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ABSTRACT
Large linked data repositories have been built by leverag-
ing semi-structured data in Wikipedia (e.g., DBpedia) and
through extracting information from natural language text
(e.g., YAGO). However, the Web contains many other vast
sources of linked data, such as structured HTML tables and
spreadsheets. Often, the semantics in such tables is hidden,
preventing one from extracting triples from them directly.
This paper describes a probabilistic method that augments
an existing knowledge base with facts from tabular data by
leveraging a Web text corpus and natural language patterns
associated with relations in the knowledge base. A prelim-
inary evaluation shows high potential for this technique in
augmenting linked data repositories.

1. INTRODUCTION
The Web is bursting with valuable tabular data that could
be leveraged in many applications such as knowledge base
population and query answering. For instance, Cafarella et
al. report 14.1 billion HTML tables in English documents
in Googles’s main index [4] and over 400,000 Excel spread-
sheets in the Clueweb091 crawl [5]. Tapping into these semi-
structured information sources is difficult, however, and of-
ten they end up being treated no differently than plain text
documents. What is worse, state-of-the-art text-based in-
formation extraction systems fail on such tables, as they
require full sentences to yield good results.

Tables have inherent semantics which are often implicit or
only given in the pages that contain them. Consider the ex-
ample in Figure 1, which is a snapshot of a table in Wikipedia.
It may not obvious from the table that it is about winners
of FIFA’s World Player of the Year Award. Nevertheless, it
should be noted that the fact that someone put those literals
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Ronaldinho Brazil Barcelona FC
Fabio Cannavaro Italy Juventus
Kaka Brazil AC Milan
Lionel Messi Argentina Barcelona FC

Figure 1: Example tabular data.

together in the same rows indicates that there are relation-
ships between them. In this case, we know that Ronaldinho
was born in Brazil and played for Barcelona. Moreover, the
same relationships apply to all rows: Cannavaro was born
in Italy and played for Juventus. In fact, we can say that
the relations was born in and played for are defined over the
columns (1st and 2nd, and 1st and 3rd, respectively).

A general approach for understanding such tables with the
help of linked open data web [2] would be to (1) link the val-
ues in each cell to known entities in a linked data knowledge
base (e.g., YAGO [14] and Freebase [3]), and (2) identify
relations between the linked values. The best-case-scenario
for this approach would be when all entities are linked to the
same knowledge base, and a relation already exists between
them (this is the approach in [8]). However, there are other
situations. For example, it could be that the entities exist
in different, unlinked, knowledge bases, or that some of the
entities are not linked to anything yet. Tackling such cases
would provide new triples, thus augmenting the linked open
data web with new facts.

This paper focuses on the problem of identifying plausible
relations between pairs of entities that appear in the same
row of a table. Our main assumption is that if someone went
to the trouble of juxtaposing these entities on the same file,
then there must be a relation between them. Moreover, we
seek to augment an existing repository with new instances of
relations already defined. In other words, the list of possible
relations is part of the input. We also assume the entities can
be resolved and linked to a linked open data repository or
knowledge base. However, unlike previous works (e.g., [8]),
our method does not require that.

Overview. As an example, assume our input table has only
columns 1 and 3 in Figure 1, and assume we have two can-
didate relations: plays-for and lives-in. We start from a
list of textual patterns that are associated with each rela-
tion; such patterns are detected by automatic methods for



Figure 2: Rank Aggregation approach vs. Global Ranking.

building knowledge bases from natural language2. For ex-
ample, patterns for the relation plays-for could be “scored
for” and “signed contract with”. In practice, thousands of
patterns are associated with a single relation; conversely,
the same pattern may be associated with multiple relations.
Thus, we build a probabilistic model to estimate the pos-
terior probability of a relation, given a set of text patterns
observed. To make a prediction for a given pair of entities,
we: (1) collect all sentences containing both entities from
a large text corpus; (2) extract the text in between them;
(3) match those texts against the list of patterns; and (4)
estimate the posterior probability of all candidate relations.

