

classification at skill level. The t-test p value with remaining

degrees of freedom 50 is shown in table 10.

Table 9. Skill level accuracy of KT, SOA and Ensemble

 MAE RMSE AUC

KT 0.3064 0.3762 0.4675

SOA 0.2942 0.3713 0.4769

AVG(KT, SOA) 0.3003 0.3710 0.492

Table 10. Skill Level reliability of difference of KT, SOA and

Ensemble

 MAE RMSE AUC

KT vs SOA 0.0000 0.0136 0.3492

KT vs AVG 0.0000 0.0002 0.0003

SOA vs AVG 0.0000 0.3982 0.0059

The student and skill level analysis generate similar

conclusions, that SOA and ensemble outperform KT in all of the

three metrics. When we compare the ensemble model with SOA

alone, the result is not so clear.

5. DISCUSSION AND FUTURE WORK
In this paper, we put forward a Sequence Of Action model that

makes use of sequence of students attempts to answer questions

and asking for hints. The SOA model consists of two parts. First,

the sequence of students’ actions are divided into five categories.

A tabling method shows that students who only make attempts

tend to answer the next question more correctly than students who

only ask for hints. This could be caused by students who make

more attempts are trying to figure problems out by themselves and

it is an efficient way to master knowledge when they are told the

steps to answer these questions by asking for hints. Second, we

built a logistic regression model with next question correct

percentage as dependent variable and skill_id, credits of sequence

of action bins as independent variables.

We conducted six-fold cross validation experiments. The

experimental result showed that SOA had reliably higher

prediction accuracy than the Knowledge Tracing model and

Assistance Model. The average combination of the SOA and KT

had the highest prediction. In sum, the sequence of students’

actions provided important information in predicting students’

performance.

This work is the beginning of utilizing the sequence of

asking for hints and making attempts recorded by intelligent

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

134

tutoring systems to better predict student performance. There are

many open spaces for us to explore. For example, the

experimental data we used is from ASSISTments, does SOA

model still makes a big difference if use data from other

intelligent tutor systems? How much can the performance of SOA

model be improved if combined with other efficient prediction

model such as PFA (Pavlik et al., 2009)? What is the SOA

model’s performance if we use a student action sequence of

several previous questions when we train the model? How does

SOA perform after individualization? These are some of the

questions that still need to be explored.

6. CONTRIBUTION
Predicting student performance is an important part of the student

modeling task in Intelligent Tutoring Systems. A large portion of

papers at EDM have focused on this. Many models and

techniques have been used to model and investigate students’

performance. However, little attention been paid to the temporally

sequential actions of student when interacting with the tutoring

system. To our knowledge we are the first to use the temporal

sequencing of hints and attempts. It turns out that by paying

attention to this we can better predict student performance. In this

paper, we introduce the Sequence of Action model which makes

use of the click-stream data of the sequence of making attempts

and asking for hints when students do their homework using an

Intelligent Tutoring System. Students’ actions can be very

different from each other, but we found there are some useful

patterns.

We can think of several ways to improve upon this. First,

our five bins that we put students into were somewhat arbitrary.

There could be more bins or fewer. If we use more bins, we might

have very different predictions. The downside is that for some of

these bins we might not have enough data points to reliably fit the

parameters. One way to make the model better might be to split

the “All Hints” bin into one that has “Reached Bottom out Hint”

and one that is “All hints excluding those that reached the bottom

out.” We could also try to pay attention to features like response

time between hints or the response time after a hint in making an

attempt.

According to our six-fold cross validation experiments and

paired two-tailed t-test, both on student level and skill level, our

Sequence of Action model had reliably higher prediction accuracy

than KT and AM, the later uses the number of hints students ask

for and the number of attempts students make. Furthermore, we

combined SOA and KT using average and linear regression

methods, and the ensemble model’s prediction performance was

much better than either SOA or KT. We also compared

combination of SOA and KT with combination of AM and KT.

The experimental result show that SOA contributes more useful

information than AM alone, which indicates that the sequential

information of action does convey more information about

students’ learning than the statistics information of actions

students make.

7. ACKNOWLEDGMENTS
We acknowledge funding from NSF (#1316736, 1252297,

1109483, 1031398, 0742503), ONR's 'STEM Grand Challenges'

and IES (# R305A120125 & R305C100024).

8. REFERENCES
Corbett, A. T., & Anderson, J. R. (1995). Knowledge

tracing: modeling the acquisition of procedural knowledge.

User Modeling and User-Adapted Interaction, 4, 253–278.

Baker, R.S.J.d., Corbett, A.T. & Aleven, V. (2008). More

Accurate Student Modeling Through Contextual Estimation

of Slip and Guess Probabilities in Bayesian Knowledge

Tracing. In: Wolf, B., Aimeur, E., Nkambou, R., Lajoie, S.

(Eds.) Intelligent Tutoring Systems. LNCS, 5091, Springer

Berlin. pp. 406-415.

Feng, M., Heffernan, N. & Koedinger, K.R. (2006a).

Predicting state test scores better with intelligent tutoring

systems: developing metrics to measure assistance required.

In Ikeda, Ashley & Chan (Eds.). Proceedings of the Eighth

International Conference on Intelligent Tutoring Systems.

Springer-Verlag: Berlin. pp. 31-40.

Gong, Y., Beck, J. & Heffernan, N. (2010). Comparing

Knowledge Tracing and Performance Factor Analysis by

Using Multiple Model Fitting. In Aleven, V., Kay, J &

Mostow, J. (Eds) Proceedings of the 10th International

Conference on Intelligent Tutoring Systems (ITS2010) Part

1. Springer-Verlag, Berlin. pp. 35-44.

Hawkins, W., Heffernan, N., Wang, Y. & Baker, S,J,d..

(2013). Extending the Assistance Model: Analyzing the Use

of Assistance over Time. In S. D'Mello, R. Calvo, & A.

Olney (Eds.) Proceedings of the 6th International

Conference on Educational Data Mining (EDM2013).

Memphis, TN. pp. 59-66.

Pardos, Z. & Heffernan, N. (2010). Modeling

Individualization in a Bayesian Networks Implementation of

Knowledge Tracing. In Paul De Bra, Alfred Kobsa, David

Chin, (Eds.) The 18th Proceedings of the International

Conference on User Modeling, Adaptation and

Personalization. Springer-Verlag. pp. 255-266.

Pavlik, P.I., Cen, H., Koedinger, K.R. (2009). Performance

Factors Analysis - A New Alternative to Knowledge Tracing.

In Proceedings of the 14th International Conference on

Artificial Intelligence in Education. Brighton, UK. pp. 531-

538.

Qiu, Y., Qi, Y., Lu, H., Pardos, Z. & Heffernan, N. (2011).

Does Time Matter? Modeling the Effect of Time with

Bayesian Knowledge Tracing In Pechenizkiy, M., Calders,

T., Conati, C., Ventura, S., Romero , C., and Stamper, J.

(Eds.) Proceedings of the 4th International Conference on

Educational Data Mining. pp. 139-148.

Shih, B., Kenneth K., & Richard S. (2010). Unsupervised

Discovery of Student Strategies. In Baker, R.S.J.d.,

Merceron, A., Pavlik, P.I. Jr. (Eds.) Proceedings of the 3rd

International Conference on Educational Data Mining. pp.

201-210.

Wang, Y. & Heffernan, N. (2011). The "Assistance" Model:

Leveraging How Many Hints and Attempts a Student Needs.

The 24th International FLAIRS Conference. Florida.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

135

Using Similarity to the Previous Problem to Improve

Bayesian Knowledge Tracing
William J. Hawkins

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609

whawkins90@gmail.com

Neil T. Heffernan
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

nth@wpi.edu

ABSTRACT

Bayesian Knowledge Tracing (BKT) is a popular student model

used extensively in educational research and in intelligent tutoring

systems. Typically, a separate BKT model is fit per skill, but the

accuracy of such models is dependent upon the skill model, or

mapping between problems and skills. It could be the case that the

skill model used is too coarse-grained, causing multiple skills to

all be considered the same skill. Additionally, even if the skill

model is appropriate, having problems that exercise the same skill

but look different can have effects on student performance. There-

fore, this work introduces a student model based on BKT that

takes into account the similarity between the problem the student

is currently working on and the one they worked on just prior to

it. By doing this, the model can capture the effect of problem

similarity on performance, and moderately improve accuracy on

skills with many dissimilar problems.

Keywords

Student modeling, Bayesian Knowledge Tracing, Problem Simi-

larity

1. INTRODUCTION
Bayesian Knowledge Tracing (BKT) [3] is a popular student

model used both in research and in actual intelligent tutoring

systems. As a model that infers student knowledge, BKT has

helped researchers answer questions about the effectiveness of

help within a tutor [1], the impact of “gaming the system” on

learning [5], and the relationship between student knowledge and

affect [9], among others. Additionally, it has been used in the

Cognitive Tutors [6] to determine which questions should be

presented to a student, and when a student no longer needs prac-

tice on a given skill.

However, BKT models are dependent upon the underlying skill

model of the system, as a separate BKT model is typically fit per

skill. If a skill model is too coarse-grained or too fine-grained, it

can make it more difficult for a BKT model to accurately infer

student knowledge [8].

Additionally, even when a skill model is tagged at the appropriate

level, seeing similar problems consecutively as opposed to seeing

dissimilar problems may have effects on guessing and slipping,

two important components of BKT models. For example, if a

student does not understand the skill they are working on, seeing a

certain type of question twice or more consecutively may improve

their chances of “guessing” the answer using a suboptimal proce-

dure that would not work on other questions from the same skill.

Whether the skill model is not at the appropriate level or seeing

consecutive similar questions helps students succeed without fully

learning a skill, it may be important to take problem similarity

into account in student models. In this work, we introduce the

Bayesian Knowledge Tracing – Same Template (BKT-ST) model,

a modification of BKT that considers problem similarity. Specifi-

cally, using data from the ASSISTments system [4], the model

takes into account whether the problem the student is currently

working on was generated from the same template as the previous

problem.

The next section describes the ASSISTments system, its template

system and the data used for this paper. Section 3 describes BKT

and BKT-ST in more detail, and describes the analyses we per-

formed on these models. The results are reported in Section 4,

followed by discussion and possible directions for future work in

Section 5.

2. TUTORING SYSTEM AND DATA

2.1 ASSISTments
ASSISTments [4] is a freely available web-based tutoring system

used primarily for middle and high school mathematics. In addi-

tion to providing a way for teachers to assess their students, AS-

SISTments also assists the students in a few different ways:

through the use of series of on-demand hint messages that typical-

ly end in the answer to the question (the “bottom-out hint”),

“buggy” or feedback messages that appear when the student gives

a common wrong answer, and “scaffolding” questions that break

the original question into smaller questions that are easier to an-

swer.

While teachers are free to author their own content, ASSISTments

provides a library of approved content, which includes problem

sets called skill-builders, which are meant to help students prac-

tice a particular skill. While most problem sets contain a fixed

number of problems that must all be completed for a student to

finish, a skill-builder is a special type of problem set that assigns

questions in a random order and that is considered complete once

a student answers three consecutive questions correctly on the

same day.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

136

While requiring students to answer three consecutive questions

correctly on the same day to complete a skill-builder ensures that

they have some level of knowledge of the particular skill being

exercised, it takes some students many problems to achieve this,

meaning they may see the same problem more than once if the

skill-builder does not contain enough unique problems.

To ensure this does not happen (or at least make it highly unlike-

ly), ASSISTments has a templating system that facilitates creating

large numbers of similar problems quickly. The content creator

creates a question as normal, but specifies that it is a template and

uses variables in the problem statement and answer rather than

specific values. Then, they are able to generate 10 unique prob-

lems at a time from that template, where each problem is random-

ly populated with specific values as prescribed by the template.

This is especially useful for skill-builders, whose problems should

theoretically all exercise the same skill. Figure 1 shows an exam-

ple of a template (a) and a problem generated from it (b).

Figure 1. A template (top image) and a problem generated

from it (bottom). The variables ‘b’ and ‘c’ in the template are

replaced by ‘8’ and ‘23’ in the generated problem.

2.2 Data
In this work, we used ASSISTments skill-builder data from the

2009-2010 school year. This data set consists of 61,522 problem

attempts by 1,579 students, spread across 67 different skill-

builders. A (student, skill-builder) pair was only included if the

student attempted three or more problems on that particular skill-

builder, and a skill-builder was included if it was used by at least

10 students and at least one of them completed it.

