

Workshop on Graph-Based

Educational Data Mining
(G-EDM)

Graph data has become increasingly prevalent in data-mining and data analysis
generally. Many types of data can be represented naturally as graphs including social
network data, log traversal, and online discussions. Moreover recent work on the
importance of social relationships, peer tutoring, collaboration, and argumentation has
highlighted the importance of relational information in education including:

 Graphical solution representations such as argument diagrams and concept
maps;

 Graph-based models of problem-solving strategies;
 User-system interaction data in online courses and open-ended tutors;
 Sub-communities of learners, peer-tutors and project teams within larger

courses; and
 Class assignments within a larger knowledge space.

Our goal in this workshop was to highlight the importance of graph data and its
relevance to the wider EDM community. We also sought to foster the development of
an interested community of inquiry to share common problems, tools, and techniques.
We solicited papers from academic and industry professionals focusing on: common
problems, analytical tools, and established research. We also particularly welcomed
new researchers and students seeking collaboration and guidance on future directions.
It is our hope that the papers published here will serve as a foundation for ongoing
research in this area and as a basis for future discussions.

The papers included here cover a range of topics. Kovanovic, Joksimovic, Gasevic &
Hatala focus on evaluating social networks, and specifically on the development of
social capital and high-status individuals in a course context while Catete, Hicks,
Barnes, & Lynch describe an online tool designed to promote social network formation
in new students. Similar work is also described by Jiang, Fitzhugh & Warschauer who
focus on the identification of high-connection users in MOOCs.

Other authors turned to the extraction of plan and hint information from course
materials and user logs. Belacel, Durand, & Laplante define a graph-based algorithm
for identifying the best path through a set of learning objects. Kumar describes an
algorithm for the automatic construction of behavior graphs for example-tracing tutors
based upon expert solutions and Dekel & Gal in turn consider plan identification to
support automatic guidance. Two further papers by Vaculík, Nezvalová & Popelínský,
and by Mostafavi & Barnes, apply graph analysis techniques to the specific domain of
logic tutoring and, in particular, on the classification of student solutions and to the
evaluation of problem quality.

And finally several authors chose to present general tools for the evaluation of
graphical data. Lynch describes Augmented Graph Grammars, a formal rule
representation for the analysis of rich graph data such as argument diagrams and
interconnected student assignments, and details an implementation of it. Sheshadri,
Lynch, & Barnes present InVis a visualization and analysis platform for student
interaction data designed to support the types of research described above. And

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

3

McTavish describes a general technique to support graph analysis and visualization
particularly for student materials through the use of interactive hierarchical edges. We
thank the included authors for their contributions to the discussion and look forward to
continued research.

The G-EDM workshop organizers
Collin F. Lynch

Tiffany M. Barnes

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

4

Table of Contents G-EDM

FULL PAPERS

A Binary Integer Programming Model for Global Optimization of

Learning Path Discovery

Nabil Belacel, Guillaume Durand and Francois Laplante

6

On-Line Plan Recognition in Exploratory Learning Environments

Reuth Dekel and Kobi Gal

14

What is the source of social capital? The association between

social network position and social presence in communities of

inquiry

Vitomir Kovanovic, Srecko Joksimovic, Dragan Gasevic and Marek

Hatala

21

Cross-Domain Performance of Automatic Tutor Modeling

Algorithms

Rohit Kumar

29

AGG: Augmented Graph Grammars for Complex Heterogeneous

Data

Collin F. Lynch

37

Graph Mining and Outlier Detection Meet Logic Proof Tutoring

Karel Vaculík, Leona Nezvalová and Luboš Popelínský

43

SHORT PAPERS, POSTERS & DEMOS

Snag'em: Graph Data Mining for a Social Networking Game

Veronica Catete, Andrew Hicks, Tiffany Barnes and Collin Lynch

51

Social Positioning and Performance in MOOCs

Shuhang Jiang, Sean Fitzhugh and Mark Warschauer

55

Facilitating Graph Interpretation via Interactive Hierarchical Edges

Thomas McTavish

59

Evaluation of Logic Proof Problem Difficulty Through Student

Performance Data

Behrooz Mostafavi and Tiffany Barnes

62

InVis: An EDM Tool For Graphical Rendering And Analysis Of

Student Interaction Data

Vinay Sheshadri, Collin Lynch and Tiffany Barnes

65

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

5

A Binary Integer Programming Model for Global
Optimization of Learning Path Discovery

Nabil Belacel

National Research Council Canada
100, des Aboiteaux St.

Moncton, E1A 7R1,Canada
+1.506.861.0963

nabil.belacel@NRC.gc.ca

Guillaume Durand
National Research Council Canada

100, des Aboiteaux St.
Moncton, E1A 7R1,Canada

+1.506.861.0961

guillaume.durand@NRC.gc.ca

François Laplante
Université de Moncton

60, Notre-Dame-du-Sacré-Cœur St.
Moncton, E1A 3E9,Canada

+1.506.381.6220

francois.laplante@umoncton.ca

ABSTRACT

This paper introduces a method based on graph theory and

operations research techniques to optimize learning path

discovery. In this method, learning objects are considered as

nodes and competencies as vertices of a learning graph. A first

step consists in reducing the solution space by obtaining an

induced subgraph H. In a second step, the search of an optimal

learning path in H is considered as a binary integer programming

problem which we propose to solve using an exact method based

on the well-known branch-and-bound algorithm. The method

detailed in the paper takes into account the prerequisite and gained

competencies as constraints of the optimization problem by

minimizing the total competencies needed to reach the learning

objective.

Keywords

Learning path, learning object recommendation, graph theory,

clique, mathematical programming, binary integer programming,

branch-and-bound algorithm.

1. INTRODUCTION
Global Positioning System (GPS) is a Global Navigation Satellite

System (GNSS) that is massively used by car drivers. This large

acceptance is easily understandable by the benefits that such a

system can offer. Car navigation systems can dynamically

calculate an itinerary between two points taking into account,

depending on the system, several constraints like duration,

distance, closed roads, traffic jams, etc....Drivers can focus

exclusively on their driving limiting risks of accidents, stress, and

losing their way.

To some extent, the learning path followed by a student could be

seen as an itinerary between several learning objects [9]. In this

context, constraints on learning objects are not distance or time

duration to go from one learning object to the other but rather

prerequisite and gained competencies. As a result the itinerary or

path between learning objects is regulated by competency

dependencies that lead a learner from an initial to a targeted

competency state. For example, a learner with solid grounds in

integer arithmetic (starting location) willing to learn the solving of

systems with multiple variables (destination) should be advised to

previously learn to solve one variable linear equations (next step

of the itinerary).

Over the years, educational data mining and recommendation

technologies have proposed significant contributions to provide

learners with adequate learning material by recommending

educational papers [18] or internet links [10], using collaborative

and/or content-based filtering. These approaches usually aim at

recommending learning material satisfying an immediate interest

rather than fitting in the learner’s sequential learning process.

Sequential pattern [28] and process mining [19] technologies have

also been investigated. However, these technologies have been

used to understand the learner’s interaction with content to

discover general patterns and trends rather than to recommend

adapted learning paths to learners.

Other approaches, in the course generation research community,

address the need for recommending not only the learning objects

themselves, but sequences of learning objects. Sicilia et al. [17] or

Ulrich and Melis [20] addressed learning design concepts and

requirements through Course Generation. Though numerous

solutions have been proposed, using statistical methods [13],

decision rules [23], production rules [11], Markov processes [8]

and Hierarchical Task Network Planning [17, 21, 22], most of

them do not take into account eventual competency dependencies

among learning objects and/or are not designed for large

repositories of interdependent learning objects1.

Therefore, we detailed in [7] a dynamic graph based model and a

heuristic approach tailored to find a learning path in a graph

containing millions of learning object nodes.

This paper is an extension of this previous work and summarizes

the model, the heuristic presented in [7], and proposes a major

optimization to calculate a global optimum learning path. In the

previous work [7], we applied a greedy heuristic algorithm to

obtain a pseudo-optimal learning path from a set of cliques.

Greedy heuristics are efficient, but they sometimes get stuck in a

local solution and fail to find a global optimum [26]. They are

based on an intimate knowledge of the problem structure and have

no scope of incremental improvement.

1 A more complete discussion can be found in [7].

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

6

Therefore, in this work we slightly reformulate our model in order

to fit as an integer programming problem and we propose an exact

method based on the branch-and-bound algorithm.

2. PROBLEM CONSIDERED
In order to facilitate the understanding of the presented model,

several key elements and assumptions need to be clearly defined.

A competency can be seen as a knowledge component being part

of a “model that decomposes learning into individual knowledge

components (KCs)” [16]. In this paper, a competency is “an

observable or measurable ability of an actor to perform a

necessary action(s) in given context(s) to achieve a specific

outcome(s)” [12]. A competency in our situation can be a

prerequisite to the efficient completion of a learning object.

According to Wiley [25], a learning object is “any digital resource

that can be reused to support learning”. In the rest of the paper we

define the learning object as any digital resource that can be

reused to provide a competency gain.

A learner is a dynamic user interacting with learning objects in

order to increase his/her competencies from an initial set to a

targeted set of competencies. We assume that a learner completing

a learning object will gain the competencies targeted to be

transmitted by the interaction with the learning object. We also

assume that a learner who would not possess the prerequisite set

of competencies required by a learning object should not attempt

this learning object since this would result in a limited

competency gain.

Last but not least, we assume that the number of learning objects

available is very large (millions to billions of learning objects) and

that each learning object cannot provide the gain of a competency

that is a pre-requisite to itself.

2.1 Graph Theory Contribution
Graph theory aims at studying mathematical structures composed

of elements having relationships or connection between them. The

use of directed graphs is not a novelty in e-learning systems [1, 3,

24, 25]; however, we were unable to find a formal model for

discussing learning path problems based on graph theory,

especially one taking into account the dynamic nature of a

learning environment.

A directed graph, or digraph, G = (V, E) consists of:

 A non-empty finite set V of elements called vertices or

nodes,

 A finite set E of distinct ordered pairs of vertices called

arcs, directed edges, or arrows.

Let G = (V, E) be a directed graph for a personalized learning

path. Each vertex or node in G corresponds to a learning object.

Two vertices are connected if there exists a dependency relation,

such that one vertex satisfies the prerequisites of the other. So,

each edge between two vertices { } means that the learning

object is accessible from . The accessibility property required

to define edges between vertices relies on post and pre-requisite

competencies associated to each learning object.

Considering { }, this edge means that after having

completed the learning object u, the learner should have the

required competencies to undertake resource v. By extension, each

vertex v is represented by a pair (,) where:

 is a set of the competencies required by vertex v

 is a set of competencies offered by vertex v

The relationship between learning objects and competencies is

multidimensional [6]: a learning object can require several

competencies and transmit more than one competency to the

learner as well. The existence of an edge between two learning

objects u and v can be formalized by the following formula:

 () () { }

()

where () () means that the competencies required

by v are provided by learning object u. Condition 1 is sufficient

but not necessary. For example, before having completed u, the

learner might already have some or the totality of the

competencies required by v. This means that we may have an arc

between u and v even though none the competencies required by v

are provided by u. In other words, edge set also depends on the

learner’s competency set at time t: (()) and

 () { } where are competencies which

the learner possesses. As a result, graph G is a dynamic directed

graph and condition 1 can be strengthened by the necessary and

sufficient condition 2:

 { } () () ()

()

2.2 Model Dynamicity
The dynamicity of our model is due to the fact that a learning

object can bring competencies that could be among the

prerequisites of future learning objects.

Figure 1. Edge dynamicity.

For example, as shown in Figure 1, a learning object D could be

accessible to a learner if he has acquired the competencies c1 and

c2. Assuming that competency c1 is provided by learning objects

A and C and competency c2 is provided by learning objects B and

C; D is reachable if learning objects A and B are completed or if

learning object C is completed. If a learner completes learning

object A at time t and learning object B at time t+1, the learner

will have the competencies required to reach D and according to

the condition 2, a new edge between B and D will be created (red

edge on Figure 1).

3. INVESTIGATED SOLUTION

3.1 Reducing the solution space
Eliminating irrelevant learning objects is generally the first step of

a course generation tool [1, 15]. In our case, as the learning object

repository is supposed to be very large, the learning objects

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

7

cannot all be checked individually. The approach we chose

consists in reducing the considered solution space by obtaining an

induced subgraph H which consists of all the vertices and edges

between the vertices in G that could be used in the learning path.

The algorithm can be seen as a loop generating complete sub-

graphs, or cliques, until one such clique is generated whose

prerequisites are a subset of the learner’s competencies. Cliques

are generated in a top-down fashion where we begin with the

target clique, which is composed of a single learning object (we

create a fictitious learning object, β, whose prerequisite

competencies correspond to the list of the learner’s target

competencies). Cliques are then generated by finding every vertex

where at least one output competency is found in the prerequisite

competencies of the clique (the union of all prerequisite

competencies of every learning object within the clique) to which

it is prerequisite. As such, cliques contain the largest possible

subset of vertices which satisfies the condition “if every learning

object in the clique is completed, then every learning object in the

following clique is accessible”. We simplify the stopping

condition by adding a second fictitious object, α, into the dataset

with no prerequisite competencies and with the learner’s current

competencies as its output competencies. If a clique contains this

object, the stopping condition is true.

 β6

v1 A6
5 E

6
3,5

↑ 6

v2 T3,2,4
7 U

5
0

↑ 3,5

v3 L0,7
8,9

 I7
9 K

0
8

↑ 0, 7

 Α8,9 ↑ 8, 9

α: Fictitious LO with initial learner competency state

β: Fictitious LO with targeted learner competency state

LO list of gained competencies LO list of prerequisite competencies

Figure 2. Induced sub-graph generation.

Considering the target competency β as shown in Figure 2, all the

vertices leading to those competencies (competency 6 in Figure 2)

are selected in a set v1, then the learning objects leading to the

prerequisites of set v1 (competencies 3 and 5) are selected from

graph G to create the set v2. This mechanism continues until the

prerequisite competencies of the set vn are all competencies which

the learner has already acquired.

Figure 3. G’ consists of connected cliques.

As shown in Figure 3, G’, consisting of the vertices E of sets

v1,…,vn, is an induced sub-graph of G. If the learner has

completed all the vertices of vi, he/she will have access to all the

vertices of vi+1, thus all subsets of vertices of vi can be considered

to be a clique.

In addition to reducing the solution space, clique generation is

also an efficient way to check whether a solution learning path

exists between α and β. If the algorithm is not able to generate

cliques linking α and β, there is no need to proceed forward with

an algorithm aiming at finding one of the possible solutions.

3.2 Greedy Algorithm
Once the induced sub-graph is obtained, we use a greedy

algorithm that searches for a local optimum within each clique.

The definition of such a local optimum, depending on the dataset

and the results pursued, has to follow a specific heuristic or

strategy.

The shortest path strategy seems to be widely accepted in the

literature [1, 27]. This strategy is not necessarily the best to adopt

in any situation since the proposed learning path might lead to the

learning of non–essential competencies and potentially cognitive

overloads. For example a learning object could lead to

competency gains that would not be required to reach the targeted

learner competency state; there is no need to understand the proof

of the Landau Damping to learn about the history of theoretical

physics. Considering a learning object presenting an introduction

to the perturbation theory and a second one introducing the theory

and the proof of the Landau Dumping, it might make sense to

choose the first one in order to minimize the cognitive load to the

learner. Some might argue that using such “straight to the point”

heuristic might limit too drastically the natural curiosity of the

learner. As any heuristic, we agree that it is discussable but this is

not the purpose of this paper.

The greedy algorithm considered attempts to find a path by

considering each clique one after the other and reducing it to a

minimal subset of itself which still verifies the condition “if every

learning object in the clique is completed, then every learning

object in the following clique is accessible”.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

8

 β6

v1 A
6
5 E

6
3,5 ↑ 6

v2 T
3,2,4

7 U
5
0 ↑ 3,5

v3 L
0,7

8,9

I
7
9 K

0
8 ↑ 0,7

 Α
8,9

 ↑ 8, 9

α: Fictitious LO with initial learner competency state

β: Fictitious LO with targeted learner competency state

LO list of gained competencies LO list of prerequisite competencies

Figure 4. Illustration of the greedy algorithm execution

The first clique considered will be the one leading to the targeted

competencies (the clique satisfying the prerequisites of β). In the

case of the three cliques v1 to v3 as illustrated by Figure 3, v1 will

be considered first followed by v2 then by v3.

For each clique, the local optimum is considered obtained when

the minimum subset of vertices with a minimum “degree”, being

the sum of the number of prerequisite competencies and output

competencies of the vertex, are found. In other words, the greedy

algorithm select in each clique a set of learning objects

minimizing the number of competencies required and gained in

order to locally limit the cognitive load of the selected material.

The greedy algorithm locally optimizes a function called “deg”

(for degree) detailed in the following section.

For clique v1, the selected learning object is A since its number of

prerequisites is smaller than that of E while they share the same

competency gain. As A has been chosen in v1, only the objects in

v2 respecting the new v1’s prerequisites is chosen. As a result, the

algorithm chooses U in v2. In v3, K and L lead to v2’s prerequisite

but K requires fewer prerequisites than L, therefore K is selected

and the proposed learning path is .

4. OPTIMIZATION
In this section we present our mathematical model for learning

path discovery and then we introduce the algorithm for solving

our mathematical model.

After eliminating irrelevant learning objects in the first step, we

generate the optimal solution from the obtained induced sub-graph

as presented in Figure 4. For this purpose, we applied in [7] a

greedy algorithm to obtain an optimal or pseudo-optimal learning

path from a set of cliques. Greedy heuristics are computationally

efficient, but they sometimes fail to find a global optimum as we

explain in the following section.

4.1 Notation and limits of the Greedy

heuristic
Let , , the matrices representing the distribution of

the competencies that are prerequisite to the items contained

in the cliques, the competencies that are gained when the n

items of the cliques are performed, and the clique distribution of

the n items. Note that the matrix could be considered as a Q-

Matrix [5].

Considering our example (Example 1):

 { }
 { }
 { }

(

)

(

)

(

)

From this example the solution sequence using the greedy

algorithm is .

To check if we get an optimal solution or not, we have to calculate

the objective function called deg. The objective function
returns the total number of prerequisite and gained competencies

of a set of learning objects.

We can draw from the previous example the following conditions

to check if we have an optimal solution or not.

Let { } a solution set (contains at least one

learning object as in example 3).

 ()

 ()

 ({ }) ∑∑()

 ()

 ({

 }) ({ })

()

Condition () and () mean that the competencies required by a

clique set have to be covered by the gains of the previous clique

set and two different clique sets cannot share the same clique.

While condition () defines the deg function, condition ()
introduces the optimality condition. A learning path is optimal if

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

9

no other path with a lower degree exists. However this doesn’t

apply at the clique level since the optimal
 is not necessary the

set of clique having the lowest degree. The global optimum is

not the sum of the local optima calculated by the greedy

algorithm.

The following example highlights this case where local optima

obtained by the greedy algorithm lead to non-optimal solution.

Example 2:

 β6

v1 M6
5 N

6,7
4

↑ 6

v2 O5
3,4 P

4
8

↑ 4,5

v3 T8
7
 R3.4

7
↑ 3, 4, 8

 α7 ↑ 7

 ()

 ()

The solution obtained by the greedy algorithm is
 and the associated value of the objective function

deg () is equal to 10. As the algorithm starts from , it chooses

in each clique the learning object with the lowest degree which is

 and keeps going until it reaches .

The path is an alternative that the

algorithm did not find. It’s even a better alternative since

 () () and the optimal solution.

The following example highlights another case where local

optima obtained by the greedy algorithm lead to a non-optimum

solution. In this example, two learning objects are selected in one

of the generated cliques.

Example 3:

 β6

v1 M6
5 N

6,7
4

↑ 6

v2 O5
3,9 P

4
8

↑ 4,5

v3
T8

7
 Y9

7, Z
3

7
↑ 3, 9, 8

 α7 ↑ 7

 ()

The objective function of the path () is 9,

which means that the path () is the optimal

solution.

In the following section, we use the notation introduced here to

propose a mathematical formulation of our learning path

optimization problem as an integer programming problem.

4.2 Formulating the integer programming

problem
Let us consider n items or learning objects and m competencies;

 is the matrix representing m prerequisite competencies for

the n items and is the matrix representing the

competencies that are gained when the n items are performed. In

other words, if = 1 means that the item i has competency j as

one of its prerequisite competencies; and = 1, means that the

competency is gained when the item is performed. The

personalized learning path may then be formulated as a binary

integer programming (BIP) as follows:

Minimize:

∑(∑()

)

 () ()

Subject to:

 (∑

) ()

 { }

X = {xi, i=1,...,n}, are the decision variables such that:

 {

 ()

We suppose that x1 = 1 and xn = 1, knowing that:

The function (1) represents the total number of prerequisite and

gained competencies to be minimized. The constraints (2) states

that if the item i has competency j as one of its prerequisite

competencies; the competency j should be gained from the items

on the learning path (1,…, i-1). Our problem is to minimize the

objective function (1) subject to (2) and (3).

To find the optimal learning path we have to solve the BIP

problem with (n+m) constraints and n decision variables xi=1,…n

 { }

Considering example 3, the prerequisite and gain matrices Q and

G can be written as follows:

The competencies that are required by the items are represented

by the matrix Q (9x7).

(

)

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

10

The competencies that are gained by the items are represented by

the matrix G (9x7).

(

)

The BIP formulation of example 3 is given as follows:

Minimize :

deg (X) = x1+2x2+2x3+2x4+3x5+2x6+2x7+3x8+x9

Subject to:

x2 - x1

x3 - x1

x4 - x1

x5 - x3

x5 - x4

x6 - x2

x7 - x5

x8 - x6

x9 – x7- x8

 { }

x1 is the fictitious learning object α with initial learner

competency state.

x9 is the fictitious learning object with targeted learner

competency state.

Since x1 = x9 = 1, then our BIP becomes:

Minimize :

deg (X) = 2x2+2x3+2x4+3x5+2x6+2x7 +3x8

Subject to:

x5 - x3

x5 - x4

x6 - x2

x7 - x5

x8 - x6

- x7 - x8

 { }

4.3 The Branch-and-Bound (B&B) method

for solving the BIP problem
Since the BIP problem is bounded, it has only a finite number of

feasible solutions. It is then natural to consider using an

enumeration procedure to find an optimal solution. However, in

the case of large learning object repositories (millions of items),

an enumeration procedure might be ill adapted (even after

reducing the solution space); therefore, it is imperative to cleverly

structure the enumeration procedure so that only a tiny fraction of

feasible solutions need to be explored.

A well-known approach called branch-and-bound technique

(B&B) provides such a procedure. B&B traces back to the 1960s’

and the work of Land and Doig [14]. Since then, B&B algorithms

have been applied with success to a variety of operations research

problems. B&B is a divide and conquer method. It divides a large

problem into a few smaller ones (This is the “Branch” part). The

conquering part estimates the goodness of the solution that is

obtained from each of the sub-problems; the problem is divided

until solvable sub-problems are obtained (this is the “bound”

part).

For the bounding part we use a linear programming relaxation to

estimate the optimal solution [26]. For an integer programming

model P; the linear programming model obtained by dropping the

requirement that “all variables must be integers” is called the

linear programming relaxation of P.

Figure 5. Branch and bound algorithm that traverses the tree

by solving BIPs at every node of the tree.

The general approach of a BIP B&B algorithm [26] is presented

in the following steps (see also Figure 5):

Initialization: Set deg* = + ∞.

The initial step represents the root node of the B&B search tree.

The root node corresponds to the continuous relaxation of the

BIP(0≤ X ≤1), the solution value provides lower bound.

Apply the bounding step, fathoming step, and optimality test

described below. If not fathomed, classify this problem as the one

remaining “subproblems” for performing the first full iteration

below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed)

subproblems, select the one that was created most

recently (break ties by selecting the subproblem with the

larger bound). Branch from the node for this

subproblem to create two new subproblems by fixing

the next variable (the branching variable) at either 0 or 1

(see Figure 5).

2. Bounding For each new subproblem, obtain its bound

by applying the simplex method to its LP-relaxation and

rounding down the value of deg for the resulting

optimal solution.

3. Fathoming (Pruning rules): The pruning rules for B&B

BIP are based on optimality and feasibility of BIP. For

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

11

each new sub-problem, apply the fathoming tests and

discard those sub-problems that are fathomed by any of

the tests.

Optimality test: Stop when there are no remaining sub-problems:

 The current incumbent is optimal,

 Otherwise, return to perform another iteration.

A sub-problem is fathomed (dismissed from further consideration)

if it verifies one of the following tests:

1. The relaxation of the sub-problem has an optimal

solution with deg < deg where deg* is the current best

solution (The solution is dominated by upper bound);

2. The relaxation of the sub-problem (LP-relaxation) has

no feasible solution;

3. The relaxation of the sub-problem has an optimal

solution that has all binary values. (If this solution is

better than the incumbent, it becomes the new

incumbent, and test1 is reapplied to all unfathomed sub-

problems with the new larger deg*).

For example, the example 3 solved by B&B produces an optimal

solution with deg* = 9 and x2=1, x6=1, x8=1 where the number of

nodes explored is 1 because the first LP-relaxation at node 1 gives

an integer optimal solution with deg*=9 and the 3rd fathomed test

is true, so we do not need to branch anymore.

Decision Variables x1 x2 x3 x4 x5 x6 x7 x8 x9

LO α T Y Z O P M N

X* 1 1 0 0 0 1 0 1 1

Figure 6. Solution of example 3in the B&B algorithm.

As illustrated in Figure 6, the optimal solution of the B&B

algorithm is X*={1, 1, 0, 0, 0, 1, 0, 1, 1} and the optimal path is:

 .

5. CONCLUSION
The clique based approach is an asset since it offers an efficient

way to reduce the solution space and check the existence of a

solution. However, a greedy search within the cliques to find a

leaning path does not lead, in many cases, to the best learning path

according to the criteria considered.

Binary integer programming is a well-known mathematical

optimization approach. While reformulating the conditions an

optimal learning path should meet, we realised how we could

benefit from expressing the constraints as a binary programming

problem.

Our preliminary implementation of the proposed optimization

using the bintprog function (MATLAB), a function based on the

branch- and-bound (B&B) algorithm, shows the accuracy of the

proposed integer program model.

In future work, we will apply the proposed binary integer model

in order to build a learning design recommendation system in the

case where learning objects are stored in very large repositories.

Even though the B&B algorithm is highly accurate and somehow

computationally efficient, it is not efficient enough to deal with

very large size problem instances. In some cases, the bounding

step of B&B is not invoked, and the branch and bound algorithm

can then generate a huge number of sub-problems.

Moreover, as mentioned in [7], the efficiency of reducing the

solution space with the cliques’ mechanism is highly dependent

on the dataset topology (average number of gain and prerequisite

competencies per learning object). The solution space may remain

large after the reduction

Therefore, to deal with very large problems, we will implement a

variant of the B&B algorithm such as Branch & Cut [2] or Branch

& Price [4]. Applegate et al. [2] showed how Branch & Cut could

get a global optimal for extremely large binary optimization

problems. It will be then interesting to measure both in terms of

computational time and accuracy how the greedy search compares

to the B&B-like approach.

6. ACKNOWLEDGMENTS
This work is part of the National Research Council of Canada’s

Learning and Performance Support Systems (NRC LPSS)

program. The LPSS program addresses training, development and

performance support in all industry sectors, including education,

oil and gas, policing, military and medical devices.

7. REFERENCES
[1] Alian, M. Jabri, R. 2009. A shortest adaptive learning path in

e-learning systems: Mathematical view, Journal of American

Science 5(6) (2009) 32-42.

[2] Applegate, D., Bixby, R., Chvatal, V. and Cook, W. 1998.

On The solution of traveling salesman problems, in: Proc.

Int. Congress of Mathematicians, Doc. Math. J. DMV, Vol.

645.

[3] Atif, Y., Benlarmi, R., and Berri, J. 2003. Learning Objects

Based Framework for Self-Adaptive Learning, Education

and Information Technologies, IFIP Journal, Kluwer

Academic Publishers 8(4) (2003) 345-368.

[4] Bamhart, C, Johnson, E. L., Nemhauser, G. L., Savelsbergh,

M. W. P. and Vance, P. H. 1998. Branch-and-price: column

generation for huge integer programs, Operations Research

46:316.

[5] Barnes, T. 2005. The Q-matrix Method: Mining Student

Response Data for Knowledge. Proceedings of the Workshop

on Educational Data Mining at the Annual Meeting of the

American Association for Artificial Intelligence.

[6] Carchiolo, V., Longheu, A., and Malgeri, M. 2010. Reliable

peers and useful resources: Searching for the best

personalised learning path in a trust- and recommendation-

aware environment, Information Sciences 180(10) (2010)

1893-1907.

[7] Durand, G., Belacel, N., and Laplante, F. 2013. Graph theory

based model for learning path recommendation. Information

Sciences. 251(10) (2013) 10-21.

[8] Durand, G., Laplante, F. and Kop, R. 2011. A learning

Design Recommendation System Based On Markov

Decision Processes, Proc. 17th ACM Conference on

Knowledge Discovery and Data Mining (SIGKDD)

Workshop on Knowledge Discovery in Educational Data,

San Diego, CA.

[9] Durand, G., Downes, S. 2009. Toward Simple Learning

Design 2.0. In: 4th Int. Conf. on Computer Science

&Education 2009, Nanning, China, 894-897.

[10] Godoy, D., Amandi, A. 2010. Link Recommendation in E-

learning Systems based on Content-based Student Profiles,

In: Romero C., Ventura S., Pechenizkiy, M., Baker, R.

(Eds.), Handbook of Educational Data Mining, Data Mining

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

12

and Knowledge Discovery Series, Chapman & Hall/CRC

Press, 273-286.

[11] Huang, Y.M., Chen, J.N., Huang, T.C., Jeng, Y.L., and Kuo,

Y.H. 2008. Standardized course generation process using

Dynamic Fuzzy Petri Nets, Expert Systems with

Applications, 34 (2008) 72-86.

[12] ISO 24763/final version: Conceptual Reference Model for

Competencies and Related Objects, 2011.

[13] Karampiperis, P., Sampson, D. 2005.Adaptive learning

resources sequencing in educational hypermedia systems.

Educational Technology & Society 8 (4) (2005) 128-147.

[14] Land, A. H., Doig, A. G. 1960. An automatic method of

solving discrete programming problems. Econometrica

28(3), 497–520.

[15] Liu, J., Greer J. 2004. Individualized Selection of Learning

Object, In: Workshop on Applications of Semantic Web

Technologies for e-Learning, Maceió, Brazil.

[16] Pavlik, P. I. Jr., Presson, N., and Koedinger K. R. 2007.

Optimizing knowledge component learning using a dynamic

structural model of practice, Proc. 8th International

Conference on Cognitive Modeling. Ann Arbor, MI.

[17] Sicilia, M.-A., Sánchez-Alonso, S. and García-Barriocanal,

E. 2006. On supporting the process of learning design

through planners, Proc. Virtual Campus Post-Selected and

Extended, 81–89.

[18] Tang, T.Y., Mccalla, G.G. 2010. Data Mining for Contextual

Educational Recommendation and Evaluation Strategies, In:

Romero C., Ventura S., Pechenizkiy, M., Baker, R. (Eds.),

Handbook of Educational Data Mining, Data Mining and

Knowledge Discovery Series, Chapman & Hall/CRC Press,

Chapter 18,257-271.

[19] Trcka, N., Pechenizkiy, M. and Van-Deraalst, W. 2010.

Process Mining from Educational Data, In: Romero C.,

Ventura S., Pechenizkiy, M., Baker, R. (Eds.), Handbook of

Educational Data Mining, Data Mining and Knowledge

Discovery Series, Chapman & Hall/CRC Press, Chapter 9,

123-141.

[20] Ullrich, C., Melis, E. 2010. Complex Course Generation

Adapted to Pedagogical Scenarios and its Evaluation,

Educational Technology & Society, 13 (2) (2010) 102–115.

[21] Ullrich, C., Melis, E. 2009. Pedagogically founded

courseware generation based on HTN-planning, Expert

Systems with Applications 36(5) (2009) 9319-9332.

[22] Ullrich C. 2005. Course Generation Based on HTN Planning,

Proc. 13th Annual Workshop of the SIG Adaptivity and User

Modeling in Interactive Systems, Saarbrucken, Germany,74-

79.

[23] Vassileva, J., Deters, R. 1998, Dynamic courseware

generation on the www, British Journal of Educational

Technology, 29(1) (1998) 5–14.

[24] Viet, A., Si, D.H. 2006. ACGs: Adaptive Course Generation

System - An efficient approach to Build E-learning, Proc.

6th IEEE International Conference on Computer and

Information Technology, Jeju Island, Korea, 259-265.

[25] Wiley, D.A. 2002. Connecting Learning Objects to

Instructional Design Theory: A Definition, a Metaphor, and a

Taxonomy, In: The Instructional Use of Learning Objects,

D. A. WILEY (Ed.), 3-23.

[26] Winston, W.L., Venkataramanan, M. 2003. Operations

Research: Introduction to Mathematical Programming.

Thompson, 4th Edition.

[27] Zhao, C., Wan, L. 2006. A Shortest Learning Path Selection

Algorithm in E-learning, Proc. 6th IEEE International

Conference on Advanced Learning Technologies, Kerkrade,

The Netherlands, 94-95.

