
On-Line Plan Recognition in Exploratory Learning
Environments

Reuth Dekel and Ya’akov (Kobi) Gal
Dept. of Information Systems Engineering

Ben-Gurion University
Beer-Sheva 84105, Israel

ABSTRACT
Exploratory Learning Environments (ELE) are open-ended and flex-
ible software, supporting interaction styles by students that include
exogenous actions and trial-and-error. ELEs provide a rich edu-
cational environment for students and are becoming increasingly
prevalent in schools and colleges, but challenge conventional plan
recognition algorithms for inferring students’ activities with the
software. This paper presents a new algorithm for recognizing stu-
dents’ activities in ELEs that works on-line during the student’s
interaction with the software. Our approach, called CRADLE, re-
duces the amount of explanations that is maintained by the plan
recognition in a way that is informed by how people execute plans.
We provide an extensive empirical analysis of our approach using
an ELE for chemistry education that is used in hundreds of colleges
worldwide. Our empirical results show that CRADLE was able to
output plans exponentially more quickly than the state-of-the-art
without compromising correctness. This result was confirmed in a
user study that included a domain expert who preferred the plans
outputted by CRADLE to those outputted by the state-of-the-art
approach for the majority of the logs presented.

1. INTRODUCTION
This paper focuses on inferring students’ activities in educational
environments in which students engage widely in exploratory be-
havior, and present new approaches for plan recognition in such
settings that can outperform the state-of-the-art.

Our empirical analysis is based on students’ interactions with an
Exploratory Learning Environment (ELE) in which students build
scientific models and examine properties of the models by running
them and analyzing the results[1, 6]. Such software is open-ended
and flexible and is generally used in classes too large for teach-
ers to monitor all students and provide assistance when needed.
The open-ended nature of ELEs affords a rich spectrum of interac-
tion for students: they can solve problems in many different ways,
engage in exploratory activities involving trial-and-error, they can
repeat activities indefinitely, and they can interleave between activ-
ities.

These aspects significantly hinder the possibilities of making sense
of students’ activities without some sort of support. This paper
presents a new algorithm for recognizing students’ interactions with
ELEs in real time, which can support both teachers and students.
For teachers, this support takes the form of visualizing students’
activities during their interaction in a way that faciliteates their un-
derstanding of students’ learning. For students, this support can
take the form of machine generated intervention that guides their
learning and adapts to individual students’ needs based on their in-
ferred behavior.

The focus of this paper is on-line recognition that occurs during the
students’ actual interaction with the ELE, and outputs a hierarchy
of interdependent activities that best describe the student’s work at
a given point in time. Recognizing students’ activities this way is
challenging because the algorithm needs to reason about and main-
tain possible explanations for future (yet unseen) student activities.
The number of possible explanations grows exponentially with the
number of observations. As we show in the empirical section of
this paper, this significantly hinders the performance of the state-
of-the-art, even for very short interaction sequences.

Our algorithm, called CRADLE (Cumulative Recognition of Ac-
tivities and Decreasing Load of Explanations) builds on an exist-
ing approach for on-line plan recognition, but filters the space of
possible explanations in a way that reflects the style of students’
interactions in ELEs. The filtering aim is to produce complete, par-
simonious and coherent explanations of students’ interactions that
can be easily understood by teachers and education researchers.

Our empirical evaluations were based on comparing CRADLE to
the state-of-the-art approach for recognizing logs of students’ in-
teractions with a widely used ELE for chemistry education. We
evaluated both of the approahes in terms of computation speed and
correctness of the outputted explanation, as determined by a do-
main expert. Succeeding in both of these measures is criticial for
an on-line plan recognition approach to work successfully.

Our empirical results show that CRADLE was able to outperform
the state-of-the-art without compromising correctness. Specifically,
although the state of the art approach is (in theory) complete, it was
not able to terminate within an allocated time frame on many logs.
In contrast, CRADLE was able to produce correct explanations for
such logs. In addition, CRADLE significantly outperformed the
state-of-the-art both in terms of correctness and speed of recogni-
tion.

