
A Binary Integer Programming Model for Global
Optimization of Learning Path Discovery

Nabil Belacel

National Research Council Canada
100, des Aboiteaux St.

Moncton, E1A 7R1,Canada
+1.506.861.0963

nabil.belacel@NRC.gc.ca

Guillaume Durand
National Research Council Canada

100, des Aboiteaux St.
Moncton, E1A 7R1,Canada

+1.506.861.0961

guillaume.durand@NRC.gc.ca

François Laplante
Université de Moncton

60, Notre-Dame-du-Sacré-Cœur St.
Moncton, E1A 3E9,Canada

+1.506.381.6220

francois.laplante@umoncton.ca

ABSTRACT

This paper introduces a method based on graph theory and

operations research techniques to optimize learning path

discovery. In this method, learning objects are considered as

nodes and competencies as vertices of a learning graph. A first

step consists in reducing the solution space by obtaining an

induced subgraph H. In a second step, the search of an optimal

learning path in H is considered as a binary integer programming

problem which we propose to solve using an exact method based

on the well-known branch-and-bound algorithm. The method

detailed in the paper takes into account the prerequisite and gained

competencies as constraints of the optimization problem by

minimizing the total competencies needed to reach the learning

objective.

Keywords

Learning path, learning object recommendation, graph theory,

clique, mathematical programming, binary integer programming,

branch-and-bound algorithm.

1. INTRODUCTION
Global Positioning System (GPS) is a Global Navigation Satellite

System (GNSS) that is massively used by car drivers. This large

acceptance is easily understandable by the benefits that such a

system can offer. Car navigation systems can dynamically

calculate an itinerary between two points taking into account,

depending on the system, several constraints like duration,

distance, closed roads, traffic jams, etc....Drivers can focus

exclusively on their driving limiting risks of accidents, stress, and

losing their way.

To some extent, the learning path followed by a student could be

seen as an itinerary between several learning objects [9]. In this

context, constraints on learning objects are not distance or time

duration to go from one learning object to the other but rather

prerequisite and gained competencies. As a result the itinerary or

path between learning objects is regulated by competency

dependencies that lead a learner from an initial to a targeted

competency state. For example, a learner with solid grounds in

integer arithmetic (starting location) willing to learn the solving of

systems with multiple variables (destination) should be advised to

previously learn to solve one variable linear equations (next step

of the itinerary).

Over the years, educational data mining and recommendation

technologies have proposed significant contributions to provide

learners with adequate learning material by recommending

educational papers [18] or internet links [10], using collaborative

and/or content-based filtering. These approaches usually aim at

recommending learning material satisfying an immediate interest

rather than fitting in the learner’s sequential learning process.

Sequential pattern [28] and process mining [19] technologies have

also been investigated. However, these technologies have been

used to understand the learner’s interaction with content to

discover general patterns and trends rather than to recommend

adapted learning paths to learners.

Other approaches, in the course generation research community,

address the need for recommending not only the learning objects

themselves, but sequences of learning objects. Sicilia et al. [17] or

Ulrich and Melis [20] addressed learning design concepts and

requirements through Course Generation. Though numerous

solutions have been proposed, using statistical methods [13],

decision rules [23], production rules [11], Markov processes [8]

and Hierarchical Task Network Planning [17, 21, 22], most of

them do not take into account eventual competency dependencies

among learning objects and/or are not designed for large

repositories of interdependent learning objects1.

Therefore, we detailed in [7] a dynamic graph based model and a

heuristic approach tailored to find a learning path in a graph

containing millions of learning object nodes.

This paper is an extension of this previous work and summarizes

the model, the heuristic presented in [7], and proposes a major

optimization to calculate a global optimum learning path. In the

previous work [7], we applied a greedy heuristic algorithm to

obtain a pseudo-optimal learning path from a set of cliques.

Greedy heuristics are efficient, but they sometimes get stuck in a

local solution and fail to find a global optimum [26]. They are

based on an intimate knowledge of the problem structure and have

no scope of incremental improvement.

1 A more complete discussion can be found in [7].

Therefore, in this work we slightly reformulate our model in order

to fit as an integer programming problem and we propose an exact

method based on the branch-and-bound algorithm.

2. PROBLEM CONSIDERED
In order to facilitate the understanding of the presented model,

several key elements and assumptions need to be clearly defined.