Paper Outline. Section 2 illustrates our model to extract
triples from tabular data. Section 3 discusses our first imple-
mentation of the model, and Section 4 reports the results of
experiments on this first implementation. Section 5 presents
related work, and Section 6 concludes the paper and presents
ideas to improve our model.

2. TRIPLE EXTRACTION
In general terms, the problem we address is as follows:

Given a table T , with n rows and k columns, whose cells con-
tain mentions to entities, and a set R = {r1, . . . , rm} of rela-
tions of interest, we aim to produce all triples 〈ti[x], rj , ti[y]〉
∀ti ∈ T , rj ∈ R, where ti[x] denotes the value of column x
in row i.

Furthermore, we seek to assign relation rj to pairs of columns
in T , in the sense that the predicate rj holds for all rows of
T . The problem boils down to the case of an input table with
just two columns x and y, and, without loss of generality,
we address this case here.

Understanding semantic relations between entities using text
corpora is a challenging task because a relation can be ex-
pressed with different textual (surface) forms. For example,
the relation plays-for can be inferred from sentences with
the patterns “scored for” and “signed contract with”. On the
other hand, a pattern may express more than one relation.

2We use the patterns in the PATTY system [12].

For example, the pattern “played in” may represent rela-
tions plays-for and performed-at (e.g., “Pink Floyd played
in Pompeii”).

Another challenge, which has been the subject of substantial
work recently, is entity linking. For example, “Barcelona”
may represent the football club or the city. Evidently, the
choice of entity linking approach will have an impact on
the quality of the triples produced by a method like ours.
To avoid this factor in our study of the relation assignment
problem we use exact matching to “link” the entities. In
effect, this is akin to assuming the entities are already linked.

2.1 Relation between a Pair of Entities
We start with determining whether a relation r applies to
two entities. In the absence of further information, a reason-
able approach is to search the (textual) Web for all sentences
connecting the entities and determine whether r follows from
those sentences. While textual entailment and other reason-
ing methods could be used for this purpose, we turn this into
a probabilistic inference as follows. We start from a known
set of textual patterns p1, . . . , pk that are commonly asso-
ciated with relation r; thus giving us prior probabilities for
each pattern expressing the relation. To determine if enti-
ties e1 and e2 belong in relation r, we search the corpus for
all sentences containing both e1 and e2, extract all words
in between them, and match those words against the list
of patterns. We can use Bayesian inference to compute the
posterior probability of r given the observed patterns.

In this model, relation r is a categorical class variable whose
domain is R, and the patterns p1, ..., pn are binary evidence
variables, representing patterns observed between entities in
the text corpus. The model is thus:

Pr(r|p1, ..., pk) =
Pr(r)Pr(p1, ..., pk|r)

Pr(p1, ..., pk)
(1)

Relations maximizing Pr(r|p1, ..., pk) are the most probable
relations for the entities (given the corpus used). A last com-
ponent in the model is a threshold to filter low-confidence
predictions.

We assume evidence variables {p1, ..., pn} are conditionally



independent, which is reasonable since the probability that
pattern pi represents a relation does not depend on the prob-
ability that another pattern pj also represents that relation.
Given this assumption and using the Chain rule, we have:

Pr(r|p1, ..., pk) =

Pr(r)
k∏

i=1

Pr(pi|r)

Pr(p1, ..., pk)
(2)

2.2 Relation between Two Lists of Entities
Consider now the case of a table with n rows (i.e. a list of n
entity pairs). There are two main approaches, illustrated in
Figure 2: we can find one relation assignment for each row
and compute an aggregate from all these assignments, or we
can observe all text patterns for all rows at once and obtain
a global assignment. We discuss each next.

Rank Aggregation. In this approach, we first obtain a rank-
ing of all relations in R sorted in decreasing likelihood ac-
cording to the model above, for each pair of entities in the
table. Next, we combine these ranked lists to find a single
best relation for all entity pairs.