[28] Zhou, M., Xu, Y., Nesbit, J.C. and Winne, P.H. 2010.

Sequential pattern analysis of learning logs: Methodology

and applications, In: Romero C., Ventura S., Pechenizkiy,

M., Baker, R. (Eds.), Handbook of Educational Data Mining,

Data Mining and Knowledge Discovery Series, Chapman &

Hall/CRC Press, Chapter 8, 107-120.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

13

On-Line Plan Recognition in Exploratory Learning
Environments

Reuth Dekel and Ya’akov (Kobi) Gal
Dept. of Information Systems Engineering

Ben-Gurion University
Beer-Sheva 84105, Israel

ABSTRACT
Exploratory Learning Environments (ELE) are open-ended and flex-
ible software, supporting interaction styles by students that include
exogenous actions and trial-and-error. ELEs provide a rich edu-
cational environment for students and are becoming increasingly
prevalent in schools and colleges, but challenge conventional plan
recognition algorithms for inferring students’ activities with the
software. This paper presents a new algorithm for recognizing stu-
dents’ activities in ELEs that works on-line during the student’s
interaction with the software. Our approach, called CRADLE, re-
duces the amount of explanations that is maintained by the plan
recognition in a way that is informed by how people execute plans.
We provide an extensive empirical analysis of our approach using
an ELE for chemistry education that is used in hundreds of colleges
worldwide. Our empirical results show that CRADLE was able to
output plans exponentially more quickly than the state-of-the-art
without compromising correctness. This result was confirmed in a
user study that included a domain expert who preferred the plans
outputted by CRADLE to those outputted by the state-of-the-art
approach for the majority of the logs presented.

1. INTRODUCTION
This paper focuses on inferring students’ activities in educational
environments in which students engage widely in exploratory be-
havior, and present new approaches for plan recognition in such
settings that can outperform the state-of-the-art.

Our empirical analysis is based on students’ interactions with an
Exploratory Learning Environment (ELE) in which students build
scientific models and examine properties of the models by running
them and analyzing the results[1, 6]. Such software is open-ended
and flexible and is generally used in classes too large for teach-
ers to monitor all students and provide assistance when needed.
The open-ended nature of ELEs affords a rich spectrum of interac-
tion for students: they can solve problems in many different ways,
engage in exploratory activities involving trial-and-error, they can
repeat activities indefinitely, and they can interleave between activ-
ities.

These aspects significantly hinder the possibilities of making sense
of students’ activities without some sort of support. This paper
presents a new algorithm for recognizing students’ interactions with
ELEs in real time, which can support both teachers and students.
For teachers, this support takes the form of visualizing students’
activities during their interaction in a way that faciliteates their un-
derstanding of students’ learning. For students, this support can
take the form of machine generated intervention that guides their
learning and adapts to individual students’ needs based on their in-
ferred behavior.

The focus of this paper is on-line recognition that occurs during the
students’ actual interaction with the ELE, and outputs a hierarchy
of interdependent activities that best describe the student’s work at
a given point in time. Recognizing students’ activities this way is
challenging because the algorithm needs to reason about and main-
tain possible explanations for future (yet unseen) student activities.
The number of possible explanations grows exponentially with the
number of observations. As we show in the empirical section of
this paper, this significantly hinders the performance of the state-
of-the-art, even for very short interaction sequences.

Our algorithm, called CRADLE (Cumulative Recognition of Ac-
tivities and Decreasing Load of Explanations) builds on an exist-
ing approach for on-line plan recognition, but filters the space of
possible explanations in a way that reflects the style of students’
interactions in ELEs. The filtering aim is to produce complete, par-
simonious and coherent explanations of students’ interactions that
can be easily understood by teachers and education researchers.

Our empirical evaluations were based on comparing CRADLE to
the state-of-the-art approach for recognizing logs of students’ in-
teractions with a widely used ELE for chemistry education. We
evaluated both of the approahes in terms of computation speed and
correctness of the outputted explanation, as determined by a do-
main expert. Succeeding in both of these measures is criticial for
an on-line plan recognition approach to work successfully.

Our empirical results show that CRADLE was able to outperform
the state-of-the-art without compromising correctness. Specifically,
although the state of the art approach is (in theory) complete, it was
not able to terminate within an allocated time frame on many logs.
In contrast, CRADLE was able to produce correct explanations for
such logs. In addition, CRADLE significantly outperformed the
state-of-the-art both in terms of correctness and speed of recogni-
tion.

These results demonstrate the benefit of applying novel plan recog-

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

14

nition technologies towards intelligent analysis of students’ inter-
actions in open-ended and flexible software. Such technologies
can potentially support teachers in their understanding of student
behavior as well as students in their problem solving, and lead to
advances in automatic recognition in other exploratory domains.

2. RELATED WORK
Our work relates to two strands of research, inferring students’ ac-
tivities in educational software, and on-line planning algorithms in
artificial intelligence. We relate to each of these in turn.

2.1 Inferring Students’ Activities in ELEs and
ITS systems

We first describe works that infer students’ plans from their inter-
actions with pedagogical software that assume the complete inter-
action sequence is known in advance. Gal et al. [11] and Reddy
et al. [10] used plan recognition to infer students’ plans from their
interactions with TinkerPlots, an exploratory learning environment
for statistics. Both of these approaches take as input a complete
interaction sequence of a student as well as recipes for ideal solu-
tions to TinkerPlots problems, and infer the plan used by the student
retrospectively. Reddy et al. [10] proposed a complete algorithm
which modeled the plan recognition task as a Constraint Satisfac-
tion Problem (CSP). The complexity of the CSP algorithm is ex-
ponential in the size of both the interaction sequence and the data
set containing the recipes. This approach requires that all possible
plans can be explicitly represented, and therefore does not support
recursive grammars which are needed to understand students’ ac-
tivities in VirtualLabs.

Other works have implemented plan recognition techniques to model
students’ activities in Intelligent Tutoring Systems (ITS) during
their interactions. In contrast to exploratory learning environments,
in intelligent tutoring systems the system takes an active role in
students’ interactions, as it tutors the student by providing feed-
back and hints. As an example, in the Andes physics tutor wrong
steps are marked by the tutor and the students may ask for a “what’s
wrong here?” hint from the tutor. In addition, students can ask for a
“what next?” hint to receive instruction when uncertain about how
to proceed [20]. These systems are typically more closed-ended
and less exploratory than ELEs. In the Andes physics tutor a prob-
abilistic algorithm was used to infer the solutions plan followed by
the student. For each Andes problem, a solution graph represent-
ing the possible correct solutions to the problem was automatically
generated and were modeled using a dynamic Bayesian network.
The algorithm observes students’ actions and updates the probabil-
ities of the different possible plans. The inferred plans were used
to generate hints and to update students’ cognitive models.

The tutors developed by the ACT-R group for teaching LISP, geom-
etry and algebra, performed plan recognition using a model-tracing
algorithm that tracked students’ solution plans [2, 9]. These tutors
maintained a list of production rules that can be triggered to accom-
plish the goal and sub-goals for solving a problem. The algorithm
infers students’ plans by identifying the production rules that were
triggered according to the actions students had taken. After each
observed action, the algorithm commits to a production rule that
it infers the student triggered to perform the action. The system
constrained students to remain on “correct paths” throughout their
session by providing feedback after each action taken by the stu-
dent. Moreover, ambiguities regarding the production rules being
used by students were resolved by querying the student. By com-

mitting to one production rule at a time and enforcing students to
remain on correct solution paths, the complexity of the plan recog-
nition task in intelligent tutoring systems is substantially reduced.

Lastly, we mention works that use recognition techniques to model
students’ activities in Intelligent Tutoring Systems [20, 7, 21]. Our
work is distinct from works on plan recognition in intelligent tu-
toring systems in several ways. First, ITS are more closed-ended
from ELEs. Thus, students’ activities with such software more con-
strained and less exploratory, and are easier to model and recognize.
In addition, the tutoring systems described above provided constant
feedback to students which helped them remain on correct solution
paths that are recognizable by the model used. Second, the tutoring
systems described above explicitly modeled all possible solution
plans for solving a specific problem. This is not possible in the
VirtualLabs domain, as there may be an infinite number of possible
plans for solving a problem.

2.2 On-line Plan Recognition in Artificial In-
telligence

We now discuss general work from Artificial Intelligence that is
concerned with plan recognition in general, rather than recognizing
students’ activities in pedagogical software. On-line plan recogni-
tion is a significantly more difficult task than its off-line variant.
The fact that the interaction sequence is not observed ahead of time
raises additional challenges to on-line plan recognition. Blaylock
et al. [4] developed an algorithm to infer the goal of users from
their actions in a Linux shell environment. Pynadath [19] proposes
a probabilistic inference of plan, but requires the observations to
be fully ordered. The approach by Bui [5] used particle filter-
ing to provide approximate solutions to on-line plan recognition
problems. Avrahami and Kaminka [3] presented a symbolic on-
line plan recognition algorithm which keeps history of observations
and commits to the set of possible plans only when it is explicitly
needed for querying. Geib and Goldman presented PHATT [14], a
probabilistic on-line plan recognition algorithm that builds all pos-
sible plans incrementally with each new observation. This algo-
rithm was applied to recognizing users’ strategies in real-time video
games [17].

All of these works have been evaluated on simulated, synthesized
problems [19, 3, 14] or on toy problems [4, 17]. These approaches
do not scale to the complexities of real-world domains. An ex-
ception is the work of Conati et al. [8, 18] who used on-line plan
recognition algorithms to infer students’ plans to solve a problem
in an educational software for teaching physics, by comparing their
actions to a set of predefined possible plans. Unfortunately, the
number of possible plans grow exponentially in the types of do-
mains we consider, making it unfeasible to apply this approach.

3. PLANS AND EXPLANATIONS
In this section we provide the basic definitions that are required for
formalizing the on-line plan recognition problems in ELEs. Through-
out the paper we will use an existing ELE for chemical education
called VirtualLabs to demonstrate our approach which is actively
used by students worldwide as part of their introductory chemistry
courses. VirtualLabs allows students to design and carry out their
own experiments for investigating chemical processes by simulat-
ing the conditions and effects that characterize scientific inquiry in
the physical laboratory [22]. We use the following problem called
“Oracle”, which is given to students:

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

15

Figure 1: Snapshot of VirtualLabs

(a) MSD[s1 + s2, d]→ MSD[s1, d],MSD[s2, d]

(b) MIF[s1, d2]→ MSD[s1, d1],MSD[d1, d2]

(c) MSD[s, d]→ MIF[s, d]

(d) MSD[s, d]→ MS[s, d]

Figure 2: Recipes for VirtualLabs

Given four substances A,B,C, and D that react in a
way that is unknown, design and perform virtual lab
experiments to determine the correct reaction between
these substances.

The flexibility of VirtualLabs affords two classes of solution strate-
gies to this problem (and many variations within each). In the first
strategy, a student mixes all four solutions together, and infers the
reactants by inspecting the resulting solution. In the second strat-
egy, a student mixes pairs of solutions until a reaction is obtained.
A snapshot of a student’s interaction with VirtualLabs when solv-
ing the Oracle problem is shown in Figure 1.

3.1 Definitions
We make the following definitions taken from the classical plan-
ning literature [16]. We use the term basic actions to define rudi-
mentary operations that cannot be decomposed. These serve as the
input to our plan recognition algorithm. For example, the basic
“Mix Solution” action (MS1[s = 1, d = 3]) describes a pour from
flask ID 1 to flask ID 3. A log is the output of a student’s interac-
tion. It is a sequence of basic level actions representing students’
activities’. This is also the input to the plan recognition algorithm
described in the next section.

Complex actions describe higher-level, more abstract activities that
can be decomposed into sub-actions, which can be basic actions
or complex actions themselves. For example, the complex action
MSD[s = 1+5, d = 3] (as shown in Figure 3) represents separate
pours from flask ID 1 and 5 to flask ID 3.

A recipe for a complex action specifies the sequence of actions
required for fulfilling the complex action. Figure 2 presents a set of
basic recipes for VirtualLabs . In our notation, complex actions are
underlined, while basic actions are not. Actions are associated with

parameters that bind to recipe parameters. Recipe (a) in the figure,
called Mix to Same Destination (MSD), represents the activity of
pouring from two source flasks (s1 and s2) to the same destination
flask (d). Recipe (b), called Mix via Intermediate Flask (MIF),
represents the activity of pouring from one source flask (s1) to a
destination flask (d2) via an intermediate flask (d1).

Recipes can be recursive, capturing activities that students can re-
peat indefinitely. Indeed, this is a main characteristic of students’
use of ELEs. For example, the constituent actions of the complex
action MSD in recipe (a) decompose into two separate MSD ac-
tions. In turn each of these actions can itself represent a Mix to
Same-Destination action, an intermediate-flask pour (by applying
recipe (c)) or a basic action mix which is the base-case recipe for
the recursion (recipe (d)). Recipe parameters also specify the type
and volume of the chemicals in the mix, as well as temporal con-
straints between constituents, which we omit for brevity.

More generally, the four basic recipes in the figure can be permuted
to create new recipes, by replacing MSD on the right side of the
first two recipes with MIF or MS. An example of a derivation is the
following recipe for creating an intermediate flask out of a complex
Mix to Same Destination action and basic Mix Solution action.

MIF[s1, d2] → MSD[s1, d1],MS[d1, d2] (1)

These recipes may be combined to describe the different solution
strategies by which students solve problems in VirtualLabs (e.g.,
capturing students mixing all possible substance pairs versus mix-
ing all four pairs together).

A set of nodes N fulfills a recipe R if there exists a one-to-one
matching between the constituent actions in R and their parameters
to nodes in N . For example, the nodes MS3[s = 5, d = 4] and
MS5[s = 4, d = 3] fulfill the Mixing via an Intermediate Flask
recipe shown in Equation 1.

3.2 Planning
Planning is the process by which students use recipes to compose
basic and complex actions towards completing tasks using Virtu-
alLabs . Formally, a plan is an ordered set of basic and complex
actions, such that each complex action is decomposed into sub-
actions that fulfill a recipe for the complex action. Each time a
recipe for a complex action is fulfilled in a plan, there is an edge
from the complex action to its sub-actions, representing the recipe
constituents.

Figure 3 shows part of a plan describing part of a student’s inter-
action when solving the Oracle problem. The leaves of the trees
are the actions from the student’s log, and are labeled by their or-
der of appearance in the log. For example, the node labeled with
the complex action MSD[s = 1 + 5, d = 3] includes the activ-
ities for pouring two solutions from flask ID 1 and ID 5 to flask
ID 3. The pour from flask ID 5 to 3 is an intermediate flask pour
(MIF[s = 5, d = 3]) from flask ID 5 to ID 3 via flask ID 4. The
root of the plan represents te complex action of pouring three sub-
stances from flasks ID 1, 5 and 6 to flask ID 3.

In a plan, the constituent sub-actions of complex actions may in-
terleave with other actions. This way, the plan combines the free-
order nature of VirtualLabs recipes with the exploratory nature of
students’ learning strategies. Formally, we say that two ordered
complex actions interleave if at least one of the sub-actions of the
first action occurs after some sub-action of the second action. For

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

16

Figure 4: Example of an Explanation containing a Single Plan

Figure 5: Example of an Explanation containing Two Plans,
one of which has an open frontier

example, the nodes MS3[s = 5, d = 4] and MS5[s = 4, d = 3]
and MS2[s = 6, d = 8] and MS4[s = 8, d = 3] both fulfill the
Mixing via an Intermediate Flask recipe shown in Equation 1, but
they are interleaved in the log. This interleaving quality makes the
plan recognition task even more challenging.

4. ONLINE PLAN RECOGNITION
In this section we address the problem of on-line recognition in
which agents’ plans need to be inferred in real-time during exe-
cution. On-line recognition is essential for settings in which it is
necessary to generate interventions to users. In ELEs, such in-
tervention can provide feedback to students about their progress,
alerting them to recurring mistakes or giving them hints about next
steps during their exploration.

The fact that the interaction sequence is not known in advance re-
quires to maintain the set of all plans that can explain the observa-
tions, including leaving place-holders for actions in the plan that re-
late to unseen future activities. Following Geib and Goldman [12],
we define an explanation of actions O at time t a set of plans, such
that there is an injective mapping from each action in O to a leaf
in one of the plan instances. Each plan in an explanation describes
a non-overlapping subset of the actions O. Some leaves in an ex-
planation may not be included in O, and describe actions that are
expected to appear in the future. These leaves are called the open
frontier of the plan.

To illustrate, consider the recipes for VirtualLabs and the following
explanations: Figure 4 shows a possible explanation for the obser-
vation sequence SM [s = 2, d = 1], SM [s = 3, d = 1], SM [s =
5, d = 1], SM [s = 6, d = 1] in which all of the actions are con-
stituents of the complex action MSD.1 The explanation consists
of a single plan.

Figure 5 shows a possible explanation for the same observation se-
quence, but in this case, the explanation consists of two plans. Here,
the bold action SM [s = 1, d = ∗] represents a future (unseen) ob-
servation and is in the plan frontier. If the fifth observation turns
1For expository purposes we have omitted the parameters from
nodes above the leaves.

out to be an SM action with s = 1 (the parameter d does not hold
any constraints), then the algorithm will incrementally combine this
observation into the explanation. Otherwise, a third plan instance
will be added to the explanation that matches the new observation,
leaving SM [s = 1, d = ∗] in (and possibly adding new actions to)
the plan frontier. We note that the plan frontier may also include
complex actions, allowing to reason about future higher-level ac-
tivities for which none of the constituents have been observed. The
fact that the algorithm needs to maintain explanations for unseen
observations is a significant computational challenge, as the possi-
ble number of explanations grows exponentially with the number
of observations.

5. CRADLE AND PHATT
The purpose of this section is to describe the state-of-the art in on-
line plan recognition approach called PHATT, and our proposed
extension to this approach for recognizing students’ activities in
ELEs.

We define the on-line plan recognition as follows: Given a set of
observation at time t, output a set of explanations such that each ex-
planation in the set can be used to derive the observations. PHATT
is a top-down probabilistic algorithm that incrementally builds the
set of possible explanations for explaining an observation sequence.
PHATT works as follows: For each observation ot+1, it takes the
set of the possible explanations for the previous observations Ot,
and tries to incorporate the new observation into each of the expla-
nations in the set. This can be done either by integrating the new
observation into one of the existing plans of the explanation, or by
adding the observation as the first step of a new plan that will be
added to the forest of plans in the explanation.

5.1 Using Filters
We now describe the basis for our proposed extension to PHATT,
which is constraining the space of possible explanations in a way
that reflect students’ use of educational software. Our approach
is called CRADLE (Cumulative Recognition of Activities and De-
creasing Load of Explanations).2

Cradle extents the PHATT algorithm by constraining the space of
possible explanations. We designed several “filters” that reduce the
size of the explanation set in a way that reflects the intended use of
plan recognition in ELEs. Specifically, the filters aim to produce
complete, parsimonious and coherent explanations of students’ in-
teractions that can be easily understood by teachers and education
researchers. We detail these filters below:

Explanation size This filter prefers explanations with smaller num-
ber of plans. Specifically, we discard explanations in which
the number of plans is larger than a pre-computed threshold
(the average number of plans per explanation).

Aging This filter prefers explanations in which successive obser-
vations extend existing sub-plans in the explanation rather
than generate new plans. We discard explanations in which
observations have not extended an existing plan for a given
number of iterations.

2Also, cradle is the name of the mechanical contrivance used in
placer mining, consisting of a box on rockers and moved by hand,
used for washing out the gold-bearing soil, leaving only nuggets of
gold.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

17

Figure 3: A partial plan for a student’s log

Frontier size This filter prefers explanations which makes fewer
commitments about future observations. It measure the amount
of actions in the frontier that exist in each explanation, and
discard explanations where this amount is above the average.

Probability This filter prefers explanations with a higher likeli-
hood. It discards explanations whose probability of generat-
ing the observation sequence is lower than the average prob-
ability of the other explanations.

5.2 Augmenting PHATT
Figure 6 describes how CRADLE extends PHATT using the fol-
lowing methods, which we outline in some level of abstraction.

• Expand. Given a set of explanations that derive Ot, it is
given a new observation ot+1, this method creates all pos-
sible subplans in which ot+1 is a leaf, and tries to combine
each of these subplans in all possible ways to each explana-
tion. Each such subplan can be combined in two ways: (1)
combineInExistingTrees - if the root of the subplan matches
one of the plan frontier items, it replaces the frontier item
with the subplan (replacing the placeholder with a concrete
observation) or (2) extendWithANewTree - if the root of the
subplan matches a possible goal, it is adding the subplan as
the top levels of a new plan in the explanation’s forest of
plans.

• Filter. This function takes a set of explanations, calculates
the average age, frontier size and amount of trees per expla-
nation and filtered away all explanations with values above
average. This means it prefers explanations with small fron-
tier (less future expected observations), small age (observa-
tions continue existing plans instead of creating new ones)
and small amount of trees (observations related to the same
plan rather than describe different plans).

• Main. This is the main function of the new recognition pro-
cess. It is made out of the two previous described stages -

Extend and Filter - performed alternatly for each new obser-
vation encountered.

6. EMPIRICAL METHODOLOGY
The purpose of this section is to evaluate CRADLE to PHATT al-
gorithm for real-world data sets of students’ interactions with Vir-
tualLabs . The PHATT approach is representative of an array of
algorithms in the literature for performing on-line plan recognition
by maintaining sets of observations (see for example the ELEXIR
and YAPPR algorithm [13, 15]) and would behave similarly on our
ELE data sets.

Specifically, we sampled 16 logs of students’ interactions who solved
two problems. The first was the Oracle problem described earlier.
The second problem was called “Unknown Acid” and required stu-
dents to determine the concentration level of an unknown solution.
The length of the logs were chosen to have a wide range, between
4 to 152 actions.

6.1 Completeness and Run-time
The number of explanations maintained by the PHATT approach
grows exponentially in the number of observations. It can be shown
that for n observations and a set g of possible extensions for an
explanation, the number of possible explanations is bounded by
n ∗ |g|n. To illustrate, a 4 observation log outputted 142 differ-
ent explanations, and a log of 12 observations generated more than
10,000 explanations. Most of these explanations included an abun-
dance of plan instances with extremely large frontiers, clearly not
the most coherent descriptions of the students’ work.

Figure 7 shows the performance obtained using PHATT, augmen-
tation of PHATT with single filter, and CRADLE. The x-axis in the
figure corresponds to ranges of different log sizes. The y-axis de-
termines the success ratio by measuring whether the algorithm was
able to terminate and produce the explanations describing the stu-
dent’s activities within an upper bound of two hours of CPU time.
As shown by the figure, PHATT was not able to terminate on logs

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

18

1: function EXPAND(o,Exps) . o: a new observation, Exps is
the set of all explanations until o

2: newExps = []
3: for all explanation e ∈ Exps do
4: newExps += e.combineInExistingTrees(o)
5: newExps += e.extendWithANewTree(o)
6: end for

return newExps
7: end function

8: function FILTER(Exps) . Exps is the set of all explanations
collected so far

9: filteredExps = []
10: for all explanation e ∈ Exps do
11: if e.age≤ averageAge & e.frontierSize≤ averageFron-

tierSize & e.trees ≤ averageTrees then
12: filteredExps += e
13: end if
14: end for

return filteredExps
15: end function

16: function MAIN(Obs) . Obs is the set of all observations
17: tempExps = [〈emptyExp〉] . Only one explanation - the

empty explanation
18: for all observation o in Obs do
19: allExps = Expand(o, tempExps)
20: filteredExps = Filter(allExps)
21: tempExps = filteredExps
22: end forreturn tempExps
23: end function

Figure 6: Main functions of the CRADLE algorithm

over 4 actions within this designated time frame. In contrast, CRA-
DLE was able to significantly increase the performance of PHATT
algorithm by applying the filters. Specifically, applying the differ-
ent filters independently allowed to improve the success ratio for
some of the logs, with the highest improvement attributed to the
CRADLE approach which applied the age, frontier size and expla-
nation size filters. Interestingly, there was not a single filter method
that outperformed all of the other methods for all log size.

Next, we compare the run-time of CRADLE and PHATT on frag-
ments of logs for which PHATT was able to terminate. Figure 8
shows the average run-time on each size of log, measured in sec-
onds, presented in a logarithmic scale. It can be seen that the aver-
age run-time of CRADLE is exponentially better than the average
run-time of PHATT for the aforementioned logs.

6.2 Domain Expert Evaluation
In this section, we show that although the CRADLE approach re-
duces the number of possible explanations that is maintained by the
plan recognition algorithm, it does not hinder the correctness of the
algorithm. To this end, we sampled 20 logs of the Oracle problem
and presented the output of the PHATT and CRADLE approach to
a domain expert.3. We ran the cut logs on PHATT and CRADLE
and collected the outputted set of explanations for each log. For

3Logs of length greater than 6 actions were cut arbitrarily at
6,7,9,10 and 11 actions, in order to simulate incomplete interac-
tion sequences and to allow PHATT to terminate on these logs in
reasonable time.

Figure 7: Performance of PHATT, CRADLE and Single Filter
Variants on Various Log Sizes

Figure 8: Runtime of PHATT and CRADLE

each of the approaches, we chose to present the domain expert with
the explanation that did not include an open frontier (that is, the ex-
planations provided a complete description of the activities of the
student). If there was no explanations without an open frontier, we
chose the most likely explanation as measured by its probability.

Out of the 20 examined logs, in 9 logs PHATT and CRADLE’s ex-
planations were the same (though CRADLE was able to output the
solution exponentially faster). We presented the explanations for
which CRADLE and PHATT different to a domain expert, who is
one of the developers of the VirtualLabs software, who compared
between the two explanations. We did not label the explanations
with the algorithm that generated them. In 8 out of these 11 logs,
the domain expert preferred explanations which were presented by
CRADLE over the explanations of PHATT. In one case, the do-
main expert said none of the explanations describe the activities of
the student correctly. To illustrate, Figure 4 shows the explanation
outputted by CRADLE for a particular log which included a mix of
4 substances into a single flas. Figure 9 shows the PHATT explana-
tion for that same log, using two plans to explains the observation
sequence. In this case, the domain expert preferred the CRADLE
explanation, which explained the observation sequence using a sin-
gle plan.

7. DISCUSSION AND FUTURE WORK
Our results show that the CRADLE approach was able to extend
the state-of-the-art (PHATT algorithm) towards successfully rec-

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

19

Figure 9: Example of PHATT explanation

ognizing students’ activities in an ELE for chemistry education.
We showed that CRADLE was able to produce better explanations
than PHATT, and with exponentially faster running time. Specif-
ically, the ouputted explanations of CRADLE were as good as or
better than PHATT in 18 out of the 20 logs that we sampled, giving
CRADLE a success rate of 90% at an exponentially lower run-
time. The paper demonstrate that on-line plan recognition in ELEs
is a challening computational problem, and show the efficacy of
the CRADLE approach in addresssing these problems by reducing
the number of explanations maintaind by the algorithms in an in-
telligent way. We are currently pursuing work with CRADLE in
several directions. First, we are evaluating the scalability of the
CRADLE approach by evaluating it with different ELEs for statis-
tics education, as well as simulated data that simulates users’ in-
teractions with software. This ELE is significantly different than
VirtualLabs in that student’s interactions are more likely to engage
in trial-and-error, which we predict will further challenge the recog-
nition problem. Second, we are developing a formal langauge that
explains students’ activities with ELEs that will help us construct
more accurate grammars for the recognition algorithms.

8. ACKNOWLEDGEMENTS
This work was supported in part by Israeli Science Foundation
Grant no. 1276/12.

9. REFERENCES
[1] S. Amershi and C. Conati. Automatic recognition of learner

groups in exploratory learning environments. In Intelligent
Tutoring Systems (ITS), 2006.

[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The Journal
of Learning Sciences, 4(2):167–207, 1995.

[3] D. Avrahami-Zilberbrand, G. Kaminka, and H. Zarosim. Fast
and complete symbolic plan recognition: Allowing for
duration, interleaved execution, and lossy observations. In
Proc. of the AAAI Workshop on Modeling Others from
Observations, MOO, 2005.

[4] N. Blaylock and J. F. Allen. Statistical goal parameter
recognition. In ICAPS, volume 4, pages 297–304, 2004.

[5] H. H. Bui. A general model for online probabilistic plan
recognition. In IJCAI, volume 3, pages 1309–1315, 2003.

[6] M. Cocea, S. Gutierrez-Santos, and G. Magoulas. S.: The
challenge of intelligent support in exploratory learning
environments: A study of the scenarios. In Proceedings of
the 1st International Workshop in Intelligent Support for
Exploratory Environments on European Conference on
Technology Enhanced Learning, 2008.

[7] C. Conati, A. Gertner, and K. VanLehn. Using Bayesian
networks to manage uncertainty in student modeling. User
Modeling and User-Adapted Interaction, 12(4):371–417,
2002.

[8] C. Conati, A. Gertner, and K. Vanlehn. Using bayesian

networks to manage uncertainty in student modeling. User
modeling and user-adapted interaction, 12(4):371–417,
2002.

[9] A. Corebette, M. McLaughlin, and K. C. Scarpinatto.
Modeling student knowledge: Cognitive tutors in high
school and college. User Modeling and User-Adapted
Interaction, 10:81—108, 2000.

[10] Y. Gal, S. Reddy, S. Shieber, A. Rubin, and B. Grosz. Plan
recognition in exploratory domains. Artificial Intelligence,
176(1):2270 – 2290, 2012.

[11] Y. Gal, E. Yamangil, A. Rubin, S. M. Shieber, and B. J.
Grosz. Towards collaborative intelligent tutors: Automated
recognition of users’ strategies. In Intelligent Tutoring
Systems (ITS), 2008.

[12] C. Geib and R. Goldman. A probabilistic plan recognition
algorithm based on plan tree grammars. Artificial
Intelligence, 173(11):1101–1132, 2009.

[13] C. W. Geib. Delaying commitment in plan recognition using
combinatory categorial grammars. In IJCAI, pages
1702–1707, 2009.

[14] C. W. Geib and R. P. Goldman. A probabilistic plan
recognition algorithm based on plan tree grammars. Artificial
Intelligence, 173(11):1101–1132, 2009.

[15] C. W. Geib, J. Maraist, and R. P. Goldman. A new
probabilistic plan recognition algorithm based on string
rewriting. In ICAPS, pages 91–98, 2008.

[16] B. Grosz and S. Kraus. The evolution of sharedplans.
Foundations and Theories of Rational Agency, pages
227–262, 1999.

[17] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and
H. Irandoust. Opponent behaviour recognition for real-time
strategy games. In Plan, Activity, and Intent Recognition,
2010.

[18] S. Katz, J. Connelly, and C. Wilson. Out of the lab and into
the classroom: An evaluation of reflective dialogue in andes.
FRONTIERS IN ARTIFICIAL INTELLIGENCE AND
APPLICATIONS, 158:425, 2007.

[19] D. V. Pynadath and M. P. Wellman. Probabilistic
state-dependent grammars for plan recognition. In
Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, pages 507–514. Morgan Kaufmann
Publishers Inc., 2000.

[20] K. VanLehn, C. Lynch, K. Schulze, J. A. Shapiro, R. H.
Shelby, L. Taylor, D. J. Treacy, A. Weinstein, and M. C.
Wintersgill. The Andes physics tutoring system: Lessons
learned. International Journal of Artificial Intelligence and
Education, 15(3), 2005.

[21] M. Vee, B. Meyer, and K. Mannock. Understanding novice
errors and error paths in object-oriented programming
through log analysis. In Proceedings of Workshop on
Educational Data Mining at ITS, pages 13–20, 2006.

[22] D. Yaron, M. Karabinos, D. Lange, J. Greeno, and
G. Leinhardt. The ChemCollective–Virtual Labs for
Introductory Chemistry Courses. Science, 328(5978):584,
2010.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

20

What is the Source of Social Capital?

The Association Between Social Network Position and Social Presence in
Communities of Inquiry

Vitomir Kovanovic
∗

School of Interactive Arts and
Technology

Simon Fraser University
250 - 13450 102nd Avenue

Surrey, BC, V3T0A3 Canada
vitomir_kovanovic@sfu.ca

Srecko Joksimovic
School of Interactive Arts and

Technology
Simon Fraser University

250 - 13450 102nd Avenue
Surrey, BC, V3T0A3 Canada

sjoksimo@sfu.ca

Dragan Gasevic
School of Computing Science

Athabasca University
1 University Drive

Athabasca, AB, T9S 3A3
Canada

dgasevic@acm.org

Marek Hatala
School of Interactive Arts and

Technology
Simon Fraser University

250 - 13450 102nd Avenue
Surrey, BC, V3T0A3 Canada

mhatala@sfu.ca

ABSTRACT
It is widely accepted that the social capital of students – developed
through their participation in learning communities – has a signif-
icant impact on many aspects of the students’ learning outcomes,
such as academic performance, persistence, retention, program sat-
isfaction and sense of community. However, the underlying social
processes that contribute to the development of social capital are
not well understood. By using the well-known Community of In-
quiry (CoI) model of distance and online education, we looked into
the nature of the underlying social processes, and how they relate
to the development of the students’ social capital. The results of
our study indicate that the affective, cohesive and interactive facets
of social presence significantly predict the network centrality mea-
sures commonly used for measurement of social capital.