3. METHODS
In this section, we begin by describing Bayesian Knowledge Trac-

ing, and then move on to our modification of it, called Bayesian

Knowledge Tracing – Same Template. Finally, we describe the

analyses we performed using these two models.

3.1 Bayesian Knowledge Tracing
Bayesian Knowledge Tracing (BKT) [3] is a popular student

model that uses a dynamic Bayesian network to infer student

knowledge using only a student’s history of correct and incorrect

responses to questions that exercise a given knowledge compo-

nent (or “skill”).

Typically, a separate BKT model is fit for each skill. BKT models

assume that there are only two states a student can be in for a

given skill: the known state or the unknown state. Using a stu-

dent’s performance history on a given skill, a BKT model infers

the probability that the student is in the known state on question t,

P(Kt).

Fitting a BKT model involves estimating four probabilities:

1. Prior Knowledge – P(L0): the probability the student

knew the skill before answering the first question

2. Learn Rate – P(T): the probability the student will know

the skill on the next question, given that they do not

know the skill on the current question

3. Guess Rate – P(G): the probability the student will an-

swer the current question correctly despite not knowing

the skill

4. Slip Rate – P(S): the probability the student will answer

the current question incorrectly despite knowing the

skill

Note that forgetting is typically not modeled in BKT: it is as-

sumed that once a student learns a skill, they do not forget it. An

example of a BKT model, represented as a static unrolled Bayesi-

an network, is shown in Figure 2.

Figure 2. Static unrolled representation of Bayesian

Knowledge Tracing. The Kt nodes along the top represent

latent knowledge, while the Ct nodes represent performance.

3.2 Bayesian Knowledge Tracing – Same

Template
The Bayesian Knowledge Tracing - Same Template (BKT-ST)

model differs from the regular BKT model in one way: it takes

into account whether the problem it’s about to predict was gener-

ated from the same template as the previous problem the student

worked on. This is modeled as a binary observed variable that

influences performance.

This results in six parameters to be learned per skill: the initial

knowledge rate, the learn rate, and two sets of guess and slip rates:

one set for when the previous problem and current problem were

generated from the same template (P(G|Same) and P(S|Same)),

and one for when they aren’t (P(G|Different) and P(S|Different)).

The model is shown in Figure 3.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

137

Figure 3. Static unrolled representation of Bayesian

Knowledge Tracing – Same Template. The only difference

from BKT is the presence of the Dt nodes, which represent

whether the previous question was generated by the same

template as the current one.

3.3 Analyses
The first analysis in this work simply considers how well the two

models fit the data compared to each other overall. This is deter-

mined by fitting separate BKT and BKT-ST models for each skill

and then predicting unseen student data using five-fold student-

level cross-validation. Then, we evaluate each model’s ability to

predict next question correctness by computing the mean absolute

error (MAE), root mean squared error (RMSE) and area under the

curve (AUC) for each student and then averaging across students

for each type of model. Finally, two-tailed paired t-tests are used

to determine the significance of the differences in the metrics.

The second analysis considers what the metrics look like for each

model based on how many templates were used for each skill-

builder problem set. This is done by splitting the predictions made

in the first analysis by how many templates were used in the cor-

responding skill-builder. We did this to see when it would be

worth using BKT-ST over BKT.

Finally we consider the parameter values learned for the BKT-ST

model to determine any effects that seeing problems generated by

the same template consecutively has on guessing and slipping.

The BKT and BKT-ST models used in these analyses are fit using

the Expectation-Maximization (EM) algorithm in the Bayes Net

Toolbox for Matlab (BNT) [7]. The initial values given to EM for

BKT were 0.5 for P(L0) and 0.1 for the other three parameters.

This was also true for BKT-ST, except the slip rate was set to 0.2

when the current and previous problems were generated from the

same template.

4. RESULTS
In this section, we first present the overall comparison of BKT

and BKT-ST, then show how they compare to each other based on

the number of templates used in each skill-builder. Finally, we

examine the learned parameters for the BKT-ST model.

4.1 Overall
The overall results comparing BKT to BKT-ST are shown in

Table 1.

Table 1. Overall results of fitting BKT and BKT-ST models.

 MAE RMSE AUC

BKT 0.3830 0.4240 0.5909

BKT-ST 0.3751 0.4205 0.6314

According to these results, BKT-ST outperforms BKT in all three

metrics. Statistical tests confirmed that these results were reliable

(MAE: p < .0001, t(1578) = 9.939; RMSE: p < .0001, t(1578) =

4.825; AUC: p < .0001, t(1314) = -11.095), though according to

the values in the table, the only noticeable gain was in AUC.

4.2 By Number of Templates
Next, we considered how well each model did based on the num-

ber of templates a skill-builder contained. The results are shown

in Figure 4.

Figure 4. Graph of MAE, RMSE and AUC for the BKT and

BKT-ST models, plotted against the number of unique tem-

plates per skill.

Interestingly, both BKT and BKT-ST decline rapidly in terms of

model goodness as the number of templates per skill-builder in-

creases. This is likely the case because those with more templates

are more likely to have more than one skill being tested within

them. Interestingly, although both models decline similarly in

terms of MAE and RMSE, BKT-ST declines at a slower rate than

BKT does in terms of AUC. In fact, BKT-ST outperforms BKT in

terms of AUC for every group of skills with more than one tem-

plate. When grouping the skills by the number of templates they

had, BKT-ST achieved an AUC of at least 0.0236 better than

BKT for each group that had more than one template, and

achieved AUC values that were 0.1086 and 0.0980 better than

BKT for skills with five and 10 templates, respectively. Addition-

ally, while BKT performs worse than chance (AUC < 0.5) on

skills with eight or more templates, BKT-ST never performs

worse than chance.

4.3 Parameter Values
To analyze the parameters learned by BKT-ST, for each skill, we

took the average value of each of the six parameters learned

across the five folds from the overall analysis.

First, we computed the average value of each parameter across all

67 skills. These are shown in Table 2.

Table 2. Means and standard deviations of BKT-ST parameter

values learned across 67 skill-builders

Parameter Mean SD

P(L0) 0.6030 0.2617

P(T) 0.2966 0.2500

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

138

P(G|Different) 0.1880 0.1655

P(S|Different) 0.2941 0.1737

P(G|Same) 0.3337 0.2495

P(S|Same) 0.1514 0.0848

From the results in Table 2, it appears that on average, seeing

consecutive questions generated from the same template both

increases the guess rate (p < .0001, t(66) = -4.516) and decreases

the slip rate (p < .0001, t(66) = 7.186).

Next, we examined how these parameters changed with respect to

the number of templates used per skill-builder. The average values

of the performance parameters (guess and slip rates for same and

different templates) are shown in the graph in Figure 5. The re-

sults for skills with one template are omitted since the

P(G|Different) and P(S|Different) parameters are meaningless in

such cases.

Figure 5. Average value of each performance parameter for

the number of templates used per skill-builder.

Although there is no clear pattern for any of the four performance

parameters shown in the graph, the average value of P(G|Same) is

always higher than that of P(G|Different), and that of P(S|Same) is

always lower than that of P(S|Different), with respect to the num-

ber of templates used per skill. This appears to reinforce the no-

tion that seeing consecutive problems generated from the same

template makes the latter easier to solve, whether this is due to the

skill model being too coarse-grained or familiarity with a certain

type of problem within a skill inflating performance.

5. DISCUSSION AND FUTURE WORK
From the results in this work, it appears that modifying Bayesian

Knowledge Tracing to take similarity between consecutive prob-

lems into account moderately improves cross-validated predictive

performance, especially in terms of AUC. Additionally, this work

showed that seeing consecutive similar problems improves stu-

dent performance by both increasing the guess rate – the probabil-

ity of answering a question correctly despite not knowing the skill

– and decreasing the slip rate – the probability of answering a

question incorrectly despite knowing the skill. Regardless of the

underlying reason for this, whether it is because the skill model is

too coarse-grained or simply that familiarity with a type of prob-

lem within a skill improves performance, it appears important for

student models to take the similarity of the problems students

encounter into account when trying to model student knowledge.

One direction for future work would be to try going back further

in the problem sequence to see how the similarity of problems

earlier in a student’s history affects their ability to answer the

current problem. Additionally, it would be interesting to deter-

mine whether the effect changes in certain situations. For exam-

ple, what is the effect of seeing two similar problems in a row,

followed by one that is different from both?

Another area of interest would be to use a model that takes prob-

lem similarity into account when trying to predict a longer-term

outcome, such as wheel-spinning [2], retention and transfer, as

opposed to simply predicting next question correctness.

Finally, applying this model and others like it to other learning

environments and skill models of various grain sizes would be

helpful for understanding when it is useful. Presumably, if a skill

model is at the appropriate grain size, the difference in predictive

performance between BKT and BKT-ST would be reduced. The

same would be true of systems that fall to one of two extremes:

those whose problem sets are highly repetitive, and those whose

problem sets have a rich variety of problems.

6. ACKNOWLEDGMENTS
We acknowledge funding from NSF (#1316736, 1252297,

1109483, 1031398, 0742503), ONR's 'STEM Grand Challenges'

and IES (# R305A120125 & R305C100024).

7. REFERENCES
[1] Beck, J.E., Chang, K., Mostow, J., Corbett, A. Does help

help? Introducing the Bayesian Evaluation and Assessment

methodology. Intelligent Tutoring Systems, Springer Berlin

Heidelberg, 2008, 383-394.

[2] Beck, J. E., and Gong, Y. Wheel-Spinning: Students Who

Fail to Master a Skill. In Artificial Intelligence in Education,

pp. 431-440. Springer Berlin Heidelberg, 2013.

[3] Corbett, A. and Anderson, J. Knowledge Tracing: Modeling

the Acquisition of Procedural Knowledge. User Modeling

and User-Adapted Interaction, 4(4), 253-278.

[4] Feng, M., Heffernan, N.T., Koedinger, K.R. Addressing the

assessment challenge in an Intelligent Tutoring System that

tutors as it assesses. User Modeling and User-Adapted Inter-

action, 19(3), 243-266.

[5] Gong, Y., Beck, J., Heffernan, N., Forbes-Summers, E, The

impact of gaming (?) on learning at the fine-grained level. in

Proceedings of the 10th International Conference on Intelli-

gent Tutoring Systems, (Pittsburgh, PA, 2010), Springer,

194-203.

[6] Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.

(1997). Intelligent Tutoring Goes To School in the Big City.

International Journal of Artificial Intelligence in Education,

8(1), 30-43.

[7] Murphy, K. The bayes net toolbox for matlab. Computing

science and statistics, 33(2), 1024-1034.

[8] Pardos, Z. A., Heffernan, N. T., & Anderson, B., Heffernan,

C. L. Using Fine-Grained Skill Models to Fit Student Per-

formance with Bayesian Networks. Proceedings of the Work-

shop in Educational Data Mining held at the 8th Interna-

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

139

tional Conference on Intelligent Tutoring Systems. (Taiwan,

2006).

[9] San Pedro, M., Baker, R.S.J.d, Gowda, S.M., Heffernan,

N.T. Towards an Understanding of Affect and Knowledge

from Student Interaction with an Intelligent Tutoring System.

In Lane, H.C., Yacef, K., Mostow, M., Pavlik, P. (Eds.)

AIED 2013. LNCS, vol. 7926/2013, pp.41-50. Springer-

Verlag, Berlin Heidelberg.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

140

Is this Data for Real?
Rinat B. Rosenberg-Kima

University of California, Berkeley
rosenbergkima@berkeley.edu

Zachary Pardos
University of California, Berkeley

pardos@berkeley.edu

ABSTRACT
Simulated data plays a central role in Educational Data Mining
and in particular in Bayesian Knowledge Tracing (BKT) research.
The initial motivation for this paper was to try to answer the
question: given two datasets could you tell which of them is real
and which of them is simulated? The ability to answer this
question may provide an additional indication of the goodness of
the model, thus, if it is easy to discern simulated data from real
data that could be an indication that the model does not provide an
authentic representation of reality, whereas if it is hard to set the
real and simulated data apart that might be an indication that the
model is indeed authentic. In this paper we will describe initial
analysis that was performed in an attempt to address this question.
Additional findings that emerged during this exploration will be
discussed as well.

Keywords

Bayesian Knowledge Tracing (BKT), simulated data, parameters
space.