Rank aggregation [7] is a well-studied problem: given n
ranked lists l1, ..., ln, and a distance measure d, the problem
is to find a list l such that

∑n
i=1 d(l, li) is minimized. Among

different distance measures to aggregate ranking lists, we use
Spearman’s Footrule (SP) and Kendall’s tau (KE) which
were shown to outperform other approaches [7]. Kendall’s
tau distance between two permutations of a list is the sum
of the number of pairs from the list which are not in the
same order in these two permutations. This distance is also
known as the number of exchanges needed in a bubble sort
to convert one permutation to another. On the other hand,
Spearman’s Footrule distance is the sum of the distances
between positions of each item in two different permuta-
tions. We also employ a simple average score method to
aggregate ranking lists called Mean Ranking (MR), which
works as follows: given a sorted (descending) list of proba-
bilities Pr(r|p1, ..., pk) generated for each pair 〈xi, yi〉, and
m possible relations in the knowledge base, we assign a score
sci(r) = m− pos(r), where pos(r) is the position of relation
r in this sorted list.

Global Ranking. Another approach is to feed all patterns
for all entity pairs in the relation as evidence to the prob-
abilistic model. In this Global Ranking (GR) approach, all
observed patterns for all entity pairs simultaneously con-
tribute to selection of the most probable relation.

3. IMPLEMENTATION
This section describes one instantiation of the probabilistic
model developed in the previous section, using off-the-shelf,
real-world knowledge bases and text corpora.

Data. We use YAGO [14] and PATTY [12] to obtain re-
lations and patterns. YAGO is a popular knowledge base
with about 10 million entities and 120 million facts, and
PATTY, developed by the same research group, associates
22,779 patterns mined from New York Times articles and
Wikipedia with 25 relations. Of those, 24 exist in YAGO
and were used here. Our text corpus is the NELL Subject-
Verb-Object triple corpus [15], with about 604 million triples

Table 1: Number of PATTY patterns and ranked
obtained by each strategy, for each relation. A –
indicates the relation has been incorrectly ranked
4th or lower by the method

Relation Patterns SP KE MR GR

ismarriedto 1274 1 1 1 1
created 1148 1 1 1 1
haschild 1090 – – – 3
influences 694 1 1 2 –
actedin 624 2 2 1 1
graduatedfrom 472 1 1 1 1
isknownfor 452 – – – –
worksat 447 – – 1 1
holdspoliticalposition 417 – 3 1 1
directed 400 2 – 2 2
playsfor 354 1 1 1 1
diedin 335 3 – 1 2
wasbornin 273 – – 1 1
islocatedin 249 – 3 – –

livesin 200 – – – –
isleaderof 156 – – – –
iscitizenof 121 1 1 – –
haswonprize 81 – – 3 1
dealswith 59 – – – 1
ispoliticianof 49 1 – – 1
participatedin 33 1 1 2 2
happenedin 12 2 1 – 1
hascapital 1 2 1 – –

extracted via dependency parsing on the ClueWeb09 dataset
(Clueweb09 is a Web crawl with about 1 billion web pages
in ten different languages).

As mentioned before, we link entities mentioned in the tables
to those in the text corpus with exact string matching. That
is, given entities e1 and e2 in a table row, we find all triples in
the NELL corpus which have e1 as the subject and e2 as the
object. Similarly, we match the verbs of the resulting triples
against the PATTY patterns (to obtain the observations).
In effect, our system uses the “intersection” of PATTY pat-
terns and NELL triples, consisting of 4,357 unique patterns
and 108,699,400 triples. The YAGO relation has-academic-
advisor was discarded as none of its patterns are found in
the NELL corpus. Table 1 shows the relations used and the
number of patterns in each of them. Note the wide variation
in the number of patterns per relation.

Estimating Prior Probabilities. Recall Equation 2. We
estimate the prior probability of each of the 24 relations
as Pr(r)=|r|/

∑
ri∈R(|ri|), where |r| is the number of in-

stances of relation r, and R is the set of all relations in
YAGO. As for Pr(p|r), the prior probability that pattern p
occurs among instances of relation r, we use the associations
between YAGO relations and textual patterns in PATTY:
Pr(p|r) = |p|/

∑
pi∈PT (r) |pi|, where PT (r) is the set of pat-

terns associated with r. To avoid zero probabilities, we use
the add-one Laplace smoothing technique.