A competency can be seen as a knowledge component being part

of a “model that decomposes learning into individual knowledge

components (KCs)” [16]. In this paper, a competency is “an

observable or measurable ability of an actor to perform a

necessary action(s) in given context(s) to achieve a specific

outcome(s)” [12]. A competency in our situation can be a

prerequisite to the efficient completion of a learning object.

According to Wiley [25], a learning object is “any digital resource

that can be reused to support learning”. In the rest of the paper we

define the learning object as any digital resource that can be

reused to provide a competency gain.

A learner is a dynamic user interacting with learning objects in

order to increase his/her competencies from an initial set to a

targeted set of competencies. We assume that a learner completing

a learning object will gain the competencies targeted to be

transmitted by the interaction with the learning object. We also

assume that a learner who would not possess the prerequisite set

of competencies required by a learning object should not attempt

this learning object since this would result in a limited

competency gain.

Last but not least, we assume that the number of learning objects

available is very large (millions to billions of learning objects) and

that each learning object cannot provide the gain of a competency

that is a pre-requisite to itself.

2.1 Graph Theory Contribution
Graph theory aims at studying mathematical structures composed

of elements having relationships or connection between them. The

use of directed graphs is not a novelty in e-learning systems [1, 3,

24, 25]; however, we were unable to find a formal model for

discussing learning path problems based on graph theory,

especially one taking into account the dynamic nature of a

learning environment.

A directed graph, or digraph, G = (V, E) consists of:

 A non-empty finite set V of elements called vertices or

nodes,

 A finite set E of distinct ordered pairs of vertices called

arcs, directed edges, or arrows.

Let G = (V, E) be a directed graph for a personalized learning

path. Each vertex or node in G corresponds to a learning object.

Two vertices are connected if there exists a dependency relation,

such that one vertex satisfies the prerequisites of the other. So,

each edge between two vertices { } means that the learning

object is accessible from . The accessibility property required

to define edges between vertices relies on post and pre-requisite

competencies associated to each learning object.

Considering { }, this edge means that after having

completed the learning object u, the learner should have the

required competencies to undertake resource v. By extension, each

vertex v is represented by a pair (,) where:

 is a set of the competencies required by vertex v

 is a set of competencies offered by vertex v

The relationship between learning objects and competencies is

multidimensional [6]: a learning object can require several

competencies and transmit more than one competency to the

learner as well. The existence of an edge between two learning

objects u and v can be formalized by the following formula:

 () () { }

()

where () () means that the competencies required

by v are provided by learning object u. Condition 1 is sufficient

but not necessary. For example, before having completed u, the

learner might already have some or the totality of the

competencies required by v. This means that we may have an arc

between u and v even though none the competencies required by v

are provided by u. In other words, edge set also depends on the

learner’s competency set at time t: (()) and

 () { } where are competencies which

the learner possesses. As a result, graph G is a dynamic directed

graph and condition 1 can be strengthened by the necessary and

sufficient condition 2:

 { } () () ()

()

2.2 Model Dynamicity
The dynamicity of our model is due to the fact that a learning

object can bring competencies that could be among the

prerequisites of future learning objects.

Figure 1. Edge dynamicity.

For example, as shown in Figure 1, a learning object D could be

accessible to a learner if he has acquired the competencies c1 and

c2. Assuming that competency c1 is provided by learning objects

A and C and competency c2 is provided by learning objects B and

C; D is reachable if learning objects A and B are completed or if

learning object C is completed. If a learner completes learning

object A at time t and learning object B at time t+1, the learner

will have the competencies required to reach D and according to

the condition 2, a new edge between B and D will be created (red

edge on Figure 1).

3. INVESTIGATED SOLUTION

3.1 Reducing the solution space
Eliminating irrelevant learning objects is generally the first step of

a course generation tool [1, 15]. In our case, as the learning object

repository is supposed to be very large, the learning objects

cannot all be checked individually. The approach we chose

consists in reducing the considered solution space by obtaining an

induced subgraph H which consists of all the vertices and edges

between the vertices in G that could be used in the learning path.

