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ABSTRACT
The central goal of educational datamining is to derive cru-
cial pedagogical insights from student, course, and tutorial
data. Real-world educational datasets are complex and het-
erogeneous comprising relational structures, social connec-
tions, demographic information, and long-term assignments.
In this paper I describe Augmented Graph Grammars a ro-
bust formalism for graph rules that provides a natural struc-
ture for evaluating complex heterogeneous graph data. I also
describe AGG an Augmented Graph Grammar engine writ-
ten in Python and briefly describe its use.
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1. INTRODUCTION
The central goal of educational datamining is to draw peda-
gogical insights from real-world student data, insights which
can inform instructors, students, and other researchers. While
robust analytical formalisms have been defined for categor-
ical, numerical, and relational data most real-world educa-
tional data is complex and heterogeneous combining textual,
numerical, and relational features. In large course settings
such as a lecture course or MOOC, for example, students
may form dynamic working groups and collaborate on com-
plex assignments. They may also be given a flexible set
of reading, writing, or problem-solving tasks that they can
choose to complete in any order. This process data can be
encoded as a graph with nodes representing individual as-
signments and reading materials and arcs representing group
relationships or traversal order. In order to capture impor-
tant features of this rich graph data and to identify key
relationships between teamwork, written text, and perfor-
mance, it is necessary to apply a rule structure that can
capture them naturally.

Individual student assignments can also contain heteroge-
neous data. Argument diagrams, for example, have been
used to teach writing, argumentation, and scientific reason-
ing [10, 2, 19]. These structures reify real-world arguments
as graphs using complex node and arc types to represent
argumentative components such as hypothesis statements,
citations, and claims. These complex elements can include
types, text fields for short notes or free-text assertions, links
to external resources, and other data.

A sample student-produced argument diagram drawn from
my thesis work at the University of Pittsburgh is shown
in Figure 1. This work focused on the use of argument
diagrams to support students in developing written scien-
tific reports and in identifying pedagogically-relevant dia-
gram structures that can be used to predict students’ subse-
quent performance (see [8]). The diagram contains a central
claim node representing a research claim. This node has
a single text field in which the claim is stated. This is, in
turn, connected to a set of citation nodes representing re-
lated work via a set of supporting, opposing, and undefined
arcs colored green, red, and grey, respectively. The citation
nodes each contain two text fields, one for the citation in-
formation and the other for a summary of the cited work,
while the arcs contain a single text field for the warrant or
explanation of why the relationship holds. At the top of
the diagram there is a single disjoint hypothesis node which
contains two text fields: a conditional or IF field, and a
conditional or THEN field.

This diagram contains a number of pedagogically-relevant
issues. Some of them are purely structural such as the dis-
joint hypothesis node, and the fact that the supporting and
opposing arcs are drawn from the claim to the citations and
not vice-versa. It also contains more complex semantic is-
sues such as the fact that the text fields on the arcs contain
summary information for the cites not explanations of the
relationship, and the fact that the opposing citations, cita-
tions that disagree about the central claim node have not
been distinguished from one-another via a comparison arc.
Problems such as these can be detected via complex rules,
and I have previously shown that the presence of such prob-
lems are predictive of students’ subsequent performance [8,
10, 9]. This detection and remediation, however requires the
development of rules that can incorporate complex struc-
tural and textual information.



Figure 1: A segment of a student-produced LASAD diagram representing an introductory argument. It
contains a central claim node surrounded by citation nodes. The isolated node is a hypothesis that has not
been integrated into the argument.

Automatic graph analysis is central to a number of research
domains including strategy transfer in games [4], automatic
recommendations [1], cheminformatics [12], and social net-
work detection [11]. Graph analysis algorithms have been
used to define educational communities [15, 16, 5]) and to
automatically grade existing datasets [8, 10, 9]. Graphical
structures have also been used in tutoring contexts to repre-
sent student work via argument diagrams of the type shown
above (see [14, 7] or to provide connection representations
[19] for student guidance.

My focus in the present work is on the development of graph
rules that is logical graph patterns that match arbitrary
graph structures based upon content and structure informa-
tion. While arbitrary graph matching is NP-Hard (see [18])
it is of practical importance, particularly in relational do-
mains such as argument diagrams or student groups where
our goal is to identify complex structures that may be evi-
dence of deeper pedagogical issues. To that end, I will intro-
duce Augmented Graph Grammars a robust rule formalism
for complex graph rules and will describe AGG and aug-
mented graph grammar engine for educational datamining.
Both were developed as part of my thesis work at the Uni-
versity of Pittsburgh.