4. EXPERIMENTAL EVALUATION
Since we do not query YAGO to make predictions, we use
some of its facts to build a ground-truth to test the accu-
racy of our model. We extracted facts from YAGO relations
where both entities can be matched exactly in the NELL



Table 2: Results of rankings on 23 YAGO relations
Rank Aggregation Global Ranking
SP KE MR GR

Ranked First 8 9 9 12
Ranked Second 4 1 3 3
Ranked Third 1 2 1 1
Ranked > 3 10 11 10 7

Table 3: Results of rankings on filtered relations
Rank Aggregation Global Ranking
SP KE MR GR

Ranked First 9 7 9 8
Ranked Second 1 3 2 2
Ranked Third 2 1 2 3
Ranked > 3 2 3 1 1

corpus. The number of facts from YAGO that can be found
from NELL triples using exact matching varies across rela-
tions. The lower bound was 25 facts for relation is-known-
for. For the other relations, we picked several random sam-
ples with 25 pairs and tested each separately. The difference
in accuracy was negligible, so we used 25 facts per relation.

Effectiveness. We performed experiments to evaluate the
effectiveness of three different rank aggregation techniques
(i.e., Spearman’s Footrule (SP), Kendall’s tau (KE), and
Mean Ranking (MR)) as well as the Global Ranking ap-
proach (GR). The ranking of the correct relation generated
by the system is considered as a measure of success to an-
notate that relation. The best result is achieved when the
correct relation appears at the top of the ranked list for the
facts in that relation in the ground-truth. Table 2 shows the
number of relations ranked the top 3 positions, as well as
anywhere above the 3rd place.

As one can see, GR outperforms the rank aggregation tech-
niques in identifying correct relations. Among the rank ag-
gregation techniques, MR works slightly better than SP and
KE in this test. However, there is no statistical significance
in the differences between the results of rank aggregation
techniques based on analysis of variance. Another observa-
tion is that the number of PATTY patterns has an effect
on the accuracy, and this effect is more pronounced for the
ranking aggregation methods. As shown in Table 1, relations
associated with fewer patterns are less likely to be identified
correctly by rank aggregation techniques. We argue this is
due to lack of sufficient evidence (patterns) for each pair. It
follows that rank aggregation techniques require more evi-
dence in order to infer correct relations. On the other hand,
the GR performs better for relations associated with fewer
patterns. This happens because it is more likely that many
relevant patterns appear in the union of patterns of all pairs
compared to individual entity pairs.

We also filtered out relations with 200 or less patterns in
our corpus, recomputed their prior probabilities, and re-
executed the experiments on the same dataset for them.
Table 3 shows the results of this experiment. Although MR
performed slightly better than the other techniques, a sta-
tistical test reveals that the differences are not significant.
What is important to note is that, as expected, filtering out
less popular relations leads to higher overall accuracy. Ap-

plications using our technique can exploit this trade-off to
set the appropriate threshold.

Performance. For efficiency reasons, we index patterns us-
ing a suffix tree in memory. The average execution times in
milliseconds for processing a pair of entities (taken over 20
executions) are: 1688 for SP, 1868 for KE; 1729.4 for MR;
and 1719 for GR. As one can see, there are no considerable
differences among the methods. In fact, our observations
are that the majority of the time is spent on matching the
entities against the NELL corpus.

4.1 Towards Knowledge Augmentation
The ultimate goal of our technique is knowledge augmenta-
tion by generating new instances of relations from tabular
data that are not already in the knowledge base. We per-
formed preliminary experiments to assess if our system could
accomplish this goal.

Our first test was with a spreadsheet including song data
available at www.aardvarkdjservices.co.uk (a website spe-
cialized in music services). We looked at 48 singer, song
pairs from 2 albums, with 24 songs from Elvis Presley, and
24 songs from Frank Sinatra. Every approach returned cre-
ated as the best relation between those entities. We man-
ually verified the 48 facts in this case, and found that only
31 were already in YAGO. In another experiment, we used
a spreadsheet with data about NBA players extracted from
wwww.espn.go.com, and tested our system with 100 player,
team pairs. YAGO had 92 of these pairs in the is-affiliated-
to relation. Every configuration of our system identified all
100 pairs as instances of the plays-for relation, which, one
can argue, is a suitable and more specific relation for these
entities.

