
Evaluation of Logic Proof Problem Difficulty through
Student Performance Data

Behrooz Mostafavi
North Carolina State

University
Department of Computer

Science Raleigh, NC 27695
bzmostaf@ncsu.edu

Tiffany Barnes
North Carolina State

University
Department of Computer

Science Raleigh, NC 27695
tmbarnes@ncsu.edu

ABSTRACT
The interactions of concepts and problem-solving techniques
needed to solve open-ended proof problems are varied, mak-
ing it difficult to select problems that improve individual
student performance. We have developed a system of data-
driven ordered problem selection for Deep Thought, a logic
proof tutor. The problem selection system presents prob-
lem sets of expert-determined higher or lower difficulty to
students based on their measured proof solving proficiency
in the tutor. Initial results indicate the system improves
student-tutor scores; however, we wish to evaluate problem
set difficulty through analysis of student performance to val-
idate the expert-authored problem sets.

Keywords
Problem Difficulty, Logic Proof, Data-driven Problem Selec-
tion

1. INTRODUCTION
Effective intelligent tutoring systems present problems to
students in their zone of proximal development through scaf-
folding of major concepts [3]. In domains such as deductive
logic, where the problem space is open-ended and requires
multiple steps and knowledge of different rules, it is difficult
to choose problems for individual students that are appro-
priate for their proof-solving ability. We have developed a
system that uses the data-driven knowledge tracing (DKT)
of domain concepts in existing student-tutor performance
data to regularly evaluate current student proficiency of the
subject matter and select successive structured problem sets
of expert-determined higher or lower difficulty.

We used an existing proof-solving tool called Deep Thought
to test the DKT problem selection system. The system was
integrated into Deep Thought and tested on a class of under-
graduate philosophy students who used the tutor as assigned
homework over a 15-week semester. Performance data from

Figure 1: A screen capture of the Deep Thought
tutor, showing given premises at the top, conclusion
at the bottom, and rules for application on the right.

this experiment were compared to data from previous use of
Deep Thought without the DKT problem selection system.
The results of the comparison indicate that the DKT prob-
lem selection system is effective in improving student-tutor
performance. However, we wish to evaluate the difficulty of
presented problems using student performance data to val-
idate the difficulty of expert-determined problem sets, and
improve the system for future students.

2. DEEP THOUGHT
Fig. 1 shows the interface for Deep Thought, a web-based
proof construction tool created by Croy as a tool for proof
construction assignments [1]. Deep Thought displays logical
premises, buttons for logical rules, and a logical conclusion
to be derived. For example, the proof in Fig. 1 provides
premises A→ (B ∧C); A∨D; and ¬D ∧E, from which the
user is asked to derive conclusion B using the rules on the
right side of the display window.

Deep Thought keeps track of student performance for the
purpose of proficiency evaluation and post-hoc analysis. As
a student works through a problem, each step is logged in
a database that records: the current problem; the current
state of progress in the proof; any rule applied to selected
premises; any premises deleted; errors made (such as illegal
rule applications); completion of the problem; time taken

per step; elapsed problem time; knowledge tracing scores
for each logic rule in the tutor.

2.1 Problem Selection
The problem selection system in Deep Thought presents or-
dered problem sets to ensure consistent, directed practice
using increasingly related and difficult concepts. The system
presents set of problems at different degrees of difficulty, de-
termined through evaluation of current student performance
in the tutor.

Evaluation of student performance is performed at the be-
ginning of each level of problems. Level 1 of Deep Thought
contains three problems common to all students who use the
tutor, and provides initial performance data to the problem
selection model. Levels 2–6 of Deep Thought are each split
into two distinct sets of problems, labeled higher and lower
proficiency. The problems in the different proficiency sets
are conceptually identical to each other, prioritizing rules
important for solving the problems in that level. To pre-
vent students from getting stuck on a specific proof problem,
Deep Thought allows students to temporarily skip problems
within a level. A unique case occurs if a student skips a prob-
lem more than once in a higher proficiency problem set; the
student will be dropped to the lower proficiency problem set
in the same level, under the assumption that the student
was improperly assigned the higher proficiency set (See Fig.
2).

Figure 2: DT2 path progression. At each level, stu-
dents are evaluated and provided either the higher
or lower proficiency problem sets. Students can also
be switched from the higher to lower proficiency set
within a level.

2.2 Logic Proof Problems
The degree of problem solving difficulty between proficiency
sets is different, as determined by domain experts. The prob-
lems in the low proficiency set require fewer numbers of steps
for completion, lower complexity of logical expressions, and
lower degree of rule application than problems in the high
proficiency set (See Table 1).

3. DATA GRAPH REPRESENTATION

Table 1: An example of lower and higher proficiency
set problems from Deep Thought requiring the same
concepts: Level 4 Problem 3 from the lower profi-
ciency set (top); Level 4 Problem 2 from the higher
proficiency set (bottom). The prioritized rules re-
quired for these problems are Conjunction and Con-
structive Dilemma.
Premise Derivation

1 (A→ B) ∧ (¬D → F) Given
2 A ∨ ¬D Given
3 ¬A→ (D ∨G) Given
4 ¬A Given
5 B ∨ F 1,2/Constructive Dilemma
6 ¬D 2,4/Disjunctive Syllogism
7 D ∨G 3,4/Modus Ponens
8 G 6,7/Disjunctive Syllogism
9 (B ∨ F) ∧G 5,8/Conjunction

Premise Derivation

1 Z → (¬Y → X) Given
2 Z ∧ ¬W Given
3 W ∨ (T → S) Given
4 ¬Y ∨ T Given
5 Z 2/Simplification
6 ¬W 2/Simplification
7 ¬Y → X 1,5/Modus Ponens
8 T → S 3,6/Disjunctive Syllogism
9 (¬Y → X) ∧ (T → S) 7,8/Conjunction
10 X ∨ S 4,9/Constructive Dilemma

Deep Thought was used as a mandatory homework assign-
ment by students in a philosophy deductive logic course
(n = 47). Students were allowed to work through the prob-
lem sets at their own pace for the entire 15-week semester.
Problem Levels 1–6 were assigned for full completion of the
tutor, totaling 13–18 (out of the total tutor-set of 43) prob-
lems depending on proficiency path progression.