2. AUGMENTED GRAPH GRAMMARS
Graph Grammars, as described by Rekers and Schürr, are
formal grammars whose atomic components are graphs or

graph elements, and whose productions transpose one graph
to another [17]. More formally, they define graph-grammars
and productions as:

Definition 3.6 A graph grammar GG is a tu-
ple (A;P ), with A a nonempty initial graph (the
axiom), and P a set of graph grammar produc-
tions. To simplify forthcoming definitions, the
initial graph A will be treated as a special case
of a production with an empty left-hand side.
The set of all potential production instances of
GG is abbreviated with PI(GG).

Definition 3.2 A (graph grammar) production
p := (L; R) is a tuple of graphs over the same
alphabets of vertex and edge labels LV and LE.
Its left-hand side lhs(p) := L and its right-hand
side rhs(p) := R may have a common (context)
subgraph K if the following restrictions are ful-
filled:

• ∀e ∈ E(K) ⇒ s(e) ∈ V (K) ∧ t(e) ∈ E(K)
with E(K) := E(L) ∩ E(R) and V (K) :=
V (L)∩V (R) i.e. sources and targets of com-
mon edges are common verticies of L and R,
too.



• ∀x ∈ L∩R⇒ lL(x) = lR(x) i.e. common el-
ements of L and R do not differ with respect
to their labels in L and R.

Thus graph grammars are systems of production rules anal-
ogous to context-sensitive string grammars (see [18]). For
reasons of efficiency Rekers and Schürr restrict their focus
to layered graph-grammars where all productions must be
expansive with the left-hand-side being a subgraph of the
right. Classical graph grammars, like string grammars, as-
sume a fixed alphabet of simple statically-typed node and
arcs and can be used both to generate matching graphs pro-
grammatically or to parse matching graphs via mapping and
decomposition. My focus in the present work is on graph
matching which occurs via iterative mapping.

Let Gi =< {no, . . .}, {e(np, nq), . . .} > and Gj =< {mo, . . .},
{e(mk,ml), . . .} > be graphs and let M = {< na,M − b >
. . .} me a mapping from Gi to Gj that links nodes of the
two. In the context of a mapping, Gi and Gk are called the
source and target graphs respectively. A mapping MGi,Gj

from Gi to Gj is valid if and only if the following holds:

∀nx ∈ Gi : ∃ < nx,my >∈MGi,Gj

¬∃{< nx,my >,< nr,mk >} ⊆MGi,Gj : (x = r) ∨ (y = k)

∀e(nx, ny) ∈ Gi : {< nx,my >,< nr,mk >} ⊆MGi,Gj

: ∃e(my,mk) ∈ Gj

For the remainder of this paper all elements in a source
graph will be labeled alphabetically (e.g. a, Q) while ele-
ments in the target graphs will be referenced numerically

(e.g. 1, 2, e(2, 3),
−−−−→
e(4, 5)).

Augmented Graph Grammars are a richer formalism for graph
rules that treat nodes and arcs as complex components with
optional sub-fields including flexible text elements or other
types. Augmented graph grammars have been previously de-
scribed by Pinkwart et al. in [13]. There the authors focused
on the use of augmented graph grammars for tutoring. An
Augmented Graph Grammar is defined by: a graph ontol-
ogy that specifies the complex graph elements and functions
available; a set of graph classes that define matching graphs;
and optional graph productions and expressions that provide
for recursive class mapping and logical scoping. I will de-
scribe each of these components briefly below. For a more
detailed description see [8].

2.1 Graph Ontology
In a simple graph grammar of the type used by Rekers and
Schürr the set of possible node and arc types (

∑
) is fixed

with the elements being atomic, static, and unique. In order
to process complex structures such as the argument diagram
shown in Figure 1, a more complex structure is required.
Thus augmented graph grammar ontologies are defined by a
set of element types O = {N0, . . . Nm, E0, . . . , Ep} such that
each element has a unique list of fields and field types as well
as applicable functions over those fields. The ontology must
also specify appropriate relationships between the fields and
operations that can be used on them.

While showing a complete ontology is beyond the scope of
this paper an illustrative example can be found in Figure

{

Nodes:{

Citation:{

Cite(String)

Cite.Words(StringSet)

Summary(String)

Summary.Words(StringSet)

}

Hypothesis: {

If(String)

If.Words(StringSet)

Then(String)

Then.Words(StringSet)

}

}

Arcs:{

Comparison: {

...

Types: { String, StringSet }

...

Figure 2: An illustrative subset of a sample graph
ontology for scientific argument diagrams.

2. This illustrates the field definitions for the citation and
hypothesis nodes shown above. Both node types contain
two sub-fields of type String. For each of these fields an
additional function is defined ’*.Words’ which returns a set
of all the words found in the field.

