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ABSTRACT 
Simulated data plays a central role in Educational Data Mining 
and in particular in Bayesian Knowledge Tracing (BKT) research. 
The initial motivation for this paper was to try to answer the 
question: given two datasets could you tell which of them is real 
and which of them is simulated? The ability to answer this 
question may provide an additional indication of the goodness of 
the model, thus, if it is easy to discern simulated data from real 
data that could be an indication that the model does not provide an 
authentic representation of reality, whereas if it is hard to set the 
real and simulated data apart that might be an indication that the 
model is indeed authentic.  In this paper we will describe initial 
analysis that was performed in an attempt to address this question. 
Additional findings that emerged during this exploration will be 
discussed as well.   
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1. INTRODUCTION 
Simulated data has been increasingly playing a central role in 
Educational Data Mining [1] and Bayesian Knowledge Tracing 
(BKT) research [1, 4]. For example, simulated data was used to 
explore the convergence properties of BKT models [5], an 
important area of investigation given  the  identifiability issues of 
the model [3]. In this paper, we would like to approach simulated 
data from a slightly different angle. In particular, we claim that 
the question,”given two datasets could you tell which of them is 
real and which of them is simulated?”, is interesting as it can be 
used to evaluate the goodness of a model and may potentially 
serve as an alternative metric to RMSE, AUC, and others. We 
would like to start approaching this problem in this paper by 
comparing simulated data to real data with Knowledge Tracing as 
the model.  
 

Knowledge Tracing (KT) models are widely used by cognitive 
tutors to estimate the latent skills of students [6]. Knowledge 
tracing is a Bayesian model, which assumes that each skill has 4 
parameters: two knowledge parameters including initial (prior 
knowledge) and learn rate, and two performance parameters 
including guess and slip. KT in its simplest form assumes a single 
point estimate for prior knowledge and learn rate for all students, 
and similarly identical guess and slip rates for all students.  
Simulated data has been used to estimate the parameter space and 
in particular to answer questions that relate to the goal of 
maximizing the log likelihood (LL) of the model given parameters 
and data, and improving prediction power [7], [8], [9].  

In this paper we would like to use the KT model as a framework 
for comparing the characteristics of simulated data to real data, 
and in particular to see whether it is possible to distinguish 
between the real and sim datasets. 
 

2. DATA SETS 
To compare simulated data to real data we started with 2 real 
dataset generated from the assisstment software1 (specifically, 
datasets G6.207-exact.txt with 776 students and G6.259-exact.txt 
with 212 students) from a previous BKT study [10]. Both of the 
datasets consist of 6 questions in linear order where all students 
answer all questions. Next, we generated synthetic, simulated data 
using the best fitting parameters that were found for the real data 
as the generating parameters. By this we generated a simulated 
version of dataset G6.207 and a simulated version of dataset 
G6.259 that had the exact same number of questions, number of 
students, and was generated with what appears to be the best 
fitting parameters. The specific best fitting parameters that were 
found for each dataset and were used to generate the simulated 
data are presented in table 1. 
 
Table 1. Best fitting parameters for each dataset. These 
parameters were used to generate the simulated datasets.  
 N Prior Learn Guess Slip 
G6.207 776 .453 .068 .270 .156 
G6.259 212 .701 .044 .243 .165 
 
 

3. METHODOLOGY 
We are interested to find out whether it is possible to distinguish 
between the simulated data and the real data. The approach we 
took was to calculate LL for the gird of all the parameters space 
(prior, learn, guess, and slip). We hypothesized that the LL pattern 
of the simulated data and real data will be different across the 
parameters space. For each of the matrices we conducted a grid 
search with intervals of .04 that generated 25 intervals for each 
parameter and 390,625 total combinations of prior, learn, guess, 
and slip. For each one of the combinations LL was calculated and 
placed in a four dimensional matrix. We used fastBKT [11] to (a) 
calculate the best fitting parameters of the real datasets, (b) 
generate simulated data, and (c) calculate the LL of the 
parameters space. Additional code in Matlab and R was generated 
to put all the pieces together2. In particular, we calculated the LL 
for all the combinations of two parameters where the other two 
parameters were fixed to the best fitting value. In an additional 
analysis, we let all parameters be free and took the average LL for 
all combinations of two parameters, collapsed over the space of 
the other two parameters not visualized. The motivation for this 
was to visualize the error space interactions in the four dimensions 
of the model.  

