Graph Mining and Outlier Detection Meet Logic Proof
Tutoring

Karel Vaculik
Knowledge Discovery Lab
Faculty of Informatics
Masaryk University
Brno, Czech Republic
xvaculi4@fi.muni.cz

ABSTRACT

We introduce a new method for analysis and evaluation of logic
proofs constructed by undergraduate students, e.g. resolution or
tableaux proofs. This method employs graph mining and outlier
detection. The data has been obtained from a web-based system
for input of logic proofs built at FI MU. The data contains a tree
structure of the proof and also temporal information about all ac-
tions that a student performed, e.g. a node insertion into a proof,
or its deletion, drawing or deletion of an edge, or text manipula-
tions. We introduce a new method for multi-level generalization
of subgraphs that is useful for characterization of logic proofs. We
use this method for feature construction and perform class-based
outlier detection on logic proofs represented by these new features.
‘We show that this method helps to find unusual students’ solutions
and to improve semi-automatic evaluation of the solutions.

Keywords
logic proofs, resolution, educational data mining, graph mining,
outlier detection

1. INTRODUCTION

Resolution method is, together with tableaux proof method, one of
the advanced methods taught in undergraduate courses of logic. To
evaluate a student solution properly, a teacher needs not only to
check the result of a solution (the set of clauses is or is not con-
tradictory) but also to analyse the sequence of steps that a student
performed—with respect to correctness of each step and with re-
spect to correctness of that sequence. We need to take into account
all of that when we aim at building a tool for analysis of students’
solutions. It has to be said that for an error detection (e.g. resolu-
tion on two propositional letters, which is the most serious one) we
can use a search method. However, detection of an error does not
necessarily mean that the solution was completely incorrect. More-
over, by a search we can hardly discover patterns, or sequence of
patterns, that are typical for wrong solutions.

To find typical patterns in wrong solutions, we developed a new
method for analysis of students’ solutions of resolution proofs [13,

Leona Nezvalova
Knowledge Discovery Lab
Faculty of Informatics
Masaryk University
Brno, Czech Republic
324852@mail.muni.cz

Lubo$ Popelinsky
Knowledge Discovery Lab
Faculty of Informatics
Masaryk University
Brno, Czech Republic

popel@fi.muni.cz

14] and showed its good performance. Solutions were manually
rewritten into GraphML and then analysed. First, the frequent pat-
terns were found by Sleuth [16], which was suitable for this type
of data—unordered rooted trees. This algorithm finds all frequent
subtrees from a set of trees for a given minimum support value.
Such frequent subgraphs were generalized and these generaliza-
tions used as new attributes.

The main drawback of a frequent subgraph mining algorithm it-
self is its strong dependence on a particular task, i.e. on the input
set of clauses that has to be proved, or unproved, as contradictory.
Moreover, a usage of such an algorithm is quite limited, because
by setting the minimum support to a very small value, the algo-
rithm may end up generating excessively many frequent subtrees,
which consumes both time and space. The problem is that we wish
to include the infrequent substructures as well because they often
represent mistakes in students’ solutions.

In this paper we propose a novel way of subgraph generalization
that solves the problems mentioned above and is independent on
the input set of clauses. We show that by means of graph mining
and class outlier detection, we are able to find outlying students’
solutions and use them for the evaluation improvement.

The structure of this paper is following. Section 2 brings related
work. In Section 3 we introduce the source data. In Section 4
we introduce the improved method for construction of generalized
resolution graphs. In Section 5 we bring the main result—detection
of anomalous student solutions. Discussion and conclusion are in
Sections 6 and 7, respectively.

2. RELATED WORK

Overview of graph mining methods can be found in [5]. Up to
our knowledge, there is no work on analysis of student solutions of
logical proofs by means of graph mining. Definitely, solving logic
proofs, especially by means of resolution principle, is one of the
basic graph-based models of problem solving in logic. In problem-
solving processes, graph mining has been used in [15] for mining
concept maps, i.e. structures that model knowledge and behaviour
patterns of a student, for finding commonly observed subconcept
structures. Combination of multivariate pattern analysis and hid-
den Markov models for discovery of major phases that students go
through in solving complex problems in algebra is introduced in
[1]. Markov decision processes for generating hints to students in
logic proof tutoring from historical data has been solved in [2, 3,
12].