General Terms
Social Network Analysis, Community of Inquiry, Social Presence

1. INTRODUCTION
Asynchronous online discussions have been frequently used both in
blended and fully online learning [41]. However, with the broader
adoption of social-constructivist pedagogies and the shift towards
the collaborative learning [2], they are viewed as one of the impor-
tant study tools for the computer-supported collaborative learning
(CSCL) within the online learning environments. Their use has
produced an enormous amount of data about the interactions be-
tween students and instructors [21]. The distance education and
CSCL research communities have tried to use these data for gain-

∗Corresponding Author

ing insights into the very complex nature of the learning phenom-
ena. Among the different ways of researching students’ social in-
teractions Quantitative Content Analysis (QCA) [38, 19] and Social
Network Analysis (SNA) [52, 46] represent two commonly used
methods.

A widely accepted model of distance education which makes a use
of QCA is the Community of Inquiry (CoI) model [28]. According
to Garrison and Arbaugh [30], it is one of the leading models of
distance education that describes the key constructs of the overall
educational experience. The CoI model provides the in-depth as-
sessment of teaching, cognitive and social dimensions of learning
phenomena, and how those three dimensions affect: i) the overall
success of the learning process, and ii) the attainment of learning
objectives [28]. Empirical research showed that the social dimen-
sion of learning plays an important role in the learning communities
by mediating the relationship between the teaching and cognitive
dimensions [31]. Still, the CoI model does not explicitly address
the question of student social networks, their structure, or the ef-
fects they have on the overall educational experience and learning
outcomes. Given the amount of evidence from the studies of stu-
dent social networks [46], this warrants further investigation.

One of the central aspects in the study of social networks is the
idea of the social capital [13, 12]. Generally speaking, social capi-
tal can be defined as a value resulting from occupying a particularly
advantageous position within a social network [12]. Over the years,
the study of social capital has become increasingly popular in the
field of education [14]. The large number of studies in the distance
education field indicated an important connection between the stu-
dents’ social capital and many important aspects of education and
learning including academic performance [33, 15, 7, 49, 43], re-
tention [23], persistence [50], program satisfaction [7], and sense
of community [17]. Still, research of the student social networks
have involved mostly isolated studies that were focused on the un-
derstanding of the relationship between a particular set of con-
structs selected by the researchers and the students’ network po-
sition. Likewise, the underlying mechanisms responsible for the
observed social structure are typically not addressed, which is un-
derstandable given the lack of educational theories that explicitly

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

21

take into the consideration student social networks.

In this paper, we present the results of the study which explored
the links between the CoI model and the social network analysis
of student networks. With the current advancement within the CoI
research and most recent validations of the model [31], the model
is mature enough and empirically sound to provide this missing
theoretical foundation for understanding the structure of students’
social networks. Likewise, the understanding of the structure of
social networks can provide a more comprehensive overview of the
social dimension of learning that it is already accounted for in the
research of the CoI model.

Given the exploratory nature of this study, we focused on the re-
lationship between social capital and social processes which are
indicative of the student social presence development. The main
question we aim to answer, in this paper is which social processes,
and to what extent, are indicative of the development of the social
capital in a communities of inquiry? Given the detailed charac-
terization of social aspects of learning in the CoI model through
the construct of social presence, we explored how this construct
relates to the students’ social capital, as characterized by their po-
sition in social networks formed around communities of inquiry.
As the community of inquiry provides characterization of different
sociological processes that constitute social presence, we looked
how each of them contributed to the development of social capital
withing students’ social network.

2. THEORETICAL BACKGROUND
2.1 Social network analysis
2.1.1 Social capital

The study of social networks has attracted much attention in social
and behavioral sciences [17, 14]. The focus in social network anal-
ysis is on the study of relationships, also known as ties, between
a set of actors, or participants [14]. Through the relationships,
members of a network engage in sharing, exchange or delivery of
various resources including information [36]. Social network anal-
ysis draws much of its ideas from the mathematical graph theory
and the sociometric studies of the human relationships [52].

An important concept in the study of social networks is the idea of
relation strength [34], which is used to make a distinction between
strong social ties, which require a substantial commitment (e.g.,
family, close friends), and weak social ties which do not obligate a
strong commitment (e.g., acquaintances). Likewise, the idea of net-
work brokerage builds on the fact that in a large network, the den-
sity of relationships is not uniform, which indicates the existence of
smaller sub-communities within a large social network [12, 13]. In
his seminal paper, Granovetter [34] stressed the tremendous impor-
tance of weak social ties, as they provide access to novel informa-
tion from different parts of a social network and provide pathways
of information exchange between sub-communities. An individ-
ual who possesses a large number of weak ties in many different
sub-communities is able to take advantage by combining diverse
information coming from different sub-communities, and to even
control to a certain degree the spread of information from one sub-
community to another [12]. This ability to create a value from oc-
cupying a particular position in a social network is known as so-
cial capital [13]. To study and assess values of different network
positions, the principles of graph theory are the most commonly
used [52]. The notion of centrality is particularly important. This
notion captures the relative importance of individuals in social net-
works [52]. Given the complexity of measuring actors’ relative
importance, a large number of centrality measures were proposed
over the years out of which degree, closeness and betweenness cen-
tralities are the most frequently used [26].

2.1.2 Social network analysis in education
While social network analysis has been widely adopted in social
and behavioral sciences, its adoption in the field of education was
initially very limited [14]. According to Carolan [14], the main
reasons for this are “overemphasis on individual explanations of
educational opportunities and outcomes, a quest for scientific le-
gitimacy, and a preference for experimental designs that estimate
the causal effects of ‘educational interventions’ ” [14, 32]. Never-
theless, over the years, the number of studies that indicated the im-
portance of social connections on the overall academic experience
has grown considerably. A good example is the study of students’
overall academic experience from early 1990s by Astin [5] in which
he concluded that: i) the environment made by the instructors and
students is crucial, and ii) the single most important environmental
influence is peer group.

In the context of distance education, there have been many studies
recently that looked at the connection between several important
learning constructs and social capital of students. Likewise, in the
fields of educational data mining (EDM) [6] and learning analyt-
ics [40], the interest in SNA has been growing. The recent review
of the EDM field by Romero and Ventura [44] noted a growing in-
terest in SNA; likewise, in the learning analytics community, SNA
was recognized as one of the most important techniques of social
learning analytics [11, 25].

As expected, academic performance was the focus of a large ma-
jority of the studies [33, 50, 15, 7, 49, 43] that have found positive
effects of student positions in social networks on academic perfor-
mance. Still, academic performance was not the only construct that
was examined. The study of retention by Eckles and Stradley [23]
found that for each friend that leaves an academic degree program
makes a student five times more likely to leave as well, while ev-
ery friend who stays makes a student 2.25 times more likely to
also stay in college. The study of student persistence and integra-
tion by Thomas [50] found that students with a broader set of ac-
quaintances are more likely to persist in the academic program of
a higher education institution, and that students with a higher pro-
portion of ties outside their peer group also perform better academi-
cally. This is aligned with the findings of Dawson [17] who showed
that students’ sense of community membership was positively re-
lated to their closeness and degree centrality measures. Similarly,
in the study of a team-based MBA program by Baldwin et al. [7], it
was found that the high embeddedness in the friendship network in-
creased students’ perception of learning and enjoyment in the pro-
gram; as well, the centrality in the communication networks was
found to be positively linked with the student grades.

One important thing to notice is that the majority of the studies
did not draw their theoretical foundations of network formation
from the established educational theories. As pointed out by Riz-
zuto et al. [43], there is a lack of “theory of academic performance
that combines individual characteristics as well as social and in-
frastructural factors” (p180). The main exception is the use of
retention theories by Tinto [51] and Bean [8] in the study of stu-
dent persistence and retention. The other notable theories that are
adopted, such as Feld’s theory of focused choice [24], or Lin’s the-
ory of social resources [39] are general sociological theories that
do not take into the account the specific of learning processes and
educational contexts.

2.2 The community of inquiry (CoI) model
2.2.1 Overview

The Community of Inquiry (CoI) model is a general model of dis-
tance education which explains the constructs that contribute to the
overall learning experience. It is rooted in the social constructivist

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

22

philosophy, most notably in the work of John Dewey [20], and is
particularly well suited for understanding different aspects of learn-
ing within the learning communities. The main goal of the CoI
model was to define the constructs that characterize a worthwhile
educational experience, and a methodology for their assessment.
The CoI model consists of the three interdependent constructs, also
known as presences, that together provide a comprehensive cover-
age of the distance learning phenomena:

1) Cognitive Presence explains different phases of students’ knowl-
edge construction process through social interactions within a
learning community [28].

2) Teaching Presence describes the instructor’s role in course de-
livery and during course design and preparation [3].

3) Social Presence explains the social relationships and the social
climate within a learning community that have a significant ef-
fect on the success and quality of social learning [45].

The CoI model is well-researched and widely accepted within the
distance learning research community as shown by a recent two-
part special issue of The Internet and Higher Education journal [1].
The model defines its own coding schemes that are used to assess
the levels of the three presences through the QCA in transcripts of
asynchronous online discussions. More recently, instead of rely-
ing on the QCA, a CoI survey instrument [4] was developed as an
alternative way of assessing the levels of the three presences.

2.2.2 Social presence
Social presence is defined as the “ability of participants in a com-
munity of inquiry to project themselves socially and emotionally,
as “real” people (i.e., their full personality), through the medium
of communication being used” [28, p3]. Critical thinking, social
construction of knowledge and the development of the cognitive
presence are more easily developed in the cases where the appro-
priate levels of social presence have been established [28].

Given the form of delivery in distance education, face-to-face com-
munication that is typical for more traditional forms of education
delivery is not possible. Hence, establishing and sustaining social
presence is more challenging. Distance education was often criti-
cized as being inferior to more traditional forms of education, par-
ticularly because of the inability to create social presence between
the members of a learning community [2]. However, according
to Garrison et al. [28], the form of communication is not the solely
factor determining the development of social presence. A key as-
pect of establishing social presence in face-to-face settings are vi-
sual cues, while participants in online communities use different
techniques – such as emoticons – to convey the affective dimension
of communication that lacks in typical text-based communications.

As described by Rourke et al. [45], the origins of social presence
can be found in the work of Mehrabian [42] and his notion of im-
mediacy which is defined as “the extent to which communication
behaviors enhance closeness to and nonverbal interaction with an-
other” [42, p203]. This, and the set of follow-up studies by com-
munication theorists, defined the theoretical background on which
the construct of social presence was based [45]. The social pres-
ence in the CoI model is defined as consisting of three different
dimension of communication:

1) Affectivity and expression of emotions: Since emotions are
strongly associated with motivation and persistence, they are
indirectly connected to critical thinking and communities of in-
quiry. More formally, emotional expression has been indicated
by the “ability and confidence to express feelings related to the
educational experience” [28, p99].

2) Interactivity and open communication: In order to promote
the development of higher-order critical thinking skills, the no-
tion that the other side is listening and attending is crucial [45].
Thus, activities such as praising of the student work, actions, or
comments contribute to the teacher immediacy, which in turn
leads to affective, behavioral and cognitive learning [45]. Sim-
ilarly, open communication is defined as “reciprocal and re-
spectful exchanges of messages” [28, p100] and together with
interactivity provide a basis on which productive social learning
can be established.

3) Cohesiveness: The activities that “build and sustain a sense of
group commitment” [28, p101] define cohesiveness. The goal
is to create a group where the members possess strong bonds
to both i) each other and ii) the group as a whole. This in turn
stimulates productive learning and the development of critical
thinking skills.

Given that there are three different dimensions of social presence,
the coding scheme for social presence (see Table 1) defines a list
of indicators for each dimension. By looking at the content and the
timing of each message, it is possible to see how the social climate
unfolded during the course delivery. This provides a way of un-
derstanding and evaluating the different pedagogical interventions
with respect to the development of a productive social climate in a
learning community which enables for the meaningful social inter-
actions [53].

2.3 Research Question: Characterization of
social capital through social presence

As indicated in the previous sections, there is a strong evidence that
social capital plays an important role in the shaping of the overall
learning experience. The main research question that we investi-
gate in this paper:

What is the relationship between the students’ social
capital, as captured by social network centrality mea-
sures, and students’ social presence, as defined by the
three categories in the Community of Inquiry model?

The higher the social capital of a learner is, the more capable the
learner is in terms of learning opportunities, information exchange,
or integration within the academic environment. Still, the origins
of social capital are not fully understood. Why certain students
occupy advantageous positions in social networks? What are the
social processes that enable them to take advantage of their social
relationships? As for now, not a single theory of learning addresses
the question of social capital directly, even though the impact of
social context on learning is widely acknowledged.

As indicated by the previous study by de Laat et al. [18], content
analysis techniques can be used in combination with SNA to pro-
vide a more comprehensive view of the social learning processes.
In this paper, we propose the use of the Community of Inquiry
model, given its holistic view of educational experience and exten-
sive empirical evaluation by the research community [29], with the
aim to characterize the origins of social capital in communities of
inquiry. The CoI model description of important behavioral indices
that contribute to the development of the positive social climate
could be used to interpret the observed differences among students
positions in a social network.

Likewise, the synergistic effect of using those two perspectives on
student interactions provide a value for the CoI model by emphasiz-
ing the effects of the theorized social processes. For example, are
interactivity and open communication important for the develop-
ment of social capital? Are the students who show group cohesion
the ones who take brokerage positions? Recently, there have been

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

23

Table 1: Social Presence Categories and Indicators as defined by Rourke et al. [45]
Category Code Name Definition

Affective A1 Expression of emotions Conventional expressions of emotion, or unconventional expression of emotion,
includes repetitions punctuation, conspicuous capitalization, emoticons.

A2 Use of humor Teasing, cajoling, irony, understatements, sarcasm.
A3 Self-disclosure Presenting details of life outside of class, or express vulnerability.

Interactive or Open
Communication

I1 Continuing a thread Using reply feature of software rather than starting a new thread.
I2 Quoting from others’ messages Using software features to quote others entire messages or cutting and pasting

selections of others’ messages.
I3 Referring explicitly to others’ messages Direct references to contents of others’ posts
I4 Asking questions Students ask questions of other students or the moderator.
I5 Complementing, expressing appreciation Complimenting others or contents of others’ messages.
I6 Expressing agreement Expressing agreement with others or content of others’ messages.

Cohesive C1 Vocatives Addressing or referring to participants by name.
C2 Addresses or refers to the group using

inclusive pronouns
Addresses the group as we,us, our, group.

C3 Phatics, salutations Communication that serves a purely social function: greetings, closures.

some attempts [47, 48] that make use of SNA in conjunction with
the CoI model to provide insights into particular aspects of learn-
ing, such as self-regulation [9]. Still, the central question of social
capital is left unexplored and that is the goal in our study.

3. METHODS
3.1 Dataset
For our study, we used the dataset consisting of six offers (Win-
ter 2008, Fall 2008, Summer 2009, Fall 2009, Winter 2010, Win-
ter 2011) of the masters level software-engineering course offered
through the fully online instructional condition at a Canadian open
public university. The course is 13 weeks long, research-intensive,
and focuses on understanding of current research trends and chal-
lenges in the area of software engineering. Students were requested:
i) to participate in online discussions for which they received 15%
of their final grade (see details in [32]), and ii) to work on a four
tutor marked assignments. Overall, 81 student created the total of
1747 discussion messages which were then used as the main data
source for this study. The total number of students and messages
for all six course offerings are shown in Table 2.

3.2 Social network measures
In order to measure students’ social capital we extracted student so-
cial network graphs from the interactions on the discussion boards.
We extracted directed social graphs, so that whenever a studentX1
responded to a message from another student X2, we created a di-
rect relationship between the two of them (X1 ⇒ X2). Since
two students can exchange more than one message, we extracted a
weighted graph where the weights corresponded to the number of
exchanges between a given pair of students. We created a separate
social graph for each of the course offerings independently and the
graph densities for each offering are shown in Table 2.

From the constructed social network graphs, we extracted the three
network centrality measures which are most frequently used for the
study of the educational social networks [14]:

1) Betweenness centrality captures brokerage opportunities of ac-
tors in a network and is the most directly related to the social
capital construct [13, 12]. For a given actor A, it is mathemat-
ically defined as the number of shortest paths between any two
other actors that “pass through” the actor A [26].

2) Degree centrality measures the total number of relationships
that each participant has [26]. Given that we constructed the di-
rected social graphs, we considered separately the in-degree and
out-degree centrality measures. They represent the total number
of incoming and outgoing relations for a given individual, re-
spectively. Degree is the simplest centrality measure, very easy

Table 2: Course offering statistics
Student count Message count Graph density

Winter 2008 15 212 0.52
Fall 2008 22 633 0.69
Summer 2009 10 243 0.84
Fall 2009 7 63 0.58
Winter 2010 14 359 0.84
Winter 2011 13 237 0.77

Average 13 291 0.71
Total 81 1747

Table 3: Descriptive statistics of social network metrics
Mean SD Min Max

Betweenness 9.04 14.51 0.00 74.20
In-degree 19.84 8.62 4.00 42.00
Out-degree 19.86 9.37 3.00 44.00
In-closeness 0.09 0.04 0.04 0.17
Out-closeness 0.08 0.04 0.03 0.18

to calculate, as it takes into account only the direct relationships
between the actors [52].

3) Closeness centrality represents the distance of an individual
participant in the network from all the other network partici-
pants [26]. It is defined as the inverse of the sum of the distances
to all other participants [14], and hence takes into account both
direct and indirect relationships [52]. Much like degree central-
ity, given that the student graphs are directed, we calculated the
in-closeness and the out-closeness centrality measures. For a
given actor A, in-closeness centrality measures how many indi-
rect steps are needed for all other actors to reach the actor A,
while out-closeness measures how many indirect steps the actor
A requires in order to reach all the other actors in the network.

Table 3 shows the descriptive statistics for all five extracted central-
ity measures. We can see that on average the students wrote around
20 messages, and also received on average around 20 responses.
This level of activity was expected, as by the course design the stu-
dents were expected to spend a significant amount of time on the
online discussions. Still, from the descriptive statistics reported in
Table 3, we can observe the large differences between the individ-
ual students in the case of all five centrality measures.

3.3 Message coding
In order to assess students’ social presence, all messages were man-
ually coded by two coders in accordance with the coding scheme
defined by Rourke et al. [45]. As the individual messages can

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

24

Table 4: Social Presence Indicators
Category Code Indicator Count Percent

Agreement

Affective A1 Expression of emotions 288 (16.5%) 84.4
A2 Use of humor 44 (2.52%) 93.1
A3 Self-disclosure 322 (18.4%) 84.1

Interactive I1 Continuing a thread 1664 (95.2%) 98.9
I2 Quoting from others

messages
65 (3.72%) 95.4

I3 Referring explicitly to
other’s messages

91 (5.21%) 92.7

I4 Asking questions 800 (45.8%) 89.4
I5 Complementing, expressing

appreciation
1391 (79.6%) 90.7

I6 Expressing agreement 243 (13.9%) 96.6
Cohesive C1 Vocatives 1433 (82%) 91.8

C2 Addresses or refers to the
group using inclusive
pronouns

144 (8.24%) 88.8

C3 Phatics, salutations 1281 (73.3%) 96.1

Table 5: Social Presence Categories.
Category Count Percent Agreement

Affective 530 (30.3%) 80.8
Interactive
(Excluded I1 and I5)

1030 (59%) 86.2

Cohesive
(Excluded C1)

1326 (75.9%) 93.4

be simultaneously classified into more than one category of so-
cial presence, each message was coded with three binary codes
indicating whether the message belongs to a particular social pres-
ence category. However, early in the coding process, we observed
an extremely high frequency of some of the indicators in the co-
hesive and interactive categories. Because of this, almost all of
the messages could be classified as both interactive and cohesive,
which would limit the discriminatory power of those two cate-
gories. Thus, to resolve this issue, instead of coding on the levels
of categories, the coding was done on the levels of the individual
indicators, so that each message was coded with the twelve binary
codes (i.e., three indicators of the affective category, six indicators
of the interactive category and three indicators of the cohesive cate-
gory) each indicating an occurrence of a particular social presence
indicator within a given message. This enabled us to look at the
distribution of the individual indicators and to be more selective in
the type of the indicators that we wanted to investigate. Overall, the
coding agreement was high, with all of the indicators reaching per-
cent agreement of at least 84%, and all the coding disagreements
were resolved through discussion between the coders in a follow-
up meeting, after they first coded the messages independently. The
coding results are shown in Table 4. The results show that some of
the indicators were recorded in a disproportionately large number
of messages. Thus, in order to evaluate different aspects of social
presence captured by those three categories, we omitted some of the
indicators from our analysis: i) Continuing a thread, ii) Comple-
menting, expressing appreciation, and iii) Vocatives. We intention-
ally kept the “Phatics, salutations indicator” as its removal would
render the cohesive category in only 8.24% of the messages. By us-
ing the remaining nine indicators, we categories all of the messages
in the corpus, and the final results are shown in Table 5.

3.4 Statistical analysis
In order to investigate the relationships between the three cate-
gories of social presence, as defined by the CoI model, and so-
cial capital, as operationalized through the five network centrality
measures, we conducted backward-stepwise multiple linear regres-
sion analyses [35] for each of the five extracted network centrality

measures. To evaluate different regression models for a particular
centrality measure, we used the popular Akaike Information Crite-
rion (AIC) [35]. In order to control for the inflation of the Type-I
error rate due to multiple statistical significance testing, we used
the Holm-Bonferroni correction [37], also known as the sequential
rejective Bonferroni correction. It provides a control for Type-I er-
rors at a prescribed significance level – in our case α = 0.05 –
while providing a substantial increase in the statistical power over
the commonly used Bonferroni correction [22]. In the case of test-
ing the family of N null-hypothesis and significance level α, the
Holm-Bonferroni method proceeds as follows:

1) Hypothesis with the smallest observed p-value, is tested using
the adjusted significance level α′ = α/N , in the same manner
as in the traditional Bonferroni procedure.

2) However, the next smallest observed p-value is tested using dif-
ferently adjusted significance level α′ = α/(N − 1).

3) The same process repeats up to the hypothesis with the highest
observed p-value which is tested using the unadjusted signifi-
cance level α.

4) The important additional rule is that if any of the hypothesis in
the family gets rejected, then all the subsequent hypotheses are
rejected as well regardless of their observed p-values.

By using differently adjusted statistical significance levels, Holm-
Bonferroni method guarantees that the family-wise error rate is
kept at the prescribed level, while providing a significant increase
in the statistical power over the more commonly used simple Bon-
ferroni correction [22]. We used the Holm-Bonferroni correction
for testing the overall significance of the regression models, and for
testing the significance of the individual predictor variables. In our
case, with five hypothesis tests, the values of the adjusted statistical
significance levels were α = [0.01, 0.0125, 0.0167, 0.0250, 0.05].

We also inspected the QQ-Plots for the signs of the severe deviation
from the normality of residuals, and we assessed the multicollinear-
ity of the three predictor variables using the variance-inflation fac-
tors (VIFs). The QQ-Plots did not reveal deviations from the nor-
mality of the residuals and VIF values were substantially lower than
the typically used thresholds such as 4 or 10 [10]. Thus, we con-
sidered the use of the multiple linear regression appropriate for our
study.

4. RESULTS
The results of the regression analyses are shown in Table 6. The
models for betweenness, in-degree, out-degree and in-closeness
centralities were significant, while the model for out-closeness was
marginally significant.

In the case of betweenness centrality, the multiple regression model
explained 32% of the variability in the students scores of between-
ness centrality. The backwards-stepwise regression analysis selec-
tion using the (AIC) criterion resulted in a regression model con-
sisting of the affective and interactive categories of social presence,
and both variables were found to be statistically significant predic-
tors of betweenness centrality. In terms of their relative importance,
the interactive category had a slightly larger standardized β coef-
ficient than the affective category of social presence, indicating a
slightly larger effect on the students’ betweenness centrality scores.

With respect to degree centrality, the regression models explained
86% and 83% of the variability in the measures of in-degree and
out-degree centralities, respectively. All three predictors were pos-
itively associated with the degree centrality measures, and all three
reached the statistical significance. In terms of their relative impor-
tance, in both models, the interactive category of social presence

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

25

Table 6: Regression results for selected centrality measures after stepwise model selection using AIC criterion.
Betweenness In-degree Out-degree In-closeness Out-closeness

β SE p β SE p β SE p β SE p β SE p

Affective 0.27 0.12 0.024 0.18 0.054 0.001 0.23 0.059 <0.001
Interactive 0.38 0.12 0.002 0.65 0.064 <0.001 0.65 0.07 <0.001 0.27 0.11 0.015 0.37 0.15 0.017
Cohesive 0.2 0.061 0.001 0.14 0.066 0.041 -0.23 0.15 0.137

F (3, 77) 19.6 <0.001 159 <0.001 130 <0.001 6.24 0.015 3.03 0.054
Adjusted R2 0.32 0.86 0.83 0.061 0.048

had the largest standardized β coefficient, while the affective and
cohesive categories had roughly the same standardized coefficients.

Regarding the two closeness centrality measures, the regression
model for in-closeness was statistically significant, explaining 6.1%
of the variability in the students’ in-closeness centrality scores,
while the model for out-closeness failed to reach the significance by
a very small margin. The model for in-closeness consisted of only
the interactive category, which was found to be a statistically signif-
icant predictor of in-closeness centrality. Similarly, the regression
model for out-closeness consisted of the interactive and cohesive
social presence categories, and explained 4.8% of the variation in
the students’ out-closeness centrality scores. In the model for out-
closeness centrality, the only statistically significant predictor was
the interactive category of social presence, while interestingly, the
cohesive category of social presence was negatively associated with
the change in the out-closeness centrality values, although statisti-
cally insignificantly.

5. DISCUSSION
One finding immediately stands out of the regression analyses re-
sults: Interactive social presence is the most strongly associated
with all of the network centrality measures, indicating a signifi-
cant relation with the development of the students’ social capital.
A possible explanation of this lies to some degree in the nature of
students’ social networks. Given that the primary goal of social
networks in online courses is to serve as a communication medium
for fostering of collaborative learning [27], it is reasonable to ex-
pect that interactivity in communication can explain a significant
proportion of the differences in network positions, and ultimately
the differences in the development of students’ social capital. The
reason why the interactive category is had the strongest associa-
tion might be that only after the students have gott familiar with
each other through focused, on-task interactions, and after they
have started developing trust within a learning community, the ex-
pression of emotions and the sense of group belonging begins to
emerge. This is aligned with the findings of Garrison [27] who sug-
gested that interactive social presence is dominant at the beginning
of a course, but decreases over time, while affective and cohesive
social presence increase over time [27]. However, as Garrison [27]
points out, too much of the interpersonal and affective interactions
undermine the productivity of the collaborative learning activities.
There is a certain amount of social interactions that is beneficial
for learning [27], and the focus of the instructional interventions
should be on: i) stimulating the right amount of the different social
interactions that support productive and purposeful collaborative
learning activities, and ii) the development of trust and the sense of
community among the group of learners [17].

One practical implication of these results is that they suggest the
effective way for fostering the productive social climate – and that
is focusing on the student interaction and open communication. In
order to guide the development of the social relationships in a learn-
ing community, it seems that the instructional emphasis should be
on the interventions that require engaging in an open exchange of

ideas and opinions, that would in turn lead to more affective expres-
sion, and eventually to the development of the sense of community
belonging. Still, this hypothesis warrants further investigation, and
in the future we plan to analyze the evolution of the students’ so-
cial presence and the corresponding social network structures over
time, which would shed new light on this important question.

The results of individual network centrality measures revealed that
both in-degree and out-degree centrality measures were significantly
predicted by all the three categories of students’ social presence.
By looking at the description (Section 2.2.2) and the indicators (Ta-
ble 1) of the interactive category of social presence, we can see
that interactive social presence is mainly about stimulating open
and direct communication between the students. Thus, the students
who exhibit a high level of interactive social presence have higher
chances of “provoking” a response from the other students. Activ-
ities such as asking questions, explicitly referring to other students
by name, quoting their messages, complementing them or agreeing
with their messages, are all activities associated with an interactive
and open communication, and can be used to elicit a response from
the other students. It would be interesting to further investigate the
relationship between different indicators of social presence and so-
cial capital, as certain indicators – such as I4 “Asking questions” –
seem to have more impact than the other indicators. Besides the in-
teractive category, the regression model revealed that the affective
and cohesive categories of social presence were also significant pre-
dictors of in-degree and out-degree centralities. These findings are
even more interesting, as affective and cohesive exchanges are not
directly stimulating discussions in the same manner as the interac-
tive category. Further investigation is needed to examine particular
time periods over the duration of a course in which those different
dimensions of social presence contribute to the degree centrality
measures of students.

With respect to betweenness centrality that is most closely related
to the notion of social capital [13, 12], the regression model was
statistically significant and explained 32% of the variability in the
betweenness centrality scores. This corresponds to Cohen’s f2 =
0.47 effect size, which is considered to be a large effect size [16].
Both the interactive and affective categories of social presence were
statistically significant predictors of the betweenness centrality, with
the interactive category having a bit greater standardized β coeffi-
cient. This might be due to the nature of student communication
networks and their focus on collaborative learning, which resulted
in the emphasis on information exchange. Still, these are very in-
triguing findings, given that betweenness centrality is not directly
related to the number of interactions the student has, but more to the
overall diversity of the interactions within a group of learners. In a
follow-up study, it would be very interesting to investigate whether
there are any particular ways in which the students with the high
betweenness centrality differ from the other students (e.g., asking
many questions or exhibiting higher self-disclosure).

Regarding the closeness centrality measures, the regression model
for in-closeness was also statistically significant. The model ex-
plained 6.1% of the variability, and the stepwise model selection

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

26

using the AIC criteria resulted in a simple regression model with
only the interactive category of social presence. In contrast to de-
gree centrality, which considers only direct relationships, closeness
centrality also considers the indirect relationships. Such indirect re-
lationships could be the reason why only interactive category was
rendered as important. The affective and cohesive exchanges be-
tween students A and B, although very important, provide very lit-
tle, or no influence on the indirect relations of studentB and the rest
of the students. The similar findings we could see in the model for
out-closeness, which was marginally significant with the p-value of
0.054. However, it could be expected that the significance of this
model would be conformed in a larger replication study.

The major limitations of this study is the sample size and the use
of the single course from a single institution. Even though there
were six offerings of the course taught by the two instructors, there
might still be significant effects of the adopted pedagogical ap-
proach, which could have shaped a specific social dynamics, and
thus, potentially distort the findings of our study. Likewise, we con-
sidered all interactions among the students as contributing to their
social capital, it is very likely that the certain interactions (e.g.,
adversarial interactions) might have a negative effect on the stu-
dent social capital. In the future work, we plan on replicating our
findings on a bigger sample and with more diverse courses from
different subject matter domains. Finally, we plan to investigate
the temporal aspects of the relationship between social capital and
the social presence, which might give us a deeper insight into the
complexity of the social interactions in learning communities.

6. CONCLUSIONS
The study presented in this paper investigated some of the social
processes that can contribute to the development of students’ social
capital. We have looked at the relationship between students’ so-
cial presence, operationalized through the Community of Inquiry
model, and students’ social capital, operationalized through the
three network centrality measures. The implications of our findings
are twofold: First, our results indicate that a significant part of the
variability in network centrality scores can be explained using the
three dimensions of the social presence, and this in turn indicates
the existence of the relationship between the development of social
presence and social capital. All three categories of social presence
were significant predictors of in-degree and out-degree centrality
measures while interactive and affective categories were significant
predictors of the betweenness centrality. Also, interactive category
of social presence was significantly predictive of the in-closeness
and out-closeness centrality measures, although the overall regres-
sion model for out-closeness was marginally significant. A possible
explanation is that given the task-oriented nature of discussions in
online courses, students’ social presence develops mostly through
interactions focused on learning, and then over time, with the de-
velopment of trust among a group of learners, the other dimensions
of social presence start to emerge. Second, the study shows the
significant relationship between the interactive category of social
presence and betweenness, in-degree, out-degree, and in-closeness
network centrality measures. This provides an empirical basis for
fostering the productive social climate in discussions through inter-
ventions that increase interactivity and open communication among
the students. By engaging students to participate in discussions
with the clearly defined expectations, students develop social rela-
tionships which can in turn have positive impact on the attainment
of the learning objectives and their overall academic experience.

References
[1] Special issue on the community of inquiry framework: Ten

years later. The Internet and Higher Education, 13(1–2),
2010.

[2] T. Anderson and J. Dron. Three generations of distance ed-
ucation pedagogy. The International Review of Research in
Open and Distance Learning, 12(3):80–97, 2010.

[3] T. Anderson, L. Rourke, D. R. Garrison, and W. Archer. As-
sessing teaching presence in a computer conferencing con-
text. Journal of Asynchronous Learning Networks, 5:1–17,
2001.

[4] J. Arbaugh, M. Cleveland-Innes, S. R. Diaz, D. R. Garrison,
P. Ice, J. C. Richardson, and K. P. Swan. Developing a com-
munity of inquiry instrument: Testing a measure of the com-
munity of inquiry framework using a multi-institutional sam-
ple. The Internet and Higher Education, 11(3–4):133–136,
2008.

[5] A. W. Astin. What Matters in College: Four Critical Years
Revisited. Jossey-Bass, 1 edition edition, 1997.

[6] R. S. Baker and K. Yacef. The state of educational data min-
ing in 2009: A review and future visions. Journal of Educa-
tional Data Mining, 1(1):3–17, 2009.