1. INTRODUCTION
Simulated data has been increasingly playing a central role in
Educational Data Mining [1] and Bayesian Knowledge Tracing
(BKT) research [1, 4]. For example, simulated data was used to
explore the convergence properties of BKT models [5], an
important area of investigation given the identifiability issues of
the model [3]. In this paper, we would like to approach simulated
data from a slightly different angle. In particular, we claim that
the question,”given two datasets could you tell which of them is
real and which of them is simulated?”, is interesting as it can be
used to evaluate the goodness of a model and may potentially
serve as an alternative metric to RMSE, AUC, and others. We
would like to start approaching this problem in this paper by
comparing simulated data to real data with Knowledge Tracing as
the model.

Knowledge Tracing (KT) models are widely used by cognitive
tutors to estimate the latent skills of students [6]. Knowledge
tracing is a Bayesian model, which assumes that each skill has 4
parameters: two knowledge parameters including initial (prior
knowledge) and learn rate, and two performance parameters
including guess and slip. KT in its simplest form assumes a single
point estimate for prior knowledge and learn rate for all students,
and similarly identical guess and slip rates for all students.
Simulated data has been used to estimate the parameter space and
in particular to answer questions that relate to the goal of
maximizing the log likelihood (LL) of the model given parameters
and data, and improving prediction power [7], [8], [9].

In this paper we would like to use the KT model as a framework
for comparing the characteristics of simulated data to real data,
and in particular to see whether it is possible to distinguish
between the real and sim datasets.

2. DATA SETS
To compare simulated data to real data we started with 2 real
dataset generated from the assisstment software1 (specifically,
datasets G6.207-exact.txt with 776 students and G6.259-exact.txt
with 212 students) from a previous BKT study [10]. Both of the
datasets consist of 6 questions in linear order where all students
answer all questions. Next, we generated synthetic, simulated data
using the best fitting parameters that were found for the real data
as the generating parameters. By this we generated a simulated
version of dataset G6.207 and a simulated version of dataset
G6.259 that had the exact same number of questions, number of
students, and was generated with what appears to be the best
fitting parameters. The specific best fitting parameters that were
found for each dataset and were used to generate the simulated
data are presented in table 1.

Table 1. Best fitting parameters for each dataset. These
parameters were used to generate the simulated datasets.
 N Prior Learn Guess Slip
G6.207 776 .453 .068 .270 .156
G6.259 212 .701 .044 .243 .165

3. METHODOLOGY
We are interested to find out whether it is possible to distinguish
between the simulated data and the real data. The approach we
took was to calculate LL for the gird of all the parameters space
(prior, learn, guess, and slip). We hypothesized that the LL pattern
of the simulated data and real data will be different across the
parameters space. For each of the matrices we conducted a grid
search with intervals of .04 that generated 25 intervals for each
parameter and 390,625 total combinations of prior, learn, guess,
and slip. For each one of the combinations LL was calculated and
placed in a four dimensional matrix. We used fastBKT [11] to (a)
calculate the best fitting parameters of the real datasets, (b)
generate simulated data, and (c) calculate the LL of the
parameters space. Additional code in Matlab and R was generated
to put all the pieces together2. In particular, we calculated the LL
for all the combinations of two parameters where the other two
parameters were fixed to the best fitting value. In an additional
analysis, we let all parameters be free and took the average LL for
all combinations of two parameters, collapsed over the space of
the other two parameters not visualized. The motivation for this
was to visualize the error space interactions in the four dimensions
of the model.

1 Data can be obtained here: http://people.csail.mit.edu/zp/
2 Matlab and R code will be available here:
2 Matlab and R code will be available here:

http://myweb.fsu.edu/rr05/

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

141

Figure 1.a (left). Heat maps of LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data that was
generated with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best
parameters. Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and
triangles indicate the best fitting parameters to the real data (that were also used to generate the simulated data). In this case the
triangles and circles fit the same point.
Figure 1.b (right). Heat maps of delta LL between real dataset G6-207 and the corresponding simulated data that was generated
with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best parameters. Blue
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data.

4. DOES THE LL OF SIM vs. REAL DATA
LOOK DIFFERENT?
Our initial thinking was that as we are using a simple BKT model,
it is not authentically reflecting reality in all its detail and
therefore we will observe different patterns of LL across the
parameters space between the real data and the simulated data.
The LL space of simulated data in [5] was quite striking in its
smooth surface but the appearance of real data was left as an open
research question.

4.1 Does the LL of sim vs. real data looks
different across two parameters grids?

First, we calculated the LL over all the combinations of two
parameters for dataset G6.207 where the other two parameters were
fixed to the best fitting value. For example, when we calculated LL
for the combination of slip and prior (top right figure in figure 1.a),
we fixed learn and guess to be .068 and .270 accordingly. To our
great surprise, when we plotted heat maps of the LL matrices of the
real data and the simulated data (Figure 1.a - real data is presented
in the upper triangle and simulated (sim) data is presented in the
lower triangle) we received what appears to be identical matrices
(for example, the upper right heat map is the (slip x prior) LL
matrix of the real data, whereas the lowest left heat map is the (slip
x prior) LL matrix of the sim data).

The extent of the similarity between the matrices was surprising
and in order to get a better picture of the differences between them

we plotted heat maps of the deltas between the real data and the
simulated data (LL_RealData-LL_SimData) for each matrix. Even
though the matrices appear to be identical, as can be seen in Figure
1.b, there is in fact a difference between the LL of the matrices
although it is not a big difference compared to the values of LL.
Another surprising finding was that the LL of the real data was in
many cases higher than the LL of the sim data. We expected that
the model would better explain the sim data as there should not be
additional noise as expected in reality, and therefore the LL of the
sim data should be higher, yet the findings were not consistent with
this expectation.

Another interesting finding was that the location of the ground truth
(the triangle) in most of the cases resulted in smaller delta between
the real and the sim data although not in all cases (e.g., guess x
slip). Note that the circles in Figure 1.b indicate the minimum
absolute difference in LL between the real and the sim data, and
this point is usually not located at the exact ground truth (except for
learn x guess).

Another interesting finding can be seen in Figure 1.a - slip vs.
guess. Much attention has been given to this LL space which
revealed the apparent co-linearity of BKT with two primary areas
of convergence, the upper right area being a false, or “implausible”
converging area as defined by [3]. What is interesting in this figure
is that despite what appears to be two global maxima, the point
with the best LL in this dataset is in fact the lower region for both
sim and real data.
Next we conducted the same analysis with the second dataset.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

142

Figure 2.a (left) Heat maps of delta LL between real dataset G6-259 (k=212 students) and the corresponding simulated data that
was generated with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best
parameters. Blue areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles
indicate maximum LL of the given matrix, and triangles indicate the best fitting parameters to the real data.
Figure 2.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data.

Even though the G6-259 dataset was significantly smaller than the
first dataset, we received very similar results to the first dataset
with surprisingly similar heat maps for the sim and real data (see
Figure 2.a). Like in the first dataset, notice that even though the
LL heat maps look very similar, there is a difference in the delta
heat maps (see Figure 2.b). Nevertheless, there is an interesting
difference between the two datasets. Concretely, unlike the bigger
dataset (G6-207), in G6-259 the LL of the sim data was actually
higher than the real data in most cases.

4.2 What if we average LL over 2 parameters
across all the combinations of the other 2
parameters?
We were interested to find out how will the heat maps look like if
we do not fix the other two parameters to be best fit, but rather
average the LL across the entire space of the other two
parameters. For example, to calculate the matrix of guess and slip
we practically calculated a matrix of guess and slip LL for each
combination of learn and prior (25 x 25 = 625 matrices) instead of
only one matrix for the best fit learn and prior. Then, we took the
average of all these matrices for each combination of guess and
slip (see Figure 3.a). The results are both surprising and
interesting. As far as (guess x slip), we no longer receive the two
maximum (global and local) that we received when learn and
prior where fixed to best fit parameters. Another interesting
finding is the relationship between the average maximum across
the other two parameters and the overall best fit parameters for

given two parameters. For example, if we look at the heat map of
matrix (learn x prior) we can see that there is not a big difference
between the average maximum point (white circle) and the overall
best fit parameters (white triangle). This may indicate that
changing guess and slip will not affect the value of learn and prior
that maximizes the LL, therefore might suggest independency. If
we look at (guess x learn), we see that changes in prior and slip
will again not have an impact on the best fit value of guess,
however, they will affect the value of learn. Then again, if we
look at the heat map of (prior x guess), we will see that both prior
and guess are sensitive to changes in learn and slip. Yet again, the
extremely surprising part of these results is that the sim data
appear to be almost identical to the real data. It is possible to see
from Figure 3.b though that indeed there are differences between
the simulation data and the real data and like before, the LL of the
real data is higher than that of the sim data in the larger dataset.

Like for the fixed matrices, we received similar LL matrices for
the smaller dataset (G6-259) (see table 4.a). In addition, as before,
the LL of the sim data for this dataset was higher than that of the
real data (the opposite direction of the larger dataset G6-207).
Another interesting finding for this dataset can be seen in the
(guess x slip) matrices (4.b). Notice that while the sim data
converged to the lower point of the blue area, the real data
converged to the higher point. Nevertheless, this only happened in
the averages matrices and not in the fixed ones.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

143

Figure 3.a (left). Heat maps of average LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data
that was generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure.
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles
indicate the best fitting parameters to the real data (that were also used to generate the simulated data).
Figure 3.b (right). Heat maps of delta LL between real assistment dataset G6-207 and the corresponding simulated data that was
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data.

Figure 4.a (left). Heat maps of average LL of real assistment dataset G6-259 (k=212 students) and a corresponding simulated data
that was generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure.
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles
indicate the best fitting parameters to the real data (that were also used to generate the simulated data).
Figure 4.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

144

5. DISCUSSION AND FUTURE WORK
The initial motivation of this paper was to find whether it is
possible to discern a real data from a sim data. If for a given
model it is possible to tell apart a sim data from a real data then
the authenticity of the model can be questioned. This line of
thinking is in particular typical of simulation use in Science
context, where different models are used to generate simulated
data, and then if a simulated data has a good fit to the real
phenomena at hand, then it may be possible to claim that the
model provides an authentic explanation of the system [12]. We
believe that it may be possible to generate a new matric for
evaluating the goodness of a model by comparing a simulated data
from this model to real data.

In this work we explored similarities between simulated and real
data. Nevertheless, we are yet to answer the question “is this data
for real?”. In other words, what we still did not do in this work is
come up with an algorithm that can take a dataset and determine
whether it is real or simulated. Another way to think of it is to
come out with an algorithm that can tell us whether it is possible
to discern real and simulated data and use it as an indication of the
goodness of the model. We found differences between the real
and sim data, but are they strong enough to be noticed by such
algorithm in a consistent way? In future work we plan to further
investigate this question by creating a training set of multiple real
datasets and sim datasets and use machine learning techniques to
extract a learning algorithm from this training dataset that can take
as input a dataset and determine whether it is real or sim. We
argue that if such algorithm can be found, it is an indication that
the underlying model can be improved. In future work we also
plan to compare different variations of the KT model and contrast
their resulting simulated data with real data. In particular we plan
to generate a more complex set of simulated data that is based on
a more complex model (e.g., different learning rate for different
types of questions), and then use it as “real” data with the (wrong)
assumption that the model is simple (standard BKT model) to
simulate a scenario where the real data is indeed grounded in
more complex model than our assumptions and see what results
would a learning algorithm that uses this “real” data in
comparison to a sim data will yield.

In addition, this paper raises interesting questions that we did not
think of while trying to answer our initial question. For example,
it seems like there is potential to dive deeper into the average LL
(Figures 3&4) and find more about the relationships and
dependencies between the different parameters. Another question
that emerged is how could it be that the simulated data had lower
LL than the real data in the bigger dataset yet lower in the smaller
dataset? Further analysis is needed to answer these questions.

Last but not least, given the remarkable resemblance between the
sim data and the real data, these initial findings provide an
indication that the BKT model is a model with a very strong hold
in reality.

6. REFERENCES
[1] R. S. Baker and K. Yacef, “The state of educational data

mining in 2009: A review and future visions,” J. Educ. Data
Min., vol. 1, no. 1, pp. 3–17, 2009.

[2] M. C. Desmarais and I. Pelczer, “On the Faithfulness of
Simulated Student Performance Data.,” in EDM, 2010, pp.
21–30.