 

                                                                    
1 Data can be obtained here: http://people.csail.mit.edu/zp/ 
2 Matlab and R code will be available here: 
2 Matlab and R code will be available here: 

http://myweb.fsu.edu/rr05/ 



 

 

Figure 1.a (left). Heat maps of LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data that was 
generated with the best fitting parameters of the real dataset.  The two parameters not in each figure were fixed to the best 
parameters.  Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and 
triangles indicate the best fitting parameters to the real data (that were also used to generate the simulated data). In this case the 
triangles and circles fit the same point.  
Figure 1.b (right). Heat maps of delta LL between real dataset G6-207 and the corresponding simulated data that was generated 
with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best parameters. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

4. DOES THE LL OF SIM vs. REAL DATA 
LOOK DIFFERENT? 
Our initial thinking was that as we are using a simple BKT model, 
it is not authentically reflecting reality in all its detail and 
therefore we will observe different patterns of LL across the 
parameters space between the real data and the simulated data. 
The LL space of simulated data in [5] was quite striking in its 
smooth surface but the appearance of real data was left as an open 
research question. 

4.1 Does the LL of sim vs. real data looks 
different across two parameters grids?  

First, we calculated the LL over all the combinations of two 
parameters for dataset G6.207 where the other two parameters were 
fixed to the best fitting value. For example, when we calculated LL 
for the combination of slip and prior (top right figure in figure 1.a), 
we fixed learn and guess to be .068 and .270 accordingly. To our 
great surprise, when we plotted heat maps of the LL matrices of the 
real data and the simulated data (Figure 1.a - real data is presented 
in the upper triangle and simulated (sim) data is presented in the 
lower triangle) we received what appears to be identical matrices 
(for example, the upper right heat map is the (slip x prior) LL 
matrix of the real data, whereas the lowest left heat map is the (slip 
x prior) LL matrix of the sim data).  

The extent of the similarity between the matrices was surprising 
and in order to get a better picture of the differences between them  

we plotted heat maps of the deltas between the real data and the 
simulated data (LL_RealData-LL_SimData) for each matrix. Even 
though the matrices appear to be identical, as can be seen in Figure 
1.b, there is in fact a difference between the LL of the matrices 
although it is not a big difference compared to the values of LL. 
Another surprising finding was that the LL of the real data was in 
many cases higher than the LL of the sim data. We expected that 
the model would better explain the sim data as there should not be 
additional noise as expected in reality, and therefore the LL of the 
sim data should be higher, yet the findings were not consistent with 
this expectation.  

Another interesting finding was that the location of the ground truth 
(the triangle) in most of the cases resulted in smaller delta between 
the real and the sim data although not in all cases (e.g., guess x 
slip). Note that the circles in Figure 1.b indicate the minimum 
absolute difference in LL between the real and the sim data, and 
this point is usually not located at the exact ground truth (except for 
learn x guess). 

Another interesting finding can be seen in Figure 1.a - slip vs. 
guess. Much attention has been given to this LL space which 
revealed the apparent co-linearity of BKT with two primary areas 
of  convergence, the upper right area being a false, or “implausible” 
converging area as defined by [3]. What is interesting in this figure 
is that despite what appears to be two global maxima, the point 
with the best LL in this dataset is in fact the lower region for both 
sim and real data.  
Next we conducted the same analysis with the second dataset.  



 
Figure 2.a (left) Heat maps of delta LL between real dataset G6-259 (k=212 students) and the corresponding simulated data that 
was generated with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best 
parameters. Blue areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles 
indicate maximum LL of the given matrix, and triangles indicate the best fitting parameters to the real data. 
Figure 2.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 
 
 

Even though the G6-259 dataset was significantly smaller than the 
first dataset, we received very similar results to the first dataset 
with surprisingly similar heat maps for the sim and real data (see 
Figure 2.a). Like in the first dataset, notice that even though the 
LL heat maps look very similar, there is a difference in the delta 
heat maps (see Figure 2.b). Nevertheless, there is an interesting 
difference between the two datasets. Concretely, unlike the bigger 
dataset (G6-207), in G6-259 the LL of the sim data was actually 
higher than the real data in most cases. 