{~B} {B,~C}
{~C} {B.C}

{~B}

NS

{-A,B,C} {-B,C}

/

{-A,C} {B,~C}

N

{-A,B} {-B,~C}

{~A,~C} {A,C}

Figure 1: A correct and an incorrect resolution proof.

3. DATA

By means of a web-based tool, each of 351 students solved at least
three tasks randomly chosen from 19 exercises. All solutions were
stored in a PostgreSQL database. The data set contained 873 dif-
ferent students’ solutions of resolution proofs in propositional cal-
culus, 101 of them being incorrect and 772 correct. Two examples
of solutions are shown in Fig. 1.

Common errors in resolution proofs are the following: repetition
of the same literal in the clause, resolving on two literals at the
same time, incorrect resolution—the literal is missing in the re-
solved clause, resolving on the same literals (not on one positive
and one negative), resolving within one clause, resolved literal is
not removed, the clause is incorrectly copied, switching the order
of literals in the clause, proof is not finished, resolving the clause
and the negation of the second one (instead of the positive clause).
For each kind of error we defined a query that detects the error. For
automatic evaluation we used only four of them, see Table ERRORS
described in appendix A. As the error of resolving on two literals at
the same time is very common and referred later in text, we denote
this error as E3.

All actions that a student performed, like adding/deleting a node,
drawing/removing an edge, writing/deleting a text into a node, were
saved into a database together with time stamps. More details on
this database and its tables can be found in appendix A.

In the data there were 303 different clauses occurring in 7869 ver-
tices, see frequency distribution in Fig. 2. Approximately half of
the clauses had absolute frequency less than or equal to three.

4. GENERALIZED SUBGRAPHS

In this section we describe feature construction from graph data.
Representing a graph by values of its vertices and edges is insuf-

ficient as the structure of the graph also plays a significant role.
Common practice is to use substructures of graphs as new features
[5]. More specifically, boolean features are used and the value of a
feature depends on whether the corresponding substructure occurs
in the given instance or not.

800 -

600 -

frequency
N
8
8

200 -

)) i)
0 100 200 300
clause index

Figure 2: Distribution of clause labels ordered by frequency.

As we showed earlier, a frequent subgraph mining algorihm is inap-
propriate. To overcome the discussed problems, we created a new
method for feature construction from our data. The idea of feature
construction is to unify subgraphs which carry similar information
but they differ in form. An example of two subgraphs, which differ
only in variable letters and ordering of nodes and literals, is shown
on the left side of Fig. 3. The goal is to process such similar graphs
to get one unique graph, as shown in the same figure on the right.
In this way, we can better deal with different sets of clauses with
different sets of variable letters. To deal with the minimum-support
problem, the algorithm for frequent subgraphs was left out com-
pletely and all 3-node subgraphs, which are described later, were
looked up.

4.1 [Unification on Subgraphs

To unify different tasks that may appear in student tests, we defined
a unification operator on subgraphs that allows finding of so called
generalized subgraphs. Briefly saying, a generalized subgraph de-
scribes a set of particular subgraphs, e.g., a subgraph with parents
{A,—-B} and {A,B} and with the child {A} (the result of a correct
use of a resolution rule), where A, B, C are propositional letters,
is an instance of generalized graph {Z,—-Y}, {Z,Y} — {Z}, where
Y, Z are variables (of type proposition). An example of incorrect
use of resolution rule {A,-B}, {A,B} — {A,A} matches with the
generalized graph {Z,-Y}, {Z,Y} — {Z,Z}. In other words, each
subgraph is an instance of one generalized subgraph. We can see
that the common set unification rules [6] cannot be used here.

In this work we focused on generalized subgraphs that consist of
three nodes, two parents and their child. Then each generalized
subgraph corresponds to one way—correct or incorrect—of reso-
lution rule application.