[7] T. T. Baldwin, M. D. Bedell, and J. L. Johnson. The social
fabric of a team-based M.B.A. program: Network effects on
student satisfaction and performance. The Academy of Man-
agement Journal, 40(6):1369–1397, 1997.

[8] J. P. Bean. Conceptual models of student attrition: How the-
ory can help the institutional researcher. New Directions for
Institutional Research, 1982(36):17–33, 1982.

[9] R. A. Bjork, J. Dunlosky, and N. Kornell. Self-regulated
learning: beliefs, techniques, and illusions. Annual review
of psychology, 64:417–444, 2013.

[10] B. L. Bowerman and R. T. O’Connell. Linear Statistical Mod-
els: An Applied Approach. Duxbury Press, 1990.

[11] S. Buckingham Shum and R. Ferguson. Social learning ana-
lytics. Journal of Educational Technology & Society, 15(3):3–
26, 2012.

[12] R. S. Burt. Structural holes versus network closure as social
capital. In N. Lin, K. Cook, and R. S. Burt, editors, Social
Capital: Theory and Research. Aldine Transaction, 2001.

[13] R. S. Burt. The social capital of structural holes. In M. F.
Guillen, R. Collins, P. England, and M. Meyer, editors, The
New Economic Sociology: Developments In An Emerging
Field. Russell Sage Foundation, 2005.

[14] B. V. Carolan. Social Network Analysis and Education: The-
ory, Methods and Applications. SAGE Publications, Inc.,
2014.

[15] H. Cho, G. Gay, B. Davidson, and A. Ingraffea. Social net-
works, communication styles, and learning performance in a
CSCL community. Computers & Education, 49(2):309–329,
2007.

[16] J. Cohen. The analysis of variance. In Statistical power anal-
ysis for the behavioral sciences, pages 273—406. L. Erlbaum
Associates, Hillsdale, N.J., 1988.

[17] S. Dawson. A study of the relationship between student social
networks and sense of community. Journal of Educational
Technology & Society, 11(3):224–238, 2008.

[18] M. F. De Laat, V. Lally, L. Lipponen, and R.-J. Simons. In-
vestigating patterns of interaction in networked learning and
computer-supported collaborative learning: A role for so-
cial network analysis. International Journal of Computer-
Supported Collaborative Learning, 2(1):87–103, 2007.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

27

[19] B. De Wever, T. Schellens, M. Valcke, and H. Van Keer. Con-
tent analysis schemes to analyze transcripts of online asyn-
chronous discussion groups: A review. Computers & Educa-
tion, 46(1):6–28, 2006.

[20] J. Dewey. My pedagogical creed. School Journal, 54(3):77–
80, 1897.

[21] R. Donnelly and J. Gardner. Content analysis of computer
conferencing transcripts. Interactive Learning Environments,
19(4):303–315, 2011.

[22] O. J. Dunn. Multiple comparisons among means. Journal of
the American Statistical Association, 56(293):52–64, 1961.

[23] J. E. Eckles and E. G. Stradley. A social network analysis
of student retention using archival data. Social Psychology of
Education, 15(2):165–180, 2011.

[24] S. L. Feld. The focused organization of social ties. American
Journal of Sociology, 86(5):1015–1035, 1981.

[25] R. Ferguson and S. B. Shum. Social learning analytics: five
approaches. In Proceedings of the 2nd International Confer-
ence on Learning Analytics and Knowledge, LAK ’12, page
23–33, New York, NY, USA, 2012. ACM.

[26] L. C. Freeman. Centrality in social networks conceptual clar-
ification. Social Networks, 1(3):215–239, 1978.

[27] D. R. Garrison. E-Learning in the 21st Century: A Frame-
work for Research and Practice. Routledge, New York, 2
edition edition, 2011.

[28] D. R. Garrison, T. Anderson, and W. Archer. Critical in-
quiry in a text-based environment: Computer conferencing
in higher education. The Internet and Higher Education,
2(2–3):87–105, 1999.

[29] D. R. Garrison, T. Anderson, and W. Archer. The first decade
of the community of inquiry framework: A retrospective. The
Internet and Higher Education, 13(1–2):5–9, 2010.

[30] D. R. Garrison and J. Arbaugh. Researching the community
of inquiry framework: Review, issues, and future directions.
The Internet and Higher Education, 10(3):157–172, 2007.

[31] R. Garrison, M. Cleveland-Innes, and T. S. Fung. Explor-
ing causal relationships among teaching, cognitive and social
presence: Student perceptions of the community of inquiry
framework. The Internet and Higher Education, 13(1–2):31–
36, 2010.

[32] D. Gasevic, A. Olusola, S. Joksimovic, and V. Kovanovic.
Externally-facilitated regulation scaffolding and role assign-
ment to develop cognitive presence in asynchronous online
discussions. The Internet and Higher Education, (submitted),
2014.

[33] D. Gasevic, A. Zouaq, and R. Janzen. “Choose your class-
mates, your GPA is at stake!”: The association of cross-class
social ties and academic performance. American Behavioral
Scientist, 2013.

[34] M. Granovetter. The strength of weak ties. American Journal
of Sociology, 78(6):1360–1380, 1973.

[35] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The elements
of statistical learning: data mining, inference, and prediction.
Springer, New York, NY, 2013.

[36] C. Haythornthwaite. Social network analysis: An approach
and technique for the study of information exchange. Library
& Information Science Research, 18(4):323–342, 1996.

[37] S. Holm. A simple sequentially rejective multiple test proce-
dure. Scandinavian Journal of Statistics, 6(2):65–70, 1979.

[38] K. H. Krippendorff. Content Analysis: An Introduction to Its
Methodology. Sage Publications, 2003.

[39] N. Lin. Social resources and instrumental action. In P. V.
Marsden and N. Lin, editors, Social structure and network
analysis, pages 131—145. Sage Publications, 1982.

[40] P. Long and G. Siemens. Penetrating the fog: Analytics in
learning and education. EDUCAUSE Review, 46(5):31–40,
2011.

[41] R. Luppicini. Review of computer mediated communication
research for education. Instructional Science, 35(2):141–185,
2007.

[42] A. Mehrabian. Some referents and measures of nonverbal
behavior. Behavior Research Methods & Instrumentation,
1(6):203–207, 1968.

[43] T. Rizzuto, J. LeDoux, and J. Hatala. It’s not just what you
know, it’s who you know: Testing a model of the relative im-
portance of social networks to academic performance. Social
Psychology of Education, 12(2):175–189, 2009.

[44] C. Romero and S. Ventura. Educational data mining: A re-
view of the state of the art. Trans. Sys. Man Cyber Part C,
40(6):601–618, 2010.

[45] L. Rourke, T. Anderson, D. R. Garrison, and W. Archer. As-
sessing social presence in asynchronous text-based computer
conferencing. The Journal of Distance Education, 14(2):50–
71, 1999.

[46] J. Scott and P. J. Carrington. The SAGE Handbook of Social
Network Analysis. SAGE Publications, 2011.

[47] P. Shea, S. Hayes, S. U. Smith, J. Vickers, T. Bidjerano,
M. Gozza-Cohen, S.-B. Jian, A. Pickett, J. Wilde, and C.-
H. Tseng. Online learner self-regulation: Learning presence
viewed through quantitative content- and social network anal-
ysis. The International Review of Research in Open and Dis-
tance Learning, 14(3):427–461, 2013.

[48] P. Shea, S. Hayes, J. Vickers, M. Gozza-Cohen, S. Uzuner,
R. Mehta, A. Valchova, and P. Rangan. A re-examination
of the community of inquiry framework: Social network
and content analysis. The Internet and Higher Education,
13(1–2):10–21, 2010.

[49] R. A. Smith and B. L. Peterson. “Psst . . . what do you
think?” the relationship between advice prestige, type of ad-
vice, and academic performance. Communication Education,
56(3):278–291, 2007.

[50] S. L. Thomas. Ties that bind: A social network approach to
understanding student integration and persistence. The Jour-
nal of Higher Education, 71(5):591–615, 2000.

[51] V. Tinto. Leaving College: Rethinking the Causes and Cures
of Student Attrition. University of Chicago Press, 1993.

[52] S. Wasserman. Social Network Analysis: Methods and Appli-
cations. Cambridge University Press, 1994.

[53] Y. Woo and T. C. Reeves. Meaningful interaction in web-
based learning: A social constructivist interpretation. The In-
ternet and Higher Education, 10(1):15–25, 2007.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

28

Cross-Domain Performance of
Automatic Tutor Modeling Algorithms

Rohit Kumar
Raytheon BBN Technologies

Cambridge, MA, USA

rkumar @ bbn.com

ABSTRACT

In our recent work, we have proposed the use of multiple solution

demonstrations of a learning task to automatically generate a tutor

model. We have developed a number of algorithms for this

automation. This paper describes the application of these domain-

independent algorithms to three datasets from different learning

domains (Mathematics, Physics, French). Besides verifying the

applicability of our approach across domains, we report several

domain specific performance characteristics of these algorithms

which can be used to choose appropriate algorithms in a

principled manner. While the Heuristic Alignment based

algorithm (Algorithm 2) may be the default choice for automatic

tutor modeling, our empirical finding suggest that the Path

Pruning based algorithm (Algorithm 4) may be favored for

language learning domains.

Keywords

Tutor Modeling, Automation, Domain Independence, STEM

domains, Language Learning

1. INTRODUCTION

Wide-scale transition of Intelligent Tutoring Systems (ITS) to the

real world demands a scalable ability to develop such systems.

The past decade has seen the first instantiations of

industrialization of ITS development in the form of commercial

products for different learning domains as well as diverse user

populations. In addition to addressing non-technical challenges

such as designing robust production processes around

multidisciplinary teams of domain and pedagogical experts [1],

the industrialization of this technology is enabled by technical

advancements such as the development of general purpose

authoring tools [2] which has allowed a scalable workforce to

contribute to ITS development.

In this paper, we extend our recent work [3][4] on automatically

developing Example-Tracing Tutors (ETTs) [5] using multiple

behavior demonstrations. Conventionally, ETTs are developed in

three stages by trained domain experts: (1) User Interface (UI)

development, (2) Behavior demonstration, (3) Generalization and

annotation of the behavior graph. As ITS are being deployed to a

large active user pool, it is now possible to pilot the UI with a

small sample of learners to collect multiple behavior

demonstrations. We can significantly reduce the Stage 3 effort of

ITS developers by using algorithms that can automatically create

a generalized behavior graph from multiple demonstrations.

Several algorithms to address this challenge have been proposed

and evaluated [4].

In this paper, we will study the applicability and performance of

these algorithms on publicly available datasets from three

different learning domains. Section 3 summarizes the key

characteristics of the four algorithms used in our study. Section 4

describes learning domains and the corresponding datasets used in

this work. Results and Analysis from our experiments are

presented in Section 5. Before diving into the algorithms, the next

section reviews related work on automation of tutor model

development.

2. RELATED WORK

Automation of tutor model development process has been

explored in different contexts using completely automated

methods as well as augmentation of authoring tools [6][7]. For

example, motivated by application in language learning, a series

of workshops on the problem of automatic question generation [8]

explored a number of information extraction and NLP techniques

that employ existing linguistic resources. Barnes and Stamper [9]

proposed a method that uses existing student solutions to generate

hint messages for the Logic Proof tutor. Recently, Eagle et al. [10]

have used clustering of interaction network states as an approach

to the same problem.

In the context of knowledge-tracing and example-tracing tutors,

McLaren et al. [11] proposed the use of activity logs from novice

users to bootstrap tutor model development. They developed

software tools that integrate access to novice activity logs with

authoring tools. The baseline algorithm (Interaction Networks)

used in our work is similar to the integrated data view used in this

prior work. Furthermore, the algorithms used in our work address

some of the shortcomings of their work (e.g. inability to identify

“buggy” paths).

In addition to tutor modeling, recent work has investigated

automated methods for improving domain and student models

[12] [13]. Sudol et al. [14] aggregated solution paths taken by

different learners to develop a probabilistic solution assessment

metric. Johnson et al. [15] are creating visualization tools for

interaction networks that combine learner traces from open-ended

problem solving environments. They have developed an algorithm

for reducing the complexity of combined networks to make them

more readable/navigable. In a similar spirit, work by Ritter et al.

[16] used clustering techniques to reduce the large feature space

of student models to assist in qualitative model interpretation.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

29

3. GENERATING BEHAVIOR GRAPHS

Automatic Behavior Graph Generation (ABGG) algorithms

analyze the similarities and difference between multiple solution

demonstrations of a problem to induce a behavior graph that can

serve as a tutor model for the problem.

3.1 Behavior Graphs

Behavior graphs [5] are directed graphs. The nodes in this graph

correspond to valid solution states. Non-terminal nodes represent

partial solutions. Edges in the graph represent solution paths some

of which are correct and lead to the next state while other are

incorrect and usually lead back to the same state. Edges are

annotated with the conditions that a behavior event must meet to

traverse the path.

Behavior graphs may contain multiple paths between two nodes.

Multiple paths are useful to facilitate learner’s exploration of

alternate solutions to a problem especially in ill-defined learning

domains. Behavior graphs may also include unordered groups. As

the name suggests, states within an unordered group may be

traversed in any order.

Well-constructed behavior graphs have several desirable

characteristics which motivate the design of metrics we use to

evaluate ABGG algorithms.

3.1.1 Effective

Since the purpose of the behavior graphs is to serve as a tutor

model, the primary metric for evaluating these models is their

learning efficacy measured via use of the models by a relevant

sample of learners. However, in this paper we focus only on the

use of automated metrics that do not require access to a learner

pool. Further, as we in section 5, the automatically generated

behavior graphs are not perfect. They require checking and

refinement by ITS developers before they can be used with

learners.

3.1.2 Readable

One of the key characteristics of behavior graphs that makes them

a popular model is that they are readable by ITS developers

without requiring a deep understanding of computational or

cognitive sciences. Automatically created behavior graphs should

be editable with existing authoring tools to facilitate necessary

manual annotation and modifications. Ideally, ABGG algorithms

should create concise graphs without losing other desirable

characteristics. This may involve collapsing redundant paths and

even pruning spurious or infrequent edges.

The conciseness of a graph can be measured using the number of

nodes and edges in the graph. Our primary readability metric,

Compression Ratio measures the rate at which an algorithm is

able to reduce behavior events into behavior states (i.e. nodes) by

finding similarities between events.

3.1.3 Complete

In order to minimize author effort, generated behaviors graphs

should be as complete for creating an ETT as possible. As a

minimal criterion, at least one valid path to the final solution

should be included♦. Additionally, complete behaviors graphs are

annotated with all the expected inputs by the learner. We use the

Rate of Unseen Events in held out demonstrations as the primary

metric to measure the completeness of our automatically

generated behavior graphs.

3.1.4 Accurate

Behavior graphs should be error free. This includes being able to

accurately capture the correct and incorrect events by learners

depending on the current solution state. Edge accuracy measures

the percentage of Correct & Incorrect edges that were accurately

generated by the algorithm. Error Rate is a frequency weighted

combination of edge accuracy that measures the fraction of learner

events that will be inaccurately classified by the automatically

generated behavior graph. We use the error rate of an automatically

generate behavior graph on held out demonstrations as the primary

accuracy metric.

3.1.5 Robust

One of the reasons for the success of expertly crafted ETTs is the

ability to use them with a wide range of learners under different

deployment conditions. Automatically generated behavior graphs

should retain this characteristic; e.g., by identifying alternate paths

and unordered groups. It is not unforeseeable that the use of a

data-driven approach could contribute to creating behavior graphs

that are more robust than those authored by a human expert.

Branching factor is the average number of data values available at

each UI element. A large branching factor indicates the capability

to process a large variety of learner inputs at each state. Also, the

number and size of unordered groups is indicative of flexibility a

graph affords to learners to explore the solution paths of a

problem.

Note that readability and robustness are complementary

characteristics of a behavior graph. For example, a highly

complex behavior graph may be very robust but may not be very

readable.

3.2 ABGG Algorithms

We use four algorithms, introduced in our previous work [4], to

generate behavior graphs using multiple solution traces of a

problem. The first algorithm (Algorithm 1) generates interaction

networks by sequentially collapsing identical events in solution

traces into a shared node and creating a branch whenever two

different events are found. Interaction networks have been used in

prior work [10][15].

Algorithm 2 uses a heuristic alignment technique [3] to align

similar events across multiple solution traces. The alignment is

used to obtain a sequence of traversal through the problem’s steps.

Furthermore, this algorithm is able to use the positional entropy of

a sequence of elements while obtaining the optimal sequence to

identify unordered groups.

Similar to the above algorithm, Algorithm 3 finds the optimal

sequence between aligned events. However, this algorithm uses

the Center Star Algorithm [17] to align the multiple solution

traces instead of the heuristic used by Algorithm 2. The Center

Star Algorithm is a foundational algorithm used for aligning more

than two sequences of symbols. It is particularly suited for our

application because it is polynomial time in computational

complexity and it does not make any assumptions about the space

and relationship of symbols comprising the sequence.

First order transition matrix computed from solution traces can be

used to represent a directed graph. Algorithm 4 considers ABGG

as the process of finding multiple paths in a directed graph.

Specifically, the longest (non-repeating) path in this directed

graph represents the most likely path through the solution steps.

Since, the problem of finding longest paths in general graphs is

known to be NP-hard, we employ a combination of bounded

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

30

longest path finding and an algorithm for finding multiple shortest

paths [18] in a transformed transition matrix to obtain a number of

different paths through the directed graph. These paths are merged

to construct a behavior graph similar to the process of

constructing an interaction network.

Algorithm 2, 3 and 4 assume that if two or more events within a

trace were generated by the same UI element, the latter event

corresponds to a correction of the data value input at the former

events. In this case, we refer to the former events as retracted

events and data values entered at these events are assumed to be

incorrect values. Using this assumption, these three algorithms are

able to automatically generate incorrect paths in behavior graphs

unlike Algorithm 1. This assumption is not applied to Algorithm 1

to compare our work against prior work [11] on extracting tutor

models from multiple demonstrations.

3.3 Discussion

Table 1 characterizes the four algorithms described above based

on their capabilities. Incremental addition of demonstrations to

generate interaction networks does not identify incorrect input

data values. However, using the assumption about retracted

events, the other three algorithms are able to identify incorrect

inputs. Johnson et al. [15] used a similar assumption in their work

on reducing the visual complexity of interaction networks. We

notice that the Algorithms 2 and 3 are complementary in terms of

their ability to find alternate paths and unordered groups.

Algorithm 4 on the other hand offers both of these abilities.

Table 1. Comparison of Algorithm Capabilities

Capability▼ Algorithm► 1 2 3 4

Identifies incorrect answers N Y Y Y

Generates alternate paths N N Y Y

Finds unordered groups N Y N Y

Generalizes beyond training demonstrations N Y Y Y

Guarantees all training demnstrs. will pass Y N N N

Finds atleast one path to final solution♦ Y Y Y N

Discovers new/unseen data values N N N N

None of the algorithms discussed in this paper are capable of

discovering unseen inputs beyond those seen in the solution

traces. This type of generative ability is particularly useful for

learning tasks, such as language learning, where a large number of

different inputs may be expected from the learners. In our ongoing

work, we use a number of heuristics [7] as well as grammar

induction techniques [6] to generate unseen inputs for certain

nodes in the behavior graphs.

4. DATASETS

We use three datasets, accessed via DataShop1 [19], to study the

cross-domain applicability of ABGG algorithms. These datasets

were filtered to use only problems that had six or more traces and

had at least two UI elements. Also, we eliminated all events, such

as help requests, that did not correspond to user input at a solution

step. In this way, the datasets were transformed into solution

traces. As discussed in Kumar et al. [4], a solution

1 PSLC DataShop is available at http://pslcdatashop.org

trace/demonstration comprises of a sequence of user interface (UI)

events. Each event is represented as a 2-tuple e = (u, d) that

includes an identifier u of the UI element and data d associated

with the event. A UI element may be visited any number of times

within a trace. In general, data can include one or more attributes

of the event such as the event type, user input, event duration, etc.

In this paper, we assume single data attribute events where the

data captures the learner input at the UI element.

Table 2. Problems & Traces for the three learning domains

Math. Physics French

#Problems 1013 497 71

Max. #Unique Elements 33 62 10

Avg. #Unique Elements 4.6 9.7 2.5

Avg. #Training Traces 76.0 26.6 12.1

Avg. #Heldout Traces 38.0 13.3 6.1

Avg. #Events Per Trace 5.3 8.9 4.7

Figure 1. Example Math Problem from Assistments
Source: www.assistments.org, April 2014

Table 2 provides some statistics about the problem and traces for

each of learning domains used in this work. The Mathematics

traces were derived from three Assistments [20] datasets.

Assistments is a web-based learning platform, developed by

Worcester Polytechnic Institute (WPI), that includes a

Mathematics intelligent tutoring system for middle & high school

grades. Figure 1 shows an example math problem from the

Assistments system. Together, these datasets are the largest of the

three domains we use. Prior to filtering, these dataset comprised a

total of 683,197 traces and 1,905,672 events from 3,140 problems.

For our experiments, we treat the three datasets to be independent

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

31

of each other to account for change in UI designs of the problems

common to the three datasets.

We used 10 (out of 20) of the largest datasets released under the

Andes2 project [22] to build the collection of Physics problems

and traces. Andes2 is an intelligent tutoring system that includes

pedagogical content for a two-semester long college and advanced

high-school level Physics course. These ten datasets are based on

logs from several semesters of use of the Andes2 system at the

United States Naval Academy. Prior to filtering, these dataset

comprised a total of 81,173 traces and 1,162,581 events from

2,187 different problems. Note that, as is case with the Math

dataset, we treat the ten Andes2 datasets independently. Note that,

unlike typical domain independent example-tracing based tutor,

the Andes2 systems uses a model-tracing approach for tracking

learner’s solution of a problem and to provide feedback. The

domain knowledge dependent model tracer is able to match highly

inflected learner inputs (e.g. variable names) to its solution graph.

Despite this difference in tutoring approach used by the Andes2

system, we decided to include this domain in our experiments to

study the performance of our algorithms on such solution traces.

Finally, the French traces are based on two dataset from the

“French Course” project on DataShop. These datasets were

collected from logs of student’s use of the “French Online” course

hosted by the Open Learning Initiative (OLI) [22] at Carnegie

Mellon University. Figure 2 shows steps from couple of example

problems from this course. These datasets comprised a total of

37,439 traces and 253,744 events from 1,246 different problems.

Note that a significantly larger fraction of French problems were

eliminated due to the filtering criterion compared to Mathematics

or Physics.

Figure 2. Example Steps from Problem from the French

Online Course Source: oli.cmu.edu, April 2014

The datasets used in our experiments contain solution traces.

Traces are paths through an existing behavior graph, unlike

behavior demonstrations which are unconstrained by existing

tutor models. In addition to the fact that these are the only

available large scale collection of solution paths, we use these

datasets in our experiments because these traces have been

Table 3. Averaged Metrics for the Graphs Generated by ABGG Algorithms
*indicates significant (p < 0.05) difference with the other algorithms (within the same dataset)

 Mathematics (Assistments) Physics (Andes2) French (OLI)

Algorithm ► 1 2 3 4 1 2 3 4 1 2 3 4

#Nodes 79.2 5.4* 6.0* 6.6* 147.8 7.9* 11.5* 11.7* 25.6 3.8* 4.5* 4.5*

#Correct Edges 148.0 12.9* 18.3* 17.5* 182.2 43.5* 76.4 34.5* 37.2 6.9 9.8 9.5

#Incorrect Edges 23.9 33.5 19.5* 35.1 53.0 13.4* 4.2 11.0 8.0

Compression Ratio 6.7 76.8* 66.8 60.2 2.3 31.6* 21.9 21.7 2.2 14.6 12.8 12.8

% Accurate Correct Edges 39.1 41.9 42.5* 44.1* 61.4 80.2* 58.9 80.8* 22.5 27.7* 26.9* 29.8*

% Accurate Incorrect Edges 99.9* 97.2 99.5* 92.5* 67.3 85.5 97.8* 86.1 87.2

Training Error Rate 51.4 25.4 17.7* 17.5* 33.6 17.2* 25.8 24.3 75.2 56.1 22.3* 25.3*

Heldout Error Rate 42.8 23.5 16.1* 15.7* 29.1 25.5* 33.3 30.8 45.3 35.9 19.9* 18.5*

% Training Unseen Events 0.0* 10.7 2.2 6.8 0.0* 14.1 12.2 24.6 0.0* 13.4 5.2 4.5

% Heldout Unseen Events 10.2* 19.1 11.5* 13.9 35.9* 41.7 38.4* 42.6 31.7* 40.7 34.4* 34.3*

Branching Factor 2.2 10.9 12.6* 8.5 1.5 13.4* 12.9* 6.0 1.6 6.7* 9.4* 7.8*

#Groups 0.5* 0.0 0.8 1.4* 0.3* 0.1

Avg. Group Size 1.9* 0.0 2.0 2.0 0.6* 0.3

% Group Coverage 31.8* 0.5 27.2 30.6* 15.4* 6.1

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

32

collected from a large set of real users. They contain realistic

variations in learner inputs similar to demonstrations.

5. EXPERIMENTS

We use a three-fold cross validation design that splits the

available traces into three different training and held out sets. The

readability metrics (i.e. number of nodes, number of edges and

compression ratio) as well as the robustness metrics (branching

factor, number of unordered groups, average group size and

coverage of graph within groups) are reported on the behavior

graphs generated by the algorithms. On the other hand, some

accuracy metrics such as the accuracy of correct and incorrect

edges are measured on generated graphs whereas others such as

error rate are measured on event sequences which could be the

training traces; i.e., sequences used to generate the graphs, or held

out traces. Similarly, our completeness metrics, i.e. the rate of

unseen events in a sequence, can be measured on both training as

well as held out traces. Note that the metrics computed on training

traces used to generate the graphs may not accurately indicate the

performance of an algorithm due to over-fitting. This is the

motivation for choosing the cross validation based experimental

design.

5.1 Results

Table 3 shows our results along 14 metrics for each of the four

algorithms applied to the three learning domains under

consideration. Reported metrics are averaged over three cross

validation splits as well as over all the problems for each domain.

The metrics are organized by the four desirable characteristics

discussed earlier. Primary metric for each characteristic is

highlighted.

Figure 3. Compression Ratio of Algorithm 2

5.1.1 Mathematics

As expected, the interaction networks comprise of a large number

of nodes and edges that lead them to have significantly smaller

compression ratio. Algorithm 2 (Heuristic Alignment)

outperforms all other algorithms on three of the readability

metrics. On the other hand, Algorithm 4 (Path Pruning)

significantly outperforms the other algorithms on three of the

accuracy metrics for this dataset and is not significantly worse on

the fourth metric. Because of their lossless nature, Algorithm 1

(Interaction Network) performs the best on Completeness metrics

(% unseen events). However, it is not significantly better than

Algorithm 3 (Center-Star Alignment). We find evidence of over-

fitting of the algorithms to training traces on this metric as

indicated by the approximately 9% higher rate of unseen events

for held out traces for all the algorithms. Algorithm 3 significantly

outperforms the other algorithms on the primary robustness metric

(Branching Factor) for this domain. Algorithm 2 is better than

Algorithm 4 for the metrics based on unordered groups.

Figure 4. Heldout Error Rate of Algorithms 2 and 4

5.1.2 Physics

On the primary readability metric (Compression Ratio), Algorithm

2 outperforms the others on the Physics dataset as was the case

with Mathematics. This is consistent with prior conclusion [4] on

the use of Algorithm 2 for readability. We note that the Physics

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

33

dataset has significantly lower compression ratio than the previous

dataset. Figure 3 shows a scatter plot and domain-specific

regression fits for the compression ratio of Algorithm 2 for

different problems with different number of training traces and UI

elements. We see that for equivalent number of training traces, the

compression ratio for Physics is actually slightly better than

Mathematics. However, as we know from Table 2, fewer training

traces are available for the Physics problems on average.

On the primary accuracy metric, we find that Algorithm 2 works

best for Physics unlike the case with the Mathematics domain. We

can note that the Algorithm 2 is significantly better on the

accuracy of incorrect edges. Figure 4 shows the relationship

between the error rate in heldout traces and the accuracy of

incorrect edges. We also see that the percentage of unseen events

in heldout traces is significantly higher for Physics. The lower

incorrect edge accuracy and higher percentage of unseen events

can be attributed to the differences in the tutoring approach

underlying the Andes2 system which uses domain-specific

knowledge to match a large variety of inputs from the learner at

each step of the solution. Because of this, Andes2 elicits

significantly diverse (& hence novel) inputs across traces.

Algorithms 2 and 3 are not significantly different in terms of the

primary robustness metric.

5.1.3 French

Figure 5. Accuracy of Correct Edges for Algorithm 4

The results for our non-STEM domain are largely consistent with

the Mathematics domain. This may be attributed to the similarities

of the underlying tutoring approach for the Assistments system

and the French Online course which has been developed using the

Cognitive Tutor Authoring Tools (CTAT) [2]. However, we can

notice two key differences. First, the accuracy of correct edges for

this domain is significantly lower. Because the French Online

Course is deployed on an publicly accessible platform, its likely

that a large number of the solution traces were generated by

beginners as well as non-serious users leading to the dataset

containing many incomplete solution traces containing no correct

answers. This is evidenced in Figure 5 as we see that correct edge

accuracy dramatically degrades for long traces which is contrary

to the case with the other two domains.

Second, we expect the branching factor to be higher for a

language learning domain, due to the high degree of linguistic

variation in learner inputs. The results in Table 3 do not indicate

this. However, Figure 6 verifies this intuition. Branching factor

for the French behavior graphs is higher than those for the STEM

domain for problems that have 10 or more traces.

Figure 6. Branching Factor of Algorithm 3

5.1.4 Automatically Generated Behavior Graphs

Figures 7, 8 and 9 showcase several qualitative characteristics of

automatically generated behavior graphs (truncated to fit) for the

problems in the three datasets used in this work. We use the

following visual convention: Circular nodes represent states and

are labeled with identifiers u of the corresponding UI element.

Edges are labeled with the data values d. Correct edges are labeled

with green rectangles and incorrect edges are labeled with red

rectangles. Unordered groups are shown using blue containers.

Figure 7 shows graphs generated by two different algorithms for

the same Mathematics problem in the Assistments dataset using

241 solution traces by learners. The graph generated by Algorithm

1 is dense and hardly readable due to the large number of nodes

and edges in this graph. Also, as discussed in Section 3, this

algorithm is unable to identify incorrect paths. Contrary to that,

the graph in Figure 7b is composed of only 6 nodes. The various

paths taken by learners are compressed into 46 correct and 39

incorrect edges. We can notice that not all paths are accurate.

However, the accurate paths are more frequent, as indicated by the

thicker arcs associated with the edge. In our ongoing work, we are

extending these algorithms to use this frequency attribute to

eliminate inaccurate paths (either automatically, or by providing

additional controls to model developers in authoring tools).

A behavior graph from the Physics dataset is shown in Figure 8.

As discussed earlier, the large variation in learner input at each

state is depicted in the edge labels of this graph. We notice that for

the last state (s6) which corresponds to the learners filling in the

answer to a problem, many minor variations of the correct answer

are accurately captured. Due to the domain independent nature of

our algorithms, these answers are treated as different string.

Integration of domain knowledge can lead to further compression

of these answers into a single path.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

34

The linguistic variation in the inputs to a problem in the French

dataset is also noticeable in the two graphs for the same problem

in Figure 9. We can see the several wrong answers are marked as

correct answers (and vice versa), although the frequency-based

edge notation identifies the correct answer as was the case in

Figure 7b. In this problem, learners are asked to listen to an audio

file and type in the French word they hear. Learners are allowed

to go back and forth between these two steps. The first step has no

wrong answer. We notice that our assumption to consider

retracted events as incorrect fails in this case.

Figure 7a. Behavior Graph: Mathematics, Algorithm 1

Figure 7b. Behavior Graph: Mathematics, Algorithm 2

It is particularly interesting to note the differences in the way

Algorithm 2 and Algorithm 4 encode robustness into the learnt

tutor model. While Algorithm 2 identifies an unordered group

containing the listen and answer nodes which allows learners to

traverse these nodes in any order, Algorithm 4 identifies that the

listen step is optional and create two different way to reach the

answer step based on the solution behaviors exhibited by learners

in the traces.

Figure 8. Behavior Graph: Physics, Algorithm 2

Figure 9a. Behavior Graph: French, Algorithm 2

Figure 9b. Behavior Graph: French, Algorithm 4

6. CONCLUSIONS

In this paper, we have shared results from an empirical analysis of

application of ABGG algorithms to three different learning

domains. Several similarities and differences between the

performances of four algorithms on problems from these three

domains were discussed in the previous section.

We find that the accuracy of these algorithms suffers when they

are applied to solution traces collected from a tutoring system that

uses domain knowledge to process a large variety of inputs from

learners. While in our previous work [4], we have recommended

the use of Algorithm 2 as the default ABGG algorithm for use

within authoring tools, we find that for language learning

domains, Algorithm 4 may be preferable since it is the most

accurate on the French dataset and not significantly worse than the

other algorithms on the other primary metrics.

We identified multiple potential improvements to the ABGG

algorithms based on these analyses. There are several domain

specific nuances to the UI elements that comprise the problems in

each domain. For example, in the French domain, we found steps

that do not have any wrong answer. For broad use, ABGG

algorithms should identify these UI elements and selectively apply

the powerful assumption about retracted events. Furthermore, the

algorithms can exploit additional features computed from across

the multiple traces, such as the frequency of a data value at a

node, to improve the accuracy of the automatically generated

behavior graphs.