[3] J. E. Beck and K. Chang, “Identifiability: A fundamental
problem of student modeling,” in User Modeling 2007,
Springer, 2007, pp. 137–146.

[4] Z. A. Pardos and M. V. Yudelson, “Towards Moment of
Learning Accuracy,” in AIED 2013 Workshops Proceedings
Volume 4, 2013, p. 3.

[5] Z. A. Pardos and N. T. Heffernan, “Navigating the parameter
space of Bayesian Knowledge Tracing models:
Visualizations of the convergence of the Expectation
Maximization algorithm.,” in EDM, 2010, pp. 161–170.

[6] A. T. Corbett and J. R. Anderson, “Knowledge tracing:
Modeling the acquisition of procedural knowledge,” User
Model. User-Adapt. Interact., vol. 4, no. 4, pp. 253–278,
1994.

[7] S. Ritter, T. K. Harris, T. Nixon, D. Dickison, R. C. Murray,
and B. Towle, “Reducing the Knowledge Tracing Space.,”
Int. Work. Group Educ. Data Min., 2009.

[8] R. S. d Baker, A. T. Corbett, S. M. Gowda, A. Z. Wagner, B.
A. MacLaren, L. R. Kauffman, A. P. Mitchell, and S.
Giguere, “Contextual slip and prediction of student
performance after use of an intelligent tutor,” in User
Modeling, Adaptation, and Personalization, Springer, 2010,
pp. 52–63.

[9] R. S. Baker, A. T. Corbett, and V. Aleven, “More accurate
student modeling through contextual estimation of slip and
guess probabilities in bayesian knowledge tracing,” in
Intelligent Tutoring Systems, 2008, pp. 406–415.

[10] Z. A. Pardos and N. T. Heffernan, “Modeling
individualization in a bayesian networks implementation of
knowledge tracing,” in User Modeling, Adaptation, and
Personalization, Springer, 2010, pp. 255–266.

[11] Z. A. Pardos and M. J. Johnson, “Scaling Cognitive
Modeling to Massive Open Environments (in preparation),”
TOCHI Spec. Issue Learn. Scale.

[12] U. Wilensky, “GasLab—an Extensible Modeling Toolkit for
Connecting Micro-and Macro-properties of Gases,” in
Modeling and simulation in science and mathematics
education, Springer, 1999, pp. 151–178.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

145

The Effect of Variations of Prior on Knowledge Tracing

Matti Nelimarkka
School of Information, UC Berkeley

102 South Hall
Berkeley, California 94720-4600

Helsinki Institute for Information Technology HIIT,
Aalto University
PO Box 15600

Aalto, Finland 00076
matti.nelimarkka@hiit.fi

Madeeha Ghori
Department of Electrical Engineering and

Computer Sciences, UC Berkeley
387 Soda Hall

Berkeley, California 94720-17761
madeeha.ghori@berkeley.edu

ABSTRACT
Knowledge tracing is a method which enables approximation
of a student’s knowledge state using a Bayesian network for
approximation. As the applications of this method increase,
it is vital to understand the limits of this approximation. We
are interested how well knowledge tracing performs when
students’ prior knowledge on the topic is extremely high or
low. Our results indicate that the estimates become more
erroneous when prior knowledge is extremely high (prior =
0.90).

Keywords
bayesian knowledge tracing, personalization, prior, parame-
ter estimation

1. INTRODUCTION
The Bayesian Knowledge-Tracing (BKT) algorithm was de-
veloped in 1995 in an effort to model students’ changing
knowledge state during skill acquisition [5]. The idea is to
interpret students’ knowledge – a hidden variable – based
on observed answers to a set of questions. The algorithm
tracks the change in this probability distribution over time
using a simple Bayes’ net. The model is often presented as
four parameters: prior, learn, guess and slip (see Figure 1).
Prior refers to the probability that the student knows the
material initially, before acquiring any skills, learn indicates
that the student did not have the skill initially but acquired
it through doing the exercise, guess refers to accidentally
answering the question correct and slip to answering acci-
dentally wrong.

Knowledge tracing is the most prominent method used to
model student knowledge acquisition and is used in most in-
telligent learning systems. These systems have been said to
be outperforming humans since 2001 [3] and have been used
in the real world to tutor students [4]. For these reasons it is

important to fully understand the strengths and limitations
of knowledge tracing before applying it more widely in the
classroom. As the parameters of the model are now known,
there is a need to estimate these parameters from the given
data. Previous research has demonstrated that the accuracy
of parameter estimation – and therefore knowledge tracing
– can be improved by applying different heuristics [17, 13]
or methods [16, 18] including personalizing the model for
each user [20, 8] or by extending the data used for analysis
[15, 6, 1].

Our work starts from a different premise: how robust is the
BKT approach to variation in the parameter space? Our
special interest is in the prior variable, which correlates to
a student’s knowledge of the topic before answering a ques-
tion. In any classroom, MOOC or otherwise, some students
will come in with a better understanding of the material
than others. Therefore it is important to study the effec-
tiveness of knowledge tracing on parameter estimation when
prior is extremely high or low.

If knowledge tracing models are inaccurate in modelling stu-
dents of a certain prior parameter, then smart tutors and
other systems designed to help those students learn will be
less effective. Especially if the students being modelled in-
accurately are those students doing poorly in the class, as
the smart tutors exist to help them the most.

Figure 1: The model of knowledge tracing

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

146

2. PREVIOUS WORK
For the purposes of this work, here we shortly summarize
three methods previously applied to improve the prediction
capabilities of BKT models. However, these methods are in-
sufficient to address the practical problem described above,
resulting in a need for our own experiment.

2.1 Individualization
Yudelson et al. [20] experimented with individualization by
bringing student-specific parameters into the BKT algorithm
on a larger scale. They split the usual skill-specific BKT
parameters into two components: one skill-specific and one
student-specific. They then built several individualized BKT
models and added student-specific parameters in batches,
examining the effect each addition had on the model’s per-
formance. They found that student-specific prior parame-
ters did not provide a vast improvement. However, student-
specific learning provided a significant improvement to the
model’s prediction accuracy.

Pardos and Heffernan furthered the experiment by develop-
ing a method of formulating the individualization within the
Bayes’ Net framework [11]. Especially interesting in terms
of our work is the difference prior values and methods sug-
gested for this individualization. Pardos observes that mod-
els taking student spesific priors based on students’ prior
knowledge clearly outperform traditional knowledge trace
approach. This is a contrast Yudelson et al.’s findings [20]
but it still underscores the importance of individualization
in the BKT algorithm.

Related to individualization per user, there have been dis-
cussion on using different values per resources. It can be
argued that different exercises teach different topics [7, 14].
This can be further used to individualize the model for dif-
ferent topics, an approach which has gained initial support
on empirical studies [14].

2.2 Enhancing the data
The second approach to improve these methods is related
to enhanching the data used for prediction. In its most
simple form, this can be done by adding additional relevant
data, such as data from past years, to the analysis [15].
Others have explored the possibility of adding more data to
the general domain-related knowledge on the models, and
suggest that these indeed improve the estimates [6].

However, the current direction in enhanced data relates to
information available on user interaction – especially in MOOC
environments where it is possible to access this kind of data.
To illustrate, Baker, Corbett, and Aleven [1] explore interac-
tions with the learning system and other non-exercise related
data, such as time spent on answering and asking help, to
determine the difference between slips and guesses.

We applaud these efforts and acknowledge that data other
than just student responses may indeed help to detect both
the cases where initial knowledge (prior) is high and when
it is low, instead of tweaking the EM algorithm further.

2.3 Improving the methods
There are several heuristics currently used to enhance the
BKT algorithm. One such heuristic involves expecting the

Figure 2: The approach used in this study

sum of slip and guess to be less than or equal to 1 [17]. Other
work determined that one’s starting estimated parameters
could affect where the algorithm converged to. In order to
improve the accuracy of the convergence, it was suggested
that starting parameters be selected from a Dirichlet distr-
bution derived from the data set [2, 13].

There have also been efforts to explore other machine learn-
ing methods on educational data. Initial trials born in the
KDDCup competition use a medley of random forests and
other machine learning algorithms but these methods have
proven largely unsuccessful [16, 18].

The knowledge tracing community, while accepting the va-
lidity of some of these heuristics [9, 12], has criticized their
inability to provide any insight into the student learning
model. Individualization, however, has the potential to im-
prove the BKT algorithm while also providing a pedagogical
explanation for said improvements.

3. METHODOLOGY
We began by generating datasets with specific known ini-
tial parameters in order to simulate groups of students at
different knowledge levels. We then ran expectation max-
imization (EM) on these datasets and allowed knowledge
tracing to calculate its own estimated parameters. We then
compared these estimated parameters to the original ones
used for generation to determine if the accurency of the pa-
rameter estimation depends on the initial parameters.

Table 1: Ground Truth Parameter Sets

prior learn guess slip
Set 1.1 . . . 1.6 0.15 0.10 0.10 0.05
Set 2.1 . . . 2.6 0.30 0.10 0.10 0.05
Set 3.1 . . . 3.6 0.15 0.20 0.10 0.05

...
Set 48.1 . . . 48.6 0.90 0.20 0.20 0.10

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

147

3.1 Generating the Data
As our goal was to determine how the prior ground truth af-
fects parameter estimation, we varied the prior used to syn-
thesize the data sets. We used six different priors (0.15, 0.30, . . . ,
0.75, 0.9), and two variations on learn, slip and guess1 each
(see Table 1); total of 48 variations of these parameters.
Each of these data sets consists of 10,000 students and 20
observations per student. To increase the variation, we gen-
erated 6 datasets per condition. This kind of simulated ap-
proach has been previously used to evaluate the success of
Bayesian machine learning methods [8].

3.2 Analysis Procedure
For each data set, we estimated the parameters using the
expectation maximization fitting (EM) algorithm using the
fastHMM implementation [10]. The parameter estimation
was conducted using a grid search with ten parameters, and
the best fitting model was selected using the log likelihood.

Using our 288 data sets, we can compare the estimates and
ground truths for each parameter and analyze the accuracy
of the estimates. We apply the standard methods of root-
mean-square error (RMSE) and other visualizations to do
our analysis. Using RMSE, we will be able to see if certain
ground truths lend themselves to more accurate estimations.

4. RESULTS
First, let us explore the parameter estimation in detail. The
avarage RMSE measurement in the data (Table 2) indicate
that the prediction quality decreases as the prior increases;
there is also increase of variance of the RMSE. This indi-
cates that the predictions with higher priors are first more
erronous and second, they converge in a larger area, result-
ing in variance. To confirm our observations, we conducted
a Wilcox-Mann-Whitney test to explore if the computed
RMSEs differented in statistically significant manner. As
shown in Table 3, both the RMSEs computed from the data
sets with priors 0.15 and 0.90 statistically differ significantly
from the other datasets (p < 0.05). Therefore we conclude
that the EM algortihm performs badly when prior is high.

To further understand this phenomena, we explore the esti-
mates per parameter. The errors per parameter are shown
in the Figure 3. The mean estimates are rather constantly
close by the zero, though a higher prior does affect variance.
As ground truth prior increases, the variance of guess and
learn increases while the variance of prior decreases. In the-
ory, a lesser variance on the prior prediction should imply
1Variations were 0.10 and 0.20 for learn and guess, and 0.05,
0.10 for slip.

Ground truth prior mean RMSE var RMSE
0.15 0.056639 0.000594
0.30 0.069073 0.001137
0.45 0.070005 0.000584
0.60 0.074044 0.001874
0.75 0.075946 0.002229
0.90 0.085257 0.004876

Table 2: The mean and variance of the root-mean-square
errors per prior

Figure 4: Log likelihoods with different parameters

a more accurate prior estimate. However, as we saw in Ta-
ble 2, this is not actually the case. The prior estimate gets
less accurate as the value of the ground truth prior increases.
In Figure 3 we can see again some of the results we saw in
Table 2: the prediction accuracy decreases when prior is 0.6
and continues to decrease as prior increases.

Figure 4 shows that the log likelihood for each of the param-
eter combinations we analyzed. We see a slight, but non-
significant increase in the log likelihoods, suggesting that
the model is performing better – even while our RMSE er-
ror indicator demonstrates otherwise. It is also noteworthy
to observe that that when slip is 0.10, all log likelihoods
range between -65500 and -65250 but when slip is 0.05, all
log likelihoods range between -40000 and -35750, indicat-
ing that the slip value had a dramatic effect on the model
estimation accurancy.