4.2 Ordering on Nodes

As a resolution proof is, in principal, an unordered tree, there is
no order on parents in those three-node graphs. To unify two res-
olution steps that differ only in order of parents we need to define

-CvB “Bv-C

-C \ aYvz =Yv-z

N/
—— Y

“Av-D Av-D

N/

Figure 3: An example of pattern unification.

ordering on parent nodes'. We take a node and for each proposi-
tional letter we first count the number of negative and the number of
positive occurrences of the letter, e.g., for {—~C,—B,A,C} we have
these counts: (0,1) for A, (1,0) for B, and (1,1) for C. Following
the ordering Q defined as follows: (X,Y) < (U,V)iff X <UV
(X =UAY <V)), we have a result for the node {C,—B,A,~C}:
{A,—B,C,—~C} with description A = ((0,1), (1,0), (1,1)). We will
compute this transformation for both parent nodes. Then we say
that a node is smaller if the description A is smaller with respect to
the Q ordering applied lexicographically per components. Contin-
uing with our example above, let the second node be {B,C,A,—-A}
with A = ((0,1), (0,1), (1,1)). Then this second node is smaller than
the first node {A, —B,C,—C}, since the first components are equal
and (1,0) is greater than (0,1) in case of second components.

4.3 Generalization of Subgraphs

Now we can describe how the generalized graphs are built. After
the reordering introduced in the previous paragraph, we assign vari-
ables Z,Y,X,W,V,U... . to propositional letters. To accomplish this,
we initially merge literals from all nodes into one list and order it
using the Q ordering. After that, we assign variable Z to the let-
ter with the smallest value, variable Y to the letter with the second
smallest value, etc. If two values are equal, we compare the cor-
responding letters only within the first parent, alternatively within
the second parent or child. For example, let a student’s (incorrect)
resolution step be {C,—B,A,—C},{B,C,A,-A} — {A,C}. We or-
der the parents getting the result {B,C,A,-A},{C,—B,A,~C} —
{A,C}. Next we merge all literals into one list, keeping multi-
ple occurrences: {B,C,A,—A,C,—B,A,~C,A,C}. After reorder-
ing, we get {B,—B,C,C,C,—C,A,A,A,—A} with A = ((1,1), (1,3),
(1,3)). This leads to the following renaming of letters: B — Z,
C — Y, and A — X. Final generalized subgraph is {Z,Y,X,-X},
{Y,-Z,X,-Y} — {X,Y}. In case that one node contains more
propositional letters and the nodes are equal (with respect to the or-
dering) on the intersection of propositional letters, the longer node
is defined as greater. At the end, the literals in each node are lexi-
cographically ordered to prevent from duplicities such as {Z, Y}
and {-Y,Z}.

4.4 Complexity of Graph Pattern Construc-
tion

Complexity of pattern generalization depends on the number of

patterns and the number of literals within each pattern. Let r be

the maximum number of literals within a 3-node pattern. In the

!Ordering on nodes, not on clauses, as a student may write a text
that does not correspond to any clause, e.g., {A,A}.

first step, ordering of parents must be done, which takes O(r) for
counting the number of negative and positive literals, O (rlog r) for
sorting and O(r) for comparison of two sorted lists. Letter substi-
tution in the second step consists of counting literals on merged list
in O(r), sorting the counts in O(rlog r) and renaming of letters in
O(r). Lexicographical reordering is performed in the last step and
takes O(rlog r). As construction of advanced generalized patterns
is less complex than the construction of patterns mentioned above,
we can conclude that the time complexity for whole generalization
process on m patterns with duplicity removal is O(m2 +m(4r+
3rlogr)).

4.5 Higher-level Generalization

To improve performance of used algorithms, e.g. outlier detection
algorithms, we created a new generalization method. This method
can be viewed as a higher-level generalization as it generalizes the
method described in previous paragraphs. This method uses do-
main knowledge about general resolution principle. It goes through
all literals in a resolvent and deletes those which also appear in at
least one parent. Each such literal is also deleted from the corre-
sponding parent or parents in case it appears in both of them. In the
next step, remaining literals in parents are merged into a new list
dropped and remaining literals in the resolvent form another list,
added. These two lists form a pattern of the higher-level general-
ization and we will write such patterns in the following format:

{Lil 2Li, “'7Lin}; {le Lj,, '“7ij}
(added) (dropped)

For example, if we take the generalized subgraph from the right
side of Fig. 3, there is only one literal in the resolvent, —Y. We re-
move it from the resolvent and both parents and we get dropped =
[Z,-Z], added = |].