The algorithm can be seen as a loop generating complete sub-

graphs, or cliques, until one such clique is generated whose

prerequisites are a subset of the learner’s competencies. Cliques

are generated in a top-down fashion where we begin with the

target clique, which is composed of a single learning object (we

create a fictitious learning object, β, whose prerequisite

competencies correspond to the list of the learner’s target

competencies). Cliques are then generated by finding every vertex

where at least one output competency is found in the prerequisite

competencies of the clique (the union of all prerequisite

competencies of every learning object within the clique) to which

it is prerequisite. As such, cliques contain the largest possible

subset of vertices which satisfies the condition “if every learning

object in the clique is completed, then every learning object in the

following clique is accessible”. We simplify the stopping

condition by adding a second fictitious object, α, into the dataset

with no prerequisite competencies and with the learner’s current

competencies as its output competencies. If a clique contains this

object, the stopping condition is true.

 β6

v1 A6
5 E

6
3,5

↑ 6

v2 T3,2,4
7 U

5
0

↑ 3,5

v3 L0,7
8,9

 I7
9 K

0
8

↑ 0, 7

 Α8,9 ↑ 8, 9

α: Fictitious LO with initial learner competency state

β: Fictitious LO with targeted learner competency state

LO list of gained competencies LO list of prerequisite competencies

Figure 2. Induced sub-graph generation.

Considering the target competency β as shown in Figure 2, all the

vertices leading to those competencies (competency 6 in Figure 2)

are selected in a set v1, then the learning objects leading to the

prerequisites of set v1 (competencies 3 and 5) are selected from

graph G to create the set v2. This mechanism continues until the

prerequisite competencies of the set vn are all competencies which

the learner has already acquired.

Figure 3. G’ consists of connected cliques.

As shown in Figure 3, G’, consisting of the vertices E of sets

v1,…,vn, is an induced sub-graph of G. If the learner has

completed all the vertices of vi, he/she will have access to all the

vertices of vi+1, thus all subsets of vertices of vi can be considered

to be a clique.

In addition to reducing the solution space, clique generation is

also an efficient way to check whether a solution learning path

exists between α and β. If the algorithm is not able to generate

cliques linking α and β, there is no need to proceed forward with

an algorithm aiming at finding one of the possible solutions.

3.2 Greedy Algorithm
Once the induced sub-graph is obtained, we use a greedy

algorithm that searches for a local optimum within each clique.

The definition of such a local optimum, depending on the dataset

and the results pursued, has to follow a specific heuristic or

strategy.

The shortest path strategy seems to be widely accepted in the

literature [1, 27]. This strategy is not necessarily the best to adopt

in any situation since the proposed learning path might lead to the

learning of non–essential competencies and potentially cognitive

overloads. For example a learning object could lead to

competency gains that would not be required to reach the targeted

learner competency state; there is no need to understand the proof

of the Landau Damping to learn about the history of theoretical

physics. Considering a learning object presenting an introduction

to the perturbation theory and a second one introducing the theory

and the proof of the Landau Dumping, it might make sense to

choose the first one in order to minimize the cognitive load to the

learner. Some might argue that using such “straight to the point”

heuristic might limit too drastically the natural curiosity of the

learner. As any heuristic, we agree that it is discussable but this is

not the purpose of this paper.

The greedy algorithm considered attempts to find a path by

considering each clique one after the other and reducing it to a

minimal subset of itself which still verifies the condition “if every

learning object in the clique is completed, then every learning

object in the following clique is accessible”.

 β6

v1 A
6
5 E

6
3,5 ↑ 6

v2 T
3,2,4

7 U
5
0 ↑ 3,5

v3 L
0,7

8,9

I
7
9 K

0
8 ↑ 0,7

 Α
8,9

 ↑ 8, 9

α: Fictitious LO with initial learner competency state

β: Fictitious LO with targeted learner competency state

LO list of gained competencies LO list of prerequisite competencies

Figure 4. Illustration of the greedy algorithm execution

The first clique considered will be the one leading to the targeted

competencies (the clique satisfying the prerequisites of β). In the

case of the three cliques v1 to v3 as illustrated by Figure 3, v1 will

be considered first followed by v2 then by v3.

For each clique, the local optimum is considered obtained when

the minimum subset of vertices with a minimum “degree”, being

the sum of the number of prerequisite competencies and output

competencies of the vertex, are found. In other words, the greedy

algorithm select in each clique a set of learning objects

minimizing the number of competencies required and gained in

order to locally limit the cognitive load of the selected material.

The greedy algorithm locally optimizes a function called “deg”

(for degree) detailed in the following section.

