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ABSTRACT 

In our recent work, we have proposed the use of multiple solution 

demonstrations of a learning task to automatically generate a tutor 

model. We have developed a number of algorithms for this 

automation. This paper describes the application of these domain-

independent algorithms to three datasets from different learning 

domains (Mathematics, Physics, French). Besides verifying the 

applicability of our approach across domains, we report several 

domain specific performance characteristics of these algorithms 

which can be used to choose appropriate algorithms in a 

principled manner. While the Heuristic Alignment based 

algorithm (Algorithm 2) may be the default choice for automatic 

tutor modeling, our empirical finding suggest that the Path 

Pruning based algorithm (Algorithm 4) may be favored for 

language learning domains. 
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1. INTRODUCTION 

Wide-scale transition of Intelligent Tutoring Systems (ITS) to the 

real world demands a scalable ability to develop such systems. 

The past decade has seen the first instantiations of 

industrialization of ITS development in the form of commercial 

products for different learning domains as well as diverse user 

populations. In addition to addressing non-technical challenges 

such as designing robust production processes around 

multidisciplinary teams of domain and pedagogical experts [1], 

the industrialization of this technology is enabled by technical 

advancements such as the development of general purpose 

authoring tools [2] which has allowed a scalable workforce to 

contribute to ITS development. 

In this paper, we extend our recent work [3][4] on automatically 

developing Example-Tracing Tutors (ETTs) [5] using multiple 

behavior demonstrations. Conventionally, ETTs are developed in 

three stages by trained domain experts: (1) User Interface (UI) 

development, (2) Behavior demonstration, (3) Generalization and 

annotation of the behavior graph. As ITS are being deployed to a 

large active user pool, it is now possible to pilot the UI with a 

small sample of learners to collect multiple behavior 

demonstrations. We can significantly reduce the Stage 3 effort of 

ITS developers by using algorithms that can automatically create 

a generalized behavior graph from multiple demonstrations. 

Several algorithms to address this challenge have been proposed 

and evaluated [4]. 

In this paper, we will study the applicability and performance of 

these algorithms on publicly available datasets from three 

different learning domains. Section 3 summarizes the key 

characteristics of the four algorithms used in our study. Section 4 

describes learning domains and the corresponding datasets used in 

this work. Results and Analysis from our experiments are 

presented in Section 5. Before diving into the algorithms, the next 

section reviews related work on automation of tutor model 

development. 

2. RELATED WORK 

Automation of tutor model development process has been 

explored in different contexts using completely automated 

methods as well as augmentation of authoring tools [6][7]. For 

example, motivated by application in language learning, a series 

of workshops on the problem of automatic question generation [8] 

explored a number of information extraction and NLP techniques 

that employ existing linguistic resources. Barnes and Stamper [9] 

proposed a method that uses existing student solutions to generate 

hint messages for the Logic Proof tutor. Recently, Eagle et al. [10] 

have used clustering of interaction network states as an approach 

to the same problem. 

In the context of knowledge-tracing and example-tracing tutors, 

McLaren et al. [11] proposed the use of activity logs from novice 

users to bootstrap tutor model development. They developed 

software tools that integrate access to novice activity logs with 

authoring tools. The baseline algorithm (Interaction Networks) 

used in our work is similar to the integrated data view used in this 

prior work. Furthermore, the algorithms used in our work address 

some of the shortcomings of their work (e.g. inability to identify 

“buggy” paths). 

In addition to tutor modeling, recent work has investigated 

automated methods for improving domain and student models 

[12] [13]. Sudol et al. [14] aggregated solution paths taken by 

different learners to develop a probabilistic solution assessment 

metric. Johnson et al. [15] are creating visualization tools for 

interaction networks that combine learner traces from open-ended 

problem solving environments. They have developed an algorithm 

for reducing the complexity of combined networks to make them 

more readable/navigable. In a similar spirit, work by Ritter et al. 

[16] used clustering techniques to reduce the large feature space 

of student models to assist in qualitative model interpretation. 