5. RELATED WORK
A lot of work has been done towards understanding ta-
bles within text or online. Some have attempted to exploit
column headers to identify relations between two columns
(e.g., [6]), which is akin to schema-based data integration.
We make no assumption about the existence of this informa-
tion in our approach as this information may not be avail-
able for all tables, making our method more similar to an
instance-based data integration approach.

A probabilistic model is proposed in [16] to associate class
labels with columns and identify relations between entity
columns and the rest of columns. Recently, the joint infer-
ence technique is used to simultaneously annotate table cells,
table columns and relations between columns. In [8, 10],
graphical models are employed to annotate column headers,
table cells, and relations between columns. Our work is sim-
ilar, to some extent, to [11] in which Wikipedia’s tables are
used to generate new triples using DBpedia as a knowledge
base. Unlike our method, these techniques require linking
entities to one or more linked open data repositories.

The problem has also been considered in terms of extracting
schema for tabular data. In [5], an extraction system is pro-
posed to convert data stored in spreadsheets into relational
tuples. In [1], a set of row classes representing common
features of individual rows in a table is identified. Then,



Conditional Random Fields techniques are used to generate
a sequence of row labels.

Our work is also related to relation extraction techniques
from text corpora. In supervised learning (e.g., [18]), manu-
ally labelled relations are used to train a model for labeling
relations. On the other hand, in unsupervised approaches
(e.g., [13]), strings between entities in a text corpus are clus-
tered and then simplified to generate relations. In [9], the
classifier is trained using textual features of sentences be-
tween known entities in Freebase. This technique generates
instances of new relations, while our technique generates in-
stances of relations linked to exiting relations in linked open
data repositories.

6. CONCLUSION
In this paper, we described a probabilistic approach for aug-
menting linked open data repositories using tabular data,
thus tapping into these under-explored sources of valuable
information. Unlike prior methods that focus on natural
language understanding to determine whether two named
entities are even related, we start from the (reasonable) as-
sumption that all entities in the same row of a table are
related by construction. Unlike previous methods that at-
tempt to understand tabular data, we take a more pragmatic
and effective stance: we label pairs of columns in the table
with relations coming from an established knowledge base.
By doing so, all facts we extract can be interpreted in the
same way as those in the knowledge base.

We described a first implementation of our model using
linked open data resources–YAGO, PATTY and NELL–and
showed experimentally that the approach is effective, despite
the limitations in the way we match entities. We also showed
that it rather easy to find new knowledge with our model.
Yet, we have only sketched a research direction rich in op-
portunities to improve knowledge building and linking in our
opinion. There are some limitations that we aim to address
in future work. Instead of a limited number of YAGO rela-
tions, we aim to use a wide range of relations (e.g., those in
Freebase). Moreover, we can increase recall by using proper
entity linking techniques such as those in [17].

Another interesting line of future work would be to estimate
how many new triples could be extracted from tabular data
on the entire Web, and how accurate they could be. To
do so, one needs a systematic approach and some machin-
ery to automatically check if the new facts already exists in
the knowledge base, as well as whether or not these facts
are accurate. Different notions of accuracy apply here. For
example, it may be that the new facts contradict existing
knowledge, or it could be that they are expressed at a dif-
ferent granularity, as was the case for our experiment with
NBA players. One could also use both quantitative and
qualitative metrics to chart which websites provide the best
data.
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W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. Proc. VLDB Endow.,
4(9):528–538, 2011.

[17] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and
G. Weikum. Aida: An online tool for accurate
disambiguation of named entities in text and tables.
Proc. VLDB Endow., 4(12):1450–1453, 2011.

[18] G. Zhou, M. Zhang, D. Ji, and Q. Zhu. Tree
Kernel-Based relation extraction with
Context-Sensitive structured parse tree information.
In EMNLP-CoNLL’07 Conf. Proc., 2007.