4.2 What if we average LL over 2 parameters 
across all the combinations of the other 2 
parameters? 
We were interested to find out how will the heat maps look like if 
we do not fix the other two parameters to be best fit, but rather 
average the LL across the entire space of the other two 
parameters. For example, to calculate the matrix of guess and slip 
we practically calculated a matrix of guess and slip LL for each 
combination of learn and prior (25 x 25 = 625 matrices) instead of 
only one matrix for the best fit learn and prior. Then, we took the 
average of all these matrices for each combination of guess and 
slip (see Figure 3.a). The results are both surprising and 
interesting. As far as (guess x slip), we no longer receive the two 
maximum (global and local) that we received when learn and 
prior where fixed to best fit parameters. Another interesting 
finding is the relationship between the average maximum across 
the other two parameters and the overall best fit parameters for 

given two parameters. For example, if we look at the heat map of 
matrix (learn x prior) we can see that there is not a big difference 
between the average maximum point (white circle) and the overall 
best fit parameters (white triangle). This may indicate that 
changing guess and slip will not affect the value of learn and prior 
that maximizes the LL, therefore might suggest independency. If 
we look at (guess x learn), we see that changes in prior and slip 
will again not have an impact on the best fit value of guess, 
however, they will affect the value of learn.   Then again, if we 
look at the heat map of (prior x guess), we will see that both prior 
and guess are sensitive to changes in learn and slip. Yet again, the 
extremely surprising part of these results is that the sim data 
appear to be almost identical to the real data. It is possible to see 
from Figure 3.b though that indeed there are differences between 
the simulation data and the real data and like before, the LL of the 
real data is higher than that of the sim data in the larger dataset.  

Like for the fixed matrices, we received similar LL matrices for 
the smaller dataset (G6-259) (see table 4.a). In addition, as before, 
the LL of the sim data for this dataset was higher than that of the 
real data (the opposite direction of the larger dataset G6-207). 
Another interesting finding for this dataset can be seen in the 
(guess x slip) matrices (4.b).  Notice that while the sim data 
converged to the lower point of the blue area, the real data 
converged to the higher point. Nevertheless, this only happened in 
the averages matrices and not in the fixed ones.  
 



 

 
Figure 3.a (left). Heat maps of average LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 3.b (right). Heat maps of delta LL between real assistment dataset G6-207 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

 

 
Figure 4.a (left). Heat maps of average LL of real assistment dataset G6-259 (k=212 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 4.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. 
 



 

5. DISCUSSION AND FUTURE WORK 
The initial motivation of this paper was to find whether it is 
possible to discern a real data from a sim data. If for a given 
model it is possible to tell apart a sim data from a real data then 
the authenticity of the model can be questioned. This line of 
thinking is in particular typical of simulation use in Science 
context, where different models are used to generate simulated 
data, and then if a simulated data has a good fit to the real 
phenomena at hand, then it may be possible to claim that the 
model provides an authentic explanation of the system [12]. We 
believe that it may be possible to generate a new matric for 
evaluating the goodness of a model by comparing a simulated data 
from this model to real data.  

In this work we explored similarities between simulated and real 
data. Nevertheless, we are yet to answer the question “is this data 
for real?”. In other words, what we still did not do in this work is 
come up with an algorithm that can take a dataset and determine 
whether it is real or simulated. Another way to think of it is to 
come out with an algorithm that can tell us whether it is possible 
to discern real and simulated data and use it as an indication of the 
goodness of the model. We found differences between the real 
and sim data, but are they strong enough to be noticed by such 
algorithm in a consistent way? In future work we plan to further 
investigate this question by creating a training set of multiple real 
datasets and sim datasets and use machine learning techniques to 
extract a learning algorithm from this training dataset that can take 
as input a dataset and determine whether it is real or sim. We 
argue that if such algorithm can be found, it is an indication that 
the underlying model can be improved.   In future work we also 
plan to compare different variations of the KT model and contrast 
their resulting simulated data with real data. In particular we plan 
to generate a more complex set of simulated data that is based on 
a more complex model (e.g., different learning rate for different 
types of questions), and then use it as “real” data with the (wrong) 
assumption that the model is simple (standard BKT model) to 
simulate a scenario where the real data is indeed grounded in 
more complex model than our assumptions and see what results 
would a learning algorithm that uses this “real” data in 
comparison to a sim data will yield.  

In addition, this paper raises interesting questions that we did not 
think of while trying to answer our initial question. For example, 
it seems like there is potential to dive deeper into the average LL 
(Figures 3&4) and find more about the relationships and 
dependencies between the different parameters. Another question 
that emerged is how could it be that the simulated data had lower 
LL than the real data in the bigger dataset yet lower in the smaller 
dataset? Further analysis is needed to answer these questions.  

Last but not least, given the remarkable resemblance between the 
sim data and the real data, these initial findings provide an 
indication that the BKT model is a model with a very strong hold 
in reality. 
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