 

 



3. GENERATING BEHAVIOR GRAPHS 

Automatic Behavior Graph Generation (ABGG) algorithms 

analyze the similarities and difference between multiple solution 

demonstrations of a problem to induce a behavior graph that can 

serve as a tutor model for the problem.  

3.1 Behavior Graphs 

Behavior graphs [5] are directed graphs. The nodes in this graph 

correspond to valid solution states. Non-terminal nodes represent 

partial solutions. Edges in the graph represent solution paths some 

of which are correct and lead to the next state while other are 

incorrect and usually lead back to the same state. Edges are 

annotated with the conditions that a behavior event must meet to 

traverse the path. 

Behavior graphs may contain multiple paths between two nodes. 

Multiple paths are useful to facilitate learner’s exploration of 

alternate solutions to a problem especially in ill-defined learning 

domains. Behavior graphs may also include unordered groups. As 

the name suggests, states within an unordered group may be 

traversed in any order. 

Well-constructed behavior graphs have several desirable 

characteristics which motivate the design of metrics we use to 

evaluate ABGG algorithms. 

3.1.1 Effective 

Since the purpose of the behavior graphs is to serve as a tutor 

model, the primary metric for evaluating these models is their 

learning efficacy measured via use of the models by a relevant 

sample of learners. However, in this paper we focus only on the 

use of automated metrics that do not require access to a learner 

pool. Further, as we in section 5, the automatically generated 

behavior graphs are not perfect. They require checking and 

refinement by ITS developers before they can be used with 

learners. 

3.1.2 Readable 

One of the key characteristics of behavior graphs that makes them 

a popular model is that they are readable by ITS developers 

without requiring a deep understanding of computational or 

cognitive sciences. Automatically created behavior graphs should 

be editable with existing authoring tools to facilitate necessary 

manual annotation and modifications. Ideally, ABGG algorithms 

should create concise graphs without losing other desirable 

characteristics. This may involve collapsing redundant paths and 

even pruning spurious or infrequent edges. 

The conciseness of a graph can be measured using the number of 

nodes and edges in the graph. Our primary readability metric, 

Compression Ratio measures the rate at which an algorithm is 

able to reduce behavior events into behavior states (i.e. nodes) by 

finding similarities between events. 

3.1.3 Complete 

In order to minimize author effort, generated behaviors graphs 

should be as complete for creating an ETT as possible. As a 

minimal criterion, at least one valid path to the final solution 

should be included♦. Additionally, complete behaviors graphs are 

annotated with all the expected inputs by the learner. We use the 

Rate of Unseen Events in held out demonstrations as the primary 

metric to measure the completeness of our automatically 

generated behavior graphs. 

3.1.4 Accurate 

Behavior graphs should be error free. This includes being able to 

accurately capture the correct and incorrect events by learners 

depending on the current solution state. Edge accuracy measures 

the percentage of Correct & Incorrect edges that were accurately 

generated by the algorithm. Error Rate is a frequency weighted 

combination of edge accuracy that measures the fraction of learner 

events that will be inaccurately classified by the automatically 

generated behavior graph. We use the error rate of an automatically 

generate behavior graph on held out demonstrations as the primary 

accuracy metric. 

3.1.5 Robust 

One of the reasons for the success of expertly crafted ETTs is the 

ability to use them with a wide range of learners under different 

deployment conditions. Automatically generated behavior graphs 

should retain this characteristic; e.g., by identifying alternate paths 

and unordered groups. It is not unforeseeable that the use of a 

data-driven approach could contribute to creating behavior graphs 

that are more robust than those authored by a human expert. 

Branching factor is the average number of data values available at 

each UI element. A large branching factor indicates the capability 

to process a large variety of learner inputs at each state. Also, the 

number and size of unordered groups is indicative of flexibility a 

graph affords to learners to explore the solution paths of a 

problem. 