For clique v1, the selected learning object is A since its number of

prerequisites is smaller than that of E while they share the same

competency gain. As A has been chosen in v1, only the objects in

v2 respecting the new v1’s prerequisites is chosen. As a result, the

algorithm chooses U in v2. In v3, K and L lead to v2’s prerequisite

but K requires fewer prerequisites than L, therefore K is selected

and the proposed learning path is .

4. OPTIMIZATION
In this section we present our mathematical model for learning

path discovery and then we introduce the algorithm for solving

our mathematical model.

After eliminating irrelevant learning objects in the first step, we

generate the optimal solution from the obtained induced sub-graph

as presented in Figure 4. For this purpose, we applied in [7] a

greedy algorithm to obtain an optimal or pseudo-optimal learning

path from a set of cliques. Greedy heuristics are computationally

efficient, but they sometimes fail to find a global optimum as we

explain in the following section.

4.1 Notation and limits of the Greedy

heuristic
Let , , the matrices representing the distribution of

the competencies that are prerequisite to the items contained

in the cliques, the competencies that are gained when the n

items of the cliques are performed, and the clique distribution of

the n items. Note that the matrix could be considered as a Q-

Matrix [5].

Considering our example (Example 1):

 { }
 { }
 { }

(

)

(

)

(

)

From this example the solution sequence using the greedy

algorithm is .

To check if we get an optimal solution or not, we have to calculate

the objective function called deg. The objective function
returns the total number of prerequisite and gained competencies

of a set of learning objects.

We can draw from the previous example the following conditions

to check if we have an optimal solution or not.

Let { } a solution set (contains at least one

learning object as in example 3).

 ()

 ()

 ({ }) ∑∑()

 ()

 ({

 }) ({ })

()

Condition () and () mean that the competencies required by a

clique set have to be covered by the gains of the previous clique

set and two different clique sets cannot share the same clique.

While condition () defines the deg function, condition ()
introduces the optimality condition. A learning path is optimal if

no other path with a lower degree exists. However this doesn’t

apply at the clique level since the optimal
 is not necessary the

set of clique having the lowest degree. The global optimum is

not the sum of the local optima calculated by the greedy

algorithm.

The following example highlights this case where local optima

obtained by the greedy algorithm lead to non-optimal solution.

Example 2:

 β6

v1 M6
5 N

6,7
4

↑ 6

v2 O5
3,4 P

4
8

↑ 4,5

v3 T8
7
 R3.4

7
↑ 3, 4, 8

 α7 ↑ 7

 ()

 ()

The solution obtained by the greedy algorithm is
 and the associated value of the objective function

deg () is equal to 10. As the algorithm starts from , it chooses

in each clique the learning object with the lowest degree which is

 and keeps going until it reaches .

The path is an alternative that the

algorithm did not find. It’s even a better alternative since

 () () and the optimal solution.

The following example highlights another case where local

optima obtained by the greedy algorithm lead to a non-optimum

solution. In this example, two learning objects are selected in one

of the generated cliques.

Example 3:

 β6

v1 M6
5 N

6,7
4

↑ 6

v2 O5
3,9 P

4
8

↑ 4,5

v3
T8

7
 Y9

7, Z
3

7
↑ 3, 9, 8

 α7 ↑ 7

 ()

The objective function of the path () is 9,

which means that the path () is the optimal

solution.

In the following section, we use the notation introduced here to

propose a mathematical formulation of our learning path

optimization problem as an integer programming problem.

4.2 Formulating the integer programming

problem
Let us consider n items or learning objects and m competencies;

 is the matrix representing m prerequisite competencies for

the n items and is the matrix representing the

competencies that are gained when the n items are performed. In

other words, if = 1 means that the item i has competency j as

one of its prerequisite competencies; and = 1, means that the

competency is gained when the item is performed. The

personalized learning path may then be formulated as a binary

integer programming (BIP) as follows:

Minimize:

∑(∑()

)

 () ()

Subject to:

 (∑

) ()

 { }

X = {xi, i=1,...,n}, are the decision variables such that:

 {

 ()

We suppose that x1 = 1 and xn = 1, knowing that:

The function (1) represents the total number of prerequisite and

gained competencies to be minimized. The constraints (2) states

that if the item i has competency j as one of its prerequisite

competencies; the competency j should be gained from the items

on the learning path (1,…, i-1). Our problem is to minimize the

objective function (1) subject to (2) and (3).