Finally, this paper extends our recent work on use of multiple

behavior demonstrations to automatically generate tutor models

using ABGG algorithms. While these algorithms can be improved

in specific ways discussed above, we find evidence for their

applicability to multiple domains.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

35

ACKNOWLEDGEMENTS

This research was funded by the US Office of Naval Research

(ONR) contract N00014-12-C-0535.

7. REFERENCES

[1] Johnson, W. L., and Valente, A. 2008. Collaborative

authoring of serious games for language and culture. In

Proceedings of SimTecT (March 2008).

[2] Aleven, V., McLaren, B. M., Sewall, J., and Koedinger. K.

R. 2006. The cognitive tutor authoring tools (CTAT):

preliminary evaluation of efficiency gains. In Proceedings of

the 8th International Conference on Intelligent Tutoring

Systems (ITS'06), Ikeda, M., Ashley, K. D., and Chan, T.W.

(Eds.). Springer-Verlag, Berlin, Heidelberg, 61-70.

[3] Kumar, R., Roy, M.E, Roberts, R.B., and Makhoul, J.I. 2014.

Towards Automatically Building Tutor Models Using

Multiple Behavior Demonstrations. In Proceedings of 12th

Intl. Conf. on Intelligent Tutoring Systems (ITS 2014),

Honolulu, HI.

[4] Kumar, R., Roy, M.E, Roberts, R.B., and Makhoul, J.I. 2014.

Comparison of Algorithms for Automatically Building

Example-Tracing Tutor Models. In Proceedings of 7th Intl.

Conf. on Educational Data Mining (EDM 2014), Honolulu,

HI.

[5] Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger. K. R.

2009. A New Paradigm for Intelligent Tutoring Systems:

Example-Tracing Tutors. Int. J. Artif. Intell. Ed. 19, 2 (April

2009), 105-154.

[6] Kumar, R., Sagae, A., and Johnson, W. L. 2009. Evaluating

an Authoring Tool for Mini-Dialogs. In Proceedings of the

2009 Conference on Artificial Intelligence in Education,

Dimitrova, V., Mizoguchi, R., du Boulay, B., and Graesser,

A. (Eds.). IOS Press, Amsterdam, The Netherlands, The

Netherlands, 647-649.

[7] Kumar, R., Roy, M.E, Pattison-Gordon, E. and Roberts, R.B.

2014. General Purpose ITS Development Tools. In

Proceedings of Workshop on Intelligent Tutoring System

Authoring Tools, 12th Intl. Conf. on Intelligent Tutoring

Systems (ITS 2014), Honolulu, HI.

[8] Question Generation Workshops. 2008-2011.

http://www.questiongeneration.org/

[9] Barnes, T. and Stamper, J. 2008. Toward Automatic Hint

Generation for Logic Proof Tutoring Using Historical

Student Data. In Proceedings of the 9th International

Conference on Intelligent Tutoring Systems (ITS '08). Woolf,

B. P., Aimeur, E., Nkambou, R., and Lajoie , S. (Eds.).

Springer-Verlag, Berlin, Heidelberg, 373-382.

[10] Eagle, M., Johnson, J., and Barnes, T., 2012. Interaction

Networks: Generating High Level Hints Based on Network

Community Clusterings, In Proceedings of the 5th

International Conference on Educational Data Mining

(EDM 2012). Yacef, K., Zaïane, O., Hershkovitz, H.,

Yudelson, M., and Stamper, J. (Eds.). 164-167

[11] McLaren, B.M., Koedinger, K.R., Schneider, M., Harrer, A.,

and Bollen, L. 2004. Bootstrapping Novice Data: Semi-

Automated Tutor Authoring Using Student Log Files. In

Proceedings of the Workshop on Analyzing Student-Tutor

Interaction Logs to Improve Educational Outcomes, 7th

International Conference on Intelligent Tutoring Systems

(ITS 2004). August 2004

[12] Pavlik, P.I., Cen, H., and Koedinger, K.R. 2009. Learning

Factors Transfer Analysis: Using Learning Curve Analysis to

Automatically Generate Domain Models, In Proceedings of

the 2nd International Conference on Educational Data

Mining (EDM 2009). Barnes, T., Desmarais, M., Romero, C.,

Ventura, S. (Eds.). 121-130

[13] Koedinger, K.R., Mclaughlin E.A., and Stamper, J.C. 2012.

Automated student model improvement, In Proceedings of

the 5th International Conference on Educational Data Mining

(EDM 2012). Yacef, K., Zaïane, O., Hershkovitz, H.,

Yudelson, M., and Stamper, J. (Eds.). 17-24

[14] Sudol, L.A, Rivers, K., and Harris, T.K. 2012. Calculating

Probabilistic Distance to Solution in a Complex Problem

Solving Domain, In Proceedings of the 5th International

Conference on Educational Data Mining (EDM 2012).

Yacef, K., Zaïane, O., Hershkovitz, H., Yudelson, M., and

Stamper, J. (Eds.). 144-147

[15] Johnson, M., Eagle, M., Stamper, J., and Barnes, T. 2013. An

Algorithm for Reducing the Complexity of Interaction

Networks, In Proceedings of the 6thInternational Conference

on Educational Data Mining, (EDM 2013). D’Mello, S. K.,

Calvo, R. A., Olney, A. (Eds.). 248-251

[16] Ritter, R., Harris, T.K, Nixon, T., Dickison, D., Murray,

R.C., and Towle, B. 2009. Reducing the Knowledge Tracing

Space, In Proceedings of the 2ndInternational Conference on

Educational Data Mining (EDM 2009). Barnes, T.,

Desmarais, M., Romero, C., Ventura, S. (Eds.). 151-160

[17] Gusfield, D. 1997. Algorithms on Strings, Trees and

Sequences. Cambridge University Press, New York.

[18] Yen, J. Y. 1971. Finding the K Shortest Loopless Paths in a

Network. Management Science 17(11). 712-716

[19] Koedinger, K.R., Baker, R.S.J.d., Cunningham, K.,

Skogsholm, A., Leber, B., and Stamper, J. 2010. A Data

Repository for the EDM community: The PSLC DataShop.

In Handbook of Educational Data Mining. Romero, C.,

Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (Eds.). Boca

Raton, FL: CRC Press

[20] Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N. T.,

Koedinger, K. R., Junker, B., Ritter, S., Knight, A.,

Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner,

T. E., Upalekar. R, Walonoski, J.A., Macasek. M.A. and

Rasmussen, K. P. 2005. The Assistment project: Blending

assessment and assisting. In Proceedings of the 12th

International Conference on Artificial Intelligence in

Education, C.K. Looi, G. McCalla, B. Bredeweg, & J.

Breuker (Eds.) IOS Press. 555-562.

[21] VanLehn, K., Lynch, C., Schulze, K. Shapiro, J. A., Shelby,

R., Taylor, L., Treacy, D., Weinstein, A., and Wintersgill, M.

2005. The Andes physics tutoring system: Lessons Learned.

In International Journal of Artificial Intelligence and

Education, 15 (3), 1-47

[22] Strader, R. and Thille, C. 2012. The Open Learning

Initiative: Enacting Instruction Online. In Game Changers:

Education and Information Technologies. Oblinger, D.G.

(Ed.) Educause. 201-213.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

36

AGG: Augmented Graph Grammars for Complex
Heterogeneous Data

Collin F. Lynch
Intelligent Systems Program

and Learning Research & Development Center
Pittsburgh, Pennsylvania, U.S.A.

collinl@cs.pitt.edu

ABSTRACT
The central goal of educational datamining is to derive cru-
cial pedagogical insights from student, course, and tutorial
data. Real-world educational datasets are complex and het-
erogeneous comprising relational structures, social connec-
tions, demographic information, and long-term assignments.
In this paper I describe Augmented Graph Grammars a ro-
bust formalism for graph rules that provides a natural struc-
ture for evaluating complex heterogeneous graph data. I also
describe AGG an Augmented Graph Grammar engine writ-
ten in Python and briefly describe its use.

Keywords
Augmented Graph Grammars, Graph Analysis, Argument
Diagrams, Complex Data, Heterogeneous Data

1. INTRODUCTION
The central goal of educational datamining is to draw peda-
gogical insights from real-world student data, insights which
can inform instructors, students, and other researchers. While
robust analytical formalisms have been defined for categor-
ical, numerical, and relational data most real-world educa-
tional data is complex and heterogeneous combining textual,
numerical, and relational features. In large course settings
such as a lecture course or MOOC, for example, students
may form dynamic working groups and collaborate on com-
plex assignments. They may also be given a flexible set
of reading, writing, or problem-solving tasks that they can
choose to complete in any order. This process data can be
encoded as a graph with nodes representing individual as-
signments and reading materials and arcs representing group
relationships or traversal order. In order to capture impor-
tant features of this rich graph data and to identify key
relationships between teamwork, written text, and perfor-
mance, it is necessary to apply a rule structure that can
capture them naturally.

Individual student assignments can also contain heteroge-
neous data. Argument diagrams, for example, have been
used to teach writing, argumentation, and scientific reason-
ing [10, 2, 19]. These structures reify real-world arguments
as graphs using complex node and arc types to represent
argumentative components such as hypothesis statements,
citations, and claims. These complex elements can include
types, text fields for short notes or free-text assertions, links
to external resources, and other data.

A sample student-produced argument diagram drawn from
my thesis work at the University of Pittsburgh is shown
in Figure 1. This work focused on the use of argument
diagrams to support students in developing written scien-
tific reports and in identifying pedagogically-relevant dia-
gram structures that can be used to predict students’ subse-
quent performance (see [8]). The diagram contains a central
claim node representing a research claim. This node has
a single text field in which the claim is stated. This is, in
turn, connected to a set of citation nodes representing re-
lated work via a set of supporting, opposing, and undefined
arcs colored green, red, and grey, respectively. The citation
nodes each contain two text fields, one for the citation in-
formation and the other for a summary of the cited work,
while the arcs contain a single text field for the warrant or
explanation of why the relationship holds. At the top of
the diagram there is a single disjoint hypothesis node which
contains two text fields: a conditional or IF field, and a
conditional or THEN field.

This diagram contains a number of pedagogically-relevant
issues. Some of them are purely structural such as the dis-
joint hypothesis node, and the fact that the supporting and
opposing arcs are drawn from the claim to the citations and
not vice-versa. It also contains more complex semantic is-
sues such as the fact that the text fields on the arcs contain
summary information for the cites not explanations of the
relationship, and the fact that the opposing citations, cita-
tions that disagree about the central claim node have not
been distinguished from one-another via a comparison arc.
Problems such as these can be detected via complex rules,
and I have previously shown that the presence of such prob-
lems are predictive of students’ subsequent performance [8,
10, 9]. This detection and remediation, however requires the
development of rules that can incorporate complex struc-
tural and textual information.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

37

Figure 1: A segment of a student-produced LASAD diagram representing an introductory argument. It
contains a central claim node surrounded by citation nodes. The isolated node is a hypothesis that has not
been integrated into the argument.

Automatic graph analysis is central to a number of research
domains including strategy transfer in games [4], automatic
recommendations [1], cheminformatics [12], and social net-
work detection [11]. Graph analysis algorithms have been
used to define educational communities [15, 16, 5]) and to
automatically grade existing datasets [8, 10, 9]. Graphical
structures have also been used in tutoring contexts to repre-
sent student work via argument diagrams of the type shown
above (see [14, 7] or to provide connection representations
[19] for student guidance.

My focus in the present work is on the development of graph
rules that is logical graph patterns that match arbitrary
graph structures based upon content and structure informa-
tion. While arbitrary graph matching is NP-Hard (see [18])
it is of practical importance, particularly in relational do-
mains such as argument diagrams or student groups where
our goal is to identify complex structures that may be evi-
dence of deeper pedagogical issues. To that end, I will intro-
duce Augmented Graph Grammars a robust rule formalism
for complex graph rules and will describe AGG and aug-
mented graph grammar engine for educational datamining.
Both were developed as part of my thesis work at the Uni-
versity of Pittsburgh.

2. AUGMENTED GRAPH GRAMMARS
Graph Grammars, as described by Rekers and Schürr, are
formal grammars whose atomic components are graphs or

graph elements, and whose productions transpose one graph
to another [17]. More formally, they define graph-grammars
and productions as:

Definition 3.6 A graph grammar GG is a tu-
ple (A;P), with A a nonempty initial graph (the
axiom), and P a set of graph grammar produc-
tions. To simplify forthcoming definitions, the
initial graph A will be treated as a special case
of a production with an empty left-hand side.
The set of all potential production instances of
GG is abbreviated with PI(GG).

Definition 3.2 A (graph grammar) production
p := (L; R) is a tuple of graphs over the same
alphabets of vertex and edge labels LV and LE.
Its left-hand side lhs(p) := L and its right-hand
side rhs(p) := R may have a common (context)
subgraph K if the following restrictions are ful-
filled:

• ∀e ∈ E(K) ⇒ s(e) ∈ V (K) ∧ t(e) ∈ E(K)
with E(K) := E(L) ∩ E(R) and V (K) :=
V (L)∩V (R) i.e. sources and targets of com-
mon edges are common verticies of L and R,
too.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

38

• ∀x ∈ L∩R⇒ lL(x) = lR(x) i.e. common el-
ements of L and R do not differ with respect
to their labels in L and R.

Thus graph grammars are systems of production rules anal-
ogous to context-sensitive string grammars (see [18]). For
reasons of efficiency Rekers and Schürr restrict their focus
to layered graph-grammars where all productions must be
expansive with the left-hand-side being a subgraph of the
right. Classical graph grammars, like string grammars, as-
sume a fixed alphabet of simple statically-typed node and
arcs and can be used both to generate matching graphs pro-
grammatically or to parse matching graphs via mapping and
decomposition. My focus in the present work is on graph
matching which occurs via iterative mapping.

Let Gi =< {no, . . .}, {e(np, nq), . . .} > and Gj =< {mo, . . .},
{e(mk,ml), . . .} > be graphs and let M = {< na,M − b >
. . .} me a mapping from Gi to Gj that links nodes of the
two. In the context of a mapping, Gi and Gk are called the
source and target graphs respectively. A mapping MGi,Gj

from Gi to Gj is valid if and only if the following holds:

∀nx ∈ Gi : ∃ < nx,my >∈MGi,Gj

¬∃{< nx,my >,< nr,mk >} ⊆MGi,Gj : (x = r) ∨ (y = k)

∀e(nx, ny) ∈ Gi : {< nx,my >,< nr,mk >} ⊆MGi,Gj

: ∃e(my,mk) ∈ Gj

For the remainder of this paper all elements in a source
graph will be labeled alphabetically (e.g. a, Q) while ele-
ments in the target graphs will be referenced numerically

(e.g. 1, 2, e(2, 3),
−−−−→
e(4, 5)).

Augmented Graph Grammars are a richer formalism for graph
rules that treat nodes and arcs as complex components with
optional sub-fields including flexible text elements or other
types. Augmented graph grammars have been previously de-
scribed by Pinkwart et al. in [13]. There the authors focused
on the use of augmented graph grammars for tutoring. An
Augmented Graph Grammar is defined by: a graph ontol-
ogy that specifies the complex graph elements and functions
available; a set of graph classes that define matching graphs;
and optional graph productions and expressions that provide
for recursive class mapping and logical scoping. I will de-
scribe each of these components briefly below. For a more
detailed description see [8].

2.1 Graph Ontology
In a simple graph grammar of the type used by Rekers and
Schürr the set of possible node and arc types (

∑
) is fixed

with the elements being atomic, static, and unique. In order
to process complex structures such as the argument diagram
shown in Figure 1, a more complex structure is required.
Thus augmented graph grammar ontologies are defined by a
set of element types O = {N0, . . . Nm, E0, . . . , Ep} such that
each element has a unique list of fields and field types as well
as applicable functions over those fields. The ontology must
also specify appropriate relationships between the fields and
operations that can be used on them.

While showing a complete ontology is beyond the scope of
this paper an illustrative example can be found in Figure

{

Nodes:{

Citation:{

Cite(String)

Cite.Words(StringSet)

Summary(String)

Summary.Words(StringSet)

}

Hypothesis: {

If(String)

If.Words(StringSet)

Then(String)

Then.Words(StringSet)

}

}

Arcs:{

Comparison: {

...

Types: { String, StringSet }

...

Figure 2: An illustrative subset of a sample graph
ontology for scientific argument diagrams.

2. This illustrates the field definitions for the citation and
hypothesis nodes shown above. Both node types contain
two sub-fields of type String. For each of these fields an
additional function is defined ’*.Words’ which returns a set
of all the words found in the field.

2.2 Graph Classes
The core component of an augmented graph grammar is the
graph class. A class Ci is defined by a 2-tuple < Si, Oi >
where Si is a graph schema and Oi is a set of constraints.
A class defines a space of possible graphs which satisfy both
the schema and the constraints. Classes are not required
to be unique nor are the set of matching graphs for a given
pair of classes required to be disjoint. A sample named
class R07a is shown in 3. This class is designed to detect
instances of Related Uncompared Opposition in scientific ar-
gument diagrams. That is subgraphs where there exists a
pair of citation nodes a, and b that disagree about a shared
target node t, are not connected via a comparison arc c,
and which share some relevant textual content. As I noted
above, this type of structure can be found in Figure 1.

2.2.1 Graph Schema
A Schema is a graph structure that defines a space of pos-
sible graphs topologically. Schema are defined by a set of
ground nodes (e.g. t, a, & b in Figure 3) which must match
a single node in a target graph, a set of ground arcs that
must likewise match a single arc in the target graph (e.g.
c), and an optional set of variable arcs which must match a
nonempty subgraph defined by a graph production. By con-
vention, ground elements are denoted via lower-case names
while variable elements are denoted by capitalized names.

In addition to the ground and variable distinctions arcs within
a schema may be one of four types: directed (e.g. O, &

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

39

t

a b

O S

¬ c

(R07a)

t.Type ∈ {“Hypothesis′′, “Claim′′}

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′

(a.summary.words ∩ b.summary.words) 6= ∅

Figure 3: Related Uncompared Opposition A simple
augmented graph grammar rule that detects related
but uncompared counterarguments. The rule shows
a two citation nodes (a, & b) that have opposing re-
lationships with a shared hypothesis or claim node
(t) and do not have a comparison arc (c) drawn be-
tween them. The arcs S and O represent recursive
supporting and opposing paths.

S), of unknown direction, undirected (e.g. c), and unde-
fined. Directed arcs will only match directed arcs in the
base graph oriented in the same direction. Thus, given a

base graph containing an arc
−−−−→
e(1, 2) and a schema with a

directed arc
−−−−→
e(n,m) the schema will only match cases where

{< n, 1 >,< m, 2 >} ⊆M . Unknown direction schema arcs
may match a directed arc oriented in any order but will not
match an undirected arc (e.g. e(2, 3)). Undirected arcs (e.g.
¬c) will not match a directed arc. And, undefined arcs may
match a directed or undirected arc in any order.

As the example shows arcs may be also be negated (e.g. ¬c)
in which case the schema matches a graph if and only if no
match can be found for the negated arc. Thus the schema
shown will only match ground graphs with no arc between
the elements assigned to a and b. More complicated cases of
negation may be formed using graph expressions which are
defined below.

The elements of a Schema must also be non-repeating that
is, no two elements in a schema may be matched to the same
element in the target graph. Thus each element in a schema
must match at least one unique node or arc with variable
elements possibly accounting for more than one element.

2.2.2 Constraints
Constraints represent individual bounds or limits on the
ground elements of a schema. Constraints are specified using
a set-theory syntax (e.g. t.Type ∈ {“Hypothesis′′, “Claim′′})
and may draw on any of the node or arc features, subfields,
or functions specified in the ontology. Unary Constraints ap-
ply to a single element (e.g. a.Type = “Citation′′). Binary
Constraints (e.g. (a.summary.words ∩ b.summary.words)
6= ∅) specify a relationship between two distinct ground ele-
ments.

a

c

S(SC)

a

b

c

Sq(SP1)

{
q.Type = “Supporting′′

}

a

c

q(SP2)

{
q.Type = “Supporting′′

}
−−−−→
S(a, c) = [Sc ⇒ SP1

[2,∗]
| SP2]

Figure 4: A simple recursive rule production for S
that defines a supporting path.

2.3 Graph Productions
A graph production Cl ⇒ Cr1|Cr2... is a context-sensitive
production rule that maps from a graph class containing a
single production variable to one or more alternate expan-
sions. Graph productions are used to match layered sub-
graphs to the variable arcs. A simple recursive production

rule for the variable element
−−−−→
S(b, t) is shown in Figure 4.

The rule is defined by the context class SC , and the two pro-
duction classes SP1 and SP2. The context class is used as a
key for the production application. It must contain exactly
one variable arc, the production variable, and no constraints.
The ground nodes a and c are context nodes and are used to
ground the production for mapping. They must be present
in all of the production rules. All production rules must
be expansive with each of the production classes contain-
ing at least one ground element not present in the context
class. Recursive productions are thus handled by iteratively
grounding the mapping with additional context and, as per
the non-repeating requirement, these rules must consume
additional elements of the graph. Production rules are thus
mapped in a layered fashion like the grammars defined by
Rekers and Schürr.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

40

h(C0){
h.Type = “Hypothesis′′

}
h

c

O(C1)

{
h.Type = “Hypothesis′′

c.Type = “Supporting′′

}

∀C0|¬∃C1

Figure 5: A simple Graph expression that tests for
unopposed hypotheses.

2.4 Graph Expressions
Graph expressions are logical rules of the form:

S0C0 | S1C1 | . . . | SmCm

where each Ci is a graph class and each Si is a logical quan-
tifier from the set: {∀,¬∀, ∃,¬∃}. The expressions allow
for existential and universal scoping and arbitrary negation
of graph classes. The expressions represent chained logical
structures with each ’|’ being read as “. . . such that . . . ”. A
sample graph expression is shown in Figure 5. This sample
expression asserts that for all hypothesis nodes in the target
graph there exist no citation nodes that oppose the target
hypothesis. Thus it is a universal claim about a negated
existential item. As this example illustrates graph expres-
sions allow for more complex negation structures than are
supported by the graph schema.

Graph expressions must be expansive or right-grounded such
that the following constraints hold:

∀Cm≤i>0 ∈ E : Ci−1 ⊆g Ci

Sm ∈ {∃,¬∃}

That is, the schema component of class Ci must be a sub-
graph of all classes class Ci+n. This also holds true for
the constraints with all constraints present in class Ci be-
ing present in classes Ci+n. And the rightmost class in the
expression must also be an existential (∃) test with optional
negation.

3. AGG
AGG is a general-purpose augmented graph grammar en-
gine that implements recursive graph matching. The system
was developed in Python to support analysis of the student-
produced argument diagrams described above. As such it is
flexible, functions across platforms, and supports complex
graph ontologies and user-defined functions. The system
was designed in a modular fashion and can be linked with
third-party libraries such as the NLTK [6].

At present the system uses a straightforward depth-first
stack matching algorithm. Given a graph and a set of named
rules, defined by a single graph class or expression, the sys-
tem will first match all ground nodes and arcs in the leftmost
target class. Once each ground element has been matched
then the system will recursively match all variable elements
in the target. If at any point the system cannot continue to
match elements it will pop up the stack and repeat. Rule
matching is governed by the aforementioned restrictions of
expansiveness and non-repetition. If a rule is defined by a
graph expression then each class match will set the context
for subsequent rightmost matches. Rules defined by a single
class are complete once a single match is found. The sys-
tem is designed to find matches serially and can be called
iteratively to extract all matching items.

In addition to basic graph grammars the AGG toolkit has
the capacity to define named rules. These are named graph
expressions or individual classes that will be recorded if they
match. In my thesis work, I applied the AGG engine to de-
velop a set of 42 such rules the scientific argument diagrams.
These ranged in complexity from graph classes defined by
a single node to more complex recursive expressions that
sought to identify disjoint subgraphs and unsupported hy-
potheses. The example rules and expressions shown in fig-
ures 3 - 5 were adapted from this set. The rules were used for
offline processing of the graphs and for prediction of student
grades [10, 9].

As part of the analysis process the rules were evaluated on
a set of 526 diagrams containing between 0 and 41 nodes
each. While exact efficiency data was not retained the per-
formance of the rules varied widely depending upon their
construction. General recursive rules such as a test for dis-
joint subgraphs performed quite inefficiently while smaller
chained expressions were able to evaluate in a matter of sec-
onds on a quad-core system.

4. APPLICATIONS & FUTURE WORK
The focus of this paper was on introducing Augmented Graph
Grammars and the AGG engine. The formalism provides for
a natural and robust representation of complex graph rules
for heterogeneous datasets. In prior work at the University
of Pittsburgh I applied Augmented Graph Grammars to the
detection of pedagogically relevant structures like Related
Uncompared Opposition (see Figure 3) in argument diagrams
of the type shown in Figure 1. The focus of that study was
on testing whether student-produced argument diagrams are
diagnostic of their ability to produce written argumentative
essays. The study was conducted in a course on Psycholog-
ical Research Methods at the University of Pittsburgh.

The graph features examined in that study included chained
counterarguments which feature chains of oppositional infor-
mation, and ungrounded hypotheses which are unrelated to
cited works, and so on. The study is described in detail in [8],
and a discussion of the empirical validity of the individual
rules can be found in [9]. The rules were also used as the ba-
sis of predictive models for student grades described in [10].
The Augmented Graph Grammars were ideally-suited for
this task as they allowed me to define clear and robust rules
that incorporated the structural information in the graph,
textual information within the nodes and arcs, and the static

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

41

element types. It was also possible to clearly present these
rules to domain experts for evaluation.

While the AGG system is robust more work remains to be
done to make it widely available, and several open problems
remain for future development. As noted above, arbitrary
graph parsing is NP-Hard. Consequently, many rule classes
are extremely inefficient. Despite this limitation, however,
real efficiency gains may be made via parallelization and
memoization. I am presently researching possible improve-
ments to the system and plan to test them with additional
datasets.

Acknowledgments
This work was supported by National Science Foundation
Award No. 1122504, “DIP: Teaching Writing and Argumen-
tation with AI-Supported Diagramming and Peer Review,”
Kevin D. Ashley PI with Chris Schunn and Diane Litman,
co-PIs.

5. REFERENCES
[1] Euijin Choo, Ting Yu, Min Chi, and Yan Lindsay Sun.

Revealing implicit communities to incorporate into
recommender systems. In Proceedings of the 15th

ACM Conference on Economics and Computation,
Palo Alto, CA, 2014. Association For Computing
Machinery. (in press).

[2] Evi Chryssafidou and Mike Sharples.
Computer-supported planning of essay argument
structure. In Proceedings of the 5th International
Conference of Argumentation, June 2002.

[3] Diane J. Cook and Lawrence B. Holder, editors.
Mining Graph Data. John Wiley & Sons, 2006.

[4] Diane J. Cook, Lawrence B. Holder, and G. Michael
Youngblood. Graph-based analysis of human transfer
learning using a game testbed. IEEE Trans. on
Knowl. and Data Eng., 19:1465–1478, November 2007.

[5] Rosta Farzan and Peter Brusilovsky. Annotated: A
social navigation and annotation service for web-based
educational resources. Journal of the New Review of
Hypermedia and Multimedia (NRHM), 2008.

[6] Dan Garrette, Peter Ljunglöf, Joel Nothman, Mikhail
Korobov, Morten Minde Neergaard, and Steven Bird.
The natural language toolkit for python (NLTK),
2014. [Online; accessed 04-29-2014].

[7] Frank Loll and Niels Pinkwart. Lasad: Flexible
representations for computer-based collaborative
argumentation. Int. J. Hum.-Comput. Stud.,
71(1):91–109, 2013.

[8] Collin F. Lynch. The Diagnosticity of Argument
Diagrams, 2014. (defended January 30th 2014).

[9] Collin F. Lynch and Kevin D. Ashley. Empirically
valid rules for ill-defined domains. In John Stamper
and Zachary Pardos, editors, Proceedings of The 7th

International Conference on Educational Data Mining
(EDM 2014). International Educational Datamining
Society IEDMS, 2014. (In Press).

[10] Collin F. Lynch, Kevin D. Ashley, and Min Chi. Can
diagrams predict essays? In Stefan Trausan-Matu,
Kristy Elizabeth Boyer, Martha E. Crosby, and Kitty
Panourgia, editors, Intelligent Tutoring Systems,
volume 8474 of Lecture Notes in Computer Science,

pages 260–265. Springer, 2014.

[11] Sherry E. Marcus, Melanie Moy, and Thayne Coffman.
Social network analysis. In Cook and Holder [3],
chapter 17, pages 443–468.

[12] Takashi Okada. Mining from chemical graphs. In Cook
and Holder [3], chapter 14, pages 347–379.

[13] Niels Pinkwart, Kevin D. Ashley, Vincent Aleven, and
Collin F. Lynch. Graph grammars: An its technology
for diagram representations. In David Wilson and
H. Chad Lane, editors, FLAIRS Conference, pages
433–438. AAAI Press, 2008.

[14] Niels Pinkwart, Kevin D. Ashley, Collin F. Lynch, and
Vincent Aleven. Evaluating an intelligent tutoring
system for making legal arguments with hypotheticals.
International Journal of Artificial Intelligence in
Education, 19(4):401–424, 2009.

[15] Eve Powell and Tiffany Adviser-Barnes. A framework
for the design and analysis of socially pervasive games.
2012.

[16] Eve M Powell, Samantha Finkelstein, Andrew Hicks,
Thomas Phifer, Sandhya Charugulla, Christie
Thornton, Tiffany Barnes, and Teresa Dahlberg. Snag:
social networking games to facilitate interaction. In
CHI’10 Extended Abstracts on Human Factors in
Computing Systems, pages 4249–4254. ACM, 2010.

[17] J. Rekers and Andy Schürr. Defining and parsing
visual languages with layered graph grammars. J. Vis.
Lang. Comput., 8(1):27–55, 1997.

[18] Michael Sipser. Introduction to the Theory of
Computation. PWS Publishing Company, San
Francisco, 1997.

[19] Daniel D. Suthers. Empirical studies of the value of
conceptually explicit notations in collaborative
learning. In Alexandra Okada, Simon Buckingham
Shum, and Tony Sherborne, editors, Knowledge
Cartography, pages 1–23. Springer Verlag, 2008.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

42

Graph Mining and Outlier Detection Meet Logic Proof
Tutoring

Karel Vaculík
Knowledge Discovery Lab

Faculty of Informatics
Masaryk University

Brno, Czech Republic
xvaculi4@fi.muni.cz

Leona Nezvalová
Knowledge Discovery Lab

Faculty of Informatics
Masaryk University

Brno, Czech Republic
324852@mail.muni.cz

Luboš Popelínský
Knowledge Discovery Lab

Faculty of Informatics
Masaryk University

Brno, Czech Republic
popel@fi.muni.cz

ABSTRACT
We introduce a new method for analysis and evaluation of logic
proofs constructed by undergraduate students, e.g. resolution or
tableaux proofs. This method employs graph mining and outlier
detection. The data has been obtained from a web-based system
for input of logic proofs built at FI MU. The data contains a tree
structure of the proof and also temporal information about all ac-
tions that a student performed, e.g. a node insertion into a proof,
or its deletion, drawing or deletion of an edge, or text manipula-
tions. We introduce a new method for multi-level generalization
of subgraphs that is useful for characterization of logic proofs. We
use this method for feature construction and perform class-based
outlier detection on logic proofs represented by these new features.
We show that this method helps to find unusual students’ solutions
and to improve semi-automatic evaluation of the solutions.

Keywords
logic proofs, resolution, educational data mining, graph mining,
outlier detection

1. INTRODUCTION
Resolution method is, together with tableaux proof method, one of
the advanced methods taught in undergraduate courses of logic. To
evaluate a student solution properly, a teacher needs not only to
check the result of a solution (the set of clauses is or is not con-
tradictory) but also to analyse the sequence of steps that a student
performed—with respect to correctness of each step and with re-
spect to correctness of that sequence. We need to take into account
all of that when we aim at building a tool for analysis of students’
solutions. It has to be said that for an error detection (e.g. resolu-
tion on two propositional letters, which is the most serious one) we
can use a search method. However, detection of an error does not
necessarily mean that the solution was completely incorrect. More-
over, by a search we can hardly discover patterns, or sequence of
patterns, that are typical for wrong solutions.

To find typical patterns in wrong solutions, we developed a new
method for analysis of students’ solutions of resolution proofs [13,

14] and showed its good performance. Solutions were manually
rewritten into GraphML and then analysed. First, the frequent pat-
terns were found by Sleuth [16], which was suitable for this type
of data—unordered rooted trees. This algorithm finds all frequent
subtrees from a set of trees for a given minimum support value.
Such frequent subgraphs were generalized and these generaliza-
tions used as new attributes.

The main drawback of a frequent subgraph mining algorithm it-
self is its strong dependence on a particular task, i.e. on the input
set of clauses that has to be proved, or unproved, as contradictory.
Moreover, a usage of such an algorithm is quite limited, because
by setting the minimum support to a very small value, the algo-
rithm may end up generating excessively many frequent subtrees,
which consumes both time and space. The problem is that we wish
to include the infrequent substructures as well because they often
represent mistakes in students’ solutions.