As a result, there may be patterns which differ only in used letters
and order of literals in lists dropped and added. For this reason
we then apply similar method as in the lower-level generalization.
Specifically, we merge lists dropped and added and compute num-
ber of negative and positive literals for each letter in this new list.
The letters are then ordered primarily according to number of oc-
currences of negative literals and secondly according to number of
occurrences of positive literals. In case of tie we check ordering
of affected letters only in added list and if needed, then also in
dropped list. If tie occurs also in these lists, then the order does
not matter. At the end, the old letters are one by one replaced by
the new ones according to the ordering and the new lists are sorted
lexicographically. For example, let dropped = [X,~X], added =
[Y,Z,Z,—Z]. Then merged = [X,—X,Y,Z,Z,—Z] and number of
occurrences can be listed as count(X, merged) = (1, 1), count(Y,
merged) = (0, 1), count(Z, merged) = (1, 2). Ordering on letters
can be expressed as ¥ < X < Z. Using letters from the end of
alphabet we perform following substitution according to created
ordering: ¥ — Z, X — Y, Z — X. Final pattern will have lists
dropped = [-Y,Y], added = [-X,X,X,Z], provided that — sign is
lexicographically before alphabetic characters. Examples of pat-
terns with absolute support > 10 are shown in Tab. 1.

4.6 Generalization Example

In this section we illustrate the whole generalization process by an
example. Assume that the following 3-node subgraph has to be
generalized:

Table 1: Higher-level patterns with support > 10

Pattern (added;dropped) | Support
{}::4{-2,Z} 3345
{};{ﬁY,ﬁZ,Y,Z} 59
{-zZ};{-r,Y} 18
{1:{-7} 13
0 10

Pl = {ﬁC,ﬁA,ﬁC,D,ﬁD},PZ = {ﬁD,ﬁA,D,C} — {ﬁA,A,ﬁC}

First, the parents are checked and possibly reordered. For each
letter we compute the number of negative and positive literals in
either parent. Specifically, count(A, P1) = (1,0), count(C, P1) =
(2,0), count(D, P1) = (1,1), count(A, P2) = (1,0), count(C, P2) =
(0,1), count(D, P2) = (1,1). Obtained counts are lexicographically
sorted for both parents and both chains are lexicographically com-
pared:

((1,0),(1,1),(2,0)) > ((0,1),(1,0),(1,1))

In this case, the result was already obtained by comparing the first
two pairs, (1,0) and (0,1). Thus, the second parent is smaller and
the parents should be switched:

Pl = {ﬁD,—\A,D,C},PZ, = {—|C, —\A,—\C,D,—\D} — {—\A,A,—'C}
Now, all three nodes are merged into one list:
S={-D,—-A,D,C,-C,-A,—~C,D,~D,-A,A,~C}

Once again, the numbers of negative and positive literals are com-
puted: count(A, S) = (3,1), count(C, S) = (3,1), count(D, S) = (2,2).
Since count(A, S) = count(C, S), we also check the counts in the
first parent, P1°. As count(C, P1’) = count(C, P2) < count(A, P2) =
count(A, P1’), letter C is inserted before A. Finally, the letters are
renamed according to the created order: D — Z,C — Y, A — X. Af-
ter the renaming and lexicographical reordering of literals, we get
the following generalized pattern:

{—\X,—\Z, Y,Z}7 {—\X,—!Y, —\Y, —\Z,Z} — {—\X,—!KX}

Next, we want to get also the higher-level generalization of that
pattern. The procedure goes through all literals in the resolvent and
deletes those literals that occur in at least one parent. This step
results in a prunned version of the pattern:

{=2,Y,2},{-Y,~Z,Z} — {X}

Parents from the pruned pattern are merged into a new list dropped
and the resolvent is used in a list added. Thus, added = {X} and
dropped = {—Z2,Y,Z,~Y,~Z,Z}. Now it is necessary to rename

the letters once again. Lists added and dropped are merged together
and the same subroutine is used as before—now the lists can be
seen as two nodes instead of three. In this case, the renaming goes
as follows: X — Z.Y — Y, Z — X. At the end, literals in both lists
are lexicographically sorted and the final higher-level pattern is:

{Z}:{-X,—-X,~Y,X,X,Y}
(added) (dropped)

4.7 Use of Generalized Subgraphs

This section puts all the information from previous sections to-
gether and describes how generalized patterns are used as new fea-
tures. Input data in form of nodes and edges are transformed into
attributes of two types. Generalized patterns of the lower level can
be considered as the first type and the patterns of higher-level gen-
eralization as the second type. One boolean attribute is created for
each generalized pattern. Value of such attribute is equal to TRUE,
if the corresponding pattern occurs in the given resolution proof,
and it is equal to FALSE otherwise. Thus following this procedure,
the resolution proofs can be transformed into an attribute-value rep-
resentation as shown in Table 2. Such representation allows us to
use a lot of existing machine learning algorithms.