To find the optimal learning path we have to solve the BIP

problem with (n+m) constraints and n decision variables xi=1,…n

 { }

Considering example 3, the prerequisite and gain matrices Q and

G can be written as follows:

The competencies that are required by the items are represented

by the matrix Q (9x7).

(

)

The competencies that are gained by the items are represented by

the matrix G (9x7).

(

)

The BIP formulation of example 3 is given as follows:

Minimize :

deg (X) = x1+2x2+2x3+2x4+3x5+2x6+2x7+3x8+x9

Subject to:

x2 - x1

x3 - x1

x4 - x1

x5 - x3

x5 - x4

x6 - x2

x7 - x5

x8 - x6

x9 – x7- x8

 { }

x1 is the fictitious learning object α with initial learner

competency state.

x9 is the fictitious learning object with targeted learner

competency state.

Since x1 = x9 = 1, then our BIP becomes:

Minimize :

deg (X) = 2x2+2x3+2x4+3x5+2x6+2x7 +3x8

Subject to:

x5 - x3

x5 - x4

x6 - x2

x7 - x5

x8 - x6

- x7 - x8

 { }

4.3 The Branch-and-Bound (B&B) method

for solving the BIP problem
Since the BIP problem is bounded, it has only a finite number of

feasible solutions. It is then natural to consider using an

enumeration procedure to find an optimal solution. However, in

the case of large learning object repositories (millions of items),

an enumeration procedure might be ill adapted (even after

reducing the solution space); therefore, it is imperative to cleverly

structure the enumeration procedure so that only a tiny fraction of

feasible solutions need to be explored.

A well-known approach called branch-and-bound technique

(B&B) provides such a procedure. B&B traces back to the 1960s’

and the work of Land and Doig [14]. Since then, B&B algorithms

have been applied with success to a variety of operations research

problems. B&B is a divide and conquer method. It divides a large

problem into a few smaller ones (This is the “Branch” part). The

conquering part estimates the goodness of the solution that is

obtained from each of the sub-problems; the problem is divided

until solvable sub-problems are obtained (this is the “bound”

part).

For the bounding part we use a linear programming relaxation to

estimate the optimal solution [26]. For an integer programming

model P; the linear programming model obtained by dropping the

requirement that “all variables must be integers” is called the

linear programming relaxation of P.

Figure 5. Branch and bound algorithm that traverses the tree

by solving BIPs at every node of the tree.

The general approach of a BIP B&B algorithm [26] is presented

in the following steps (see also Figure 5):

Initialization: Set deg* = + ∞.

The initial step represents the root node of the B&B search tree.

The root node corresponds to the continuous relaxation of the

BIP(0≤ X ≤1), the solution value provides lower bound.

Apply the bounding step, fathoming step, and optimality test

described below. If not fathomed, classify this problem as the one

remaining “subproblems” for performing the first full iteration

below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed)

subproblems, select the one that was created most

recently (break ties by selecting the subproblem with the

larger bound). Branch from the node for this

subproblem to create two new subproblems by fixing

the next variable (the branching variable) at either 0 or 1

(see Figure 5).

2. Bounding For each new subproblem, obtain its bound

by applying the simplex method to its LP-relaxation and

rounding down the value of deg for the resulting

optimal solution.

3. Fathoming (Pruning rules): The pruning rules for B&B

BIP are based on optimality and feasibility of BIP. For

each new sub-problem, apply the fathoming tests and

discard those sub-problems that are fathomed by any of

the tests.

Optimality test: Stop when there are no remaining sub-problems:

 The current incumbent is optimal,

 Otherwise, return to perform another iteration.

A sub-problem is fathomed (dismissed from further consideration)

if it verifies one of the following tests:

1. The relaxation of the sub-problem has an optimal

solution with deg < deg where deg* is the current best

solution (The solution is dominated by upper bound);

2. The relaxation of the sub-problem (LP-relaxation) has

no feasible solution;

3. The relaxation of the sub-problem has an optimal

solution that has all binary values. (If this solution is

better than the incumbent, it becomes the new

incumbent, and test1 is reapplied to all unfathomed sub-

problems with the new larger deg*).

For example, the example 3 solved by B&B produces an optimal

solution with deg* = 9 and x2=1, x6=1, x8=1 where the number of

nodes explored is 1 because the first LP-relaxation at node 1 gives

an integer optimal solution with deg*=9 and the 3rd fathomed test

is true, so we do not need to branch anymore.