In this paper we propose a novel way of subgraph generalization
that solves the problems mentioned above and is independent on
the input set of clauses. We show that by means of graph mining
and class outlier detection, we are able to find outlying students’
solutions and use them for the evaluation improvement.

The structure of this paper is following. Section 2 brings related
work. In Section 3 we introduce the source data. In Section 4
we introduce the improved method for construction of generalized
resolution graphs. In Section 5 we bring the main result—detection
of anomalous student solutions. Discussion and conclusion are in
Sections 6 and 7, respectively.

2. RELATED WORK
Overview of graph mining methods can be found in [5]. Up to
our knowledge, there is no work on analysis of student solutions of
logical proofs by means of graph mining. Definitely, solving logic
proofs, especially by means of resolution principle, is one of the
basic graph-based models of problem solving in logic. In problem-
solving processes, graph mining has been used in [15] for mining
concept maps, i.e. structures that model knowledge and behaviour
patterns of a student, for finding commonly observed subconcept
structures. Combination of multivariate pattern analysis and hid-
den Markov models for discovery of major phases that students go
through in solving complex problems in algebra is introduced in
[1]. Markov decision processes for generating hints to students in
logic proof tutoring from historical data has been solved in [2, 3,
12].

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

43

Figure 1: A correct and an incorrect resolution proof.

3. DATA
By means of a web-based tool, each of 351 students solved at least
three tasks randomly chosen from 19 exercises. All solutions were
stored in a PostgreSQL database. The data set contained 873 dif-
ferent students’ solutions of resolution proofs in propositional cal-
culus, 101 of them being incorrect and 772 correct. Two examples
of solutions are shown in Fig. 1.

Common errors in resolution proofs are the following: repetition
of the same literal in the clause, resolving on two literals at the
same time, incorrect resolution—the literal is missing in the re-
solved clause, resolving on the same literals (not on one positive
and one negative), resolving within one clause, resolved literal is
not removed, the clause is incorrectly copied, switching the order
of literals in the clause, proof is not finished, resolving the clause
and the negation of the second one (instead of the positive clause).
For each kind of error we defined a query that detects the error. For
automatic evaluation we used only four of them, see Table ERRORS
described in appendix A. As the error of resolving on two literals at
the same time is very common and referred later in text, we denote
this error as E3.

All actions that a student performed, like adding/deleting a node,
drawing/removing an edge, writing/deleting a text into a node, were
saved into a database together with time stamps. More details on
this database and its tables can be found in appendix A.

In the data there were 303 different clauses occurring in 7869 ver-
tices, see frequency distribution in Fig. 2. Approximately half of
the clauses had absolute frequency less than or equal to three.

4. GENERALIZED SUBGRAPHS
In this section we describe feature construction from graph data.
Representing a graph by values of its vertices and edges is insuf-

ficient as the structure of the graph also plays a significant role.
Common practice is to use substructures of graphs as new features
[5]. More specifically, boolean features are used and the value of a
feature depends on whether the corresponding substructure occurs
in the given instance or not.

0

200

400

600

800

0 100 200 300
clause index

fr
eq

ue
nc

y

Figure 2: Distribution of clause labels ordered by frequency.

As we showed earlier, a frequent subgraph mining algorihm is inap-
propriate. To overcome the discussed problems, we created a new
method for feature construction from our data. The idea of feature
construction is to unify subgraphs which carry similar information
but they differ in form. An example of two subgraphs, which differ
only in variable letters and ordering of nodes and literals, is shown
on the left side of Fig. 3. The goal is to process such similar graphs
to get one unique graph, as shown in the same figure on the right.
In this way, we can better deal with different sets of clauses with
different sets of variable letters. To deal with the minimum-support
problem, the algorithm for frequent subgraphs was left out com-
pletely and all 3-node subgraphs, which are described later, were
looked up.

4.1 Unification on Subgraphs
To unify different tasks that may appear in student tests, we defined
a unification operator on subgraphs that allows finding of so called
generalized subgraphs. Briefly saying, a generalized subgraph de-
scribes a set of particular subgraphs, e.g., a subgraph with parents
{A,¬B} and {A,B} and with the child {A} (the result of a correct
use of a resolution rule), where A, B, C are propositional letters,
is an instance of generalized graph {Z,¬Y}, {Z,Y} → {Z}, where
Y, Z are variables (of type proposition). An example of incorrect
use of resolution rule {A,¬B}, {A,B} → {A,A} matches with the
generalized graph {Z,¬Y}, {Z,Y} → {Z,Z}. In other words, each
subgraph is an instance of one generalized subgraph. We can see
that the common set unification rules [6] cannot be used here.

In this work we focused on generalized subgraphs that consist of
three nodes, two parents and their child. Then each generalized
subgraph corresponds to one way—correct or incorrect—of reso-
lution rule application.

4.2 Ordering on Nodes
As a resolution proof is, in principal, an unordered tree, there is
no order on parents in those three-node graphs. To unify two res-
olution steps that differ only in order of parents we need to define

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

44

Figure 3: An example of pattern unification.

ordering on parent nodes1. We take a node and for each proposi-
tional letter we first count the number of negative and the number of
positive occurrences of the letter, e.g., for {¬C,¬B,A,C} we have
these counts: (0,1) for A, (1,0) for B, and (1,1) for C. Following
the ordering Ω defined as follows: (X ,Y) ≤ (U,V) iff (X < U ∨
(X = U ∧Y ≤ V)), we have a result for the node {C,¬B,A,¬C}:
{A,¬B,C,¬C} with description ∆ = ((0,1), (1,0), (1,1)). We will
compute this transformation for both parent nodes. Then we say
that a node is smaller if the description ∆ is smaller with respect to
the Ω ordering applied lexicographically per components. Contin-
uing with our example above, let the second node be {B,C,A,¬A}
with ∆ = ((0,1), (0,1), (1,1)). Then this second node is smaller than
the first node {A,¬B,C,¬C}, since the first components are equal
and (1,0) is greater than (0,1) in case of second components.

4.3 Generalization of Subgraphs
Now we can describe how the generalized graphs are built. After
the reordering introduced in the previous paragraph, we assign vari-
ables Z,Y,X,W,V,U,. . . to propositional letters. To accomplish this,
we initially merge literals from all nodes into one list and order it
using the Ω ordering. After that, we assign variable Z to the let-
ter with the smallest value, variable Y to the letter with the second
smallest value, etc. If two values are equal, we compare the cor-
responding letters only within the first parent, alternatively within
the second parent or child. For example, let a student’s (incorrect)
resolution step be {C,¬B,A,¬C},{B,C,A,¬A} → {A,C}. We or-
der the parents getting the result {B,C,A,¬A},{C,¬B,A,¬C} →
{A,C}. Next we merge all literals into one list, keeping multi-
ple occurrences: {B,C,A,¬A,C,¬B,A,¬C,A,C}. After reorder-
ing, we get {B,¬B,C,C,C,¬C,A,A,A,¬A} with ∆ = ((1,1), (1,3),
(1,3)). This leads to the following renaming of letters: B → Z,
C→ Y , and A→ X . Final generalized subgraph is {Z,Y,X ,¬X},
{Y,¬Z,X ,¬Y} → {X ,Y}. In case that one node contains more
propositional letters and the nodes are equal (with respect to the or-
dering) on the intersection of propositional letters, the longer node
is defined as greater. At the end, the literals in each node are lexi-
cographically ordered to prevent from duplicities such as {Z,¬Y}
and {¬Y,Z}.

4.4 Complexity of Graph Pattern Construc-
tion

Complexity of pattern generalization depends on the number of
patterns and the number of literals within each pattern. Let r be
the maximum number of literals within a 3-node pattern. In the

1Ordering on nodes, not on clauses, as a student may write a text
that does not correspond to any clause, e.g., {A,A}.

first step, ordering of parents must be done, which takes O
(
r
)

for
counting the number of negative and positive literals, O

(
r logr

)
for

sorting and O
(
r
)

for comparison of two sorted lists. Letter substi-
tution in the second step consists of counting literals on merged list
in O

(
r
)
, sorting the counts in O

(
r logr

)
and renaming of letters in

O
(
r
)
. Lexicographical reordering is performed in the last step and

takes O
(
r logr

)
. As construction of advanced generalized patterns

is less complex than the construction of patterns mentioned above,
we can conclude that the time complexity for whole generalization
process on m patterns with duplicity removal is O

(
m2 +m(4r +

3r logr)
)
.

4.5 Higher-level Generalization
To improve performance of used algorithms, e.g. outlier detection
algorithms, we created a new generalization method. This method
can be viewed as a higher-level generalization as it generalizes the
method described in previous paragraphs. This method uses do-
main knowledge about general resolution principle. It goes through
all literals in a resolvent and deletes those which also appear in at
least one parent. Each such literal is also deleted from the corre-
sponding parent or parents in case it appears in both of them. In the
next step, remaining literals in parents are merged into a new list
dropped and remaining literals in the resolvent form another list,
added. These two lists form a pattern of the higher-level general-
ization and we will write such patterns in the following format:

{Li1 ,Li2 , ...,Lin};{L j1 ,L j2 , ...,L jm}
(added) (dropped)

For example, if we take the generalized subgraph from the right
side of Fig. 3, there is only one literal in the resolvent, ¬Y . We re-
move it from the resolvent and both parents and we get dropped =
[Z,¬Z], added = [].

As a result, there may be patterns which differ only in used letters
and order of literals in lists dropped and added. For this reason
we then apply similar method as in the lower-level generalization.
Specifically, we merge lists dropped and added and compute num-
ber of negative and positive literals for each letter in this new list.
The letters are then ordered primarily according to number of oc-
currences of negative literals and secondly according to number of
occurrences of positive literals. In case of tie we check ordering
of affected letters only in added list and if needed, then also in
dropped list. If tie occurs also in these lists, then the order does
not matter. At the end, the old letters are one by one replaced by
the new ones according to the ordering and the new lists are sorted
lexicographically. For example, let dropped = [X ,¬X], added =
[Y,Z,Z,¬Z]. Then merged = [X ,¬X ,Y,Z,Z,¬Z] and number of
occurrences can be listed as count(X, merged) = (1, 1), count(Y,
merged) = (0, 1), count(Z, merged) = (1, 2). Ordering on letters
can be expressed as Y ≤ X ≤ Z. Using letters from the end of
alphabet we perform following substitution according to created
ordering: Y → Z, X → Y , Z → X . Final pattern will have lists
dropped = [¬Y,Y], added = [¬X ,X ,X ,Z], provided that ¬ sign is
lexicographically before alphabetic characters. Examples of pat-
terns with absolute support ≥ 10 are shown in Tab. 1.

4.6 Generalization Example
In this section we illustrate the whole generalization process by an
example. Assume that the following 3-node subgraph has to be
generalized:

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

45

Table 1: Higher-level patterns with support ≥ 10

Pattern (added;dropped) Support
{};{¬Z,Z} 3345
{};{¬Y,¬Z,Y,Z} 59
{¬Z};{¬Y,Y} 18
{};{¬Z} 13
{};{} 10

P1 = {¬C,¬A,¬C,D,¬D},P2 = {¬D,¬A,D,C}→ {¬A,A,¬C}

First, the parents are checked and possibly reordered. For each
letter we compute the number of negative and positive literals in
either parent. Specifically, count(A, P1) = (1,0), count(C, P1) =
(2,0), count(D, P1) = (1,1), count(A, P2) = (1,0), count(C, P2) =
(0,1), count(D, P2) = (1,1). Obtained counts are lexicographically
sorted for both parents and both chains are lexicographically com-
pared:

((1,0),(1,1),(2,0))> ((0,1),(1,0),(1,1))

In this case, the result was already obtained by comparing the first
two pairs, (1,0) and (0,1). Thus, the second parent is smaller and
the parents should be switched:

P1′ = {¬D,¬A,D,C},P2′ = {¬C,¬A,¬C,D,¬D}→ {¬A,A,¬C}

Now, all three nodes are merged into one list:

S = {¬D,¬A,D,C,¬C,¬A,¬C,D,¬D,¬A,A,¬C}

Once again, the numbers of negative and positive literals are com-
puted: count(A, S) = (3,1), count(C, S) = (3,1), count(D, S) = (2,2).
Since count(A, S) = count(C, S), we also check the counts in the
first parent, P1’. As count(C, P1’) = count(C, P2) < count(A, P2) =
count(A, P1’), letter C is inserted before A. Finally, the letters are
renamed according to the created order: D→ Z,C→Y,A→ X . Af-
ter the renaming and lexicographical reordering of literals, we get
the following generalized pattern:

{¬X ,¬Z,Y,Z},{¬X ,¬Y,¬Y,¬Z,Z}→ {¬X ,¬Y,X}

Next, we want to get also the higher-level generalization of that
pattern. The procedure goes through all literals in the resolvent and
deletes those literals that occur in at least one parent. This step
results in a prunned version of the pattern:

{¬Z,Y,Z},{¬Y,¬Z,Z}→ {X}

Parents from the pruned pattern are merged into a new list dropped
and the resolvent is used in a list added. Thus, added = {X} and
dropped = {¬Z,Y,Z,¬Y,¬Z,Z}. Now it is necessary to rename

the letters once again. Lists added and dropped are merged together
and the same subroutine is used as before—now the lists can be
seen as two nodes instead of three. In this case, the renaming goes
as follows: X → Z,Y → Y,Z→ X . At the end, literals in both lists
are lexicographically sorted and the final higher-level pattern is:

{Z};{¬X ,¬X ,¬Y,X ,X ,Y}
(added) (dropped)

4.7 Use of Generalized Subgraphs
This section puts all the information from previous sections to-
gether and describes how generalized patterns are used as new fea-
tures. Input data in form of nodes and edges are transformed into
attributes of two types. Generalized patterns of the lower level can
be considered as the first type and the patterns of higher-level gen-
eralization as the second type. One boolean attribute is created for
each generalized pattern. Value of such attribute is equal to T RUE,
if the corresponding pattern occurs in the given resolution proof,
and it is equal to FALSE otherwise. Thus following this procedure,
the resolution proofs can be transformed into an attribute-value rep-
resentation as shown in Table 2. Such representation allows us to
use a lot of existing machine learning algorithms.

Table 2: Attribute-value representation of resolution proofs

Instance Pattern1 Pattern2 ... Patternm
1 TRUE FALSE ... FALSE
...
n FALSE FALSE ... TRUE

5. OUTLIER DETECTION
5.1 Mining Class Outliers
In this section we present the main result, obtained from outlier
detection. We observed that student creativity is more advanced
than ours, and that results of the queries for error detection must
be used carefully. Detection of anomalous solutions—either ab-
normal, with picturesque error, or incorrectly classified—helps to
improve the tool for automatic evaluation, as will be shown later.

Here we focus only on outliers for classes created from error E3, the
resolution on two literals at the same time, as it was the most com-
mon error. This means that the data can be divided into two groups,
depending whether the instances contain error E3 or not. For other
types of errors, the analysis would be similar. We also present
only results computed on higher-level generalized patterns. The
reason is that they generally achieved much higher outlier scores
than lower-level patterns.

The data we processed had been labeled. Unlike in common outlier
detection, where we look for outliers that differ from the rest of
"normal" data, we needed to exploit information about a class. That
is why we used weka-peka [9] that looks for class outliers [8, 10]
using Random Forests (RF) [4]. The main idea of weka-peka lies in
different computation of proximity matrix in RF—it also exploits
information about a class label [9]. We used the following settings:

NumberOfTrees=1000
NumberOfRandomFetaures=7
FeatureRanking=gini

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

46

Table 3: Top outliers for data grouped by error E3

instance error E3 outlier score significant patterns significant missing patterns
[(AScore) added;dropped] [(AScore) added;dropped]

270 no 131.96 (0.96) looping (−0.99) {};{¬Z,Z}
396 no 131.96 (0.96) looping (−0.99) {};{¬Z,Z}
236 no 73.17 (0.99) {};{¬Y,¬Z,Y}
187 no 61.03 (0.99) {¬Z};{¬Y,Y}

(0.99) {};{¬Y,¬Z,Y}
438 yes 54.43 (1.00) {Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}
389 yes 52.50 (1.00) {};{¬Y,¬Z,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(−0.81) {};{¬Z,Z}
74 yes 15.91 (0.98) {¬Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(0.98) {};{¬X ,¬Y,¬Z,X ,Y,Z}
718 yes 15.91 (0.98) {¬Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(0.98) {};{¬X ,¬Y,¬Z,X ,Y,Z}

Figure 4: Drawings of the outlying instances from Table 3.

Table 4: Classification results for frequent subgraphs

Used attributes Algorithm Accuracy [%] Precision for incorrect proofs Recall
low-level generalization SVM (SMO) *95.2 0.94 0.61
both levels of generalization SVM (SMO) *96.9 0.95 0.74
both levels of generalization J48 96.1 *0.98 0.68
both levels of generalization E3 J48 *95.4 0.87 0.72

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

47

MaxDepthTree=unlimited
Bootstrapping=yes
NumberOfOutliersForEachClass=50

Main results of outlier detection process are summarized in Table 3.
When analyzing the strongest outliers that weka-peka found, we
can see that there are three groups according to the outlier score.
The two most outlying examples, instances numbered 270 and 396,
significantly differ from the others. The second cluster consists of
four examples with the outlier score between 50 and 100, and the
last group is comprised of instances with the lowest score of 15.91.

As weka-peka is based on Random Forest, we can interpret an out-
lier by analyzing trees that classify given instance to a different
class than it was labeled. Such trees show which attribute or com-
bination of attributes lead to the resulting class. If we search for
repeating patterns in those trees, we can find the most important
attributes making the given instance an outlier. Using this method
to interpret the instance 270, we found out that high outlier score
is caused by not-applying one specific pattern (see Table 3). When
setting this attribute equal TRUE, outlier score decreases to -0,40.
Values of attributes of instances 396 and 270 are equal, it means
that also interpretation is the same as in previous case. Similary, we
found that outlierness of instance 236 is given by occurence of spe-
cific pattern in solution and non-occurence of another pattern. The
value of the corresponding attribute is the only difference between
instance 236 and 187. Occurence/non-occurence of this pattern is
therefore the reason why instance numbered 236 achieves higher
outlier score than instance 187. See again Table 3 for information
about particular patterns. We further elaborated this approach of
outlier explanation in the following section.

5.2 Finding Significant Patterns
As the outlier score is the only output information about the out-
liers, we created a simple method for finding the attributes with the
most unusual values. Let xi j denote the value of the jth attribute
of the ith instance, which is either T RUE or FALSE for the pattern
attributes, and cl(i) denote the class of the ith instance. Then for
instance i we compute the score of attribute j as:

AScore(i, j)=

|{k|k 6=i∧cl(i)=cl(k)∧xk j=FALSE}|

|{k|k 6=i∧cl(i)=cl(k)}| if xi j = T RUE

− |{k|k 6=i∧cl(i)=cl(k)∧xk j=T RUE}|
|{k|k 6=i∧cl(i)=cl(k)}| if xi j = FALSE

AScore expresses the proportion of other instances from the same
class which have different value of the given attribute. If outlier’s
attribute equals FALSE, then the only difference is in the sign of the
score. For example, consider our data set of 873 resolution proofs,
out of which 53 proofs contain error E3. Assume that one of the
53 proofs is an outlier with an attribute equal to T RUE and from
the rest of 52 proofs only two proofs have the same value of this
attribute as the outlier. Then the outlier’s AScore on this attribute
is approximately 50/52 = 0.96 and it indicates that the value of this
attribute is quite unusual.

In general, the AScore ranges from -1 to 1. If the outlier resolu-
tion graph contains a pattern which is unique for the class of the
graph, then the AScore of the corresponding attribute is equal to
1. On the other hand, if the outlier misses a pattern and all other
graphs contain it, then the AScore is equal to -1. An AScore equal
to 0 means that all other instances are equal to the outlier on the
specified attribute.

5.3 Interpretation of the Outliers
Using the AScore metrics we found the patterns which are interest-
ing for outliers in Table 3. Patterns, with AScore > 0.8 are listed in
the significant patterns column and patterns with AScore < -0.8 in
the significant missing patterns column.

All outliers from Table 3, except for the last one as it is almost
identical to the penultimate one, are also displayed in Fig. 4. Anal-
ysis of individual outliers let us draw several conclusions. Let us
remind that higher-level patterns listed in Table 3 are derived from
lower-level patterns consisting of three nodes, two parents and one
resolvent, and that the component added simply denotes literals
which were added erroneously to the resolvent and the component
dropped denotes literals from parents which participated in the res-
olution process. Two most outlying instances, numbered 270 and
396, also contain one specific pattern, looping. This pattern repre-
sents the ellipsis in a resolution tree, which is used for tree termi-
nation if the tree cannot lead to a refutation. Both instances contain
this pattern, but neither of them contains the pattern of correct us-
age of the resolution rule, which is listed in the significant missing
patterns column. The important thing is that these two instances do
not contain error E3, but also any other error. In fact, they are cre-
ated from an assignment which always leads to the looping pattern.
This shows that it is not sufficient to find all errors and check the
termination of proofs, but we should also check whether the student
performed at least few steps by using the resolution rule. Otherwise
we are not able to evaluate the student’s skills. Moreover, there may
be situations in which a student only copies the solution.

Instances with the outlier score less than 100 are less different from
other instances. In particular, instances number 236 and 187 are
more similar to correct resolution proofs than the instances dis-
cussed above. Yet, they both contain anomalous patterns such as
{};{¬Y,¬Z,Y}. This particular error pattern does not indicate er-
ror E3, as can be seen in Table 3. It is actually not marked as any
type of error, which tells us that it is necessary to extend our list of
potential errors in the automatic evaluator.

Continuing with outlier instances we get to those which contain er-
ror E3. Two of them exceed the boundary of outlier score 50, which
suggests that they are still relatively anomalous. The first outlier,
instance number 438, differ from other instances in an extra lit-
eral which was added into a resolvent. Specifically, the number 1,
which is not even a variable, can be seen at the bottom of the reso-
lution proof in Fig. 4. More interesting is the second instance with
number 389. Error E3 was detected already in the first step of res-
olution, specifically when resolved on parents {s, t} and {¬t,¬s}.
This would not be a strange thing, if the resolvent was not s. Such
a resolvent raises a question whether it is an error of type E3 or just
a typing error. The latter is a less serious error.

Last two outliers in the table are almost the same so only the in-
stance number 74 is depicted in Fig. 4. These two instances have
quite low outlier score and they do not expose any shortcomings of
our evaluation tool. Yet, they exhibit some outlying features such
as resolving on three literals at the same time.

6. DISCUSSION
As we observed it is not sufficient to detect only the errors but we
need to analyze a context in which an error appeared. Moreover,
there are solutions that are erroneous because they do not contain
a particular pattern or patterns. Outlier detection helped to find
wrong students’ solutions that could not be detected by the system

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

48

of queries even though the set of queries has been carefully built
and tested on the test data. We also found a situation when a query
did not detected an error although it appeared in the solution. We
are convinced that with increasing number of solutions we will be
able to further increase performance of wrong solution detection.

As we stressed in the introduction, this method has not been devel-
oped for recognition of correct or incorrect solutions. However, to
verify that the feature construction is appropriate, we also learned
various classifiers of that kind. In previous work we used only gen-
eralized patterns as attributes for classification with allerrors class
attribute. However, these patterns were not sufficient for our cur-
rent data. Repeating the same experiments we got the best result for
SMO Support Vector Machines from Weka [7], which had 95.2%
accuracy, see Table 4. Precision and recall for the class "incorrect"
were 0.94 and 0.61, respectively. Minimum support for pattern se-
lection was 0% in this case. To improve performance of classifica-
tion we used the new level of generalization. Using the same set-
tings, but now with both levels of generalized patterns, we achieved
96.9% accuracy, 0.95 precision and 0.74 recall for the class "incor-
rect". Similar results were obtained when only the new level of
generalization was used, again with SMO. When ordered accord-
ing to precision, value 0.98 was achieved by J48, but the accuracy
and recall were only 96.1 and 0.68, respectively.

As one of the most common errors in resolution proofs is usage of
resolution rule on two pairs of literals at the same time, we repeated
the experiment, but now discarding all patterns capturing this spe-
cific kind of error. In this scenario the performance slightly dropped
but remained still high—J48 achieved 95.4% accuracy, 0.87 preci-
sion and 0.72 recall. For the sake of completeness, F1 score for
the class "correct" varied between 0.97 and 0.99 in all the results
above.

We also checked whether inductive logic programming (ILP) can
help to improve the performance under the same conditions. To
ensure it, we did not use any domain knowledge predicates that
would bring extra knowledge. For that reason, the domain knowl-
edge contained only predicates common for the domain of graphs,
like node/3, edge/3, resolutionStep/3 and path/2. We used Aleph
system [11]. The results were comparable with the method de-
scribed above.

7. CONCLUSION AND FUTURE WORK
In this paper we introduced a new level of generalization method
for subgraphs of resolution proof trees built by students. Gener-
alized subgraphs created by this special graph mining method are
useful for representation of logic proofs in an attribute-value fash-
ion. We showed how a class-based outlier detection method can
be used on these logic proofs by utilization of the generalized sub-
graphs. We also discussed how the outlying proofs may be used for
performance improvement of our automatic proof evaluator. This
method may also be used for other types of data such as tableaux
proofs.

As a future work we are going to analyse the temporal information,
which was saved together with the structural information of logic
proofs.

ACKNOWLEDGEMENTS
This work has been supported by Faculty of Informatics, Masaryk
University and the grant CZ.1.07/2.2.00/28.0209 Computer-aided-
teaching for computational and constructional exercises.

8. REFERENCES
[1] J. R. Anderson. Discovering the structure of mathematical

problem solving. In Proceedings of EDM, 2013.
[2] T. Barnes and J. Stamper. Toward automatic hint generation

for logic proof tutoring using historical student data. In
Proceedings of the 9th International Conference on
Intelligent Tutoring Systems, pages 373–382, 2008.

[3] T. Barnes and J. Stamper. Automatic hint generation for logic
proof tutoring using historical data. Educational Technology
and Society, 13(1):3–12, 2010.

[4] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct.
2001.

[5] D. J. Cook and L. B. Holder. Mining Graph Data. John
Wiley & Sons, 2006.

[6] A. Dovier, E. Pontelli, and G. Rossi. Set unification. CoRR,
cs.LO/0110023, 2001.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.

[8] N. Hewahi and M. Saad. Class outliers mining:
Distance-based approach. International Journal of Intelligent
Technology, 2.

[9] Z. Pekarcikova. Supervised outlier detection, 2013.
http://is.muni.cz/th/207719/fi_m/diplomova_
praca_pekarcikova.pdf.

[10] P. Spiros and F. Christos. Cross-outlier detection. In
Proceedings of SSTD, pages 199–213, 2003.

[11] A. Srinivasan. The Aleph Manual, 2001.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/ [Accessed: 2014-01-09].

[12] J. C. Stamper, M. Eagle, T. Barnes, and M. J. Croy.
Experimental evaluation of automatic hint generation for a
logic tutor. I. J. Artificial Intelligence in Education,
22(1-2):3–17, 2013.

[13] K. Vaculik and L. Popelinsky. Graph mining for automatic
classification of logical proofs. In Proceedings of the 6th
International Conference on Computer Supported Education
CSEDU 2014, 2014.

[14] K. Vaculik, L. Popelinsky, E. Mrakova, and J. Jurco.
Tutoring and automatic evaluation of logic proofs. In
Proceedings of the 12th European Conference on e-Learning
ECEL 2013, pages 495–502, 2013.

[15] J. S. Yoo and M. H. Cho. Mining concept maps to understand
university students’ learning. In Proceedings of EDM, 2012.

[16] M. J. Zaki. Efficiently mining frequent embedded unordered
trees. Fundam. Inf., 66(1-2):33–52, Jan. 2005.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

49

APPENDIX
A. DESCRIPTION OF DATA
CLAUSE - list of nodes from all graphs
. idclause - ID of the node
. coordinatex - x position in drawing
. coordinatey - y position in drawing
. timeofcreation - when the node was created
. timeofdeletion - when the node was deleted (if not deleted, value is "NA")
. idgraph - in which graph the node appears
. text - text label

EDGE - list of (directed) edges from all graphs
. idedge - ID of the edge
. starting - ID of the node from which this edge goes
. ending - ID of the node to which this edge goes
. timeofcreation
. timeofdeletion
. idgraph

ERRORS - errors found in resolution graphs (found by means of SQL queries)
. idgraph - ID of the graph
. error3 - resolving on two literals at the same time (1 = error occurred, 0 = not occurred)
. error4 - repetition of the same literal in a set
. error5 - resolving on identical literals
. error8 - no resolution performed, only union of two sets
. allerrors - any of the previously listed errors occurred / not occured

GRAPH - list of graphs
. idgraph - ID of the graph
. logintime - start of graph creation
. clausetype - either set or ordered list
. resolutiontype - type of resolution, encoded by numbers (see table RESOLUTIONTYPES)
. assignment - textual assignment of task
. endtime - end of graph creation

MOVEMENT - list of coordinate changes of nodes
. idmovement - ID of the change
. idclause - ID of the node whose coordinates were changed
. coordinatex - new x coordinate
. coordinatey - new y coordinate
. time - time of the change

RESOLUTIONTYPES - encoding of resolution types
. typeid - ID (numeric encoding)
. typetext - textual value

TEXT - list of text (label) changes of nodes.
. idtext - ID of the change
. idclause - ID of the node whose text label was changed
. time - time of the change
. text - new text (label) value

TYPES - list of resolution type and clause type changes
. idtypes - ID of the change
. resolutiontype - new value of resolution type for specific graph
. clasetype - new value of clause type for specific graph
. timeofchange - time of the change
. idgraph - ID of the graph whose values were changed

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

50

Snag’em: Graph Data Mining for a Social Networking Game

Veronica Cateté
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
vmcatete@ncsu.edu

Drew Hicks
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
aghicks3@ncsu.edu

Collin Lynch
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
cflynch@ncsu.edu

Tiffany Barnes
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
tmbarnes@ncsu.edu

ABSTRACT
New conference attendees often lack existing social networks
and thus face difficulties in identifying relevant collaborators
or in making appropriate connections. As a consequence
they often feel disconnected from the research community
and do not derive the desired benefits from the conferences
that they attend. In this paper we discuss Snag’em, a social
network game designed to support new conference attendees
in forming social connections and in developing an appropri-
ate research network. Snag’em has been used at seven pro-
fessional conferences and in four student settings and is the
subject of active research and development. The developers
have sought to make the system engaging and competitive
while preventing players from ‘gaming’ it and thus accru-
ing points while neglecting to form real-world connections.
We briefly describe the system itself, discuss its impact on
users, and describe our ongoing work on the identification
of critical hub players and important social networks.

Keywords
Social Networks, Gamification, Conferences, Underrepresented
Populations

1. INTRODUCTION
Social networking is an essential task at any academic con-
ference or professional venue. One of the primary goals of
attendees is to seek out relevant work, identify potential
collaborators, and to maintain existing connections. Many
of these contacts are made by building upon existing re-
lationships and by expanding the attendees existing social
network. New conference goers however, particularly stu-
dents and historically underrepresented groups, lack these

foundational networks and thus face difficulties making con-
nections. Based on Tinto’s Theory of University Departure,
increased interaction with other students, faculty, staff and
community supporters can increase the retention rate of mi-
nority populations and sense of community within secondary
and post-secondary academic communities [7].

In academia, sense of community has a strong positive cor-
relation with retention [7]. Research indicates that students
who do not feel as if they are part of a larger academic com-
munity are less likely to participate in extracurricular activ-
ities and organizations. This leads to lower retention rates,
especially amongst minority students who suffer without a
strong student support group [7]. A feeling of community
can be nurtured with small group activities that augment
the individual’s role within a setting and helps students to
foster connections [8].

Snag’em was designed as a pervasive game to encourage
valuable professional networking and promote sense of com-
munity. The system’s pervasive features are designed to
help players translate their in-game networks directly into
real world peer groups. The system was originally created
for the 2009 Students and Technology Academia Research &
Service (STARS) conference. This conference is unusual in
that it is an academic conference designed specifically to en-
gage with minority and female undergraduates majoring in
computing fields. Students who attend the conference par-
ticipate in competitions and attend training sessions to sup-
port engagement and research. Studies conducted at prior
conferences has shown that while students were engaged in
the training sessions and vigorously involved in learning they
did not develop the lasting social connections that can arise
out of conferences. Snag’em was designed to engage stu-
dents in social networking through gamification of the pro-
cess. Prior research has shown that social games can help
people to engage in otherwise challenging or uncomfortable
situations [6, 4, 2, 3].

Snag’em functions as a large human scavenger hunt. Play-
ers are assigned a set of relevant tags (e.g. “I’m a games
researcher”, or “I’m interested in data-mining”). They are

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

51

Figure 1: The browser interface for mission assign-
ments. Snag Snapshots highlight missions recently
completed.

then assigned a set of missions (e.g. “Find someone who spe-
cializes in HCI”) which they must complete by identifying
and engaging with an appropriate individual. The system
was developed in PHP with a MySQL backed and provides
a web-based front end for players to edit their profile and to
record interactions. We have also developed a mobile ver-
sion of Snag’em which allows players to access the game via
tablets and smartphones. The game itself is designed for
easy deployment to new conferences and we are presently
adding features that will allow us to automatically populate
the database with initial tags.