Note that readability and robustness are complementary 

characteristics of a behavior graph. For example, a highly 

complex behavior graph may be very robust but may not be very 

readable. 

3.2 ABGG Algorithms 

We use four algorithms, introduced in our previous work [4], to 

generate behavior graphs using multiple solution traces of a 

problem. The first algorithm (Algorithm 1) generates interaction 

networks by sequentially collapsing identical events in solution 

traces into a shared node and creating a branch whenever two 

different events are found. Interaction networks have been used in 

prior work [10][15]. 

Algorithm 2 uses a heuristic alignment technique [3] to align 

similar events across multiple solution traces. The alignment is 

used to obtain a sequence of traversal through the problem’s steps. 

Furthermore, this algorithm is able to use the positional entropy of 

a sequence of elements while obtaining the optimal sequence to 

identify unordered groups. 

Similar to the above algorithm, Algorithm 3 finds the optimal 

sequence between aligned events. However, this algorithm uses 

the Center Star Algorithm [17] to align the multiple solution 

traces instead of the heuristic used by Algorithm 2. The Center 

Star Algorithm is a foundational algorithm used for aligning more 

than two sequences of symbols. It is particularly suited for our 

application because it is polynomial time in computational 

complexity and it does not make any assumptions about the space 

and relationship of symbols comprising the sequence. 

First order transition matrix computed from solution traces can be 

used to represent a directed graph. Algorithm 4 considers ABGG 

as the process of finding multiple paths in a directed graph. 

Specifically, the longest (non-repeating) path in this directed 

graph represents the most likely path through the solution steps. 

Since, the problem of finding longest paths in general graphs is 

known to be NP-hard, we employ a combination of bounded 



longest path finding and an algorithm for finding multiple shortest 

paths [18] in a transformed transition matrix to obtain a number of 

different paths through the directed graph. These paths are merged 

to construct a behavior graph similar to the process of 

constructing an interaction network. 

Algorithm 2, 3 and 4 assume that if two or more events within a 

trace were generated by the same UI element, the latter event 

corresponds to a correction of the data value input at the former 

events. In this case, we refer to the former events as retracted 

events and data values entered at these events are assumed to be 

incorrect values. Using this assumption, these three algorithms are 

able to automatically generate incorrect paths in behavior graphs 

unlike Algorithm 1. This assumption is not applied to Algorithm 1 

to compare our work against prior work [11] on extracting tutor 

models from multiple demonstrations. 

3.3 Discussion 

Table 1 characterizes the four algorithms described above based 

on their capabilities. Incremental addition of demonstrations to 

generate interaction networks does not identify incorrect input 

data values. However, using the assumption about retracted 

events, the other three algorithms are able to identify incorrect 

inputs. Johnson et al. [15] used a similar assumption in their work 

on reducing the visual complexity of interaction networks. We 

notice that the Algorithms 2 and 3 are complementary in terms of 

their ability to find alternate paths and unordered groups. 

Algorithm 4 on the other hand offers both of these abilities. 

Table 1. Comparison of Algorithm Capabilities 

Capability▼ Algorithm► 1 2 3 4 

Identifies incorrect answers N Y Y Y 

Generates alternate paths N N Y Y 

Finds unordered groups N Y N Y 

Generalizes beyond training demonstrations N Y Y Y 

Guarantees all training demnstrs. will pass Y N N N 

Finds atleast one path to final solution♦ Y Y Y N 

Discovers new/unseen data values N N N N 

None of the algorithms discussed in this paper are capable of 

discovering unseen inputs beyond those seen in the solution 

traces. This type of generative ability is particularly useful for 

learning tasks, such as language learning, where a large number of 

different inputs may be expected from the learners. In our ongoing 

work, we use a number of heuristics [7] as well as grammar 

induction techniques [6] to generate unseen inputs for certain 

nodes in the behavior graphs. 