Decision Variables x1 x2 x3 x4 x5 x6 x7 x8 x9

LO α T Y Z O P M N

X* 1 1 0 0 0 1 0 1 1

Figure 6. Solution of example 3in the B&B algorithm.

As illustrated in Figure 6, the optimal solution of the B&B

algorithm is X*={1, 1, 0, 0, 0, 1, 0, 1, 1} and the optimal path is:

 .

5. CONCLUSION
The clique based approach is an asset since it offers an efficient

way to reduce the solution space and check the existence of a

solution. However, a greedy search within the cliques to find a

leaning path does not lead, in many cases, to the best learning path

according to the criteria considered.

Binary integer programming is a well-known mathematical

optimization approach. While reformulating the conditions an

optimal learning path should meet, we realised how we could

benefit from expressing the constraints as a binary programming

problem.

Our preliminary implementation of the proposed optimization

using the bintprog function (MATLAB), a function based on the

branch- and-bound (B&B) algorithm, shows the accuracy of the

proposed integer program model.

In future work, we will apply the proposed binary integer model

in order to build a learning design recommendation system in the

case where learning objects are stored in very large repositories.

Even though the B&B algorithm is highly accurate and somehow

computationally efficient, it is not efficient enough to deal with

very large size problem instances. In some cases, the bounding

step of B&B is not invoked, and the branch and bound algorithm

can then generate a huge number of sub-problems.

Moreover, as mentioned in [7], the efficiency of reducing the

solution space with the cliques’ mechanism is highly dependent

on the dataset topology (average number of gain and prerequisite

competencies per learning object). The solution space may remain

large after the reduction

Therefore, to deal with very large problems, we will implement a

variant of the B&B algorithm such as Branch & Cut [2] or Branch

& Price [4]. Applegate et al. [2] showed how Branch & Cut could

get a global optimal for extremely large binary optimization

problems. It will be then interesting to measure both in terms of

computational time and accuracy how the greedy search compares

to the B&B-like approach.

6. ACKNOWLEDGMENTS
This work is part of the National Research Council of Canada’s

Learning and Performance Support Systems (NRC LPSS)

program. The LPSS program addresses training, development and

performance support in all industry sectors, including education,

oil and gas, policing, military and medical devices.

7. REFERENCES
[1] Alian, M. Jabri, R. 2009. A shortest adaptive learning path in

e-learning systems: Mathematical view, Journal of American

Science 5(6) (2009) 32-42.

[2] Applegate, D., Bixby, R., Chvatal, V. and Cook, W. 1998.

On The solution of traveling salesman problems, in: Proc.

Int. Congress of Mathematicians, Doc. Math. J. DMV, Vol.

645.

[3] Atif, Y., Benlarmi, R., and Berri, J. 2003. Learning Objects

Based Framework for Self-Adaptive Learning, Education

and Information Technologies, IFIP Journal, Kluwer

Academic Publishers 8(4) (2003) 345-368.

[4] Bamhart, C, Johnson, E. L., Nemhauser, G. L., Savelsbergh,

M. W. P. and Vance, P. H. 1998. Branch-and-price: column

generation for huge integer programs, Operations Research

46:316.

[5] Barnes, T. 2005. The Q-matrix Method: Mining Student

Response Data for Knowledge. Proceedings of the Workshop

on Educational Data Mining at the Annual Meeting of the

American Association for Artificial Intelligence.

[6] Carchiolo, V., Longheu, A., and Malgeri, M. 2010. Reliable

peers and useful resources: Searching for the best

personalised learning path in a trust- and recommendation-

aware environment, Information Sciences 180(10) (2010)

1893-1907.

[7] Durand, G., Belacel, N., and Laplante, F. 2013. Graph theory

based model for learning path recommendation. Information

Sciences. 251(10) (2013) 10-21.

[8] Durand, G., Laplante, F. and Kop, R. 2011. A learning

Design Recommendation System Based On Markov

Decision Processes, Proc. 17th ACM Conference on

Knowledge Discovery and Data Mining (SIGKDD)

Workshop on Knowledge Discovery in Educational Data,

San Diego, CA.

[9] Durand, G., Downes, S. 2009. Toward Simple Learning

Design 2.0. In: 4th Int. Conf. on Computer Science

&Education 2009, Nanning, China, 894-897.

[10] Godoy, D., Amandi, A. 2010. Link Recommendation in E-

learning Systems based on Content-based Student Profiles,

In: Romero C., Ventura S., Pechenizkiy, M., Baker, R.