Figure 1 shows a snapshot of the mission browser screen from
the web version of Snag’em. Contact is registered when the
players enter a 4-digit ID from the other person. In addi-
tion to missions the systems also allows players to record
notes about one-another for future reference (e.g. “I should
e-mail my proposal to him after the conference”) and to send
one-another messages. A sample message from the mobile
interface is shown in Figure 2. Snag’em can also be con-
figured to suggest specific individuals that students should
make contact with based upon their mutual interests or so-
cial connections.

The system logs all player interactions including tag up-
dates, missions completed, notes made, messages, sent, con-
nections added, and so on. This provides a rich dataset of
information that we can use to analyze social patterns at
conferences and to improve the impact of the intervention.
In addition to the raw logs the game contains a number of
features to support easy analysis. The developers have cre-
ated a set of badges that allowed administrators to easily
track the number of people playing via the mobile or web
interfaces as well as the number of missions completed. The
badge system also provides a simple visual record of the
types of features (i.e. notes, tags, avatars) each player is us-
ing. The badge systems also allows administrators to note
the frequency of use, time of day that players are online and
so on.

Figure 2: Here is an example of a message sent in
game after a conversation between players.

To date, Snag’em has been used at seven academic confer-
ences. It has also been deployed to help incoming freshman
and transfer students connect at four academic institutions.
In 2009, for example, Snag’em was used by new students in
the College of Computing and Informatics at the University
of North Carolina at Charlotte. Students were able to play
the game during the freshman orientation week with kiosks
available for students to sign up located in the College of
Computing and Informatics. SNAG’EM was used alongside
other social activities to get students acquainted with each
other, the faculty, and the CCI campus.

2. PRIOR ANALYSIS
We have studied the impact of Snag’em on users and found
that playing the game improved conference attendees’ sense
of community [6, 1]. We have also analyzed the existing
dataset both to test the implementation of the Snag’em fea-
tures, and to identify hubs or critical players whose activity
predicts the behavior of others.

In analyzing the game mechanisms we have focused primar-
ily on the STARS 2009 dataset. As mentioned above STARS
is primarily targeted at undergraduate students specifically
females and underrepresented minorities. We deployed the
system via the conference infrastructure and set up a table
near the registration booth. The game was active during
the first two full days of the conference. The conference
had 280 attendees 60.0% of whom were female (N=168) and
70% of which (N=196) were students. Roughly 28% of the
conference-goers played the game (N=80) of whom 50% were
female. In previous analysis 35.0% of the players were clas-
sified as active. It is important to note that this data was
collected on an earlier version of SNAG’EM where players
could snag each other only once, and only a single mission
was available at a time. Because completing missions was
significantly more difficult in this version of the game, play-
ers were classified as active if they completed at least two
missions. An additional 50% of the players were classified
as Interested, meaning they did more than just register for
the game or that they completed one mission.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

52

Figure 3: Visualization of community center 4142,
with one of that user’s maximal cliques highlighted.

Our analysis of this data was focused primarily on the mis-
sion and scoring systems. In 2009 the mission system was
relatively simple and focused solely on guiding students to
locate a single individual with a desired tag. Players were
then guided to record the match via the ID system discussed
above. Both the missions generated and points received were
determined by the state of the current network. When gen-
erating missions we attempted to ensure that they were of
varying difficulty, and were relevant to the current user. In
this iteration of the system the missions could only be sat-
isfied by identifying someone whom the user had not previ-
ously snagged. The target tags were selected from the full set
listed in the system. Easy missions were assigned high fre-
quency tags (more than 1

2
of the non-adjacent users), while

medium missions were assigned tags that are present in 1
4

of
non-adjacent users and hard missions required tags present
in less than 1

4
of the non-adjacent community.

The difficulty of the mission determined the base score which
was then modified by a connectedness factor. This factor
was greater than 1 if adding this connection expanded your
“Friends of friends,” that is, the number of vertices less than
2 edges distant from the user. The connectedness factor was
less than 1 if you completed the mission using the ID of a
person you were already adjacent to, In this way we hoped
to encourage players to branch out.

When developing the system we had hoped that players
would develop social networks that exhibited breadth (i.e.
meeting lots of people), depth (i.e. getting to know some in-
dividuals well), and mutuality (i.e. snags in both directions).
We therefore hoped that users’ immediate neighborhoods
would be large and relatively dense with multiple snags be-
tween some people and bidirectional connections. When an-
alyzing the STARS 2009 dataset, however, we found that
this was not the case. Rather the game mechanics encour-
aged players to make a relatively large number of unrelated
connections which, in turn, produced relatively broad and
shallow social neighborhoods with very few inbound arcs. In
fact some players actually opted to hide their IDs so that no
other player could gain points by using them to complete a
mission. As a consequence the attendees were actually less

Figure 4: Correlation between active player hubs
and number of interactions.

likely to engage in the deep and meaningful conversations
required or to form lasting connections.

In response to these results we have overhauled the scor-
ing system. This included changing the connectivity bonus
to reward players based upon the size of the largest clique
that they participate in. Players are now rewarded more
for expanding this clique, thus deepening their social net-
works, than they are for adding an unrelated individual to
their friends of friends. We have also allowed players to re-
snag the same individual for multiple missions with a low
penalty for re-snags, and have begun to reward players with
points for allowing themselves to be snagged to help others
complete a mission. We have not yet analyzed the effects of
these changes on a the dataset.

We have used two measures of importance when identifying
critical players. The first is the simple interaction frequency
as measured by the number of outgoing arcs from a player in
the network. The second is membership in maximal cliques,
that is, cliques which are not part of a larger clique. Play-
ers that participate in a large number of maximal cliques
are hubs. We were able to identify three distinct user com-
munities in the STARS 2009 dataset that centered on these
hubs. A sample community graph is shown in Figure 3. We
also found that the activity of these hub players was highly
correlated with the activity of the other players in the com-
munity (r=0.827). A graph of these spikes is shown in Figure
4. More specifically, on any day where one or more of the
hub players were active, we observed spikes in the number
of interactions taking place across users. We were able to
observe a similar effect (r = 0.659) on days when the devel-
opers had a booth/kiosk available.

We also performed an analysis of hub players using the
UNCC Student Orientation dataset described above. In this
dataset 91 of the 1290 potential students registered to play
Snag’em of which 22% (N=20) were female [5]. This data
was collected on a version of Snag’em permitting multiple
missions and allowing players to connect with the same user
multiple times.We classified players as active if they com-
pleted 5 or more missions. In total, 9 users were active
users during this study. However, all of these players were

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

53

moderators or members of the development team. In this
deployment almost all of the game interaction took place
at the registration table thus making the administrators re-
sponsible for most of the activity. We had hypothesized
that the moderators would only need to initiate the game
and then it would be self-sustaining. As our analysis shows
however, this was not the case. In general the players did
not think about the game outside of the advertised area.

3. OPEN QUESTIONS & FUTURE WORK
Our prior research has focused on identifying key players
using graph methods. We plan to continue examining these
key players in future work and to modify the mission se-
lection criteria to better engage players that have not been
active recently. Our chosen method of community detec-
tion, based upon maximal cliques, is both computationally
expensive on large networks and can change substantially
based upon small shifts in the network. Using a simpler,
less volatile measure to identify community centers would
allow us to adapt the gameplay based upon those communi-
ties more efficiently. This would in turn enable us to encour-
age new players to specifically seek out these active players
in an effort to better engage them from the start. Differ-
ent community detection algorithms might identify different
hub players, or provide different ways of scoring missions
that help to foster larger communities. Further develop-
ment in this area might facilitate play in the absence of an
instigating ‘active player’ or outside of areas with an active
game station or kiosk.

One open question is how to better identify hub players dur-
ing the game, and modify mission selection criteria to engage
inactive players or players who don’t need motivation to net-
work. These ‘social elites’ are important to attract, as they
are precisely who we should be encouraging our players to
network with. If we are better able to build and analyze our
networks, we may be able to offer features to these social
elites that would attract them to Snag’em as a system more
than the gamification aspects would. We hope to explore
techniques for reliably generating edges and tags for users
based on existing data sources like conference proceedings
or citations. This would reduce the burden of entry on new
players, particularly elites, and make it more likely for those
users to participate in networking (if not gameplay) using
SNAG’EM.

We also plan to expand our in-game evaluation of Snag’em
itself. We are presently adapting the system to poll play-
ers for their opinions as the system is used. This will bet-
ter help us to identify the immediate impact of the system
on users’ social connections. We will be deploying some of
these new features of the system during the 2014 Educa-
tional Datamining Conference in London as well as subse-
quent conferences in 2014 and 2014.

4. ACKNOWLEDGMENTS
This research was supported by the NSF GRFP Fellowships
No. 0900860 & No. 1252376 and BPC Grant No. 0739216
and No. 1042468 Thanks to all developers who have worked
on the SNAG’EM project. The authors also wish to thank
Shaghayegh Sahebi for her expert advice.

5. REFERENCES
[1] S. L. Finkelstein, E. Powell, A. Hicks, K. Doran, S. R.

Charugulla, and T. Barnes. Snag: using social
networking games to increase student retention in
computer science. In Proceedings of the fifteenth annual
conference on Innovation and technology in computer
science education, pages 142–146. ACM, 2010.

[2] M. Montola. Exploring the edge of the magic circle:
Defining pervasive games. In Proceedings of DAC, page
103, 2005.

[3] M. Montola. A ludological view on the pervasive
mixed-reality game research paradigm. Personal and
Ubiquitous Computing, 15(1):3–12, 2011.

[4] E. Powell and T. Adviser-Barnes. A framework for the
design and analysis of socially pervasive games. 2012.

[5] E. Powell, F. Stukes, T. Barnes, and H. R. Lipford.
Snag’em: Creating community connections through
games. In Privacy, security, risk and trust (passat),
2011 ieee third international conference on and 2011
ieee third international conference on social computing
(socialcom), pages 591–594. IEEE, 2011.

[6] E. M. Powell, S. Finkelstein, A. Hicks, T. Phifer,
S. Charugulla, C. Thornton, T. Barnes, and
T. Dahlberg. Snag: social networking games to
facilitate interaction. In CHI’10 Extended Abstracts on
Human Factors in Computing Systems, pages
4249–4254. ACM, 2010.

[7] V. Tinto. Taking Student Retention Seriously:
Rethinking the First Year of College. NACADA
Journal, 19(2):5–10, 2000.

[8] S. White. Algorithms for estimating relative
importance in networks. Proceedings of the ninth ACM
SIGKDD international, pages 266–275, 2003.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

54

Social Positioning and Performance in MOOCs
Suhang Jiang

School of Education
University of California, Irvine

Irvine, CA 92697
suhangj@uci.edu

Sean M. Fitzhugh
Department of Sociology

University of California, Irvine
Irvine, CA 92697

sean.fitzhugh@uci.edu

Mark Warschauer
School of Education

University of California, Irvine
Irvine, CA 92697

markw@uci.edu

ABSTRACT
Literature indicates that centrality is correlated with learners’
engagement in MOOCs. This paper explores the relationship
between centrality and performance in two MOOCs. We found
one positive and one null correlation between centrality and grade
scores at the end of the MOOCs. In both MOOCs, we found out
that learners tend to communicate with learners in different
performance groups. This suggests that MOOCs’ discussion
forum serves to facilitate information flow and help-seeking
among learners.

Keywords

MOOCs; Social Positioning; Performance

1. INTRODUCTION
Massive Open Online Courses (MOOCs) have attracted over 7
million users in the past two years. In addition to offering videos
and online quizzes that users can watch and take, a key feature of
MOOCS is that they contain some platform for discussion among
users. Indeed, discussion forums can even be considered a
defining feature of a MOOC, because, without such forums, a
MOOC is more like a collection of online instructional resources
rather than an interactive course.

Our own preliminary data analysis of 15 MOOCs offered at the
University of California, Irvine, indicates that the number of posts
in MOOC discussion forums significantly predicts the number of
people who complete MOOCs. Online discussion forums serve an
important role in the collaborative learning process of learners [9];
however, little research explores the relationship between social
positioning in the forum and the performance at the end of the
course in online learning environments. To better understand
learners’ interaction patterns in MOOC discussions, we employed
social network analysis to study the collaborative learning process
in the discussions of two large MOOCs. Social network analysis
is a methodology that identifies the underlying patterns of social
relations of actors [11]. This paper compares the discussion forum
activities of two MOOCs and examines three centrality metrics of
online learners—degree centrality, betweenness centrality, and
closeness centrality—and their relationship with learner
performance.

2. RELATED WORK
Threaded discussion forums, an important component of computer

assisted collaborative learning, allow learners to connect,
exchange ideas, and stimulate thinking [3]. Social network
analysis (SNA) is valuable for analyzing the dynamics of these
discussions, as it emphasizes the structure and the relationship of
actors [2]. SNA is thus a practical means for gaining insight into
the relations and collaborative patterns of learners in the forum
[8]. Learners’ behaviors measured by social network metrics (e.g.
authority and hub) in discussion forums have been identified as
positively correlated with learners’ engagement in MOOCs [12].
Previous research on online education indicates that network
measures of centrality (out-degree) and prestige (in-degree) is
strongly associated with learners’ cognitive learning outcomes
[10]. Research in online collaborative learning community found
out that central actors tend to have higher final grades and
suggested that communication and social networks should be
central elements in distributed learning environments [4].

The embedded theory states that learners’ embeddedness in the
social networks that pervades the educational programs predicts
their satisfaction and performance [1]. We hypothesize that
learners’ embeddeness in online learning environment is also
positively correlated with their performance. Three centrality
metrics, i.e.degree centrality, betweenness centrality and closeness
centrality are proposed to reflect embeddness in the online
learning networks.

This paper explores whether the correlation between the three
centrality metrics and academic performance exists in the MOOC
settings. The study mainly focused on learners who took part in
the discussion forum.

3. DATASET
The project focuses on two online courses named “Intermediate
Algebra” and “Fundamentals of Personal Financial Planning”
delivered via the Coursera platform. The Intermediate Algebra
MOOC was 10 weeks long and developed by professors from
University of California, Irvine. It was open for all to enroll for
free. A total 63,100 learners registered in the course, among
which 43,342 learners had a record in the gradebook and 23,662
learners accessed course materials. The course consisted of lecture
videos, weekly quizzes, and the final exam. The quizzes
accounted for 20% of the final course grade while the final exam
accounted for 80% of the final grade. Learners who obtained 65%
or more of the maximum possible score were awarded with the
Statement of Accomplishment, i.e. the Normal certificate.
Learners who achieved 85% or more of the maximum possible
score were rewarded the Statement of Accomplishment with
Distinction, i.e. the Distinction certificate.

The Financial Planning MOOC was 7 weeks long and developed
by a certified financial planner practitioner from University of
California, Irvine. Over 110,000 learners had enrolled in the
course, among which 84,234 leaners have record in the gradbook
and about 55, 000 learners accessed course materials. The course
evaluation consisted of weekly quizzes (30%), one peer
assessment (30%) and the final exam (40%). Learners who

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

55

received a minimum of 70% on all graded assignment received
the Statement of Accomplishment; those who received a
minimum of 85% of all graded assignment obtained the Statement
of Accomplishment with Distinction.

In the Algebra course, 2,126 learners participated in the forum
during the 10 week course duration. Among them, 1,558 were
identified as learners with an academic record, who can be found
in the gradebook. It is unclear why a certain percentage of users
who participated in the forum, but did not have a record in the
gradebook. A possible explaination is that some are instructors
and teaching assistants. The percentage of MOOC forum
participation of the three performance groups is relatively
constant, with 68% of forum participants as none-certificate
earners. Table 1 shows the composition of forum participants.

Table 1 Composition of Discussion Forum Participants
Performance

Group
Algebra Financial Planning

Distinction 311 20% 998 24%

Normal 193 12% 337 8%

None 1054 68% 2897 68%

In total 1558 100% 4232 100%

3.1 Network Descriptive
To create each network we used the following procedure. The
forum consists of several sub-forums. Users can initiate a thread
in a sub-forum, make posts to a thread, and make comments to a
post. Each thread and post serves as a site of interaction among
learners. Learners engage in a variety of actions: asking questions,
seeking help, and providing assistance to fellow learners. We
treat individuals as tied if they co-participate in a thread or a post.
These ties represent communication among learners. Although
one could create directed ties between individuals who address
each other directly in the posts/comments, doing so would require
extensive reading and coding of the data and tackling issues such
as how to define direct communication (e.g., is implied
communication sufficient, or must the alter be directly named?).
Given the size of our data, such an approach is infeasible for our
purposes.

The Algebra course discussion network has 1,389 nodes, as not all
1,558 individuals participated in the discussion forum have a
record in the gradebook. The network has 3,540 edges. We
illustrate it below in Figure 1. Nodes colored according to their
performance groups. The network is dominated by a large, dense
component with a periphery of low-degree actors. A few isolates
and lone dyads are also present. Nodes of different performance
groups appear to be intermixed throughout the main component
and the rest of the graph.

Mean degree is 5.10, although mean degree varies slightly by
performance group. Those in the “none” category have the lowest
mean degree (4.36) while those in the “normal” performance have
a mean degree of 8.249 and individuals earning “distinction” have
a mean degree of 5.502.

More than twice as large as the algebra course discussion
network, the financial planning course discussion network has
3,317 nodes and 5,505 edges. We depict the network in Figure
2. Like the algebra network, the financial planning network is

Figure 1: Algebra Network

Figure 2: Financial Planning Network
dominated by a large component with a mix of isolates and
smaller components. Although the financial planning discussion
network is much larger than the algebra network, mean degree is
lower. The average degree is 3.32. Like the algebra network,
nodes with performance achievements of “normal” or
“distinction” have higher degree than those in the “none”
category. Those in the “none” category have an average of 2.80
ties, followed by the “normal” category with 4.15 ties, and
“distinction” which has an average of 4.48 ties.

4. METHOD
Our analysis consists of analyzing the graph-level centralization
and node-level centrality with permutation tests.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

56

4.1 Centrality
Among the most common structural indices employed in the
analysis of networks are centrality indices. These measures
demonstrate the extent to which a node has a central position in
the network [5][11]. Several measures of centrality exist and we
utilize three of the most common measures in this paper: degree,
betweenness, and closeness. One of the simplest centrality
indices, degree, measures the total number of alters to which a
node is tied. In the context of our MOOC network, this represents
the number of other learners to which one is tied through
participation in discussion forum threads. Those with high degree
have greater levels of participation in a variety of threads that put
them in contact with other learners. We also utilize betweenness,
which measures the extent to which a node bridges other nodes by
lying on a large number of shortest paths between them. Nodes
with high betweenness have been described as having some
degree of control over the communication of others [5] as well as
greater opportunities to exert interpersonal influence over others
[11]. Nodes with high betweenness in these MOOCs participate
in discussions in such a way to learners across multiple forum
threads. Finally, we measure closeness, which measures the
extent to which a node has short paths to other nodes in the
network. Nodes with high closeness centrality are described as
being in the “middle” of the network structure [2]. Because the
standard definition of closeness does not accommodate networks
with multiple components, we use the Gil and Schmidt
[6]approach of measuring closeness of a node as the sum of the
inverse distances to all other nodes.

In addition to measuring node-level centrality, we also measure
graph-level centralization. Unlike the node-level centrality
indices described above, these graph-level indices produce one
measure for the entire graph. These indices measure the
difference between the most central node and the centrality scores
for all other nodes in the network in order to provide a graph-level
measure of the extent to which centrality is concentrated on a
small portion of the network’s nodes. We compute these
centralization scores for the three aforementioned centrality
measures: degree, betweenness, and closeness. These measures
demonstrate the extent to which centrality is dominated by a small
number of learners in the discussion network.

4.2 Permutation Test
Because we cannot guarantee the normality assumptions required
by many statistical tests, we use a variety of permutation tests to
assess various features of the network. While we use standard,
non-parametric correlation tests, we also use non-parametric
network methods. These network methods uncover structural
biases by using baseline models to determine the likelihood of
observing particular structural traits[2]. The results demonstrate
the extent to which the network deviates from a reasonable
baseline network. These tests allow us to test our hypotheses
despite the statistical complexities of the network
representation. We use conditional uniform graph (CUG) tests to
determine whether features of our observed graph occur at levels
exceeding what we would expect by chance. The CUG test
conditions on a certain set of network features (typically, size,
number of edges, or dyad census) and treats all graphs within that
set as equally likely. It then draws at random from this set of
graphs and measures whether the statistic of interest is greater,
less than, or equal to the measure from our original, observed
graph. To the extent that few graphs drawn from the set exceed
our observed measure, the measure is higher than we expect by
chance. In our analyses, we measure whether the observed levels

of centralization in the discussion network are greater than what
we could expect from graphs of the same size with the same
number of edges.

The second non-parametric network method we employ is the
matrix permutation test, often referred to as the quadratic
assignment procedure or QAP test [7]. This test evaluates
correlations between matrices by permuting rows and columns of
the matrices, recalculating the test statistic, and measuring
whether it is greater or less than the observed value. This test
controls for the structure of the network and allows us to
determine whether the labels (i.e., categorical attributes) of the
network explain its structure. Where the correlation between the
permuted graph rarely exceeds the observed test statistic, we find
evidence that the observed statistic is greater than we would
expect by chance. We use this technique in our MOOC network
to measure whether similarity in grades between any given pair of
individuals is associated with the presence of a tie between those
individuals.

5. RESULTS
To determine whether observed graph-level centralization exceeds
levels we would expect by chance, we use conditional uniform
graph (CUG) tests conditioned on the dyad census. We hold
constant the number of nodes and number of dyads (either mutual
or null, given our undirected graph) when running the test. In our
algebra network, degree centralization (.164), betweenness
centralization (.269), and closeness centralization (.0001) all
exceed chance levels, with p-values less than .01. These results
are consistent with the financial planning course, where degree
centralization (.354), betweenness centralization (.626), and
closeness centralization (.001) were all significantly higher than
baseline (p <.01). These results indicate that both of our observed
networks have much higher levels of centralization than we would
expect by chance. These networks are characterized by
concentrations of centrality on a handful of nodes. While certain
nodes have high levels of centrality, others lack centrality in the
network.
We assess node-level centrality by relating our three centrality
measures with attainment measures in the course. For each of the
nodes in the network, we calculate its degree, betweenness, and
closeness and measure the correlation of centrality with the final
grade in the course. The correlation between the algebra course
grade and degree (r=.043, p=.029), betweenness (r=.046, p=.018)
are significant while closeness (r=.028, p=.125) failed to achieve
significance in a non-parametric correlation test. Those with high
levels of degree and betweenness centrality have higher grades in
the algebra course. In the financial planning course we found no
evidence of a significant correlation between course grade and
degree (r=.003, p=.811), betweenness (r=-.002, p=.848), and
closeness (r=-.006, p=.582). Individuals who are more central in
the financial planning discussion network did not appear to have
notable differences in performance compared to those with lower
centrality. Although we find that both these networks have a high
level of centralization, we find discrepancies between the
correlation between centrality and course grade. While we find
no relation between the two in the financial course, we find a
weakly positive relation between centrality (except closeness) and
grade in the algebra network.
Finally, we look for an association between learners’ scores and
their propensities to form ties with one another. We use the
matrix permutation test, or QAP test, to find an association
between tie formation and similar performance in the classes,
where performance is measured as the overall grade or end-of-

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

57

course distinction status. To measure this association, we
correlate the sociomatrix with a similarity matrix m, such that the
i,j cell in the matrix represents the similarity in final grade
between individual i and individual j. To produce this matrix we
found the difference between i’s grade and j’s grade and
subtracted it from 100, the maximum possible difference. The
resulting scores represent similarity, where smaller scores indicate
similar final grades while larger scores indicate large
discrepancies between their final grades. We use the same
approach to construct a distance matrix for achievement status,
where learners who did not pass the class were scored as 0, while
learners who passed received a 1. In the algebra course we found
a significant, negative correlation between the observed
sociomatrix and grade (r=-.005, p=.01) and achievement (-.007, p
< .01). These results suggest that there is an association between
tie formation and difference in achievement; that is, algebra
learners with high achievement and high grades are more likely to
be tied to learners with lower performance, and vice versa. In the
financial planning course we found similar results: negative
correlations between grade similarity (r=-.002, p=.08) and
achievement status (r=-.005, p < .01). Although the relation is
weak, it suggests that learners are more likely to form ties with
learners who ended up with different achievement
statuses. Learners who failed were more likely to communicate
with learners who passed, and vice versa.

6. DISCUSSION AND CONCLUSTION
The descriptive statistic shows that the discussion forum is mainly
dominated by a small percentage of learners who contributed far
more than the rest of learners. This group of opinion leaders or
knowledge source helps to build up and maintain the network. It
also implies that the MOOCs’ network is more an information
network than a social network.
According to literature, a likely hypothesis would be that learners
who perform well in a MOOC are more central in online
discussions. However, our data demonstrated mixed results. In
one MOOC (Algebra) we found a significant relationship between
centrality in online discussions and student performance, while in
the other MOOC (Financial Planning) we found no relationship.
It is worthwhile to consider why there might have been
differences in outcomes between the two courses. Though our
study was not designed to pinpoint the cause of these differences,
they could be related to the differing purposes and audiences of
the two MOOCs. The Algebra MOOC is more academically
oriented and aims to prepare learners to succeed in higher
education, whereas the Financial Planning MOOC is more geared
toward assisting people in life skills. Due to the content of the
Financial Planning MOOC, learners who were actively involved
in the forum discussion may not have been very concerned about
obtaining a certificate. Further social network analysis among a
larger corpus of MOOC courses could reveal more about the
relationship of course content to forum participation; we have
recently obtained a corpus of data from 15 Coursera MOOCs at
UCI and will conduct follow up research in this area.
Additionally, moving beyond permutation tests to model-based
approaches such as ERGMs could provide further insight into the
properties of these networks and the relations between individual
positions and outcomes.

In addition, we find in both networks a weak propensity for
individuals to form ties with classmates with very different grades
or attainment. This suggests that the discussion forum serves an
important role in facilitating help seeking and promoting
communication between the knows and the know nots.
The study also has some limitations. For example, it mainly
analyzed the behavior of learners who participated in the
discussion forum, which only takes up a small proportion of
learners in MOOCs. In addition, we did not consider passive
forum participation, such as posts or comments viewing. The
future research shall include the content analysis to analyze the
cognitive engagement of MOOC learners.

7. ACKNOWLEDGMENTS
We are very indebted to the Digital Learning Lab, University of
California, Irvine.

8. REFERENCES
1. Baldwin, T.T., Bedell, M.D., and Johnson, J.L. The Social

Fabric of a Team-Based M.B.A. Program: Network Effects on
Student Satisfaction and Performance. The Academy of
Management Journal 40, 6 (1997), 1369–1397.

2. Butts, C.T. Social network analysis: A methodological
introduction. Asian Journal of Social Psychology 11, 1 (2008),
13–41.

3. Calvani, A., Fini, A., Molino, M., and Ranieri, M. Visualizing
and monitoring effective interactions in online collaborative
groups. British Journal of Educational Technology 41, 2
(2010), 213–226.

4. Cho, H., Gay, G., Davidson, B., and Ingraffea, A. Social
networks, communication styles, and learning performance in
a CSCL community. Computers & Education 49, 2 (2007),
309–329.

5. Freeman, L.C. Centrality in social networks conceptual
clarification. Social Networks 1, 3 (1978), 215–239.

6. Gil, J. and Schmidt, S. The Origin of the Mexican Network of
Power. Proceedings of the International Social Network
Conference, (1996), 22–25.

7. Krackardt, D. QAP partialling as a test of spuriousness. Social
Networks 9, 2 (1987), 171–186.

8. Nurmela, K., Lehtinen, E., and Palonen, T. Evaluating CSCL
Log Files by Social Network Analysis. Proceedings of the
1999 Conference on Computer Support for Collaborative
Learning, International Society of the Learning Sciences
(1999).

9. Rabbany, R., Elatia, S., Takaffoli, M., and Zaïane, O.R.
Collaborative Learning of Students in Online Discussion
Forums: A Social Network Analysis Perspective. In A. Peña-
Ayala, ed., Educational Data Mining. Springer International
Publishing, 2014, 441–466.

10. Russo, T.C. and Koesten, J. Prestige, Centrality, and Learning:
A Social Network Analysis of an Online Class.
Communication Education 54, 3 (2005), 254–261.

11. Wasserman, S. Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

12. Yang, D., Sinha, T., Adamson, D., and Rose, C.P.
Anticipating student dropouts in Massive Open Online
Courses. (2013).

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

58

Facilitating Graph Interpretation via Interactive
Hierarchical Edges

Thomas S. McTavish
Center for Digital Data, Analytics & Adaptive Learning

Pearson
tom.mctavish@pearson.com

ABSTRACT
Graphs visualizations can become difficult to interpret when
they fail to highlight patterns. Additionally, the data to be
visualized may be hierarchical in nature. Therefore, graphs
with hierarchical data need to offer means of telescoping
that collapse or expand subgraphs while aggregating their
data. In this paper, we demonstrate an interactive hier-
archical edge graph on book prerequisite data, which can
be generalized to a variety of hierarchical data. We illus-
trate the importance of ordering nodes (when possible) and
coloring by various features. We then demonstrate various
ways of performing exploratory data analysis by delivering
various pieces of information on mouseovers and utilizing
telescoping and filtering.

Keywords
Hierarchical edge bundling, prerequisite relationships

1. INTRODUCTION
When graphs contain many nodes and edges – especially dif-
ferent types of nodes and edges – they can quickly become
difficult to visually interpret [7]. The common term is “hair-
ball” as nodes and edges jumble into a tangled morass that
occlude any meaningful patterns. Force-directed graphs op-
erate to keep nodes with strong edges closer and nodes with
weak or absent edges further apart [2]. This layout can aid
in some contexts, but frequently exacerbates the hairball
phenomenon. There are two striking visualization designs
by Krzywinski and colleagues that aim at revealing inter-
pretable patterns in graphs. At the core of each is at least
one meaningful axis on which to align nodes. The first is Cir-
cos, which arranges sorted nodes along a circle [5]. Nodes
are often displayed as arcs along the circle and edges be-
tween the arcs are visualized as chords or ribbons that cut
through the middle of the circle. Circos has been used in
over 500 publications, many related to large-scale genomic
data. By arranging nodes along one axis in a circle, Circos
easily discriminates nearby and distant edges. The widths of

the nodes (length of the arc) can carry meaning and so can
the width of the chord between connected arcs. Nodes and
edges can also be colored to highlight features such as the
node type, the source, and the target. It is also common to
display many node features such as histograms of different
measures within an arc, for example, Figure 3 in [6].

The other design by Krzywinski is hive plots [4]. Hive plots
are comprised of multiple axes, each radiating from an inner
ring. A given node may exist on one or more axes, aligned
along the axis in some meaningful way. For example, an
axis might sort nodes by different graph features such as a
node’s closeness – the average distance between a node and
all others reachable from it. By placing nodes on various
axes, a representation of where a node resides along some
feature is captured. When edges are added, it may bring out
relationships between adjacently-placed features. For exam-
ple, anti-correlations of two features compared side-by-side
will have many criss-crossed edges. In short, ordering nodes
in some meaningful way(s) permits Circos and hive plots to
better reveal patterns. Circos and hive plots, however, do
not capture hierarchical relationships very well.

Hierarchical edge bundling is a visualization technique on hi-
erarchical data that skews edges toward their parent nodes,
which may be invisible in the graph [3]. The visual effect is
that edges are channeled into larger, striking swaths while
avoiding the direct clutter of the parent nodes. Any topol-
ogy can be employed, but simpler geometric structures are
most commonly used.

In this paper, we demonstrate an interactive hybrid of Circos
plots with hierarchical edge bundling on mathematical book
prerequisites. The books are structured hierarchically as a
table of contents with chapters, sections, objectives, and ex-
ercises. Prerequisites map between objectives. The goal was
to provide a means of highlighting prerequisites at the vari-
ous levels, to call out important objectives, and also reveal
holes. Through coloring, it is simple to discriminate chapters
or to highlight nodes by features such as learner interaction
frequency. Through telescoping, it is straightforward to de-
termine those prerequisites that map across chapters, within
a chapter, and within sections. Through filtering it is possi-
ble to display nodes and edges by their degree. Collectively,
by aligning a curriculum along a circle, we demonstrate how
this template can be used for displaying various relationships
and features of hierarchical, educational data.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

59

2. METHODS
Two higher education math books were selected that con-
tained a table of contents and prerequisites as mapped by
content matter experts. Interactivity data came from stu-
dents, largely from the U.S., who were enrolled in courses
spanning Fall semester 2012 through 2013 that used these
books and the accompanying Pearson MathXL R© homework
system. All data was translated into JSON format for use in
a web browser. The graph and its interactivity functionality
was programmed using D3.js [1].

3. DEMONSTRATION
Figure 1 shows a screen shot of the graph and user con-
trols. Displayed is a developmental math book with chap-
ters starting at 12 o’clock and progressing clockwise. Nodes
are colored by chapter and have ample spacing to easily
discriminate them. Most nodes displayed are at the objec-
tive level. Within a chapter, slight separations between the
nodes delineate the sections. Edges within a section are
shown as little arcs. Edges within the chapter have a larger
arc, and edges across chapters bend so that they bundle near
to where a chapter node would be. We see various features
at a glance. For example, the online appendix has no pre- or
post-requisites across chapters. This is because it is shared
across several books and is independent from this book.