4. DATASETS 

We use three datasets, accessed via DataShop1 [19], to study the 

cross-domain applicability of ABGG algorithms. These datasets 

were filtered to use only problems that had six or more traces and 

had at least two UI elements. Also, we eliminated all events, such 

as help requests, that did not correspond to user input at a solution 

step. In this way, the datasets were transformed into solution 

traces. As discussed in Kumar et al. [4], a solution 

                                                                 

1 PSLC DataShop is available at http://pslcdatashop.org 

trace/demonstration comprises of a sequence of user interface (UI) 

events. Each event is represented as a 2-tuple e = (u, d) that 

includes an identifier u of the UI element and data d associated 

with the event. A UI element may be visited any number of times 

within a trace. In general, data can include one or more attributes 

of the event such as the event type, user input, event duration, etc. 

In this paper, we assume single data attribute events where the 

data captures the learner input at the UI element. 

Table 2. Problems & Traces for the three learning domains 

 
Math. Physics French 

#Problems 1013 497 71 

Max. #Unique Elements 33 62 10 

Avg. #Unique Elements 4.6 9.7 2.5 

Avg. #Training Traces 76.0 26.6 12.1 

Avg. #Heldout Traces 38.0 13.3 6.1 

Avg. #Events Per Trace 5.3 8.9 4.7 

 

Figure 1. Example Math Problem from Assistments 
Source: www.assistments.org, April 2014 

Table 2 provides some statistics about the problem and traces for 

each of learning domains used in this work. The Mathematics 

traces were derived from three Assistments [20] datasets. 

Assistments is a web-based learning platform, developed by 

Worcester Polytechnic Institute (WPI), that includes a 

Mathematics intelligent tutoring system for middle & high school 

grades. Figure 1 shows an example math problem from the 

Assistments system. Together, these datasets are the largest of the 

three domains we use. Prior to filtering, these dataset comprised a 

total of 683,197 traces and 1,905,672 events from 3,140 problems. 

For our experiments, we treat the three datasets to be independent 



of each other to account for change in UI designs of the problems 

common to the three datasets. 

We used 10 (out of 20) of the largest datasets released under the 

Andes2 project [22] to build the collection of Physics problems 

and traces. Andes2 is an intelligent tutoring system that includes 

pedagogical content for a two-semester long college and advanced 

high-school level Physics course. These ten datasets are based on 

logs from several semesters of use of the Andes2 system at the 

United States Naval Academy. Prior to filtering, these dataset 

comprised a total of 81,173 traces and 1,162,581 events from 

2,187 different problems. Note that, as is case with the Math 

dataset, we treat the ten Andes2 datasets independently. Note that, 

unlike typical domain independent example-tracing based tutor, 

the Andes2 systems uses a model-tracing approach for tracking 

learner’s solution of a problem and to provide feedback. The 

domain knowledge dependent model tracer is able to match highly 

inflected learner inputs (e.g. variable names) to its solution graph. 

Despite this difference in tutoring approach used by the Andes2 

system, we decided to include this domain in our experiments to 

study the performance of our algorithms on such solution traces. 

Finally, the French traces are based on two dataset from the 

“French Course” project on DataShop. These datasets were 

collected from logs of student’s use of the “French Online” course 

hosted by the Open Learning Initiative (OLI) [22] at Carnegie 

Mellon University. Figure 2 shows steps from couple of example 

problems from this course. These datasets comprised a total of 

37,439 traces and 253,744 events from 1,246 different problems. 

Note that a significantly larger fraction of French problems were 

eliminated due to the filtering criterion compared to Mathematics 

or Physics. 

 

Figure 2. Example Steps from Problem from the French 

Online Course Source: oli.cmu.edu, April 2014  

The datasets used in our experiments contain solution traces. 