5. IMPLICATIONS
Our findings indicate that there are higher errors in the
parameter estimations when prior is high (0.90). This is
probably due to the lack of evidence available for the HMM
to attribute to the learn and guess parameters. One ap-
proach to examine the impact of these errors is to examine
the students’ subjective experience in different conditions
[19]. As our data is syntetic, we can not measure the time
consumed by students due to errors, as examined by Youdel-
son & Koedinger [19]. Instead we explore the difference on
the number of questions students’ need to answer to achieve
mastery learning – for our purposes knowledge above 95 %
and assuming that the students answer each question cor-
rectly.

Examining the case of high prior knowledge, and when the
true learning was 0.1, we observed that majority of students
needed to answer over 5 times to achieve mastery (or: from
the 168 predicted value sets available, only 24 achieved mas-
tery), and for the high learning (0.2) the situation was not

Table 3: Significant differences between the RMSEs

0.15 0.30 0.45 0.60 0.75 0.90
0.15 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
0.30 1 0.347 0.614 0.967 0.014
0.45 1 0.660 0.125 0.081
0.60 1 0.744 0.035
0.75 1 0.007
0.90 1

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

148

Figure 3: Predicting parameters with different values of prior

significantly better – there 56 values achieved mastery with 5
responses. This indicates that the impact indeed was signif-
icant in terms of impact to students learning and highlights
the importance of this study.

6. CONCLUSIONS
We started this study with the motivation to explore how
well the knowledge tracing method performs when the prior
is high or low; this performance has practical implications
when applying this approach in a heterogenius classroom
where students arrive with highly different knowledge of the
domain. We studied this empirically by generating 288 dif-
ferent synthetic datasets and explored the difference between
the predicted parameters and the parameters used to gen-
erate the dataset.

Our results indicated a slightly increased in the estimation
error when prior was 0.90, which we mostly attribute to
higher error in learn and guess parameters. This observation
was statistically significant and most likely due to the fact
that students with higher priors produce less information
to be used by the HMM to estimate the guess and learn
parameters.

We explored the influence these errors had on the propabil-
ity of knowledge and observed that these errors significantly
reduced the speed students achieved mastery learning. This
result therefore implies that more work needs to be done to
detect those with high prior knowledge to cater their learn-
ing needs.

Acknowledgments
This work was conducted during UC Berkeley School of In-
formation class “INFO290: Machine learning in education“
instructed by Zach Pardos. We thank the support of the
course staff and peers on the presentation.

References
[1] RyanS.J.d. Baker, AlbertT. Corbett, and Vincent

Aleven. More accurate student modeling through con-
textual estimation of slip and guess probabilities in

bayesian knowledge tracing. In BeverleyP. Woolf, Esma
AÃŕmeur, Roger Nkambou, and Susanne Lajoie, ed-
itors, Intelligent Tutoring Systems, volume 5091 of
Lecture Notes in Computer Science, pages 406–415.
Springer Berlin Heidelberg, 2008.

[2] Joseph E Beck and Kai-min Chang. Identifiability :
A Fundamental Problem of Student Modeling. pages
137–146, 2007. doi: 10.1007/978-3-540-73078-1_17.

[3] Albert Corbett. Cognitive computer tutors: Solving
the two-sigma problem. In User Modeling 2001, volume
2109 of Lecture Notes in Computer Science, pages 137–
147. Springer Berlin Heidelberg, 2001.

[4] Albert Corbett, Megan McLaughlin, and K Christine
Scarpinatto. Modeling student knowledge: Cognitive
tutors in high school and college. User modeling and
user-adapted interaction, 10(2-3):81–108, 2000.

[5] Albert T Corbett and John R Anderson. Knowledge
tracing: Modeling the acquisition of procedural knowl-
edge. User modeling and user-adapted interaction, 4(4):
253–278, 1994.

[6] Albert T Corbett and Akshat Bhatnagar. Stu-
dent modeling in the act programming tutor: Ad-
justing a procedural learning model with declar-
ative knowledge. COURSES AND LECTURES-
INTERNATIONAL CENTRE FOR MECHANICAL
SCIENCES, pages 243–254, 1997.

[7] Tanja KÃďser, Severin Klingler, AlexanderGerhard
Schwing, and Markus Gross. Beyond knowledge trac-
ing: Modeling skill topologies with bayesian net-
works. In Stefan Trausan-Matu, KristyElizabeth Boyer,
Martha Crosby, and Kitty Panourgia, editors, Intelli-
gent Tutoring Systems, volume 8474 of Lecture Notes
in Computer Science, pages 188–198. Springer Interna-
tional Publishing, 2014.

[8] Z. A. Pardos and N. T. Heffernan. Navigating the pa-
rameter space of Bayesian Knowledge Tracing models
Visualizations of the convergence of the Expectation

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

149

Maximization algorithm. In Proceedings of the 3rd In-
ternational Conference on Educational Data Mining,
2010.

[9] ZA Pardos and NT Heffernan. Using HMMs and bagged
decision trees to leverage rich features of user and skill
from an intelligent tutoring system dataset. Jour-
nal of Machine Learning Research W & CP, 2010. URL
http://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf.

[10] Z.A. Pardos, M.J. Johnson, and et al. Scaling cogni-
tive modeling to massive open environments. TOCHI
Special Issue on Learning at Scale, (in preparation).

[11] ZacharyA. Pardos and Neil T. Heffernan. Modeling in-
dividualization in a bayesian networks implementation
of knowledge tracing. In Paul Bra, Alfred Kobsa, and
David Chin, editors, User Modeling, Adaptation, and
Personalization, volume 6075 of Lecture Notes in Com-
puter Science, pages 255–266. Springer Berlin Heidel-
berg, 2010. ISBN 978-3-642-13469-2.

[12] Pardos, Zachary A, Sujith M. Gowda, Ryan S.J.d.
Baker, and Neil T. Heffernan. The sum is
greater than the parts. ACM SIGKDD Explo-
rations Newsletter, 13(2):37, May 2012. ISSN
19310145. doi: 10.1145/2207243.2207249. URL
http://dl.acm.org/citation.cfm?id=2207249
http://dl.acm.org/citation.cfm?doid=2207243.2207249.

[13] Dovan Rai, Yue Gong, and Joseph E Beck. Using dirich-
let priors to improve model parameter plausibility. In-
ternational Working Group on Educational Data Min-
ing, 2009.

[14] Leena Razzaq, Neil T Heffernan, Mingyu Feng, and
Zachary A Pardos. Developing Fine-Grained Transfer
Models in the ASSISTment System. Technology, In-
struction, Cognition & Learning, 5(3):1–16, 2007.

[15] Steven Ritter, Thomas K Harris, Tristan Nixon, Daniel
Dickison, R Charles Murray, and Brendon Towle. Re-
ducing the knowledge tracing space. International
Working Group on Educational Data Mining, 2009.

[16] A Toscher and Michael Jahrer. Collaborative filtering
applied to educational data mining. Journal of Machine
Learning Research, 2010.

[17] Brett van De Sande. Properties of the Bayesian Knowl-
edge Tracing Model. Journal of Educational Data Min-
ing, 5(2):1–10, 2013.

[18] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-
Kai Lou, Todd G McKenzie, Jung-Wei Chou, Po-Han
Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei,
et al. Feature engineering and classifier ensemble for
kdd cup 2010. JMLR: Workshop and Conference Pro-
ceedings, 1, 2010.

[19] Michael V Yudelson and Kenneth R Koedinger. Esti-
mating the benefits of student model improvements on
a substantive scale. In Proceedings of the 6th Interna-
tional Conference on Educational Data Mining, 2013.

[20] Michael V Yudelson, Kenneth R Koedinger, and Ge-
offrey J Gordon. Individualized bayesian knowledge
tracing models. In Artificial Intelligence in Education,
pages 171–180. Springer, 2013.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

150

A Brief Overview of Metrics for Evaluation of Student
Models

Radek Pelánek
Masaryk University Brno
pelanek@fi.muni.cz

ABSTRACT
Many different metrics are used to evaluate and compare
performance of student models. The aim of this paper is to
provide an overview of commonly used metrics, to discuss
properties, advantages, and disadvantages of different met-
rics, and to summarize current practice in research papers.
The paper should serve as a starting point for workshop
discussion about the use of metrics in student modeling.

1. INTRODUCTION
A key part of intelligent tutoring systems are models that
estimate the knowledge of students. To compare and im-
prove these models we use metrics that measure quality of
model predictions. Metrics are also used (sometimes implic-
itly) for parameter fitting, since many fitting procedures try
to optimize parameters with respect to some metric.

At the moment there is no standard metric for model eval-
uation and thus researchers have to decide which metric to
use. The choice of metric is an important step in the research
process. Differences in predictions between competing mod-
els are often small and the choice of metric can influence the
results more than the choice of a parameter fitting proce-
dure. Moreover, fitted model parameters are often used in
subsequent steps in educational data mining and thus the
choice of metric can indirectly influence many other aspects
of the research.

However, despite the fact that the choice of metric is im-
portant and that there is no clear consensus on the usage
of performance metrics, the topic gets very little attention
in most research papers. Most authors do not provide any
rationale for their choice of metric. Sometimes it is not even
clear what metric is exactly used, so it may be even difficult
to use the same metric as previous authors. The main aim
of this paper is to give an overview of performance metrics
relevant for evaluation of student models and to explicitly
discuss points that are in most papers omitted.

2. OVERVIEW OF METRICS
To attain clear focus we discuss only models that predict
probability of a correct answer. We assume that we have
data about n answers, numbered i ∈ {1, . . . , n}, correctness
of answers is given by ci ∈ {0, 1}, a student models provides
predictions pi ∈ [0, 1]. A model performance metric is a
function f(~p,~c). Note that the word “metric” is here used
in a sense “any function that is used to make comparisons”,
not in the mathematical sense of a distance function. Since
we are interested in using the metrics for comparison, mono-
tone transformations (square root, logarithm, multiplication
by constant) are inconsequential and are used mainly for
better interpretability (or sometimes rather for traditional
reasons).

2.1 Mean Absolute Error
This basic metric consider the absolute differences between
predictions and answers: MAE = 1

n

∑n
i=1 |ci − pi|. This is

not a suitable performance metric, because it prefers models
which are biased towards the majority results. As a simple
illustration, consider a simulated student which answers cor-
rectly with constant probability 0.7. If we compare differ-
ent constant predictors with respect to this metric, we get
that the best model is the one which predicts probability
of correct answer to be 1. This is clearly not a desirable
result. As this example illustrates, the use of MAE can lead
to rather misleading conclusions. Despite this clear disad-
vantage, MAE is sometimes used for evaluation (although
mostly in combination with other metrics, which reduces
the risk of misleading conclusions in published papers).

2.2 Root Mean Square Error
A similar metric is obtained by using squared values instead

of absolute values: RMSE =
√

1
n

∑n
i=1(ci − pi)2. Note that

from the perspective of model comparison, the important
part is only the sum of square errors (SSE). The square
root in RMSE is traditionally used to get the result in the
same units of as the original “measurements” and thus to
improve interpretability of the resulting number. In the
particular context of student modeling and evaluation of
probabilities, this is not particularly useful, since the result-
ing numbers are hard to interpret anyway. In order to get
better interpretability researchers sometimes use R2 metric:
R2 = 1−

∑n
i=1(ci−pi)2/

∑n
i=1(ci−c̄)2. With respect to com-

parison of models, R2 is equivalent to RMSE since here again
the only model dependent part is the sum of square errors.
In the context of the standard linear regression (where it is

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

151

most commonly used) R2 has a nice interpretation as “ex-
plained variability”. In the case of logistic regression (which
is more similar to student models) this interpretation does
not hold and different “pseudo R2” metrics are used (e.g.,
Cox and Snell, McFadden, Nagelkerke). Thus a disadvan-
tage of R2 is that unless the authors are explicit about which
version of R2 they use (usually they are not), a reader cannot
know for sure which metric is reported.

In educational data mining the use of RMSE metric is very
common (it was also used as a metric in KDD Cup 2010
focused on student performance evaluation). In other ar-
eas, particularly in meteorology, mean square error (RMSE
without the square root) is called the Brier score [1]. The
Brier score is often decomposed into additive components
(e.g., reliability and refinement) which provide further in-
sight into the behaviour of the predictor. Moreover, in an
analogy to AUC metric and ROC curve (described below),
this metric can be interpreted as area under Brier curves.
These methods may provide interesting inspirations for stu-
dent modeling.