For the purpose of problem difficulty evaluation, progress
through the tutor can be expressed as a directed graph for
each individual student, with nodes in the graph each cor-
responding to a single problem. The node set for the graph
represents the problem space for the tutor, and is the same
for every student. Each problem node has the following
properties:

1. Tutor Level (1–6)

2. Proficiency (High or Low)

3. Problem Number (1–3)

4. Problem Complete (True or False)

5. Expert-Authored

(a) Required Rules

(b) Minimal Solution

6. Corresponding Step Logs (See Section 2)

Directed edges between nodes correspond to movement be-
tween problems by the individual student, and are assigned
a numerical value, ordered by increasing time stamp. The
nodes and directed edges together give a map of the stu-
dent’s progression through the tutor. Connected nodes with
false Problem Complete status represent a skipped problem,
and the node adjacent to the highest numbered edge repre-
sents the student terminus point in the tutor. Isolated nodes
represent non-visited problems, and are therefore un-useable
for problem difficulty evaluation.

Logic proofs can also be represented as directed graphs, with
each node containing a proof premise, and each directed
edge indicating a node parent-child relationship, along with
an applied logic rule. For example, the top proof shown in
Table 1 can be represented as a graph with the premise in
each line as a node, with the directed edges into that node
corresponding to the derivation of that premise from parent
nodes. A proof premise can either be a variable (i.e. A),
a negated variable or expression (i.e. ¬A, or ¬(A ∧ B)), or
an operational expression in (variable/nested expression)-
operand-(variable/nested expression) form (i.e. A ∨ B, or
(A∧B)∨ (A→ B)). Nested expressions can be represented
in high level form. Therefore, node premises can be catego-
rized by their operand (conjunction, disjunction, negation,
implication, equivalence), the complexity of the expression
(single variable, simple expression, complex [nested] expres-
sion), and the rule used for derivation.

4. PROBLEM DIFFICULTY EVALUATION
The question at hand is how to best use the recorded data
to determine proof problem difficulty through student per-
formance. We wish to find both a classification of prob-
lem difficulty between proficiency sets in the same level, and
difficulty of all problems in the tutor, compared to expert-
determined classifications.

Because students follow different problem-solving paths, no
student can solve all available problems in the tutor, nor
are students likely to solve problems in both proficiency sets
within the same level. This makes student performance com-
parison over multiple problems difficult. We plan to use a
combination proof-problem properties weighted by student
performance metrics to evaluate problem difficulty; however,
we have not determined which combination of methods to
use. We are currently looking into weighted cluster-based
classification methods to apply to the problems. The hy-
pothesis presumed before applying one of these methods
would be that problems of similar difficulty would be placed
into the same clusters. Student performance metrics for each
problem could be used to determine distance, since it’s as-
sumed that students would react most similarly to problems
of similar difficulty. Eagle et al. applied network community
mining to this student log data in order to form interaction
networks [2]; a modified version could be applied here on a
student-per-problem level in order to determine prominent
similar behaviors that are correlated with problem perfor-
mance.

This would determine which problems are of similar diffi-
culty, but not necessarily which problems (or groups of prob-
lems) are more or less difficult. That determination could be
made by analyzing student rule scores across problems, or

even the difference in scores at the start and end of a prob-
lem. In particular, analyzing the difference in rule scores
would both standardize the scores (to account for the scores
being calculated at different points in the tutor) and give a
measure of forward or backward progress (a student’s rule
scores should not decrease after solving an easy problem).

Problem properties we feel are valuable to take into con-
sideration when evaluating problem difficulty per student
include:

• Classification of problems by operand/expressions

• Deviation of student solutions from expert solutions

– Number of steps taken

– Number and frequency of rules used

Student performance metrics that we feel are valuable to
take into consideration include:

• Path progression through the tutor, including

– Order of assigned proficiency sets

– Number and path location of skipped problems

– Terminus point in tutor

– Final tutor grade

• Knowledge tracing scores for each rule, prioritized by
problem requirements

• Step and elapsed time

• Type and number of errors committed

We would appreciate any literature recommendations, as
well as suggestions for how to use the data from our exper-
iment to measure and compare problem difficulty through
student performance.

5. ACKNOWLEDGEMENTS
This material is based on work supported by the National
Science Foundation under Grant No. 0845997.

6. REFERENCES
[1] M. J. Croy, T. Barnes, and J. Stamper. Towards an

Intelligent Tutoring System for Propositional Proof
Construction. In Current Issues in Computing and
Philosophy, pages 145 – 155. 2008.

[2] M. Eagle, M. Johnson, and T. Barnes. Interaction
Networks: Generating High Level Hints Based on
Network Community Clusterings. In Proceedings of the
5th International Conference on Educational Data
Mining (EDM 2012), pages 164–167, 2012.

[3] T. Murray and I. Arroyo. Toward Measuring and
Maintaining the Zone of Proximal Development in
Adaptive Instructional Systems. In Proceedings of the
10th International Conference on Intelligent Tutoring
Systems (EDM 2002), pages 289 – 294, 2002.