These results demonstrate the benefit of applying novel plan recog-

nition technologies towards intelligent analysis of students’ inter-
actions in open-ended and flexible software. Such technologies
can potentially support teachers in their understanding of student
behavior as well as students in their problem solving, and lead to
advances in automatic recognition in other exploratory domains.

2. RELATED WORK
Our work relates to two strands of research, inferring students’ ac-
tivities in educational software, and on-line planning algorithms in
artificial intelligence. We relate to each of these in turn.

2.1 Inferring Students’ Activities in ELEs and
ITS systems

We first describe works that infer students’ plans from their inter-
actions with pedagogical software that assume the complete inter-
action sequence is known in advance. Gal et al. [11] and Reddy
et al. [10] used plan recognition to infer students’ plans from their
interactions with TinkerPlots, an exploratory learning environment
for statistics. Both of these approaches take as input a complete
interaction sequence of a student as well as recipes for ideal solu-
tions to TinkerPlots problems, and infer the plan used by the student
retrospectively. Reddy et al. [10] proposed a complete algorithm
which modeled the plan recognition task as a Constraint Satisfac-
tion Problem (CSP). The complexity of the CSP algorithm is ex-
ponential in the size of both the interaction sequence and the data
set containing the recipes. This approach requires that all possible
plans can be explicitly represented, and therefore does not support
recursive grammars which are needed to understand students’ ac-
tivities in VirtualLabs.

Other works have implemented plan recognition techniques to model
students’ activities in Intelligent Tutoring Systems (ITS) during
their interactions. In contrast to exploratory learning environments,
in intelligent tutoring systems the system takes an active role in
students’ interactions, as it tutors the student by providing feed-
back and hints. As an example, in the Andes physics tutor wrong
steps are marked by the tutor and the students may ask for a “what’s
wrong here?” hint from the tutor. In addition, students can ask for a
“what next?” hint to receive instruction when uncertain about how
to proceed [20]. These systems are typically more closed-ended
and less exploratory than ELEs. In the Andes physics tutor a prob-
abilistic algorithm was used to infer the solutions plan followed by
the student. For each Andes problem, a solution graph represent-
ing the possible correct solutions to the problem was automatically
generated and were modeled using a dynamic Bayesian network.
The algorithm observes students’ actions and updates the probabil-
ities of the different possible plans. The inferred plans were used
to generate hints and to update students’ cognitive models.

The tutors developed by the ACT-R group for teaching LISP, geom-
etry and algebra, performed plan recognition using a model-tracing
algorithm that tracked students’ solution plans [2, 9]. These tutors
maintained a list of production rules that can be triggered to accom-
plish the goal and sub-goals for solving a problem. The algorithm
infers students’ plans by identifying the production rules that were
triggered according to the actions students had taken. After each
observed action, the algorithm commits to a production rule that
it infers the student triggered to perform the action. The system
constrained students to remain on “correct paths” throughout their
session by providing feedback after each action taken by the stu-
dent. Moreover, ambiguities regarding the production rules being
used by students were resolved by querying the student. By com-

mitting to one production rule at a time and enforcing students to
remain on correct solution paths, the complexity of the plan recog-
nition task in intelligent tutoring systems is substantially reduced.

Lastly, we mention works that use recognition techniques to model
students’ activities in Intelligent Tutoring Systems [20, 7, 21]. Our
work is distinct from works on plan recognition in intelligent tu-
toring systems in several ways. First, ITS are more closed-ended
from ELEs. Thus, students’ activities with such software more con-
strained and less exploratory, and are easier to model and recognize.
In addition, the tutoring systems described above provided constant
feedback to students which helped them remain on correct solution
paths that are recognizable by the model used. Second, the tutoring
systems described above explicitly modeled all possible solution
plans for solving a specific problem. This is not possible in the
VirtualLabs domain, as there may be an infinite number of possible
plans for solving a problem.