Chapters 2, 11, and 13 are displayed at the chapter level hid-
ing all of their section and objective nodes, whereas chapters
4 and 7 are at the section level. Chapters can be shown or
hidden in the column of checkboxes on the right. For ex-
ample, some appendix items have been removed from this
display. The radio buttons correspond to the level of the
hierarchy to display.

In Figure 1, the user has centered the mouse over the Chap-
ter 2 node. The color of the node is green, so bold green
edges reveal other chapters to which Chapter 2 is a prereq-
uisite. Also shown are bold orange lines from Chapter 1
objectives coming into Chapter 2. The text of these pre-
and post-requisites are listed on the left. We see at a glance
that while Chapter 2 is prerequisite to Chapter 3, it links
to other sections and objectives in a punctate fashion, com-
pletely ignoring the middle chapters of the book.

Edges are colored by their outgoing node color. Of course,
they can be colored by their incoming node color or other
feature. We have also colored nodes by their degree, high-
lighting critical objectives and important chapters. We have
also colored nodes by performance measures such as the
frequency of user interactions. Coloring can be selected
through the pulldown menu on the top-left.

This utility also has some filtering capabilities to show/hide
edges within sections, within chapters, and across chapters.
Nodes can also be filtered out their degree or feature by
which they are colored. Similarly, edges can be filtered out
if they are below a weight threshold.

3.1 Limitations
While this visualization works well with book prerequisites,
making graphs interactive as we have demonstrated, lim-
its the quantity of nodes and edges because they have to
be large enough to be selectable. Additionally, while edge

bundling facilitates an interpretation of convergence, it also
makes it difficult to select or hover over any individual edge
for information. As presented, more than 3000 edges begins
to be problematic. Similarly, when there are over 500 nodes
along the circle, it can become difficult to select a node of
interest with a mouse.

3.2 Next steps
This plot and circos plots have only one axis. Avenues to
explore include reordering nodes along this axis by different
features. Alternatively, hive plots could be extended with
the ideas presented here, where various axes could utilize
hierarchical data by swapping child nodes with aggregated
parent nodes.

4. CONCLUSION
It is difficult to interpret graphs without an adequate visual-
ization. In this work, we demonstrated a template that can
be used on hierarchical data aligned along the axis of a circle.
At a glance, it can reveal a lot of features, but through filter-
ing, telescoping, and interactivity, exploratory data analysis
can be performed to reveal features at various scales. As a
template, it is quite useful for contrasting several graphs, or
alternatively, illuminating various features within a general
structure. For example, in our case using prerequisite data,
nodes and edges might be colored by difficulty, fraction cor-
rect, time-on-task, or other measures of students interacting
with these book objectives. Furthermore, this technique can
be generically applied to other datasets.

5. REFERENCES
[1] M. Bostock, V. Ogievetsky, and J. Heer. D3:

Data-driven documents. IEEE Transactions on
Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011.

[2] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software: Practice
and Experience, 21(11):1129–1164, Nov. 1991.

[3] D. Holten. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE
Transactions on Visualization and Computer Graphics,
12(5):741–748, Sept. 2006.

[4] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra.
Hive plots—rational approach to visualizing networks.
Briefings in Bioinformatics, 13(5):627–644, Sept. 2012.
PMID: 22155641.

[5] M. Krzywinski, J. Schein, İ. Birol, J. Connors,
R. Gascoyne, D. Horsman, S. J. Jones, and M. A.
Marra. Circos: An information aesthetic for
comparative genomics. Genome Research,
19(9):1639–1645, Sept. 2009. PMID: 19541911.

[6] E. S. Mace, S. Tai, E. K. Gilding, Y. Li, P. J. Prentis,
L. Bian, B. C. Campbell, W. Hu, D. J. Innes, X. Han,
A. Cruickshank, C. Dai, C. Frère, H. Zhang, C. H.
Hunt, X. Wang, T. Shatte, M. Wang, Z. Su, J. Li,
X. Lin, I. D. Godwin, D. R. Jordan, and J. Wang.
Whole-genome sequencing reveals untapped genetic
potential in africa’s indigenous cereal crop sorghum.
Nature Communications, 4, Aug. 2013.

[7] D. Merico, D. Gfeller, and G. D. Bader. How to
visually interpret biological data using networks.
Nature Biotechnology, 27(10):921–924, Oct. 2009.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

60

Figure 1: Screen shot of the interactive, hierarchical edge bundling graph.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

61

Evaluation of Logic Proof Problem Difficulty through
Student Performance Data

Behrooz Mostafavi
North Carolina State

University
Department of Computer

Science Raleigh, NC 27695
bzmostaf@ncsu.edu

Tiffany Barnes
North Carolina State

University
Department of Computer

Science Raleigh, NC 27695
tmbarnes@ncsu.edu

ABSTRACT
The interactions of concepts and problem-solving techniques
needed to solve open-ended proof problems are varied, mak-
ing it difficult to select problems that improve individual
student performance. We have developed a system of data-
driven ordered problem selection for Deep Thought, a logic
proof tutor. The problem selection system presents prob-
lem sets of expert-determined higher or lower difficulty to
students based on their measured proof solving proficiency
in the tutor. Initial results indicate the system improves
student-tutor scores; however, we wish to evaluate problem
set difficulty through analysis of student performance to val-
idate the expert-authored problem sets.

Keywords
Problem Difficulty, Logic Proof, Data-driven Problem Selec-
tion

1. INTRODUCTION
Effective intelligent tutoring systems present problems to
students in their zone of proximal development through scaf-
folding of major concepts [3]. In domains such as deductive
logic, where the problem space is open-ended and requires
multiple steps and knowledge of different rules, it is difficult
to choose problems for individual students that are appro-
priate for their proof-solving ability. We have developed a
system that uses the data-driven knowledge tracing (DKT)
of domain concepts in existing student-tutor performance
data to regularly evaluate current student proficiency of the
subject matter and select successive structured problem sets
of expert-determined higher or lower difficulty.

We used an existing proof-solving tool called Deep Thought
to test the DKT problem selection system. The system was
integrated into Deep Thought and tested on a class of under-
graduate philosophy students who used the tutor as assigned
homework over a 15-week semester. Performance data from

Figure 1: A screen capture of the Deep Thought
tutor, showing given premises at the top, conclusion
at the bottom, and rules for application on the right.

this experiment were compared to data from previous use of
Deep Thought without the DKT problem selection system.
The results of the comparison indicate that the DKT prob-
lem selection system is effective in improving student-tutor
performance. However, we wish to evaluate the difficulty of
presented problems using student performance data to val-
idate the difficulty of expert-determined problem sets, and
improve the system for future students.

2. DEEP THOUGHT
Fig. 1 shows the interface for Deep Thought, a web-based
proof construction tool created by Croy as a tool for proof
construction assignments [1]. Deep Thought displays logical
premises, buttons for logical rules, and a logical conclusion
to be derived. For example, the proof in Fig. 1 provides
premises A→ (B ∧C); A∨D; and ¬D ∧E, from which the
user is asked to derive conclusion B using the rules on the
right side of the display window.

Deep Thought keeps track of student performance for the
purpose of proficiency evaluation and post-hoc analysis. As
a student works through a problem, each step is logged in
a database that records: the current problem; the current
state of progress in the proof; any rule applied to selected
premises; any premises deleted; errors made (such as illegal
rule applications); completion of the problem; time taken

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

62

per step; elapsed problem time; knowledge tracing scores
for each logic rule in the tutor.

2.1 Problem Selection
The problem selection system in Deep Thought presents or-
dered problem sets to ensure consistent, directed practice
using increasingly related and difficult concepts. The system
presents set of problems at different degrees of difficulty, de-
termined through evaluation of current student performance
in the tutor.

Evaluation of student performance is performed at the be-
ginning of each level of problems. Level 1 of Deep Thought
contains three problems common to all students who use the
tutor, and provides initial performance data to the problem
selection model. Levels 2–6 of Deep Thought are each split
into two distinct sets of problems, labeled higher and lower
proficiency. The problems in the different proficiency sets
are conceptually identical to each other, prioritizing rules
important for solving the problems in that level. To pre-
vent students from getting stuck on a specific proof problem,
Deep Thought allows students to temporarily skip problems
within a level. A unique case occurs if a student skips a prob-
lem more than once in a higher proficiency problem set; the
student will be dropped to the lower proficiency problem set
in the same level, under the assumption that the student
was improperly assigned the higher proficiency set (See Fig.
2).

Figure 2: DT2 path progression. At each level, stu-
dents are evaluated and provided either the higher
or lower proficiency problem sets. Students can also
be switched from the higher to lower proficiency set
within a level.

2.2 Logic Proof Problems
The degree of problem solving difficulty between proficiency
sets is different, as determined by domain experts. The prob-
lems in the low proficiency set require fewer numbers of steps
for completion, lower complexity of logical expressions, and
lower degree of rule application than problems in the high
proficiency set (See Table 1).

3. DATA GRAPH REPRESENTATION

Table 1: An example of lower and higher proficiency
set problems from Deep Thought requiring the same
concepts: Level 4 Problem 3 from the lower profi-
ciency set (top); Level 4 Problem 2 from the higher
proficiency set (bottom). The prioritized rules re-
quired for these problems are Conjunction and Con-
structive Dilemma.
Premise Derivation

1 (A→ B) ∧ (¬D → F) Given
2 A ∨ ¬D Given
3 ¬A→ (D ∨G) Given
4 ¬A Given
5 B ∨ F 1,2/Constructive Dilemma
6 ¬D 2,4/Disjunctive Syllogism
7 D ∨G 3,4/Modus Ponens
8 G 6,7/Disjunctive Syllogism
9 (B ∨ F) ∧G 5,8/Conjunction

Premise Derivation

1 Z → (¬Y → X) Given
2 Z ∧ ¬W Given
3 W ∨ (T → S) Given
4 ¬Y ∨ T Given
5 Z 2/Simplification
6 ¬W 2/Simplification
7 ¬Y → X 1,5/Modus Ponens
8 T → S 3,6/Disjunctive Syllogism
9 (¬Y → X) ∧ (T → S) 7,8/Conjunction
10 X ∨ S 4,9/Constructive Dilemma

Deep Thought was used as a mandatory homework assign-
ment by students in a philosophy deductive logic course
(n = 47). Students were allowed to work through the prob-
lem sets at their own pace for the entire 15-week semester.
Problem Levels 1–6 were assigned for full completion of the
tutor, totaling 13–18 (out of the total tutor-set of 43) prob-
lems depending on proficiency path progression.

For the purpose of problem difficulty evaluation, progress
through the tutor can be expressed as a directed graph for
each individual student, with nodes in the graph each cor-
responding to a single problem. The node set for the graph
represents the problem space for the tutor, and is the same
for every student. Each problem node has the following
properties:

1. Tutor Level (1–6)

2. Proficiency (High or Low)

3. Problem Number (1–3)

4. Problem Complete (True or False)

5. Expert-Authored

(a) Required Rules

(b) Minimal Solution

6. Corresponding Step Logs (See Section 2)

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

63

Directed edges between nodes correspond to movement be-
tween problems by the individual student, and are assigned
a numerical value, ordered by increasing time stamp. The
nodes and directed edges together give a map of the stu-
dent’s progression through the tutor. Connected nodes with
false Problem Complete status represent a skipped problem,
and the node adjacent to the highest numbered edge repre-
sents the student terminus point in the tutor. Isolated nodes
represent non-visited problems, and are therefore un-useable
for problem difficulty evaluation.

Logic proofs can also be represented as directed graphs, with
each node containing a proof premise, and each directed
edge indicating a node parent-child relationship, along with
an applied logic rule. For example, the top proof shown in
Table 1 can be represented as a graph with the premise in
each line as a node, with the directed edges into that node
corresponding to the derivation of that premise from parent
nodes. A proof premise can either be a variable (i.e. A),
a negated variable or expression (i.e. ¬A, or ¬(A ∧ B)), or
an operational expression in (variable/nested expression)-
operand-(variable/nested expression) form (i.e. A ∨ B, or
(A∧B)∨ (A→ B)). Nested expressions can be represented
in high level form. Therefore, node premises can be catego-
rized by their operand (conjunction, disjunction, negation,
implication, equivalence), the complexity of the expression
(single variable, simple expression, complex [nested] expres-
sion), and the rule used for derivation.

4. PROBLEM DIFFICULTY EVALUATION
The question at hand is how to best use the recorded data
to determine proof problem difficulty through student per-
formance. We wish to find both a classification of prob-
lem difficulty between proficiency sets in the same level, and
difficulty of all problems in the tutor, compared to expert-
determined classifications.

Because students follow different problem-solving paths, no
student can solve all available problems in the tutor, nor
are students likely to solve problems in both proficiency sets
within the same level. This makes student performance com-
parison over multiple problems difficult. We plan to use a
combination proof-problem properties weighted by student
performance metrics to evaluate problem difficulty; however,
we have not determined which combination of methods to
use. We are currently looking into weighted cluster-based
classification methods to apply to the problems. The hy-
pothesis presumed before applying one of these methods
would be that problems of similar difficulty would be placed
into the same clusters. Student performance metrics for each
problem could be used to determine distance, since it’s as-
sumed that students would react most similarly to problems
of similar difficulty. Eagle et al. applied network community
mining to this student log data in order to form interaction
networks [2]; a modified version could be applied here on a
student-per-problem level in order to determine prominent
similar behaviors that are correlated with problem perfor-
mance.

This would determine which problems are of similar diffi-
culty, but not necessarily which problems (or groups of prob-
lems) are more or less difficult. That determination could be
made by analyzing student rule scores across problems, or

even the difference in scores at the start and end of a prob-
lem. In particular, analyzing the difference in rule scores
would both standardize the scores (to account for the scores
being calculated at different points in the tutor) and give a
measure of forward or backward progress (a student’s rule
scores should not decrease after solving an easy problem).

Problem properties we feel are valuable to take into con-
sideration when evaluating problem difficulty per student
include:

• Classification of problems by operand/expressions

• Deviation of student solutions from expert solutions

– Number of steps taken

– Number and frequency of rules used

Student performance metrics that we feel are valuable to
take into consideration include:

• Path progression through the tutor, including

– Order of assigned proficiency sets

– Number and path location of skipped problems

– Terminus point in tutor

– Final tutor grade

• Knowledge tracing scores for each rule, prioritized by
problem requirements

• Step and elapsed time

• Type and number of errors committed

We would appreciate any literature recommendations, as
well as suggestions for how to use the data from our exper-
iment to measure and compare problem difficulty through
student performance.

5. ACKNOWLEDGEMENTS
This material is based on work supported by the National
Science Foundation under Grant No. 0845997.

6. REFERENCES
[1] M. J. Croy, T. Barnes, and J. Stamper. Towards an

Intelligent Tutoring System for Propositional Proof
Construction. In Current Issues in Computing and
Philosophy, pages 145 – 155. 2008.

[2] M. Eagle, M. Johnson, and T. Barnes. Interaction
Networks: Generating High Level Hints Based on
Network Community Clusterings. In Proceedings of the
5th International Conference on Educational Data
Mining (EDM 2012), pages 164–167, 2012.

[3] T. Murray and I. Arroyo. Toward Measuring and
Maintaining the Zone of Proximal Development in
Adaptive Instructional Systems. In Proceedings of the
10th International Conference on Intelligent Tutoring
Systems (EDM 2002), pages 289 – 294, 2002.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

64

InVis: An EDM Tool For Graphical Rendering And Analysis
Of Student Interaction Data

Vinay Sheshadri
North Carolina State

University
Raleigh, NC

vshesha@ncsu.edu

Collin Lynch
North Carolina State

University
Raleigh, NC

collin@pitt.edu

Dr. Tiffany Barnes
North Carolina State

University
Raleigh, NC

tmbarnes@ncsu.edu

ABSTRACT
InVis is a novel visualization tool that was developed to
explore, navigate and catalog student interaction data. In-
Vis processes datasets collected from interactive educational
systems such as intelligent tutoring systems and homework
helpers and visualizes the student data as graphs. This vi-
sual representation of data provides an interactive environ-
ment with additional insights into the dataset and thus en-
hances our understanding of students’ learning activities.
Here, we demonstrate the issues encountered during the
analysis of large EDM data sets, the progressive features of-
fered by the InVis tool in order to address these issues and
finally establish the effectiveness of the tool with suitable
examples.

Keywords
EDM, visualization, graphs, student interaction data

1. INTRODUCTION
One of the central goals of Educational Datamining (EDM)
is to translate raw student data into useful pedagogical in-
sights. That is, educational dataminers seek to analyze stu-
dent interaction data such as user-system logs with the goal
of identifying: common errors, typical solutions and key
conceptual challenges among other things. This research
is of interest to learners, educators, administrators and re-
searchers [17]. In recent years, the increased adoption of
web-based tutoring systems, learning management tools and
other interactive systems has resulted in an exponential in-
crease in available data and increased demand for novel an-
alytical tools. The Pittsburgh Science of Learning Center’s
DataShop, for example, currently stores over 188 datasets,
encompassing 42 million student actions and 150,000 student
hours [19]. With the increase in available data has come a
corresponding increase in the insights EDM can provide and
in making analytical tools available to expert instructors.

EDM researchers have generally relied on statistical analy-
ses (see [14, 2, 1], formal rule induction (e.g. [12]), or other
modeling methods to extract these insights. While these an-
alytical methods are robust and have led to great progress in
model development and evaluation, the increased interest in
EDM by non-statisticians and practitioners has accentuated
the need for ”good visualization facilities to make their re-
sults meaningful to educators and e-learning designers” [16].

InVis was initially developed by Johnson, Eagle and Barnes
[11]. The present version has been expanded to include
changes to the visual editing system, export functions and
other features. An example graph is shown in Figure 1. The
graphical structure of InVis is designed to facilitate direct
exploration of student datasets and easy comparison of in-
dividual solution paths. InVis can render individual student
solutions or display the work of an entire class thus enabling
educators to identify and draw insights from common stu-
dent strategies and repeated mistakes [11]. InVis was in-
spired by the work of Barnes and Stamper [3] on the use of
graphical representations for logic problems. Similar work
has been done by Chiritoiu, Mihaescu and Burdescu who
developed the EDM Visualization tool. This tool generates
the student clustering models using k-means clustering algo-
rithm [5]. However unlike InVis, the resulting visualization
is non-interactive and non-graphical.

EDM researchers generally seek to answer questions such as:
What actions can predict student success? Which strategy
or solution path is more or less efficient and educationally
effective? What decisions indicate student progress? And
what are the features of a learning environment that pro-
mote learning? (see [15]). In a programming tutor, for
example, students might be given the task of implement-
ing an array-sorting algorithm for a large vector of integers.
The particular choice of algorithm and the implementation
details are left to the students to formulate using a vari-
ety of existing tools. This resulting code will proceed in
several stages including reading data from disk, sorting the
contents in memory, and returning the result. Our goal as
researchers is to classify the successful students, identify the
most commonly-chosen algorithms and flag individuals who
faced difficulties or failed to complete the assignment. In a
logic tutor such as Deep Thought [7] or a Physics tutor such
as Andes [20] we would like to make similar determinations
by focusing on the solutions chosen by the students and the
individually-critical steps.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

65

The graph representation provided by InVis allows us to
answer these questions by constructing and exploring inter-
active visualizations of the student dataset. By rendering a
graph of a class or key subgroup (e.g. low-performing stu-
dents), we can visually identify garden-path solutions over
long isolated chains, identify critical states through which
most students traversed and so on. These visualizations can
also be used to guide, or evaluate the output of automatic
analysis such as MDP models or path-detection algorithms.
In the remainder of this paper we will discuss the tool, de-
scribe key features of it in detail and illustrate the type of
insights it can provide.

2. DATA
We will illustrate the operation of InVis on a typical dataset.
For the purposes of the present paper we will use student
data collected from the Deep Thought tutor [6, 7]. Deep
Thought is a graph-based tutor for first-order logic. Stu-
dents using the system are presented with a problem defined
by a set of given components (e.g. ”A ∧ ¬B ∧C ⇒ B”) and
are tasked with proving some goal state (e.g. ¬C). Problem
solving proceeds through forward or backward-chaining with
students applying rules such as Modus Ponens or Modus
Tolens to draw new conclusions. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified proposi-
tions: A → B,A. This is like a conditional proof in that, if
the student can justify A → B and A, then the proof is com-
plete. At any time, the student can work backwards from
any unjustified components, or forwards from any derived
statements or the premises [8].

The DT data thus has a number of key characteristics that
make it amenable to graphical display. The data is grouped
into fixed problems covered by many students. Each prob-
lem is defined by a static set of given information and a
clear goal. And the solutions are constructed via iterative
rule applications drawn from a fixed library. As a conse-
quence it is possible to define a fixed, albeit large, space of
solution states and to efficiently map the traversal between
them. While this seems restrictive this set of criteria applies
to data collected from many if not most Intelligent Tutoring
Systems. Andes, for example, defines problems by a set of
given values (e.g. ”Mcar = 2kg”) sets fixed variable goals
(e.g. ”Scar−t0”: speed of the car at t0) and groups student
actions into a fixed set of rule applications. Similar state rep-
resentations have also been applied to other datasets such
as code-states in the SNAP programming tutor [4].

The figures shown below are drawn from two InVis datasets.
We will focus in detail on a small dataset comparing the
work of three students on a single problem with a fixed set
of givens and two alternate goals. Such a small dataset is
designed to allow for efficient illustration but is not an upper
limit for analysis. We will also present some qualitative
discussion of larger scale analysis with a larger DT dataset
as shown in Figure 3.

3. FEATURES OF INVIS
InVis was developed with the Java Netbeans Framework and
employs the JUNG libraries for the rendering of the graphs
[13]. It provides an assortment of features that allow the
end user to interact with the visualizations and draw obser-

Figure 1: Network Display and Viewer

vations from the data set. The Network Display, Network
Viewer, Visual Editor and Export Dot Data are some of the
prominent features of InVis which will be illustrated with ex-
amples in the upcoming sections. InVis also supports MDP
calculation, between-ness calculation and frequency reduc-
tion which currently are under development and test phases.

3.1 Network Display and Viewer
The front-end of InVis is the The Network Display compo-
nent. It displays the interaction network generated by the
engine in a graphical format. The user is presented with a
cumulative overview of the processed input data. The var-
ious logic states of the DT tutor are represented by nodes
and the applied propositional logic transformations are rep-
resented by edges of the graph. Intermediate states are rep-
resented by blue circular nodes while the goal states are
represented by green square nodes. Error states in the DT
dataset are defined by logical fallacies and are represented
by red octagons for easy identification. The sample display
shown in Figure 1 contains 16 intermediate nodes arrayed
from the top to bottom of the network, one error state lo-
cated in the center, and two goal states at the bottom.

The Network Viewer component represents the InVis input
data in the form of a tree structure known as case-set. Each
primary node in the case-set represents a student and each
sub-node under it represents a transition state executed by
the student sequentially. Selecting a student in the Net-
work Viewer window highlights the corresponding path in
the Network Display window. Selecting a sub-node high-
lights the corresponding nodes and edges that were involved
in the transformation. Expanding a sub-node will cause the
system to display the pre-state and post-state information
from the nodes involved in that transition.

The path taken by a student to solve the given problem
can be detected by selecting the appropriate student in the
Network Viewer window. This will fade the non-path nodes
to bring the chosen path to the foreground. An example of
this highlighting is shown in Figure 2 where we have selected
a single student path within the demo dataset.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

66

Figure 2: Tracing the path of a student

One common use of InVis is to identify frequently-occurring
error states. The system can also be used to analyze the dif-
ferent paths taken by students in order to achieve a common
goal and isolate the areas where the students face difficul-
ties in solving the given problem or took a garden path. A
garden path is an inefficient path from one target state to
another with many nonessential intermediate states. From
Figure 1, in the current data set, for example, one student
performed 11 transitions to achieve the goal, due in part
to cycles, whereas a separate student reached the goal with
5 transitions. Each transition is marked by an arc from
one state to another in the graph. Thus the Network Dis-
play provides an instructor with a cumulative analysis of
the input data and aids the instructor in identifying areas
of difficulty faced by students during the course of problem
solving.

Figure 3 shows the visualization generated by InVis for a
sample large dataset. The bold edges indicate the common
paths employed by the students in order to solve a given
problem. The graph also highlights the garden paths and
the succeeding action taken by students towards achieving
the goal states. From the rendered visualization it is clear
that the cloud space comprises of students who achieved the
goal, indicated in green and students who failed to reach the
final goal states. InVis can thus be employed to congregate
useful observations on large EDM datasets.

3.2 Visual Editor
The Visual Editor component of InVis controls the various
visual aspects of the graph displayed in the Network Display
window. The visual editor provides options for displaying
the node and edge data of the graph. InVis renders graphs
with the DAG tree layout as the default layout. The visual
editor provides options for rendering the graph in different
layouts. An ISOM layout of the originally generated graph
is shown in Figure 4.

Figure 3: InVis and large data sets

The Visual Editor also provides an option for normalizing
the edge widths based on the case frequencies. Case fre-
quencies are defined by the number of students who used the
same transition between the given set of states. When the
Normalize Width option is selected, InVis reloads the graph
with width of edges proportional to the case frequency. This
feature helps instructors in identifying the logic states and
transitions which are most used by the students.

The Visual Editor can be launched by clicking on the Visual
Editor icon in the toolbar. Options are provided in the Vi-
sual Editor window to control the display of node and edge
labels. A notable option provided by the visual editor is the
option to normalize edge widths. Normalizing edge widths
results in the modification of the edge widths of the graph
in proportion to the case frequencies.

Figure 5 displays the zoomed in version of the graph with
normalized edges. Edges with case frequency of 2 have
thicker connecting lines compared to the edges with case
frequency of 1. Thus the thickness of the edge offers a vi-
sual cue to the instructor in identifying the most commonly
traversed paths by students when achieving the given goal.

3.3 Exporting InVis Data
Graphviz is a heterogeneous collection of graph drawing tools
[9]. The software is available under open source license. The
input to the Graphviz tool is a description of the required
graph in a simple text language such as DOT. The tool pro-
cesses the input and renders output graphs in useful formats,
such as images and SVG for web pages; PDF or Postscript
for inclusion in other documents; or display in an interactive
graph browser [10]. Graphviz has many useful features for
concrete diagrams, options for colors, fonts, tabular node
layouts, line styles, hyperlinks, and custom shapes.

In order to leverage the graph design features offered by
Graphviz, InVis now features a new export option which

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

67

Figure 4: Different graph layouts

Figure 5: Normalized width - Zoomed in

renders the input Deep thought data into a DOT format file.
The DOT file can be directly imported by Graphviz to gener-
ate static images such as PNG, JPEG or interactive formats
such as SVG. These visualizations will match those gener-
ated by the Network Display tool. Figure 6 shows a graph
generated by Graphviz using exported InVis data. Here the
arcs are annotated via a static ID number that helps in man-
ually identifying the states and transition information. This
data is captured as part of the export process.

4. DISCUSSION
The graphical rendering of EDM data via InVis can yield
unique insights into the student interaction data. Romero
and Ventura classified EDM objectives depending on the
viewpoint of the final user as learner, educator, administra-
tor and researcher [17]. InVis supports learners by provid-
ing visual feedback and recommendations to improve perfor-
mance. Students can compare their approach with that of
other students graphically. This can promote real time self-
assessment and adoption of better approaches to problem
solving.

Figure 6: Exported data loaded in Graphviz

Educators can use the tool to identify good and poor student
solutions and to better understand the students’ learning
processes which can, in turn, reflect on their own teaching
methods. The graphical summary presented by InVis gives
an overview, and allows for detailed exploration of, the paths
taken by students in achieving a solution to a given problem.

The presence of garden paths, loops and error states illus-
trate areas where the students have encountered difficulties
in deriving a solution to a given problem. This empowers re-
searchers with visual data to model suitable hint generation
techniques that can deploy automatic corrective actions [18].
InVis can assist administrators to reorganize institutional re-
sources based on visual evaluation of the effectiveness of a
teaching method adopted in a particular course.

In the case of the sorting example introduced in the earlier
section, by normalizing the edge width, we can identify the
most commonly used sorting algorithm. We can also identify
the optimal solution to the given problem comparing the
number of transition states between the start and end goal

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

68

for each student. Finally the presence of error states, garden
paths can be visually identified and corrective actions can
be taken to aid students in achieving the goal. Thus the
visualizations help in the generation of real time feedback
and provides hints for modeling of dynamic hint generation
strategies.

InVis is currently limited to the analysis of deep thought
tutor data. We are actively working on InVis to extend its
capabilities to analyze data sets generated from fields such
as: state based games, feedback back based hint generation
and others. We are also actively improving the efficiency,
user interface, and automatic analysis features of the tool.
The InVis project provides the EDM community with a visu-
alization tool for enhanced and accelerated understanding of
education based systems. New features will be added to In-
Vis in future to support and sustain this goal. We solicit the
EDM community to provide us with additional suggestions
for, the InVis tool and help us to enhance the functionality
and usability of InVis for EDM applications.

Acknowledgments
This work was supported by NSF-IIS 0845997 “CAREER:
Educational Data Mining for Student Support in Interactive
Learning Environments” Dr. Tiffany Barnes PI.

5. REFERENCES
[1] R. Baker, A. Corbett, I. Roll, and K. Koedinger.

Developing a generalizable detector of when students
game the system. User Modeling and User-Adapted
Interaction, 18(3):287–314, 2008.

[2] R. Baker and K. Yacef. The state of educational data
mining in 2009: A review and future visions. Journal
of Educational Datamining, 1(1):3–17, 2009.

[3] T. Barnes and J. Stamper. Toward the extraction of
production rules for solving logic proofs. In
Proceedings of the 13th International Conference on
Artificial Intelligence in Education, Educational Data
Mining Workshop, AIED2007, pages 11–20, 2007.

[4] A. H. Barry Peddycord III and T. Barnes, editors.
Generating Hints for Programming Problems Using
Intermediate Output. International Educational
Datamining Society IEDMS, 2014. In Press.

[5] M. S. Chirioiu, M. C. Mihaescu, and D. D. Burdescu,
editors. Students Activity Visualization Tool.
International Educational Datamining Society
IEDMS, 2013.

[6] M. J. Croy. Graphic interface design and deductive
proof construction. Journal of Computers in
Mathematics and Science Teaching, 18(4):371–385,
1999.

[7] M. J. Croy. Problem solving, working backwards, and
graphic proof representation. Teaching Philosophy,
2(23):169 – 187, 2000.

[8] M. J. Eagle and T. Barnes. Evaluation of
automatically generated hint feedback. EDM 2013,
2013.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. North, and
G. Woodhull. Graphviz - open source graph drawing
tools. In P. Mutzel, M. JÃijnger, and S. Leipert,
editors, Graph Drawing, volume 2265 of Lecture Notes
in Computer Science, pages 483–484. Springer Berlin

Heidelberg, 2002.

[10] E. Gansner, E. Koutsofios, and S. North. Drawing
graphs with dot. Technical report, Technical report,
AT&T Research. URL http://www. graphviz.
org/Documentation/dotguide. pdf, 2006.

[11] M. W. Johnson, M. Eagle, and T. Barnes. Invis: An
interactive visualization tool for exploring interaction
networks. Proc. EDM 2013, 65, 2013.

[12] C. F. Lynch, K. D. Ashley, N. Pinkwart, and
V. Aleven. Argument graph classification with genetic
programming and c4.5. In R. S. J. de Baker,
T. Barnes, and J. E. Beck, editors, EDM, pages
137–146. www.educationaldatamining.org, 2008.

[13] J. O’Madadhain, D. Fisher, P. Smyth, S. White, and
Y.-B. Boey. Analysis and visualization of network
data using jung. Journal of Statistical Software,
10(2):1–35, 2005.

[14] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis - a new alternative to
knowledge tracing. In V. Dimitrova, R. Mizoguchi,
B. du Boulay, and A. C. Graesser, editors, AIED,
volume 200 of Frontiers in Artificial Intelligence and
Applications, pages 531–538. IOS Press, 2009.

[15] A. Pena-Ayala. Educational Data Mining:
Applications and Trends. Springer, 2014.

[16] C. Romero and S. Ventura. Educational data mining:
A survey from 1995 to 2005. Expert Syst. Appl.,
33(1):135–146, July 2007.

[17] C. Romero and S. Ventura. Data mining in education.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 3(1):12–27, 2013.

[18] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young
Researchers Track, pages 71–78, 2008.

[19] J. Stamper, K. Koedinger, R. S. J. d. Baker,
A. Skogsholm, B. Leber, J. Rankin, and S. Demi. Pslc
datashop: A data analysis service for the learning
science community. In Proceedings of the 10th
International Conference on Intelligent Tutoring
Systems - Volume Part II, ITS’10, pages 455–455,
Berlin, Heidelberg, 2010. Springer-Verlag.

[20] K. Vanlehn, C. Lynch, K. Schulze, J. A. Shapiro,
R. Shelby, L. Taylor, D. Treacy, A. Weinstein, and
M. Wintersgill. The andes physics tutoring system:
Lessons learned. International Journal of Artificial
Intelligence in Education, 15(3):147–204, 2005.

Published in CEUR-WS:
G-EDM workshop (Lynch and Barnes)
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

69

	gedm_preface
	gedm_ToC
	gedm_paper01
	gedm_paper02
	gedm_paper03
	gedm_paper04
	gedm_paper05
	gedm_paper06
	gedm_paper07
	gedm_paper08
	gedm_paper09
	gedm_paper10
	gedm_paper11