2.2 Graph Classes
The core component of an augmented graph grammar is the
graph class. A class Ci is defined by a 2-tuple < Si, Oi >
where Si is a graph schema and Oi is a set of constraints.
A class defines a space of possible graphs which satisfy both
the schema and the constraints. Classes are not required
to be unique nor are the set of matching graphs for a given
pair of classes required to be disjoint. A sample named
class R07a is shown in 3. This class is designed to detect
instances of Related Uncompared Opposition in scientific ar-
gument diagrams. That is subgraphs where there exists a
pair of citation nodes a, and b that disagree about a shared
target node t, are not connected via a comparison arc c,
and which share some relevant textual content. As I noted
above, this type of structure can be found in Figure 1.

2.2.1 Graph Schema
A Schema is a graph structure that defines a space of pos-
sible graphs topologically. Schema are defined by a set of
ground nodes (e.g. t, a, & b in Figure 3) which must match
a single node in a target graph, a set of ground arcs that
must likewise match a single arc in the target graph (e.g.
c), and an optional set of variable arcs which must match a
nonempty subgraph defined by a graph production. By con-
vention, ground elements are denoted via lower-case names
while variable elements are denoted by capitalized names.

In addition to the ground and variable distinctions arcs within
a schema may be one of four types: directed (e.g. O, &
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a b

O S

¬ c

(R07a)


t.Type ∈ {“Hypothesis′′, “Claim′′}

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′

(a.summary.words ∩ b.summary.words) 6= ∅


Figure 3: Related Uncompared Opposition A simple
augmented graph grammar rule that detects related
but uncompared counterarguments. The rule shows
a two citation nodes (a, & b) that have opposing re-
lationships with a shared hypothesis or claim node
(t) and do not have a comparison arc (c) drawn be-
tween them. The arcs S and O represent recursive
supporting and opposing paths.

S), of unknown direction, undirected (e.g. c), and unde-
fined. Directed arcs will only match directed arcs in the
base graph oriented in the same direction. Thus, given a

base graph containing an arc
−−−−→
e(1, 2) and a schema with a

directed arc
−−−−→
e(n,m) the schema will only match cases where

{< n, 1 >,< m, 2 >} ⊆M . Unknown direction schema arcs
may match a directed arc oriented in any order but will not
match an undirected arc (e.g. e(2, 3)). Undirected arcs (e.g.
¬c) will not match a directed arc. And, undefined arcs may
match a directed or undirected arc in any order.

As the example shows arcs may be also be negated (e.g. ¬c)
in which case the schema matches a graph if and only if no
match can be found for the negated arc. Thus the schema
shown will only match ground graphs with no arc between
the elements assigned to a and b. More complicated cases of
negation may be formed using graph expressions which are
defined below.

The elements of a Schema must also be non-repeating that
is, no two elements in a schema may be matched to the same
element in the target graph. Thus each element in a schema
must match at least one unique node or arc with variable
elements possibly accounting for more than one element.

2.2.2 Constraints
Constraints represent individual bounds or limits on the
ground elements of a schema. Constraints are specified using
a set-theory syntax (e.g. t.Type ∈ {“Hypothesis′′, “Claim′′})
and may draw on any of the node or arc features, subfields,
or functions specified in the ontology. Unary Constraints ap-
ply to a single element (e.g. a.Type = “Citation′′). Binary
Constraints (e.g. (a.summary.words ∩ b.summary.words)
6= ∅) specify a relationship between two distinct ground ele-
ments.

a

c

S(SC)

a

b

c

Sq(SP1)

{
q.Type = “Supporting′′

}

a

c

q(SP2)

{
q.Type = “Supporting′′

}
−−−−→
S(a, c) = [ Sc ⇒ SP1

[2,∗]
| SP2 ]

Figure 4: A simple recursive rule production for S
that defines a supporting path.

2.3 Graph Productions
A graph production Cl ⇒ Cr1|Cr2... is a context-sensitive
production rule that maps from a graph class containing a
single production variable to one or more alternate expan-
sions. Graph productions are used to match layered sub-
graphs to the variable arcs. A simple recursive production

rule for the variable element
−−−−→
S(b, t) is shown in Figure 4.

The rule is defined by the context class SC , and the two pro-
duction classes SP1 and SP2. The context class is used as a
key for the production application. It must contain exactly
one variable arc, the production variable, and no constraints.
The ground nodes a and c are context nodes and are used to
ground the production for mapping. They must be present
in all of the production rules. All production rules must
be expansive with each of the production classes contain-
ing at least one ground element not present in the context
class. Recursive productions are thus handled by iteratively
grounding the mapping with additional context and, as per
the non-repeating requirement, these rules must consume
additional elements of the graph. Production rules are thus
mapped in a layered fashion like the grammars defined by
Rekers and Schürr.



h(C0){
h.Type = “Hypothesis′′

}
h

c

O(C1)

{
h.Type = “Hypothesis′′

c.Type = “Supporting′′

}

∀C0|¬∃C1

Figure 5: A simple Graph expression that tests for
unopposed hypotheses.