2.2 On-line Plan Recognition in Artificial In-
telligence

We now discuss general work from Artificial Intelligence that is
concerned with plan recognition in general, rather than recognizing
students’ activities in pedagogical software. On-line plan recogni-
tion is a significantly more difficult task than its off-line variant.
The fact that the interaction sequence is not observed ahead of time
raises additional challenges to on-line plan recognition. Blaylock
et al. [4] developed an algorithm to infer the goal of users from
their actions in a Linux shell environment. Pynadath [19] proposes
a probabilistic inference of plan, but requires the observations to
be fully ordered. The approach by Bui [5] used particle filter-
ing to provide approximate solutions to on-line plan recognition
problems. Avrahami and Kaminka [3] presented a symbolic on-
line plan recognition algorithm which keeps history of observations
and commits to the set of possible plans only when it is explicitly
needed for querying. Geib and Goldman presented PHATT [14], a
probabilistic on-line plan recognition algorithm that builds all pos-
sible plans incrementally with each new observation. This algo-
rithm was applied to recognizing users’ strategies in real-time video
games [17].

All of these works have been evaluated on simulated, synthesized
problems [19, 3, 14] or on toy problems [4, 17]. These approaches
do not scale to the complexities of real-world domains. An ex-
ception is the work of Conati et al. [8, 18] who used on-line plan
recognition algorithms to infer students’ plans to solve a problem
in an educational software for teaching physics, by comparing their
actions to a set of predefined possible plans. Unfortunately, the
number of possible plans grow exponentially in the types of do-
mains we consider, making it unfeasible to apply this approach.

3. PLANS AND EXPLANATIONS
In this section we provide the basic definitions that are required for
formalizing the on-line plan recognition problems in ELEs. Through-
out the paper we will use an existing ELE for chemical education
called VirtualLabs to demonstrate our approach which is actively
used by students worldwide as part of their introductory chemistry
courses. VirtualLabs allows students to design and carry out their
own experiments for investigating chemical processes by simulat-
ing the conditions and effects that characterize scientific inquiry in
the physical laboratory [22]. We use the following problem called
“Oracle”, which is given to students:

Figure 1: Snapshot of VirtualLabs

(a) MSD[s1 + s2, d]→ MSD[s1, d],MSD[s2, d]

(b)MIF[s1, d2]→ MSD[s1, d1],MSD[d1, d2]

(c) MSD[s, d]→ MIF[s, d]

(d) MSD[s, d]→ MS[s, d]

Figure 2: Recipes for VirtualLabs

Given four substances A,B,C, and D that react in a
way that is unknown, design and perform virtual lab
experiments to determine the correct reaction between
these substances.

The flexibility of VirtualLabs affords two classes of solution strate-
gies to this problem (and many variations within each). In the first
strategy, a student mixes all four solutions together, and infers the
reactants by inspecting the resulting solution. In the second strat-
egy, a student mixes pairs of solutions until a reaction is obtained.
A snapshot of a student’s interaction with VirtualLabs when solv-
ing the Oracle problem is shown in Figure 1.

3.1 Definitions
We make the following definitions taken from the classical plan-
ning literature [16]. We use the term basic actions to define rudi-
mentary operations that cannot be decomposed. These serve as the
input to our plan recognition algorithm. For example, the basic
“Mix Solution” action (MS1[s = 1, d = 3]) describes a pour from
flask ID 1 to flask ID 3. A log is the output of a student’s interac-
tion. It is a sequence of basic level actions representing students’
activities’. This is also the input to the plan recognition algorithm
described in the next section.

Complex actions describe higher-level, more abstract activities that
can be decomposed into sub-actions, which can be basic actions
or complex actions themselves. For example, the complex action
MSD[s = 1+5, d = 3] (as shown in Figure 3) represents separate
pours from flask ID 1 and 5 to flask ID 3.

A recipe for a complex action specifies the sequence of actions
required for fulfilling the complex action. Figure 2 presents a set of
basic recipes for VirtualLabs . In our notation, complex actions are
underlined, while basic actions are not. Actions are associated with

parameters that bind to recipe parameters. Recipe (a) in the figure,
called Mix to Same Destination (MSD), represents the activity of
pouring from two source flasks (s1 and s2) to the same destination
flask (d). Recipe (b), called Mix via Intermediate Flask (MIF),
represents the activity of pouring from one source flask (s1) to a
destination flask (d2) via an intermediate flask (d1).