Traces are paths through an existing behavior graph, unlike 

behavior demonstrations which are unconstrained by existing 

tutor models. In addition to the fact that these are the only 

available large scale collection of solution paths, we use these 

datasets in our experiments because these traces have been 

Table 3. Averaged Metrics for the Graphs Generated by ABGG Algorithms 
*indicates significant (p < 0.05) difference with the other algorithms (within the same dataset) 

 Mathematics (Assistments) Physics (Andes2) French (OLI) 

Algorithm ► 1 2 3 4 1 2 3 4 1 2 3 4 

#Nodes 79.2 5.4* 6.0* 6.6* 147.8 7.9* 11.5* 11.7* 25.6 3.8* 4.5* 4.5* 

#Correct Edges 148.0 12.9* 18.3* 17.5* 182.2 43.5* 76.4 34.5* 37.2 6.9 9.8 9.5 

#Incorrect Edges  23.9 33.5 19.5*  35.1 53.0 13.4*  4.2 11.0 8.0 

Compression Ratio 6.7 76.8* 66.8 60.2 2.3 31.6* 21.9 21.7 2.2 14.6 12.8 12.8 

% Accurate Correct Edges 39.1 41.9 42.5* 44.1* 61.4 80.2* 58.9 80.8* 22.5 27.7* 26.9* 29.8* 

% Accurate Incorrect Edges  99.9* 97.2 99.5*  92.5* 67.3 85.5  97.8* 86.1 87.2 

Training Error Rate 51.4 25.4 17.7* 17.5* 33.6 17.2* 25.8 24.3 75.2 56.1 22.3* 25.3* 

Heldout Error Rate 42.8 23.5 16.1* 15.7* 29.1 25.5* 33.3 30.8 45.3 35.9 19.9* 18.5* 

% Training Unseen Events 0.0* 10.7 2.2 6.8 0.0* 14.1 12.2 24.6 0.0* 13.4 5.2 4.5 

% Heldout Unseen Events 10.2* 19.1 11.5* 13.9 35.9* 41.7 38.4* 42.6 31.7* 40.7 34.4* 34.3* 

Branching Factor 2.2 10.9 12.6* 8.5 1.5 13.4* 12.9* 6.0 1.6 6.7* 9.4* 7.8* 

#Groups  0.5*  0.0  0.8  1.4*  0.3*  0.1 

Avg. Group Size  1.9*  0.0  2.0  2.0  0.6*  0.3 

% Group Coverage  31.8*  0.5  27.2  30.6*  15.4*  6.1 

 



collected from a large set of real users. They contain realistic 

variations in learner inputs similar to demonstrations. 

5. EXPERIMENTS 

We use a three-fold cross validation design that splits the 

available traces into three different training and held out sets. The 

readability metrics (i.e. number of nodes, number of edges and 

compression ratio) as well as the robustness metrics (branching 

factor, number of unordered groups, average group size and 

coverage of graph within groups) are reported on the behavior 

graphs generated by the algorithms. On the other hand, some 

accuracy metrics such as the accuracy of correct and incorrect 

edges are measured on generated graphs whereas others such as 

error rate are measured on event sequences which could be the 

training traces; i.e., sequences used to generate the graphs, or held 

out traces. Similarly, our completeness metrics, i.e. the rate of 

unseen events in a sequence, can be measured on both training as 

well as held out traces. Note that the metrics computed on training 

traces used to generate the graphs may not accurately indicate the 

performance of an algorithm due to over-fitting. This is the 

motivation for choosing the cross validation based experimental 

design. 

5.1 Results  

Table 3 shows our results along 14 metrics for each of the four 

algorithms applied to the three learning domains under 

consideration. Reported metrics are averaged over three cross 

validation splits as well as over all the problems for each domain. 

The metrics are organized by the four desirable characteristics 

discussed earlier. Primary metric for each characteristic is 

highlighted. 