Table 2: Attribute-value representation of resolution proofs

Instance | Pattern; | Pattern) Pattern,,
1 TRUE FALSE FALSE
n FALSE | FALSE | ... TRUE

5. OUTLIER DETECTION
5.1 Mining Class Outliers

In this section we present the main result, obtained from outlier
detection. We observed that student creativity is more advanced
than ours, and that results of the queries for error detection must
be used carefully. Detection of anomalous solutions—either ab-
normal, with picturesque error, or incorrectly classified—helps to
improve the tool for automatic evaluation, as will be shown later.

Here we focus only on outliers for classes created from error E3, the
resolution on two literals at the same time, as it was the most com-
mon error. This means that the data can be divided into two groups,
depending whether the instances contain error E3 or not. For other
types of errors, the analysis would be similar. We also present
only results computed on higher-level generalized patterns. The
reason is that they generally achieved much higher outlier scores
than lower-level patterns.

The data we processed had been labeled. Unlike in common outlier
detection, where we look for outliers that differ from the rest of
"normal” data, we needed to exploit information about a class. That
is why we used weka-peka [9] that looks for class outliers [8, 10]
using Random Forests (RF) [4]. The main idea of weka-peka lies in
different computation of proximity matrix in RF—it also exploits
information about a class label [9]. We used the following settings:

NumberOfTrees=1000
NumberOfRandomFetaures=7
FeatureRanking=gini

Table 3: Top outliers for data grouped by error E3

instance | error E3 | outlier score | significant patterns significant missing patterns
[(AScore) added;dropped] [(AScore) added;dropped]
270 no 131.96 | (0.96) looping (—0.99) {}:{-z,Z}
396 no 131.96 | (0.96) looping (—=0.99) {::{-z,Z}
236 no 73.17 | (0.99) {}:;{-Y,-Z,)Y}
187 no 61.03 | (0.99) {-Z};{-Y,Y}
(0'99) {};{ﬂyv —|Z7Y}
438 yes 54.43 | (1.00) {Z};{—-X,~Y,X,Y} (—-0.94) {};{~Y,—-Z,Y,Z}
389 yes 52.50 | (1.00) {};{-Y,-Z,Y} (—0.94) {}:{~Y,-Z)Y Z}
(-0.81) {}:{-Z.2}
74 yes 1591 | (0.98) {—Z}:{—-X,~Y.X,Y} (—0.94) {}:{~Y,-ZyY Z}
(098) {};{_‘Xv_'Y7_‘Z7X7YaZ}
718 yes 1591 | (0.98) {-Z};{-X,~Y.X,Y} (—0.94) {}:{~Y,-Z,Y,Z}
(098) {}:{-X,~¥,~Z.X,¥,Z}
{"C};\ {B,C,7E} {"C}\ /{B,C,"E} {7p,~q,r,s} {7s,t}
{B,"E} {A,B} {=p,~q,r, 7t} {a}
{"E.A} {B,7A} {=p.r} {p}
{~a,”b,~c} /{a,b,-c} {8} {r {r}
{~t}
[p.sii] [pl {s.) {~t, s} {~a,7b,"c} {a,b,7c}
[S,t]\ /["t,"S] {s} {-t, s} {c,~c} {-a,c,b}
[O {~a,7c,b} {a,7b,c}
O
Figure 4: Drawings of the outlying instances from Table 3.
Table 4: Classification results for frequent subgraphs
Used attributes Algorithm Accuracy [%] Precision for incorrect proofs Recall
low-level generalization SVM (SMO) *95.2 0.94 0.61
both levels of generalization SVM (SMO) *96.9 0.95 0.74
both levels of generalization J48 96.1 *0.98 0.68
both levels of generalization E3 J48 *95.4 0.87 0.72

MaxDepthTree=unlimited
Bootstrapping=yes
NumberOfOutliersForEachClass=50

Main results of outlier detection process are summarized in Table 3.
When analyzing the strongest outliers that weka-peka found, we
can see that there are three groups according to the outlier score.
The two most outlying examples, instances numbered 270 and 396,
significantly differ from the others. The second cluster consists of
four examples with the outlier score between 50 and 100, and the
last group is comprised of instances with the lowest score of 15.91.