Recipes can be recursive, capturing activities that students can re-
peat indefinitely. Indeed, this is a main characteristic of students’
use of ELEs. For example, the constituent actions of the complex
action MSD in recipe (a) decompose into two separate MSD ac-
tions. In turn each of these actions can itself represent a Mix to
Same-Destination action, an intermediate-flask pour (by applying
recipe (c)) or a basic action mix which is the base-case recipe for
the recursion (recipe (d)). Recipe parameters also specify the type
and volume of the chemicals in the mix, as well as temporal con-
straints between constituents, which we omit for brevity.

More generally, the four basic recipes in the figure can be permuted
to create new recipes, by replacing MSD on the right side of the
first two recipes with MIF or MS. An example of a derivation is the
following recipe for creating an intermediate flask out of a complex
Mix to Same Destination action and basic Mix Solution action.

MIF[s1, d2] → MSD[s1, d1],MS[d1, d2] (1)

These recipes may be combined to describe the different solution
strategies by which students solve problems in VirtualLabs (e.g.,
capturing students mixing all possible substance pairs versus mix-
ing all four pairs together).

A set of nodes N fulfills a recipe R if there exists a one-to-one
matching between the constituent actions in R and their parameters
to nodes in N . For example, the nodes MS3[s = 5, d = 4] and
MS5[s = 4, d = 3] fulfill the Mixing via an Intermediate Flask
recipe shown in Equation 1.

3.2 Planning
Planning is the process by which students use recipes to compose
basic and complex actions towards completing tasks using Virtu-
alLabs . Formally, a plan is an ordered set of basic and complex
actions, such that each complex action is decomposed into sub-
actions that fulfill a recipe for the complex action. Each time a
recipe for a complex action is fulfilled in a plan, there is an edge
from the complex action to its sub-actions, representing the recipe
constituents.

Figure 3 shows part of a plan describing part of a student’s inter-
action when solving the Oracle problem. The leaves of the trees
are the actions from the student’s log, and are labeled by their or-
der of appearance in the log. For example, the node labeled with
the complex action MSD[s = 1 + 5, d = 3] includes the activ-
ities for pouring two solutions from flask ID 1 and ID 5 to flask
ID 3. The pour from flask ID 5 to 3 is an intermediate flask pour
(MIF[s = 5, d = 3]) from flask ID 5 to ID 3 via flask ID 4. The
root of the plan represents te complex action of pouring three sub-
stances from flasks ID 1, 5 and 6 to flask ID 3.

In a plan, the constituent sub-actions of complex actions may in-
terleave with other actions. This way, the plan combines the free-
order nature of VirtualLabs recipes with the exploratory nature of
students’ learning strategies. Formally, we say that two ordered
complex actions interleave if at least one of the sub-actions of the
first action occurs after some sub-action of the second action. For

Figure 4: Example of an Explanation containing a Single Plan

Figure 5: Example of an Explanation containing Two Plans,
one of which has an open frontier

example, the nodes MS3[s = 5, d = 4] and MS5[s = 4, d = 3]
and MS2[s = 6, d = 8] and MS4[s = 8, d = 3] both fulfill the
Mixing via an Intermediate Flask recipe shown in Equation 1, but
they are interleaved in the log. This interleaving quality makes the
plan recognition task even more challenging.

4. ONLINE PLAN RECOGNITION
In this section we address the problem of on-line recognition in
which agents’ plans need to be inferred in real-time during exe-
cution. On-line recognition is essential for settings in which it is
necessary to generate interventions to users. In ELEs, such in-
tervention can provide feedback to students about their progress,
alerting them to recurring mistakes or giving them hints about next
steps during their exploration.

The fact that the interaction sequence is not known in advance re-
quires to maintain the set of all plans that can explain the observa-
tions, including leaving place-holders for actions in the plan that re-
late to unseen future activities. Following Geib and Goldman [12],
we define an explanation of actions O at time t a set of plans, such
that there is an injective mapping from each action in O to a leaf
in one of the plan instances. Each plan in an explanation describes
a non-overlapping subset of the actions O. Some leaves in an ex-
planation may not be included in O, and describe actions that are
expected to appear in the future. These leaves are called the open
frontier of the plan.