 

Figure 3. Compression Ratio of Algorithm 2 

5.1.1 Mathematics 

As expected, the interaction networks comprise of a large number 

of nodes and edges that lead them to have significantly smaller 

compression ratio. Algorithm 2 (Heuristic Alignment) 

outperforms all other algorithms on three of the readability 

metrics. On the other hand, Algorithm 4 (Path Pruning) 

significantly outperforms the other algorithms on three of the 

accuracy metrics for this dataset and is not significantly worse on 

the fourth metric. Because of their lossless nature, Algorithm 1 

(Interaction Network) performs the best on Completeness metrics 

(% unseen events). However, it is not significantly better than 

Algorithm 3 (Center-Star Alignment). We find evidence of over-

fitting of the algorithms to training traces on this metric as 

indicated by the approximately 9% higher rate of unseen events 

for held out traces for all the algorithms. Algorithm 3 significantly 

outperforms the other algorithms on the primary robustness metric 

(Branching Factor) for this domain. Algorithm 2 is better than 

Algorithm 4 for the metrics based on unordered groups. 

 

 

Figure 4. Heldout Error Rate of Algorithms 2 and 4 

5.1.2 Physics 

On the primary readability metric (Compression Ratio), Algorithm 

2 outperforms the others on the Physics dataset as was the case 

with Mathematics. This is consistent with prior conclusion [4] on 

the use of Algorithm 2 for readability. We note that the Physics 



dataset has significantly lower compression ratio than the previous 

dataset. Figure 3 shows a scatter plot and domain-specific 

regression fits for the compression ratio of Algorithm 2 for 

different problems with different number of training traces and UI 

elements. We see that for equivalent number of training traces, the 

compression ratio for Physics is actually slightly better than 

Mathematics. However, as we know from Table 2, fewer training 

traces are available for the Physics problems on average. 

On the primary accuracy metric, we find that Algorithm 2 works 

best for Physics unlike the case with the Mathematics domain. We 

can note that the Algorithm 2 is significantly better on the 

accuracy of incorrect edges. Figure 4 shows the relationship 

between the error rate in heldout traces and the accuracy of 

incorrect edges. We also see that the percentage of unseen events 

in heldout traces is significantly higher for Physics. The lower 

incorrect edge accuracy and higher percentage of unseen events 

can be attributed to the differences in the tutoring approach 

underlying the Andes2 system which uses domain-specific 

knowledge to match a large variety of inputs from the learner at 

each step of the solution. Because of this, Andes2 elicits 

significantly diverse (& hence novel) inputs across traces. 

Algorithms 2 and 3 are not significantly different in terms of the 

primary robustness metric. 

5.1.3 French 

 

Figure 5. Accuracy of Correct Edges for Algorithm 4 

The results for our non-STEM domain are largely consistent with 

the Mathematics domain. This may be attributed to the similarities 

of the underlying tutoring approach for the Assistments system 

and the French Online course which has been developed using the 

Cognitive Tutor Authoring Tools (CTAT) [2]. However, we can 

notice two key differences. First, the accuracy of correct edges for 

this domain is significantly lower. Because the French Online 

Course is deployed on an publicly accessible platform, its likely 

that a large number of the solution traces were generated by 

beginners as well as non-serious users leading to the dataset 

containing many incomplete solution traces containing no correct 

answers. This is evidenced in Figure 5 as we see that correct edge 

accuracy dramatically degrades for long traces which is contrary 

to the case with the other two domains. 

Second, we expect the branching factor to be higher for a 

language learning domain, due to the high degree of linguistic 

variation in learner inputs. The results in Table 3 do not indicate 

this. However, Figure 6 verifies this intuition. Branching factor 

for the French behavior graphs is higher than those for the STEM 

domain for problems that have 10 or more traces. 

 

Figure 6. Branching Factor of Algorithm 3 

5.1.4 Automatically Generated Behavior Graphs 

Figures 7, 8 and 9 showcase several qualitative characteristics of 

automatically generated behavior graphs (truncated to fit) for the 

problems in the three datasets used in this work. We use the 

following visual convention: Circular nodes represent states and 

are labeled with identifiers u of the corresponding UI element. 

Edges are labeled with the data values d. Correct edges are labeled 

with green rectangles and incorrect edges are labeled with red 

rectangles. Unordered groups are shown using blue containers. 