2.3 Metrics Based on Likelihood
The likelihood of data (the answers) given a model (pre-

dicted probabilities) is L =
∏n

i=1 p
ci
i · (1 − pi)

(1−ci). Since
we are indifferent to monotonic transformations we typically
work with the numerically more stable logarithm of the like-
lihood LL =

∑n
i=1 ci log(pi)+(1−ci) log(1−pi). This metric

can also be interpreted from information theoretic perspec-
tive as measure of data compression provided by a model [4].
The log-likelihood metric can be further extended into met-
rics like Akaike information criterion (AIC) and Bayesian
information criterion (BIC). These metrics penalize large
number of model parameters and thus aim to avoid overfit-
ting. In the context of student modeling it is typically much
better to address the issue of overfitting by cross-validation.
Since AIC and BIC provide a faster way to assess models
than cross-validation, they may be useful as heuristics in
some algorithms (e.g., learning factor analysis), but they
are not serious contenders for proper model comparison.

MAE, RMSE and LL have all the form of “sum of penalties
for individual errors” and differ only in the function which
specifies the penalty. For RMSE and LL values of penalty
functions are quite similar, the main difference is in the in-
terval [0.95, 1], i.e., in cases where the predictor is confident
and wrong. These cases are penalized very prohibitively by
LL, whereas RMSE is relatively benevolent. In fact the LL
metric is unbounded, so single wrong prediction (if it is too
confident) can ruin the performance of a model. This prop-
erty is usually undesirable and an artificial bound is used.
This corresponds to basically forcing a possibility of a slip
and guess behaviour into a model. After this modification
the penalties for RMSE and LL are rather similar. Never-
theless, the LL approach “penalize mainly predictions which
are confident and wrong” is reasonable thus it is rather sur-
prising that this metric is used only marginally in evaluation
of student models (it is used mostly in connection with AIC
or BIC).

2.4 Area Under an ROC Curve
Another popular metric is based on the receiver operating
characteristics (ROC) curve. If we want to classify pre-

dictions into just two discrete classes (correct, incorrect),
we need to select a threshold for the classification. For a
fixed threshold we can compute standard metrics like preci-
sion, recall, and accuracy. If we do not want to use a fixed
threshold, we can use the ROC curve, which summarises the
behaviour of the prediction model over all possible thresh-
olds. The curve has “false positive rate” on x-axis and “true
positive rate” on the y-axis, each point of the curve corre-
sponds to a choice of a threshold. Area under the ROC curve
(AUC) provides a summary performance measure across all
possible thresholds. It is equal to the probability that a
randomly selected correct answer has higher predicted score
than a randomly selected incorrect answer. The area under
the curve can be approximated using a A’ metric, which is
equivalent to the well-studied Wilcoxon statistics [2]. This
connection provides ways to study statistical significance of
results (but requires attention to assumptions of the tests,
e.g., independence).

The ROC curve and AUC metric are successfully used in
many different research areas, but their use is sometimes
also criticised [3], e.g., because the metric summarises per-
formance over all possible thresholds, even over those for
which the classifier would never be used in practice. From
the perspective of student modeling the main reservation
seems to be that this approach focuses on classification and
considers predictions only in relative way – note that if all
predictions are divided by 2, the AUC metric stays the same.

In the context of student modeling we are usually not in-
terested in classification, we are often interested directly in
absolute values of probabilities and we need these values
to be properly calibrated. The probabilities are often com-
pared to a fixed constant (typically 0.95) as an indication of
a mastered skill and the specific value is meant to carry a
certain meaning. Probabilistic estimates can be also used to
guide the behaviour of a system to achieve suitable challenge
for students, e.g., by choosing question of right difficulty or
modifying difficulty by number of options in multiple choice
questions.

Nevertheless, despite this disadvantage, AUC is widely used
for evaluation of student models, often as the only metric.
It seems that in some cases AUC is used as the only metric
for final evaluation, but the parameter fitting procedure uses
(implicitly) different metric (RMSE or LL). Particularly in
cases of brute force fitting this approach seems strange and
should be at least explicitly mentioned.

3. REFERENCES
[1] G. W. Brier. Verification of forecasts expressed in terms

of probability. Monthly weather review, 78(1):1–3, 1950.

[2] J. Fogarty, R. S. Baker, and S. E. Hudson. Case studies
in the use of ROC curve analysis for sensor-based
estimates in human computer interaction. In Proc. of
Graphics Interface 2005, pages 129–136, 2005.

[3] J. M. Lobo, A. Jiménez-Valverde, and R. Real. AUC: a
misleading measure of the performance of predictive
distribution models. Global ecology and Biogeography,
17(2):145–151, 2008.

[4] M. S. Roulston and L. A. Smith. Evaluating
probabilistic forecasts using information theory.
Monthly Weather Review, 130(6), 2002.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

152

A Comparison of Error Metrics for Learning Model
Parameters in Bayesian Knowledge Tracing ∗

Asif Dhanani
†

Seung Yeon Lee
†

Phitchaya Mangpo Phothilimthana
†

Zachary Pardos
University of California, Berkeley

{asifdhanani, sy.lee, mangpo, pardos}@berkeley.edu

ABSTRACT
In the knowledge-tracing model, error metrics are used to
guide parameter estimation towards values that accurately
represent students’ dynamic cognitive state. We compare
several metrics, including log-likelihood (LL), RMSE, and
AUC, to evaluate which metric is most suited for this pur-
pose. In order to examine the effectiveness of using each
metric, we measure the correlations between the values cal-
culated by each and the distances from the corresponding
points to the ground truth. Additionally, we examine how
each metric compares to the others. Our findings show that
RMSE is significantly better than LL and AUC. With more
knowledge of effective error metrics for learning parameters
in the knowledge-tracing model, we hope that better param-
eter searching algorithms can be created.

1. INTRODUCTION
In Bayesian Knowledge Tracing (BKT), one of the essential
elements is the error metric that is used for learning model
parameters: prior, learn, guess, and slip. Choice of a type
of error metric is crucial because the error metric takes a
role of guiding the search to the best parameters. The BKT
model can be fit to student performance data by using a
method which finds a best value calculated from the error
metric such as log-likelihood (LL), root-mean-squared error
(RMSE), or area under the ROC curve (AUC).

As a modeling method, grid search/brute force [1] is often
used to find the set of parameters with optimal values of
the error metric, and Expectation Maximization (EM) algo-
rithm [5] is also commonly used to choose parameters max-
imizing the LL fit to the data. Many studies have com-
pared different modeling approaches [1, 4]. However, the
findings are varied across the studies, and it has still been
unclear which method is the best at predicting student per-
formance [2].

Pardos and Yudelson compares different error metrics to in-
vestigate which one has the most accuracy of estimating the
moment of learning [6]. Our work extends this comparison

∗For more details of this work, please refer to the full tech-
nical report [3].
†Asif Dhanani, Seung Yeon Lee, and Phitchaya Mangpo
Phothilimthana contributed equally to this work and are
listed alphabetically.

by looking closer into the relationship between three popular
error metrics: LL, RMSE, and AUC, and particularly eluci-
dating the relationship to one another closer to the ground
truth point.

2. METHODOLOGY
To assess whether LL, RMSE, or AUC is the best error met-
ric to use in parameter searching for the BKT model, we
needed datasets with known parameter values in order to
compare these with the parameter values predicted by us-
ing different error metrics. Therefore, we synthesized 26
datasets by simulating student responses based on diverse
known ground truth parameter values.

Correlations to the ground truth. For each dataset, we
evaluated LL, RMSE, and AUC values on all points over the
entire prior/learn/guess/slip parameter space with a 0.05
interval. On each point, we calculated students’ predicted
responses (probability that students will answer questions
correctly). We then used these predicted responses with the
actual responses to calculate LL, RMSE, and AUC for all
points. To determine which error metric is the best for this
purpose, we looked at the correlations between values cal-
culated from error metrics (i.e. LL, RMSE, and AUC) and
the euclidean distances from the points to the ground truth.
We applied logarithm to all error metrics other than LL in
order to compare everything on the same scale. Finally, we
tested whether the correlation between the values calculated
by any particular error metric and the distances is signifi-
cantly stronger than the others’ by running one-tailed paired
t-tests comparing all three metrics against one another.

Distributions of values. We visualized the values of LL
and -RMSE of all points over the 2 dimensional guess/slip
space with a 0.02 interval while fixing prior and learn pa-
rameter values to the actual ground truth values. Using the
guess and slip parameters as the axes, we visualize LL and
-RMSE values by color. The colors range from dark red to
dark blue corresponding to the values ranging from low to
high.

Direct comparison: LL and RMSE. We plotted LL val-
ues and RMSE values of all points against each other in or-
der to observe the behavior of the two metrics in detail. We
then labeled each data point by its distance to the ground
truth with a color. The range of colors is the same as used
in the previous method.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

153

Comparision ∆ of correlations t p-value
RMSE > LL 0.0408 8.9900 << 0.0001
RMSE > AUC 0.0844 2.7583 0.0054
LL > AUC 0.0436 1.4511 0.0796

Figure 1: T-test statistics

(a) LL Heatmap (b) -RMSE Heatmap

Figure 2: LL and -RMSE values when fixing prior
and learn parameter values and varying guess and
slip parameter values. Red represents low values,
while blue represents high values. The white dots
represent the ground truth.

3. RESULTS
Correlations to the ground truth. The average LL, RMSE,
and AUC correlations were 0.4419, 0.4827, and 0.3983 re-
spectively. We define that an error metric A is better than
B if the correlation between values calculated by an error
metric A and the distances to the ground truth is higher than
that of B. By this definition, RMSE was better than LL on
all 26 datasets and better than AUC on 18 of 26 datasets.
This is validated by the one-tailed paired t-test shown in
Figure 1 revealing RMSE as statistically significantly better
than both LL and AUC.

Distributions of values. Figure 2 shows the heat maps of
LL and RMSE on a representative dataset. If we follow the
gradient from the lowest value to the highest value in the
LL heat map, we see that it is very high at the beginning
(far from the ground truth) and is very low at the end (close
to the ground truth). Conversely, in the -RMSE heat map,
the change in the gradient is low. Additionally, notice that
the darkest blue region in -RMSE heat map is smaller than
that in LL heat map. This suggests that we may be able to
refine the proximity of the ground truth better with RMSE.

Direct comparison: LL and RMSE. Figure 3 shows a LL
vs -RMSE graph from the most representative dataset. As
expected, LL values and RMSE values correlate logarithmi-
cally. Additionally, a secondary curve, which we will refer
to as the hook, is observed in varying sizes among datasets.
The hook converges with the main curve when the -RMSE
and LL values are both sufficiently high and the points are
very close to the ground truth.

Before this point, when we look at a fixed LL value with
varied RMSE values, most points in the hook have higher
-RMSE values and are closer to the ground truth than do the
points in the main curve. However, this same pattern is not
seen for a fixed RMSE value with varied LL values. After the
curve and hook converge, we can infer that both RMSE and
LL will give similar estimates of the ground truth. However,
for a portion of the graph before this point, RMSE is a better
predictor of ground truth values.

Figure 3: LL vs -RMSE of dataset 25 when prior =
0.564, learn = 0.8, guess = 0.35 , and slip = 0.4

4. CONCLUSION
In our comparison of LL, RMSE, and AUC as metrics for
evaluating the closeness of estimated parameters to the true
parameters in the knowledge tracing model, we discovered
that RMSE serves as the strongest indicator. RMSE has
a significantly higher correlation to the distance from the
ground truth on average than both LL and AUC, and RMSE
is notably better when the estimated parameter value is not
very close to the ground truth. The effectiveness of teach-
ing systems without human supervision relies on the ability
of the systems to predict the implicit knowledge states of
students. We hope that our work can help advance the pa-
rameter learning algorithms used in the knowledge tracing
model, which in turn can make these teaching systems more
effective.

5. REFERENCES
[1] R. Baker, A. Corbett, S. Gowda, A. Wagner,

B. MacLaren, L. Kauffman, A. Mitchell, and
S. Giguere. Contextual slip and prediction of student
performance after use of an intelligent tutor. In User
Modeling, Adaptation, and Personalization, volume
6075 of Lecture Notes in Computer Science. 2010.