As weka-peka is based on Random Forest, we can interpret an out-
lier by analyzing trees that classify given instance to a different
class than it was labeled. Such trees show which attribute or com-
bination of attributes lead to the resulting class. If we search for
repeating patterns in those trees, we can find the most important
attributes making the given instance an outlier. Using this method
to interpret the instance 270, we found out that high outlier score
is caused by not-applying one specific pattern (see Table 3). When
setting this attribute equal TRUE, outlier score decreases to -0,40.
Values of attributes of instances 396 and 270 are equal, it means
that also interpretation is the same as in previous case. Similary, we
found that outlierness of instance 236 is given by occurence of spe-
cific pattern in solution and non-occurence of another pattern. The
value of the corresponding attribute is the only difference between
instance 236 and 187. Occurence/non-occurence of this pattern is
therefore the reason why instance numbered 236 achieves higher
outlier score than instance 187. See again Table 3 for information
about particular patterns. We further elaborated this approach of
outlier explanation in the following section.

5.2 Finding Significant Patterns

As the outlier score is the only output information about the out-
liers, we created a simple method for finding the attributes with the
most unusual values. Let x;; denote the value of the jth attribute
of the ith instance, which is either TRUE or FALSE for the pattern
attributes, and c/(i) denote the class of the ith instance. Then for
instance i we compute the score of attribute j as:

[{k|k#incl(i)=cl(k) \xyj=FALSE}|
.o klk#incl (i)=cl(k
AScore(i,j)=1{ |{k|k‘7{éi‘/\§(g\):El)(k)AgckilTRUE}\
[{klk#incl(i)=cl(k)}|

if x;j = TRUE
if x;j = FALSE

AScore expresses the proportion of other instances from the same
class which have different value of the given attribute. If outlier’s
attribute equals FALSE, then the only difference is in the sign of the
score. For example, consider our data set of 873 resolution proofs,
out of which 53 proofs contain error E3. Assume that one of the
53 proofs is an outlier with an attribute equal to TRUE and from
the rest of 52 proofs only two proofs have the same value of this
attribute as the outlier. Then the outlier’s AScore on this attribute
is approximately 50/52 = 0.96 and it indicates that the value of this
attribute is quite unusual.

In general, the AScore ranges from -1 to 1. If the outlier resolu-
tion graph contains a pattern which is unique for the class of the
graph, then the AScore of the corresponding attribute is equal to
1. On the other hand, if the outlier misses a pattern and all other
graphs contain it, then the AScore is equal to -1. An AScore equal
to 0 means that all other instances are equal to the outlier on the
specified attribute.

5.3 Interpretation of the Outliers

Using the AScore metrics we found the patterns which are interest-
ing for outliers in Table 3. Patterns, with AScore > 0.8 are listed in
the significant patterns column and patterns with AScore < -0.8 in
the significant missing patterns column.

All outliers from Table 3, except for the last one as it is almost
identical to the penultimate one, are also displayed in Fig. 4. Anal-
ysis of individual outliers let us draw several conclusions. Let us
remind that higher-level patterns listed in Table 3 are derived from
lower-level patterns consisting of three nodes, two parents and one
resolvent, and that the component added simply denotes literals
which were added erroneously to the resolvent and the component
dropped denotes literals from parents which participated in the res-
olution process. Two most outlying instances, numbered 270 and
396, also contain one specific pattern, looping. This pattern repre-
sents the ellipsis in a resolution tree, which is used for tree termi-
nation if the tree cannot lead to a refutation. Both instances contain
this pattern, but neither of them contains the pattern of correct us-
age of the resolution rule, which is listed in the significant missing
patterns column. The important thing is that these two instances do
not contain error E3, but also any other error. In fact, they are cre-
ated from an assignment which always leads to the looping pattern.
This shows that it is not sufficient to find all errors and check the
termination of proofs, but we should also check whether the student
performed at least few steps by using the resolution rule. Otherwise
we are not able to evaluate the student’s skills. Moreover, there may
be situations in which a student only copies the solution.

Instances with the outlier score less than 100 are less different from
other instances. In particular, instances number 236 and 187 are
more similar to correct resolution proofs than the instances dis-
cussed above. Yet, they both contain anomalous patterns such as
{};{~Y,—~Z,Y}. This particular error pattern does not indicate er-
ror E3, as can be seen in Table 3. It is actually not marked as any
type of error, which tells us that it is necessary to extend our list of
potential errors in the automatic evaluator.