Figure 7 shows graphs generated by two different algorithms for 

the same Mathematics problem in the Assistments dataset using 

241 solution traces by learners. The graph generated by Algorithm 

1 is dense and hardly readable due to the large number of nodes 

and edges in this graph. Also, as discussed in Section 3, this 

algorithm is unable to identify incorrect paths. Contrary to that, 

the graph in Figure 7b is composed of only 6 nodes. The various 

paths taken by learners are compressed into 46 correct and 39 

incorrect edges. We can notice that not all paths are accurate. 

However, the accurate paths are more frequent, as indicated by the 

thicker arcs associated with the edge. In our ongoing work, we are 

extending these algorithms to use this frequency attribute to 

eliminate inaccurate paths (either automatically, or by providing 

additional controls to model developers in authoring tools). 

A behavior graph from the Physics dataset is shown in Figure 8. 

As discussed earlier, the large variation in learner input at each 

state is depicted in the edge labels of this graph. We notice that for 

the last state (s6) which corresponds to the learners filling in the 

answer to a problem, many minor variations of the correct answer 

are accurately captured. Due to the domain independent nature of 

our algorithms, these answers are treated as different string. 

Integration of domain knowledge can lead to further compression 

of these answers into a single path. 



The linguistic variation in the inputs to a problem in the French 

dataset is also noticeable in the two graphs for the same problem 

in Figure 9. We can see the several wrong answers are marked as 

correct answers (and vice versa), although the frequency-based 

edge notation identifies the correct answer as was the case in 

Figure 7b. In this problem, learners are asked to listen to an audio 

file and type in the French word they hear. Learners are allowed 

to go back and forth between these two steps. The first step has no 

wrong answer. We notice that our assumption to consider 

retracted events as incorrect fails in this case. 

 

Figure 7a. Behavior Graph: Mathematics, Algorithm 1 

 

Figure 7b. Behavior Graph: Mathematics, Algorithm 2 

It is particularly interesting to note the differences in the way 

Algorithm 2 and Algorithm 4 encode robustness into the learnt 

tutor model. While Algorithm 2 identifies an unordered group 

containing the listen and answer nodes which allows learners to 

traverse these nodes in any order, Algorithm 4 identifies that the 

listen step is optional and create two different way to reach the 

answer step based on the solution behaviors exhibited by learners 

in the traces. 

 

Figure 8. Behavior Graph: Physics, Algorithm 2 
 

 

Figure 9a. Behavior Graph: French, Algorithm 2 
 

 

Figure 9b. Behavior Graph: French, Algorithm 4 

6. CONCLUSIONS 

In this paper, we have shared results from an empirical analysis of 

application of ABGG algorithms to three different learning 

domains. Several similarities and differences between the 

performances of four algorithms on problems from these three 

domains were discussed in the previous section. 

We find that the accuracy of these algorithms suffers when they 

are applied to solution traces collected from a tutoring system that 

uses domain knowledge to process a large variety of inputs from 

learners. While in our previous work [4], we have recommended 

the use of Algorithm 2 as the default ABGG algorithm for use 

within authoring tools, we find that for language learning 

domains, Algorithm 4 may be preferable since it is the most 

accurate on the French dataset and not significantly worse than the 

other algorithms on the other primary metrics.  

We identified multiple potential improvements to the ABGG 

algorithms based on these analyses. There are several domain 

specific nuances to the UI elements that comprise the problems in 

each domain. For example, in the French domain, we found steps 

that do not have any wrong answer. For broad use, ABGG 

algorithms should identify these UI elements and selectively apply 

the powerful assumption about retracted events. Furthermore, the 

algorithms can exploit additional features computed from across 

the multiple traces, such as the frequency of a data value at a 

node, to improve the accuracy of the automatically generated 

behavior graphs. 

Finally, this paper extends our recent work on use of multiple 

behavior demonstrations to automatically generate tutor models 

using ABGG algorithms. While these algorithms can be improved 

in specific ways discussed above, we find evidence for their 

applicability to multiple domains. 
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