To illustrate, consider the recipes for VirtualLabs and the following
explanations: Figure 4 shows a possible explanation for the obser-
vation sequence SM [s = 2, d = 1], SM [s = 3, d = 1], SM [s =
5, d = 1], SM [s = 6, d = 1] in which all of the actions are con-
stituents of the complex action MSD.1 The explanation consists
of a single plan.

Figure 5 shows a possible explanation for the same observation se-
quence, but in this case, the explanation consists of two plans. Here,
the bold action SM [s = 1, d = ∗] represents a future (unseen) ob-
servation and is in the plan frontier. If the fifth observation turns
1For expository purposes we have omitted the parameters from
nodes above the leaves.

out to be an SM action with s = 1 (the parameter d does not hold
any constraints), then the algorithm will incrementally combine this
observation into the explanation. Otherwise, a third plan instance
will be added to the explanation that matches the new observation,
leaving SM [s = 1, d = ∗] in (and possibly adding new actions to)
the plan frontier. We note that the plan frontier may also include
complex actions, allowing to reason about future higher-level ac-
tivities for which none of the constituents have been observed. The
fact that the algorithm needs to maintain explanations for unseen
observations is a significant computational challenge, as the possi-
ble number of explanations grows exponentially with the number
of observations.

5. CRADLE AND PHATT
The purpose of this section is to describe the state-of-the art in on-
line plan recognition approach called PHATT, and our proposed
extension to this approach for recognizing students’ activities in
ELEs.

We define the on-line plan recognition as follows: Given a set of
observation at time t, output a set of explanations such that each ex-
planation in the set can be used to derive the observations. PHATT
is a top-down probabilistic algorithm that incrementally builds the
set of possible explanations for explaining an observation sequence.
PHATT works as follows: For each observation ot+1, it takes the
set of the possible explanations for the previous observations Ot,
and tries to incorporate the new observation into each of the expla-
nations in the set. This can be done either by integrating the new
observation into one of the existing plans of the explanation, or by
adding the observation as the first step of a new plan that will be
added to the forest of plans in the explanation.

5.1 Using Filters
We now describe the basis for our proposed extension to PHATT,
which is constraining the space of possible explanations in a way
that reflect students’ use of educational software. Our approach
is called CRADLE (Cumulative Recognition of Activities and De-
creasing Load of Explanations).2

Cradle extents the PHATT algorithm by constraining the space of
possible explanations. We designed several “filters” that reduce the
size of the explanation set in a way that reflects the intended use of
plan recognition in ELEs. Specifically, the filters aim to produce
complete, parsimonious and coherent explanations of students’ in-
teractions that can be easily understood by teachers and education
researchers. We detail these filters below:

Explanation size This filter prefers explanations with smaller num-
ber of plans. Specifically, we discard explanations in which
the number of plans is larger than a pre-computed threshold
(the average number of plans per explanation).

Aging This filter prefers explanations in which successive obser-
vations extend existing sub-plans in the explanation rather
than generate new plans. We discard explanations in which
observations have not extended an existing plan for a given
number of iterations.

2Also, cradle is the name of the mechanical contrivance used in
placer mining, consisting of a box on rockers and moved by hand,
used for washing out the gold-bearing soil, leaving only nuggets of
gold.

Figure 3: A partial plan for a student’s log

Frontier size This filter prefers explanations which makes fewer
commitments about future observations. It measure the amount
of actions in the frontier that exist in each explanation, and
discard explanations where this amount is above the average.

Probability This filter prefers explanations with a higher likeli-
hood. It discards explanations whose probability of generat-
ing the observation sequence is lower than the average prob-
ability of the other explanations.

5.2 Augmenting PHATT
Figure 6 describes how CRADLE extends PHATT using the fol-
lowing methods, which we outline in some level of abstraction.