Continuing with outlier instances we get to those which contain er-
ror E3. Two of them exceed the boundary of outlier score 50, which
suggests that they are still relatively anomalous. The first outlier,
instance number 438, differ from other instances in an extra lit-
eral which was added into a resolvent. Specifically, the number 1,
which is not even a variable, can be seen at the bottom of the reso-
lution proof in Fig. 4. More interesting is the second instance with
number 389. Error E3 was detected already in the first step of res-
olution, specifically when resolved on parents {s,7} and {—z,—s}.
This would not be a strange thing, if the resolvent was not s. Such
a resolvent raises a question whether it is an error of type E3 or just
a typing error. The latter is a less serious error.

Last two outliers in the table are almost the same so only the in-
stance number 74 is depicted in Fig. 4. These two instances have
quite low outlier score and they do not expose any shortcomings of
our evaluation tool. Yet, they exhibit some outlying features such
as resolving on three literals at the same time.

6. DISCUSSION

As we observed it is not sufficient to detect only the errors but we
need to analyze a context in which an error appeared. Moreover,
there are solutions that are erroneous because they do not contain
a particular pattern or patterns. Outlier detection helped to find
wrong students’ solutions that could not be detected by the system

of queries even though the set of queries has been carefully built
and tested on the test data. We also found a situation when a query
did not detected an error although it appeared in the solution. We
are convinced that with increasing number of solutions we will be
able to further increase performance of wrong solution detection.

As we stressed in the introduction, this method has not been devel-
oped for recognition of correct or incorrect solutions. However, to
verify that the feature construction is appropriate, we also learned
various classifiers of that kind. In previous work we used only gen-
eralized patterns as attributes for classification with allerrors class
attribute. However, these patterns were not sufficient for our cur-
rent data. Repeating the same experiments we got the best result for
SMO Support Vector Machines from Weka [7], which had 95.2%
accuracy, see Table 4. Precision and recall for the class "incorrect”
were 0.94 and 0.61, respectively. Minimum support for pattern se-
lection was 0% in this case. To improve performance of classifica-
tion we used the new level of generalization. Using the same set-
tings, but now with both levels of generalized patterns, we achieved
96.9% accuracy, 0.95 precision and 0.74 recall for the class "incor-
rect". Similar results were obtained when only the new level of
generalization was used, again with SMO. When ordered accord-
ing to precision, value 0.98 was achieved by J48, but the accuracy
and recall were only 96.1 and 0.68, respectively.

As one of the most common errors in resolution proofs is usage of
resolution rule on two pairs of literals at the same time, we repeated
the experiment, but now discarding all patterns capturing this spe-
cific kind of error. In this scenario the performance slightly dropped
but remained still high—J48 achieved 95.4% accuracy, 0.87 preci-
sion and 0.72 recall. For the sake of completeness, F1 score for
the class "correct" varied between 0.97 and 0.99 in all the results
above.

We also checked whether inductive logic programming (ILP) can
help to improve the performance under the same conditions. To
ensure it, we did not use any domain knowledge predicates that
would bring extra knowledge. For that reason, the domain knowl-
edge contained only predicates common for the domain of graphs,
like node/3, edge/3, resolutionStep/3 and path/2. We used Aleph
system [11]. The results were comparable with the method de-
scribed above.

7. CONCLUSION AND FUTURE WORK

In this paper we introduced a new level of generalization method
for subgraphs of resolution proof trees built by students. Gener-
alized subgraphs created by this special graph mining method are
useful for representation of logic proofs in an attribute-value fash-
ion. We showed how a class-based outlier detection method can
be used on these logic proofs by utilization of the generalized sub-
graphs. We also discussed how the outlying proofs may be used for
performance improvement of our automatic proof evaluator. This
method may also be used for other types of data such as tableaux
proofs.

As a future work we are going to analyse the temporal information,
which was saved together with the structural information of logic
proofs.

ACKNOWLEDGEMENTS

This work has been supported by Faculty of Informatics, Masaryk
University and the grant CZ.1.07/2.2.00/28.0209 Computer-aided-
teaching for computational and constructional exercises.

8. REFERENCES

[1] J. R. Anderson. Discovering the structure of mathematical
problem solving. In Proceedings of EDM, 2013.