2.4 Graph Expressions
Graph expressions are logical rules of the form:

S0C0 | S1C1 | . . . | SmCm

where each Ci is a graph class and each Si is a logical quan-
tifier from the set: {∀,¬∀, ∃,¬∃}. The expressions allow
for existential and universal scoping and arbitrary negation
of graph classes. The expressions represent chained logical
structures with each ’|’ being read as “. . . such that . . . ”. A
sample graph expression is shown in Figure 5. This sample
expression asserts that for all hypothesis nodes in the target
graph there exist no citation nodes that oppose the target
hypothesis. Thus it is a universal claim about a negated
existential item. As this example illustrates graph expres-
sions allow for more complex negation structures than are
supported by the graph schema.

Graph expressions must be expansive or right-grounded such
that the following constraints hold:

∀Cm≤i>0 ∈ E : Ci−1 ⊆g Ci

Sm ∈ {∃,¬∃}

That is, the schema component of class Ci must be a sub-
graph of all classes class Ci+n. This also holds true for
the constraints with all constraints present in class Ci be-
ing present in classes Ci+n. And the rightmost class in the
expression must also be an existential (∃) test with optional
negation.

3. AGG
AGG is a general-purpose augmented graph grammar en-
gine that implements recursive graph matching. The system
was developed in Python to support analysis of the student-
produced argument diagrams described above. As such it is
flexible, functions across platforms, and supports complex
graph ontologies and user-defined functions. The system
was designed in a modular fashion and can be linked with
third-party libraries such as the NLTK [6].

At present the system uses a straightforward depth-first
stack matching algorithm. Given a graph and a set of named
rules, defined by a single graph class or expression, the sys-
tem will first match all ground nodes and arcs in the leftmost
target class. Once each ground element has been matched
then the system will recursively match all variable elements
in the target. If at any point the system cannot continue to
match elements it will pop up the stack and repeat. Rule
matching is governed by the aforementioned restrictions of
expansiveness and non-repetition. If a rule is defined by a
graph expression then each class match will set the context
for subsequent rightmost matches. Rules defined by a single
class are complete once a single match is found. The sys-
tem is designed to find matches serially and can be called
iteratively to extract all matching items.

In addition to basic graph grammars the AGG toolkit has
the capacity to define named rules. These are named graph
expressions or individual classes that will be recorded if they
match. In my thesis work, I applied the AGG engine to de-
velop a set of 42 such rules the scientific argument diagrams.
These ranged in complexity from graph classes defined by
a single node to more complex recursive expressions that
sought to identify disjoint subgraphs and unsupported hy-
potheses. The example rules and expressions shown in fig-
ures 3 - 5 were adapted from this set. The rules were used for
offline processing of the graphs and for prediction of student
grades [10, 9].

As part of the analysis process the rules were evaluated on
a set of 526 diagrams containing between 0 and 41 nodes
each. While exact efficiency data was not retained the per-
formance of the rules varied widely depending upon their
construction. General recursive rules such as a test for dis-
joint subgraphs performed quite inefficiently while smaller
chained expressions were able to evaluate in a matter of sec-
onds on a quad-core system.

4. APPLICATIONS & FUTURE WORK
The focus of this paper was on introducing Augmented Graph
Grammars and the AGG engine. The formalism provides for
a natural and robust representation of complex graph rules
for heterogeneous datasets. In prior work at the University
of Pittsburgh I applied Augmented Graph Grammars to the
detection of pedagogically relevant structures like Related
Uncompared Opposition (see Figure 3) in argument diagrams
of the type shown in Figure 1. The focus of that study was
on testing whether student-produced argument diagrams are
diagnostic of their ability to produce written argumentative
essays. The study was conducted in a course on Psycholog-
ical Research Methods at the University of Pittsburgh.

The graph features examined in that study included chained
counterarguments which feature chains of oppositional infor-
mation, and ungrounded hypotheses which are unrelated to
cited works, and so on. The study is described in detail in [8],
and a discussion of the empirical validity of the individual
rules can be found in [9]. The rules were also used as the ba-
sis of predictive models for student grades described in [10].
The Augmented Graph Grammars were ideally-suited for
this task as they allowed me to define clear and robust rules
that incorporated the structural information in the graph,
textual information within the nodes and arcs, and the static



element types. It was also possible to clearly present these
rules to domain experts for evaluation.

While the AGG system is robust more work remains to be
done to make it widely available, and several open problems
remain for future development. As noted above, arbitrary
graph parsing is NP-Hard. Consequently, many rule classes
are extremely inefficient. Despite this limitation, however,
real efficiency gains may be made via parallelization and
memoization. I am presently researching possible improve-
ments to the system and plan to test them with additional
datasets.
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