• Expand. Given a set of explanations that derive Ot, it is
given a new observation ot+1, this method creates all pos-
sible subplans in which ot+1 is a leaf, and tries to combine
each of these subplans in all possible ways to each explana-
tion. Each such subplan can be combined in two ways: (1)
combineInExistingTrees - if the root of the subplan matches
one of the plan frontier items, it replaces the frontier item
with the subplan (replacing the placeholder with a concrete
observation) or (2) extendWithANewTree - if the root of the
subplan matches a possible goal, it is adding the subplan as
the top levels of a new plan in the explanation’s forest of
plans.

• Filter. This function takes a set of explanations, calculates
the average age, frontier size and amount of trees per expla-
nation and filtered away all explanations with values above
average. This means it prefers explanations with small fron-
tier (less future expected observations), small age (observa-
tions continue existing plans instead of creating new ones)
and small amount of trees (observations related to the same
plan rather than describe different plans).

• Main. This is the main function of the new recognition pro-
cess. It is made out of the two previous described stages -

Extend and Filter - performed alternatly for each new obser-
vation encountered.

6. EMPIRICAL METHODOLOGY
The purpose of this section is to evaluate CRADLE to PHATT al-
gorithm for real-world data sets of students’ interactions with Vir-
tualLabs . The PHATT approach is representative of an array of
algorithms in the literature for performing on-line plan recognition
by maintaining sets of observations (see for example the ELEXIR
and YAPPR algorithm [13, 15]) and would behave similarly on our
ELE data sets.

Specifically, we sampled 16 logs of students’ interactions who solved
two problems. The first was the Oracle problem described earlier.
The second problem was called “Unknown Acid” and required stu-
dents to determine the concentration level of an unknown solution.
The length of the logs were chosen to have a wide range, between
4 to 152 actions.

6.1 Completeness and Run-time
The number of explanations maintained by the PHATT approach
grows exponentially in the number of observations. It can be shown
that for n observations and a set g of possible extensions for an
explanation, the number of possible explanations is bounded by
n ∗ |g|n. To illustrate, a 4 observation log outputted 142 differ-
ent explanations, and a log of 12 observations generated more than
10,000 explanations. Most of these explanations included an abun-
dance of plan instances with extremely large frontiers, clearly not
the most coherent descriptions of the students’ work.

Figure 7 shows the performance obtained using PHATT, augmen-
tation of PHATT with single filter, and CRADLE. The x-axis in the
figure corresponds to ranges of different log sizes. The y-axis de-
termines the success ratio by measuring whether the algorithm was
able to terminate and produce the explanations describing the stu-
dent’s activities within an upper bound of two hours of CPU time.
As shown by the figure, PHATT was not able to terminate on logs

1: function EXPAND(o,Exps) . o: a new observation, Exps is
the set of all explanations until o

2: newExps = []
3: for all explanation e ∈ Exps do
4: newExps += e.combineInExistingTrees(o)
5: newExps += e.extendWithANewTree(o)
6: end for

return newExps
7: end function

8: function FILTER(Exps) . Exps is the set of all explanations
collected so far

9: filteredExps = []
10: for all explanation e ∈ Exps do
11: if e.age≤ averageAge & e.frontierSize≤ averageFron-

tierSize & e.trees ≤ averageTrees then
12: filteredExps += e
13: end if
14: end for

return filteredExps
15: end function

16: function MAIN(Obs) . Obs is the set of all observations
17: tempExps = [〈emptyExp〉] . Only one explanation - the

empty explanation
18: for all observation o in Obs do
19: allExps = Expand(o, tempExps)
20: filteredExps = Filter(allExps)
21: tempExps = filteredExps
22: end forreturn tempExps
23: end function

Figure 6: Main functions of the CRADLE algorithm

over 4 actions within this designated time frame. In contrast, CRA-
DLE was able to significantly increase the performance of PHATT
algorithm by applying the filters. Specifically, applying the differ-
ent filters independently allowed to improve the success ratio for
some of the logs, with the highest improvement attributed to the
CRADLE approach which applied the age, frontier size and expla-
nation size filters. Interestingly, there was not a single filter method
that outperformed all of the other methods for all log size.