[2] R. S. Baker, Z. A. Pardos, S. M. Gowda, B. B. Nooraei,
and N. T. Heffernan. Ensembling predictions of student
knowledge within intelligent tutoring systems. In
Proceedings of the 19th International Conference on
User Modeling, Adaption, and Personalization, 2011.

[3] A. Dhanani, S. Y. Lee, P. Phothilimthana, and
Z. Pardos. A comparison of error metrics for learning
model parameters in bayesian knowledge tracing.
Technical Report UCB/EECS-2014-131, EECS
Department, University of California, Berkeley, May
2014.

[4] Y. Gong, J. Beck, and N. Heffernan. Comparing
knowledge tracing and performance factor analysis by
using multiple model fitting procedures. In Intelligent
Tutoring Systems, volume 6094 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010.

[5] Z. Pardos and N. Heffernan. Modeling individualization
in a bayesian networks implementation of knowledge
tracing. In User Modeling, Adaptation, and
Personalization. 2010.

[6] Z. A. Pardos and M. V. Yudelson. Towards moment of
learning accuracy. In Proceedings of the 1st AIED
Workshop on Simulated Learners, 2013.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

154

Prediction of Student Success Using Enrolment Data

Nihat Cengiz
Epoka University

Department of Computer Engineering
Rr. Tiranë-Rinas,Km. 12

1039 Tirana, Albania
ncengiz@epoka.edu.al

Arban Uka
Epoka University

Department of Computer Engineering
Rr. Tiranë-Rinas,Km. 12

1039 Tirana, Albania
auka@epoka.edu.al

ABSTRACT
Predicting the success of students as a function of different

predictors has been a topic that has been investigated over the

years. This paper explores the socio-demographic variables like

gender, region lived and studied, nationality and high school

degree that may influence success of students. We examine to

what extent these factors help us to predict students’ academic

achievement and will help to identify the vulnerable students and

their need for extra tutoring or similar supportive services at an

early time.

We analyzed the data of the Epoka University students that have

been enrolled from 2007 to 2013. The sample includes 1211

undergraduate students where 716 did and were supposed to

complete the three-year bachelor studies in the past six semesters.

Based on the data mining techniques the most important
predictors for student success were the students’ high school GPA
and gender. For students with high school grades below average,
females were found to have a higher percentage of success than
boys. No significant correlation was found between the students’
success and the demographic information.

Keywords

Academic achievement, influence, classification tree, outcome

1. INTRODUCTION
Increasing the student graduation and decreasing the dropout rates
is a long term goal of the higher education institutions. From the
students’ perspective, a timely and successful graduation is vital
as these two factors would strongly affect their employability rate.
Employability rate has become an indicator in determining the
ranking of higher education institution (HEI), thus HEIs are
focusing more on increasing this rate [2].

Many of the students studying at the university face several
difficulties during the first year and thus the performance of the
first year has been identified as an important predictor of timely
graduation rate. In terms of keeping the students in the university,
the retention rate is a factor that has been studied extensively.
Mallincrodt and Sedlacek (1987) found that freshman class

attrition rate were greater than the other academic years with
numbers running up to 30%.[3] Therefore most researchers
targeted the first year students. An early identification of the
students at high risk of failing will enable a timely intervention
with the necessary measures by the educators that would increase

the graduation rate. Preventing students' failure depends on the
identification of the factors affecting success.

Here in this work we will analyze whether the background
information has any effect on the success rate of regular students.
The only data we collected during the registration period of Epoka
University based on the registration form. The content of this
form determined by the local authorities and University
Administration. In this study we tried to get answers if we can use
this data to predict student success. The main objective of our
study is to determine the factors that may affect the study
outcomes in Epoka University.

2. DATA AND METHODOLOGY
Epoka University student management system does not provide
data in the format ready for a direct statistical analysis and

modeling. Therefore a data preparation and cleaning were
undertaken to prepare database for modeling.

Table Descriptive statistics – Study outcome (716 students)

Descriptive
 count %

Domain F
A

IL

P
A

S
S

F
A

IL

P
A

S
S

T
o

ta
l

GENDER
M 221 189 53.9 46.1 57.3
F 78 228 25.5 74.5 42.7

COUNTR
Y

ALB 238 372 39.0 61.0 85.2
TUR 35 14 71.4 28.6 6.8
KOS 14 17 45.2 54.8 4.3
OTH 12 14 46.2 53.8 3.6

NATION
ALITY

ALB 256 382 40.1 59.9 89.1
OTH 43 35 55.1 44.9 10.9

REGION
CITY 262 372 41.3 58.7 88.5
VILL. 37 44 45.7 54.3 11.3

HS_GPA
UPPER 48 224 17.6 82.4 38.0
INTER. 89 113 44.1 55.9 28.2
LOWER 160 77 67.5 32.5 33.1

2.1. Data and Methodology
Outcome that we used in our analysis is for the outcome of the
student at the end of three-year study. We measured only
outcomes, labeled as: Pass and Fail. Students labeled ‘Pass’
successfully completed the program at the end of three years.
Students labeled as ‘Fail’ include the withdrawn students from the

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

155

program voluntarily or by the academic registry for not fulfilling
the regulations. Those students who stayed on the program until
the end of the study but scored less than the graduation grade
(2.00) were also allocated into this category.

The data set with numeric continuous variable such as secondary
school grade (HS GPA) was converted into a categorical variable
with only three levels A (UPPER), B (INTERMEDIATE) or C
(LOWER) denoting grades above 9 out of 10, grades between 8
and 9 and grades less than 8 respectively. Other variables
(nationality, citizenship, and region) were classified upon major
groups.

In this study we conducted three main types of data mining
approaches. Descriptive approach which concerns the nature of
the dataset such as the frequency table and the relationship
between the attributes obtained using cross tabulation analysis.
Predictive approach which is conducted by using four different
classification trees and a comparison between these and Logistic
regression to confirm the accuracy of the predictors.

Classification tree models can handle a large number of predictor
variables, are non-parametric, can capture nonlinear relationships
and complex interactions between predictors and dependent
variable.[1]

Before generating the classification trees we classified the
variables according to the study outcome, i.e. whether students are
eligible to be graduated or not. We used attribute selection to rank
the variables by their importance for further analysis. Then we
generated the classification trees in four different growing
methods.

2.2. Summary Data Description
We carried out a cross-tabulation for each variable and the study
outcome after cleaning the data as shown in the table above. Table

shows that the majority of the successful students are female (over
57%) which is the result of the fact that 74.5% of the female
students successfully completed the study. This suggests that
female students are more likely to succeed than their male
classmates. In terms of country and nationality it is clearly seen
that Albanian population is leading the group.

An expected result has been observed in secondary school
degrees. We can say that high school degree graduation ratio is
directly proportional to the university graduation ratio. While 82%
of upper students were able to complete the study on time 56% of
intermediate and 32% of lower group students were able to
complete.

2.3. Decision Trees
Although the results of the attribute selection suggests continuing
analysis with only the subset of predictors, we included all
available predictors in our classification trees but only 2 variables
were used in the diagrams: HS_GPA and GENDER. Even though
some variables may have little significance to the overall
prediction outcome, they can be essential to a specific record [1].

Almost all growing methods, (CHAID, exhaustive CHAID, CRT
and QUEST) generated exactly the same trees. The largest
successful group consists of 272 (38%) students. HS_GPA of this
group is over 90%. The largest unsuccessful group contains 237
students (33% of all participants). They have a HS_GPA less than
80%. The next largest group considered also as unsuccessful
students are male students having lower HS_GPA.

As the cross-validation estimate of the risk (0.309) indicates that
the successful or unsuccessful students are predicted with an error
of 30.9% of the cases which means the risk of misclassifying a
student is approximately 31%. This result is consistent with the
results in the CHAID classification matrix. The Overall

percentage shows that the model only classified correctly 70% of
students. The classification tables, however, reveal one potential
problem with this model: for unsuccessful students, it predicts as
successful for only 65.9% of them, which means that 34% of
failing students are inaccurately classified with the passing
students.

2.4. Logistic regression
The Variables not in the Equation table in block 0 shows that four
of the five variables are individually significant predictors of
whether a student is successful or not. Region is not a significant
predictor. The variables not in the Equation table in block 1 shows
that only high school grade point average and gender are
significant predictors, but not the other variables. This result also
confirms why these two were the only variables used in decision
trees

3. CONCLUSIONS
This study examines the background information from enrolment
data that impacts upon the study outcome programs at the Epoka
University. Based on results, the classification accuracy from the
classification trees was significantly high 71% in all tree methods.
Although all the variables except the region individually
significant predictors as described in attribute selection trees
displayed only two variables Gender and secondary school

degree. This outcome is also confirmed by the logistic regression.
Block 0 classification implied that all except region were good
predictors (p<,001) but block 1 classification highlighted that only
gender and secondary school degree were significant.

4. REFERENCES

[1]. Kovačić, Z.J. 2010, Early Prediction of Student Success:

Mining Students Enrolment Data, proceedings of Informing
Science & IT Education Conference (InSITE) 2010, Open
Polytechnic, Wellington, New Zealand

[2]. Bratti, M., McKnight, A., Naylor, R., & Smith, J. (2004):
Higher Education Out-comes, Graduate Employment and
University Performance Indicators. In: Journal of the Royal
Statistical Society, 167(3), pp 475-496.

[3]. Mallinckrodt, B., & Sedlacek, W. E. (1987). Student
retention and the use of campus facilities by race. NASPA
Journal, 24, 28-32.

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

156

Expanding Knowledge Tracing to Prediction of
Gaming Behaviors

Sarah E Schultz
Worcester Polytechnic Institute

100 Institute Rd
Worcester, MA

seschultz@wpi.edu

Ivon Arroyo
Worcester Polytechnic Institute

100 Institute Rd
Worcester, MA

iarroyo@wpi.edu

ABSTRACT

Knowledge tracing has been used to predict students’ knowledge

and performance for almost twenty years. Recently, researchers

have become interested in looking at students’ behaviors,

especially those considered gaming behaviors. In this work, we

attempt to leverage a variation of knowledge tracing to predict

gaming behaviors without damaging the prediction of

performance. We compare the predictions of this model to those

of knowledge tracing and a separate engagement tracing model.

Keywords

Knowledge tracing, affect, engagement, gaming, behavior

1. INTRODUCTION
When Corbett and Anderson first published the knowledge

tracing model in 1995, they claimed that their goal was “to

implement a simple student modeling process that would allow

the tutor to […] tailor the sequence of practice exercises to the

student’s needs” [1]. While knowledge tracing is generally able

to predict students’ performance “quite well,” it does not take

into account the possibility of disengagement. Traditionally,

knowledge tracing is used with the probability of transition from

a learned to an unlearned state set at 0, so students who become

disengaged are not presumed to be forgetting the skill. When the

forgetting transition is allowed, models such as knowledge

tracing can become confounded, mistaking disengagement for

unlearning, as illustrated in Figure 1.

Figure 1- Bayesian Knowledge Estimation of a student on

one skill (bottom line)

Figure 1 suggests that this student was un-learning, while after

looking at the logs in detail, it was clear that, after the 7th

problem, the student was just clicking through all the available

multiple-choice answers without attempting to answer

correctly.This type of behavior is defined by Baker et al as

“gaming the system” [2] and is considered to be an indicator of

disengagement or negative affect. Some work has been done in

modeling engagement and affect in Intelligent Tutoring Systems

[3], but relatively little research has focused on combining these

methods with ways of tracking knowledge, such as knowledge

tracing, in order to create a model that can predict both student

performance and disengaged behavior and intervene

appropriately.

2. PREVIOUS WORK
2.1 Bayesian Knowledge Tracing

Corbett and Anderson’s Bayesian Knowledge Tracing (BKT)

[1] (Figure 2) is a hidden Markov model. At each time step there

is a latent node, knowledge, and an observed node, performance.

The parameters for this model are P(L0), the probability that a

student already knows the skill; P(T), the probability of learning

the skill from one time-step to the next; P(G), the probability

that a student who does not know the skill but correctly guesses;

and P(S), the probability that a student who does know the skill

slips and gets the answer incorrect. As mentioned in the

introduction, P(F), forgetting, is traditionally set at 0, however

for this work we allow forgetting in order to see if looking at

behavior affects the amount of forgetting that students appear to

do.