[2] T. Barnes and J. Stamper. Toward automatic hint generation
for logic proof tutoring using historical student data. In
Proceedings of the 9th International Conference on
Intelligent Tutoring Systems, pages 373-382, 2008.

[3] T. Barnes and J. Stamper. Automatic hint generation for logic
proof tutoring using historical data. Educational Technology
and Society, 13(1):3-12, 2010.

[4] L. Breiman. Random forests. Mach. Learn., 45(1):5-32, Oct.

2001.

D. J. Cook and L. B. Holder. Mining Graph Data. John

Wiley & Sons, 2006.

[6] A. Dovier, E. Pontelli, and G. Rossi. Set unification. CoRR,

¢s.L0O/0110023, 2001.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten. The weka data mining software: An update.

SIGKDD Explor. Newsl., 11(1):10-18, Nov. 2009.

N. Hewahi and M. Saad. Class outliers mining:

Distance-based approach. International Journal of Intelligent

Technology, 2.

Z. Pekarcikova. Supervised outlier detection, 2013.

http://is.muni.cz/th/207719/fi_m/diplomova_

praca_pekarcikova.pdf.

[10] P. Spiros and F. Christos. Cross-outlier detection. In
Proceedings of SSTD, pages 199-213, 2003.

[11] A. Srinivasan. The Aleph Manual, 2001.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/ [Accessed: 2014-01-09].

[12] J. C. Stamper, M. Eagle, T. Barnes, and M. J. Croy.
Experimental evaluation of automatic hint generation for a
logic tutor. 1. J. Artificial Intelligence in Education,
22(1-2):3-17, 2013.

[13] K. Vaculik and L. Popelinsky. Graph mining for automatic
classification of logical proofs. In Proceedings of the 6th
International Conference on Computer Supported Education
CSEDU 2014, 2014.

[14] K. Vaculik, L. Popelinsky, E. Mrakova, and J. Jurco.
Tutoring and automatic evaluation of logic proofs. In
Proceedings of the 12th European Conference on e-Learning
ECEL 2013, pages 495-502, 2013.

[15] J. S. Yoo and M. H. Cho. Mining concept maps to understand
university students’ learning. In Proceedings of EDM, 2012.

[16] M. J. Zaki. Efficiently mining frequent embedded unordered
trees. Fundam. Inf., 66(1-2):33-52, Jan. 2005.

[5

—

[7

—

(8

—_—

[9

—

APPENDIX
A. DESCRIPTION OF DATA

CLAUSE - list of nodes from all graphs
idclause - ID of the node
coordinatex - x position in drawing
coordinatey - y position in drawing
. timeofcreation - when the node was created
. timeofdeletion - when the node was deleted (if not deleted, value is "NA")
. 1ldgraph - in which graph the node appears
. text - text label

EDGE - list of (directed) edges from all graphs
idedge - ID of the edge
starting - ID of the node from which this edge goes
. ending - ID of the node to which this edge goes
. timeofcreation
. timeofdeletion
idgraph

ERRORS - errors found in resolution graphs (found by means of SQL queries)
idgraph - ID of the graph
. error3 - resolving on two literals at the same time (1 = error occurred, 0 = not occurred)
. errord4 - repetition of the same literal in a set
. error5 - resolving on identical literals
. error8 - no resolution performed, only union of two sets
. allerrors - any of the previously listed errors occurred / not occured

GRAPH - list of graphs

idgraph - ID of the graph

logintime - start of graph creation

clausetype - either set or ordered list

resolutiontype - type of resolution, encoded by numbers (see table RESOLUTIONTYPES)
. assignment - textual assignment of task
. endtime - end of graph creation

MOVEMENT - list of coordinate changes of nodes
idmovement - ID of the change
idclause - ID of the node whose coordinates were changed
coordinatex - new x coordinate
coordinatey - new y coordinate
. time - time of the change

RESOLUTIONTYPES - encoding of resolution types
. typeid - ID (numeric encoding)
. typetext - textual value

TEXT - list of text (label) changes of nodes.

idtext - ID of the change

idclause - ID of the node whose text label was changed
. time - time of the change
. text - new text (label) value

TYPES - list of resolution type and clause type changes
idtypes - ID of the change
resolutiontype - new value of resolution type for specific graph
clasetype - new value of clause type for specific graph
. timeofchange - time of the change
idgraph - ID of the graph whose values were changed