Next, we compare the run-time of CRADLE and PHATT on frag-
ments of logs for which PHATT was able to terminate. Figure 8
shows the average run-time on each size of log, measured in sec-
onds, presented in a logarithmic scale. It can be seen that the aver-
age run-time of CRADLE is exponentially better than the average
run-time of PHATT for the aforementioned logs.

6.2 Domain Expert Evaluation
In this section, we show that although the CRADLE approach re-
duces the number of possible explanations that is maintained by the
plan recognition algorithm, it does not hinder the correctness of the
algorithm. To this end, we sampled 20 logs of the Oracle problem
and presented the output of the PHATT and CRADLE approach to
a domain expert.3. We ran the cut logs on PHATT and CRADLE
and collected the outputted set of explanations for each log. For

3Logs of length greater than 6 actions were cut arbitrarily at
6,7,9,10 and 11 actions, in order to simulate incomplete interac-
tion sequences and to allow PHATT to terminate on these logs in
reasonable time.

Figure 7: Performance of PHATT, CRADLE and Single Filter
Variants on Various Log Sizes

Figure 8: Runtime of PHATT and CRADLE

each of the approaches, we chose to present the domain expert with
the explanation that did not include an open frontier (that is, the ex-
planations provided a complete description of the activities of the
student). If there was no explanations without an open frontier, we
chose the most likely explanation as measured by its probability.

Out of the 20 examined logs, in 9 logs PHATT and CRADLE’s ex-
planations were the same (though CRADLE was able to output the
solution exponentially faster). We presented the explanations for
which CRADLE and PHATT different to a domain expert, who is
one of the developers of the VirtualLabs software, who compared
between the two explanations. We did not label the explanations
with the algorithm that generated them. In 8 out of these 11 logs,
the domain expert preferred explanations which were presented by
CRADLE over the explanations of PHATT. In one case, the do-
main expert said none of the explanations describe the activities of
the student correctly. To illustrate, Figure 4 shows the explanation
outputted by CRADLE for a particular log which included a mix of
4 substances into a single flas. Figure 9 shows the PHATT explana-
tion for that same log, using two plans to explains the observation
sequence. In this case, the domain expert preferred the CRADLE
explanation, which explained the observation sequence using a sin-
gle plan.

7. DISCUSSION AND FUTURE WORK
Our results show that the CRADLE approach was able to extend
the state-of-the-art (PHATT algorithm) towards successfully rec-

Figure 9: Example of PHATT explanation

ognizing students’ activities in an ELE for chemistry education.
We showed that CRADLE was able to produce better explanations
than PHATT, and with exponentially faster running time. Specif-
ically, the ouputted explanations of CRADLE were as good as or
better than PHATT in 18 out of the 20 logs that we sampled, giving
CRADLE a success rate of 90% at an exponentially lower run-
time. The paper demonstrate that on-line plan recognition in ELEs
is a challening computational problem, and show the efficacy of
the CRADLE approach in addresssing these problems by reducing
the number of explanations maintaind by the algorithms in an in-
telligent way. We are currently pursuing work with CRADLE in
several directions. First, we are evaluating the scalability of the
CRADLE approach by evaluating it with different ELEs for statis-
tics education, as well as simulated data that simulates users’ in-
teractions with software. This ELE is significantly different than
VirtualLabs in that student’s interactions are more likely to engage
in trial-and-error, which we predict will further challenge the recog-
nition problem. Second, we are developing a formal langauge that
explains students’ activities with ELEs that will help us construct
more accurate grammars for the recognition algorithms.

8. ACKNOWLEDGEMENTS
This work was supported in part by Israeli Science Foundation
Grant no. 1276/12.

9. REFERENCES
[1] S. Amershi and C. Conati. Automatic recognition of learner

groups in exploratory learning environments. In Intelligent
Tutoring Systems (ITS), 2006.

[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The Journal
of Learning Sciences, 4(2):167–207, 1995.