Figure 2- Bayesian Knowledge Tracing

2.2 HMM-IRT

In 2006, Johns and Woolf proposed the Dynamic Mixture Model

(DMM) for predicting student knowledge and engagement [4].

They used a hidden Markov model like BKT for tracing

engagement, but paired it with an Item Response Theory-like

model for predicting knowledge. Rather than predicting

knowledge at each time step, there is a single knowledge node

for every skill and students’ performance relies on that in

addition to their engagement state. This allowed more accurate

knowledge predictions than IRT alone, as disengagement,

indicated by gaming behaviors, could explain away some

incorrect attempts, rather than attributing those to knowledge.

P(L)

P(F)

P(L)

P(F)

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

157

Figure 3- Dynamic Mixture Model

2.3 The KAT Model

In our previous work [5], we proposed the knowledge and affect

tracing (KAT) model (Figure 5), which combines two hidden

Markov models, BKT and the engagement tracing piece of

DMM. As in DMM, affect influences performance. This model

was able to predict both performance and behavior better than

the dynamic mixture model, but did not predict performance as

well as standard BKT, perhaps due to over-parameterization [5].

Figure 4- The KAT Model

3. THE KTB MODEL
We propose the “Knowledge Tracing with Behavior” (KTB)

model. This model has only one latent node, which we call

“knowledge”-- although in reality is a combination of both

knowledge and engagement-- and two observables, performance

and gaming behaviors. This model is shown in Figure 5.

Figure 5- KTB Model

This model has fewer parameters than the dynamic mixture

model or KAT model, but still can predict both performance and

disengaged behavior of the students.

The variable called Gaming Behavior (B) is defined as either

gaming or normal. See our definition for “gaming” in this

context in our previous work [5].

4. BAYESIAN ENGAGEMENT TRACING
Since the performance prediction of the KTB model can be

compared to that of Bayesian Knowledge Tracing, it is

necessary to have a model of engagement tracing to compare the

behavior predictions. To that end, we include a model of

“Bayesian Engagement Tracing” (BET) in this work, which is

the same as the HMM part of Johns and Woolf’s model or the

engagement piece of the KAT model, but not connected to any

other model (top part of figure 4).

5. DATASETS AND METHODS
The data and methods used in this work was the same as that

used in [5]. The data came from two tutors for middle and high

school mathematics, ASSISTments and Wayang Outpost. For

details, please see [5] in the main conference proceedings.

6. RESULTS AND ANALYSIS
While KT and KTB both outperform KAT and DMM in all

predictions, in seven of the nine knowledge components, KTB

was better able to predict performance than standard knowledge

tracing, although the only significant difference between the two

was in the ASSISTments skill “Circle Graph” (p=0.03).

Interestingly, the Bayesian engagement tracing model was better

able to predict students’ behavior than KTB in eight of the nine

knowledge components, although the differences are again not

significant, except in two cases, “Box and Whisker,” and

“Triangles” (p=0.02).

7. DISCUSSION
We have proposed a new model, knowledge tracing with

behavior, which can predict both student performance and

behavior, and have shown that it can do so at least as well as

BKT and a separate Bayesian engagement tracing, at predicting

future behaviors (correctness at responding math problems and

gaming behaviors). KTB seems to stop the false forgetting effect

that is recorded by KT when forgetting is not allowed to be zero.

ACKNOWLEDGEMENTS

This research is supported by the Office of Naval Research,

STEM Challenge Award, # N0001413C0127US. We also

acknowledge funding from NSF (#1316736, 1252297, 1109483,

1031398, 0742503), and IES (# R305A120125 &

R305C100024). Any opinions or conclusions expressed are

those of the authors, not necessarily of the funders.

REFERENCES

 [1] Corbett, A.T., Anderson, J.R., “Knowledge tracing:

Modeling the acquisition of procedural knowledge.” User

Modeling and User-Adapted Interaction, 1995, 4, p.253-278.

[2] Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.

(2004) Off-Task Behavior in the Cognitive Tutor Classroom:

When Students "Game The System". In Proceedings of ACM

CHI 2004: Computer-Human Interaction, 383-390.

[3] Beck, J.E. “Engagement tracing: using response times to

model student disengagement.” Proceedings of AIED

conference, 2005. p. 88-95. IOS Press

[4] Johns, J. and Woolf, B.P. “A Dynamic Mixture Model to

Detect Student Motivation and Proficiency.” Proceedings of

AAAI Conference, 2006, 1, p. 163-168.

[5] Schultz, S. and Arroyo, I. “Tracing Knowledge and

Engagement in Parallel in an Intelligent Tutoring System.” To

appear in Proceedings of the 7th Annual International

Conference on Educational Data Mining, 2014

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

158

Evaluating Student Models
Adaeze Nwaigwe

University of Maryland University
College

3501 Unversity Blvd East
Adelphi, MD 207831 412 608 8747

adaeze.nwaigwe@faculty.umuc
.edu

ABSTRACT

We use the Additive Factors Model to drive the evaluation of the

student model of an Intelligent Tutoring System. Using data from

the Andes Physics Tutor, applying the simple location heuristic

and implementing the Additive Factors Model tool in the

Pittsburgh’s Science of Learning Center’s DataShop, we discover

possible ways to improve the student model of the Andes

Intelligent Tutor.

Keywords

Student modeling, learning curves, additive factors model.

1. INTRODUCTION
The quality of student models drive many of the instructional

decisions that automated tutoring systems make, whether it is

what feedback to provide, when and how to sequence topics and

problems in a curriculum, how to adapt pacing to the needs of

students and even what problems and instructional materials are

necessary [1]. We used the Additive Factors Model (AFM) tool in

the Pittsburgh’s Science of Learning Center’s (PSLC) DataShop

to identify areas for improvement in the curriculum for the

ANDES Intelligent Tutoring System.

1.1 BACKGROUND
Learning curves derived from student models drive evaluation,

revision and improvement of the Intelligent Tutor. The AFM is a

statistical algorithm which models learning and performance by

using logistical regression performed over the “error rate”

learning curve data [1]. If a student is learning the knowledge

component (KC) or skill being measured, the learning curve is

expected to follow a so-called “power law of practice” [2]. If such

a curve exists, it presents evidence that the student is learning the

skill being measured or conversely, that the skill represents what

the student is learning.

While use of learning curves is now a standard technique for

assessing the cognitive models of Intelligent Tutors, the technique

requires that a method is instated for attributing blame to skills or

KCs. This simply means that each error a student makes must be

blamed on a skill or set of skills. Four different heuristics for error

attribution have been proposed and tested. These heuristics are

guided by whether the method is driven by location – the simple

location heuristic (LH), the model-based location heuristic

(MLH); or by the temporal order of events – the temporal

heuristic (TH), the model-based temporal heuristic (MTH); and

whether the choice of the student model is leveraged (MLH,

MTH) [3].

2 EVALUATING THE STUDENT MODEL

2.1Adapting the Andes Log data for the AFM

Algorithm
The log data used for this work was obtained from the Andes

Intelligent Tutor [4] and encompassed four problems in the area

of electric field, across 102 students. The data was collected in

Spring 2005 at the US Naval Academy during its regular physics

class and as part of the PSLC’s LearnLab facility that provides

researchers, access to run experiments in or perform secondary

analyzes of data collected from one of seven available technology-

enhanced courses running at multiple high school and college

sites (see http://learnlab.org).

Prior to using the AFM tool on the dataset, the simple location

heuristic (LH) was applied to error transactions in the Andes log

data which had missing KCs. That is, when the Andes failed to

assign blame to a KC on an error transaction, the LH will select

the first correctly implanted KC in the same location as the error.

The LH was applied to about 44% of the original data. Table 1

depicts a summary of the LH data.

2.2 Generating Model Values using AFM
The Datashop’s AFM algorithm was used to compute statistical

measures of goodness of fit for the model - Akaike Information

Criterion (AIC) and Bayesian Information criterion (BIC), as well

as to generate learning curves for the Andes log data.

3 RESULTS AND DISCUSSION
We found that there were 5 groups of KCs – “Low and Flat”, “No

learning”, “Still high”, “Too Little data” and “Good”. The “Low

and Flat” group indicated KCs where students likely received too

much practice. It appears that although students mastered the KCs

they continued to receive tasks for them. It may be better to

reduce the required number of tasks or change Andes’ knowledge

tracing parameters so that students get fewer opportunities with

these KCs. The “Still high” group suggests KCs, which students

continued to struggle with. Increasing opportunities for practice

for these KCs might improve the student model. The “No

learning” group indicated KCs where the slope of the predicted

learning curve showed no apparent learning. A step towards

improving the student model could be to explore whether each of

these KCs can be split into multiple KCs. The new KCs may

better reflect the variation in difficulty and transfer of learning

that may be happening across problem steps, which are currently

labeled by each KC. The KCs in the “Too Little data” group seem

to be KCs for which students were exposed to insufficient practice

opportunities for the data to be meaningful. For these KCs, adding

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

159

more tasks or merging similar KCs might provide data that is

interpretable. The KCs that appeared “Good” may reflect those in

which there was substantial student learning. Table 2 shows the

different group of KCs, their frequencies and AIC and BIC scores.

Figures 1a – 1d show the different groups of KCs. Intercept (logit)

and intercept (probability) both indicate KC difficulty. Higher

intercept values indicate more difficult KCs. The slope parameter

indicates the KC learning rate. Higher values suggest students will

learn such KCs faster.

Table 1. LH Data Summary

Number of Students 102

Number of Unique Steps 125

Total Number of Steps 5,857

Total Number of Transactions 71,300

Total Student Hours 107.02

of Knowledge Component Model 34

Table 2. KC Groups and Statistical Scores

Low

and

Flat

No

Learning

Still

High

Too

Little data

Good

2 2 4 24 2

of Knowledge Components 34

AIC 6532.75

BIC 7668.14

KC Name Intercept

(logit)

Intercept

(probability)

Slope

define-constant-

charge-on-obj-var

1.77 0.85 0.120

write-known-value-eqn 0.63 0.65 0.037

Figure 1a – “Good”

Figure 1b – “Low and Flat”

KC Name Intercept

(logit)

Intercept

(probability)

Slope

draw-efield-vector 0.06 0.52 0.000

Figure 1c – “No Learning”

KC Name Intercept

(logit)

Intercept

(probability)

Slope

compo-parallel-axis -0.28 0.43 0.000

draw-electric-force-

given-field-dir

-0.01 0.50 0.000

Figure 1d – “Still High”

4 CONCLUSION AND FUTURE WORK
This paper presented how the AFM can be used to evaluate the

student model of the Andes Physics Tutor. Refining four of the

five groups of KCs identified, might improve the Andes student

model. A further approach would to use Learning Factors

Analysis [1] algorithm to automatically find better student models

by searching through a space of KC models. The next step is to

explore these options and measure their effect.

5 ACKNOWLEDGMENTS
Our thanks to the Pittsburgh Science of Learning Center for

providing the analysis tool for this work, to Bob Hausmann and

Kurt VanLehn for dataset access.

6 REFERENCES
[1] Koedinger, K.R., McLaughlin, E.A., Stamper, J.C. 2012

Automated Student Model Improvement. Proceedings of the

5th International Conference on Educational Data Mining,

Chania, Greece, pp. 17–24.

[2] Mathan S. & Koedinger K. 2005. Fostering the Intelligent

Novice: Learning From Errors With Metacognitive Tutoring.

Educational Psychologist. 40(4), pps. 257–265.

[3] Nwaigwe, A. & Koedinger, K.R. 2011. The Simple Location

Heuristic is Better at Predicting Students’ Changes in Error

Rate Over Time Compared to the Simple Temporal

Heuristic. Proceedings of the 4th International Conference on

Educational Data Mining. Eindhoven, Netherlands.

[4] VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby,

R. H., Taylor, L., et al. 2005. The Andes physics tutoring

system: Lessons learned. International Journal of Artificial

Intelligence and Education, 15(3), 147-204.

 Actual data predicted

Published in CEUR-WS:
BKT20y workshop (Yudelson, González-Brenes and Mozer)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

160

	bkt20y_preface
	bkt20t_ToC
	bkt20t_paper01
	bkt20t_paper02
	bkt20t_paper03
	bkt20t_paper04
	bkt20t_paper05
	bkt20t_paper06
	bkt20t_paper07
	bkt20t_paper08
	bkt20t_paper09
	bkt20t_paper10
	bkt20t_paper11