(Eds.), Handbook of Educational Data Mining, Data Mining

and Knowledge Discovery Series, Chapman & Hall/CRC

Press, 273-286.

[11] Huang, Y.M., Chen, J.N., Huang, T.C., Jeng, Y.L., and Kuo,

Y.H. 2008. Standardized course generation process using

Dynamic Fuzzy Petri Nets, Expert Systems with

Applications, 34 (2008) 72-86.

[12] ISO 24763/final version: Conceptual Reference Model for

Competencies and Related Objects, 2011.

[13] Karampiperis, P., Sampson, D. 2005.Adaptive learning

resources sequencing in educational hypermedia systems.

Educational Technology & Society 8 (4) (2005) 128-147.

[14] Land, A. H., Doig, A. G. 1960. An automatic method of

solving discrete programming problems. Econometrica

28(3), 497–520.

[15] Liu, J., Greer J. 2004. Individualized Selection of Learning

Object, In: Workshop on Applications of Semantic Web

Technologies for e-Learning, Maceió, Brazil.

[16] Pavlik, P. I. Jr., Presson, N., and Koedinger K. R. 2007.

Optimizing knowledge component learning using a dynamic

structural model of practice, Proc. 8th International

Conference on Cognitive Modeling. Ann Arbor, MI.

[17] Sicilia, M.-A., Sánchez-Alonso, S. and García-Barriocanal,

E. 2006. On supporting the process of learning design

through planners, Proc. Virtual Campus Post-Selected and

Extended, 81–89.

[18] Tang, T.Y., Mccalla, G.G. 2010. Data Mining for Contextual

Educational Recommendation and Evaluation Strategies, In:

Romero C., Ventura S., Pechenizkiy, M., Baker, R. (Eds.),

Handbook of Educational Data Mining, Data Mining and

Knowledge Discovery Series, Chapman & Hall/CRC Press,

Chapter 18,257-271.

[19] Trcka, N., Pechenizkiy, M. and Van-Deraalst, W. 2010.

Process Mining from Educational Data, In: Romero C.,

Ventura S., Pechenizkiy, M., Baker, R. (Eds.), Handbook of

Educational Data Mining, Data Mining and Knowledge

Discovery Series, Chapman & Hall/CRC Press, Chapter 9,

123-141.

[20] Ullrich, C., Melis, E. 2010. Complex Course Generation

Adapted to Pedagogical Scenarios and its Evaluation,

Educational Technology & Society, 13 (2) (2010) 102–115.

[21] Ullrich, C., Melis, E. 2009. Pedagogically founded

courseware generation based on HTN-planning, Expert

Systems with Applications 36(5) (2009) 9319-9332.

[22] Ullrich C. 2005. Course Generation Based on HTN Planning,

Proc. 13th Annual Workshop of the SIG Adaptivity and User

Modeling in Interactive Systems, Saarbrucken, Germany,74-

79.

[23] Vassileva, J., Deters, R. 1998, Dynamic courseware

generation on the www, British Journal of Educational

Technology, 29(1) (1998) 5–14.

[24] Viet, A., Si, D.H. 2006. ACGs: Adaptive Course Generation

System - An efficient approach to Build E-learning, Proc.

6th IEEE International Conference on Computer and

Information Technology, Jeju Island, Korea, 259-265.

[25] Wiley, D.A. 2002. Connecting Learning Objects to

Instructional Design Theory: A Definition, a Metaphor, and a

Taxonomy, In: The Instructional Use of Learning Objects,

D. A. WILEY (Ed.), 3-23.

[26] Winston, W.L., Venkataramanan, M. 2003. Operations

Research: Introduction to Mathematical Programming.

Thompson, 4th Edition.

[27] Zhao, C., Wan, L. 2006. A Shortest Learning Path Selection

Algorithm in E-learning, Proc. 6th IEEE International

Conference on Advanced Learning Technologies, Kerkrade,

The Netherlands, 94-95.

[28] Zhou, M., Xu, Y., Nesbit, J.C. and Winne, P.H. 2010.

Sequential pattern analysis of learning logs: Methodology

and applications, In: Romero C., Ventura S., Pechenizkiy,

M., Baker, R. (Eds.), Handbook of Educational Data Mining,

Data Mining and Knowledge Discovery Series, Chapman &

Hall/CRC Press, Chapter 8, 107-120.