[3] D. Avrahami-Zilberbrand, G. Kaminka, and H. Zarosim. Fast
and complete symbolic plan recognition: Allowing for
duration, interleaved execution, and lossy observations. In
Proc. of the AAAI Workshop on Modeling Others from
Observations, MOO, 2005.

[4] N. Blaylock and J. F. Allen. Statistical goal parameter
recognition. In ICAPS, volume 4, pages 297–304, 2004.

[5] H. H. Bui. A general model for online probabilistic plan
recognition. In IJCAI, volume 3, pages 1309–1315, 2003.

[6] M. Cocea, S. Gutierrez-Santos, and G. Magoulas. S.: The
challenge of intelligent support in exploratory learning
environments: A study of the scenarios. In Proceedings of
the 1st International Workshop in Intelligent Support for
Exploratory Environments on European Conference on
Technology Enhanced Learning, 2008.

[7] C. Conati, A. Gertner, and K. VanLehn. Using Bayesian
networks to manage uncertainty in student modeling. User
Modeling and User-Adapted Interaction, 12(4):371–417,
2002.

[8] C. Conati, A. Gertner, and K. Vanlehn. Using bayesian

networks to manage uncertainty in student modeling. User
modeling and user-adapted interaction, 12(4):371–417,
2002.

[9] A. Corebette, M. McLaughlin, and K. C. Scarpinatto.
Modeling student knowledge: Cognitive tutors in high
school and college. User Modeling and User-Adapted
Interaction, 10:81—108, 2000.

[10] Y. Gal, S. Reddy, S. Shieber, A. Rubin, and B. Grosz. Plan
recognition in exploratory domains. Artificial Intelligence,
176(1):2270 – 2290, 2012.

[11] Y. Gal, E. Yamangil, A. Rubin, S. M. Shieber, and B. J.
Grosz. Towards collaborative intelligent tutors: Automated
recognition of users’ strategies. In Intelligent Tutoring
Systems (ITS), 2008.

[12] C. Geib and R. Goldman. A probabilistic plan recognition
algorithm based on plan tree grammars. Artificial
Intelligence, 173(11):1101–1132, 2009.

[13] C. W. Geib. Delaying commitment in plan recognition using
combinatory categorial grammars. In IJCAI, pages
1702–1707, 2009.

[14] C. W. Geib and R. P. Goldman. A probabilistic plan
recognition algorithm based on plan tree grammars. Artificial
Intelligence, 173(11):1101–1132, 2009.

[15] C. W. Geib, J. Maraist, and R. P. Goldman. A new
probabilistic plan recognition algorithm based on string
rewriting. In ICAPS, pages 91–98, 2008.

[16] B. Grosz and S. Kraus. The evolution of sharedplans.
Foundations and Theories of Rational Agency, pages
227–262, 1999.

[17] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and
H. Irandoust. Opponent behaviour recognition for real-time
strategy games. In Plan, Activity, and Intent Recognition,
2010.

[18] S. Katz, J. Connelly, and C. Wilson. Out of the lab and into
the classroom: An evaluation of reflective dialogue in andes.
FRONTIERS IN ARTIFICIAL INTELLIGENCE AND
APPLICATIONS, 158:425, 2007.

[19] D. V. Pynadath and M. P. Wellman. Probabilistic
state-dependent grammars for plan recognition. In
Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, pages 507–514. Morgan Kaufmann
Publishers Inc., 2000.

[20] K. VanLehn, C. Lynch, K. Schulze, J. A. Shapiro, R. H.
Shelby, L. Taylor, D. J. Treacy, A. Weinstein, and M. C.
Wintersgill. The Andes physics tutoring system: Lessons
learned. International Journal of Artificial Intelligence and
Education, 15(3), 2005.

[21] M. Vee, B. Meyer, and K. Mannock. Understanding novice
errors and error paths in object-oriented programming
through log analysis. In Proceedings of Workshop on
Educational Data Mining at ITS, pages 13–20, 2006.

[22] D. Yaron, M. Karabinos, D. Lange, J. Greeno, and
G. Leinhardt. The ChemCollective–Virtual Labs for
Introductory Chemistry Courses. Science, 328(5978):584,
2010.

