
Challenges of Testing Business Process Models in Intra-
and Inter-Organizational Context

Stefan Mijatov, Tanja Mayerhofer

Business Informatics Group
Vienna University of Technology, Austria
{mijatov, mayerhofer}@big.tuwien.ac.at

Abstract: In order to address the issue of complexity and changeability of
business processes, as well as of the information technology used to implement
these processes, business process models are used. Validating the functional
correctness of such models is essential. Many approaches exist, that deal
with validating the functional correctness of business process models in an
intra-organizational context (i.e., the process is controlled and maintained by
one business entity). However, today, business processes are usually carried
out by several business partners, each providing its own services to accomplish
more complex inter-organizational business processes. This induces new
challenges for validating the functional correctness of business processes based
on models. In this paper we provide an overview of existing approaches
to validate business process models in both intra- and inter-organizational
context and discuss arising challenges.

1 Introduction

In order to cope with complexity and changeability of business processes on one
hand, and the information technology used to implement these processes on the
other, business process models are created and maintained. These models can be
defined at various levels of abstraction, from capturing the high level concepts of
a business process (high level activities performed by different parties to realize
a business process) to a low level specification of a business process (information
and object manipulation activities). Furthermore, these models can be defined
with different modeling languages, from standardized modeling languages such as
BPMN [OMG11a], UML [OMG11b], and BPEL [OAS07], to proprietary modeling
languages.
As business process models become central artifacts in business process management
as well as in the development of information systems, ensuring their quality is of
uttermost importance. The quality of a software artifact (e.g., a business process
model) represents the correspondence of its realization to the specified requirements.
These requirements can be functional (i.e., what the artifact should do) and non-
functional (i.e., the level of performance that the artifact has to achieve). In this

A. Baumgraß, N. Herzberg, G. Kappel, J. Mendling, A. Meyer, S. Rinderle-Ma (eds.): Proceedings on
Inter-Organizational Process Modeling and Event Processing in Business Process Management,
Vienna, Austria, 12-06-2014, published at http://ceur-ws.org

http://ceur-ws.org

paper we focus on techniques for validating the functional correctness of business
processes based on models.
There are many challenges that have to be addressed in this context. On one hand,
organizations use different modeling languages for specifying their business processes.
For validating the functional correctness of models, precisely defined semantics of
the used modeling languages is a prerequisite. However, many organizations use
modeling languages without or with partially defined semantics. On the other hand,
in today’s highly globalized business world, business processes are often realized by
several cooperating organizations in order to achieve a common business objective.
In this context, new challenges arise, such as autonomy, heterogeneity, and the
support for coordination, which all may induce additional challenges to validating
business processes.
This paper is structured as follows. In Section 2 and Section 3 we present existing
approaches for validating functional properties of business processes based on
business process models in an intra- and inter-organizational context. Thereby, we
consider analysis, simulation, verification, as well as testing techniques. We focus on
the three most popular modeling languages for business process modeling, namely
BPMN, UML activity diagrams, and BPEL. In Section 4, challenges arising for
validating both intra- and inter-organizational business processes are discussed. In
Section 5 we briefly describe our own testing framework for UML activity diagrams
based on the fUML standard [OMG11c] and discuss how the identified challenges
can be addressed by this framework. Finally, we conclude our paper in Section 6.

2 Validating Intra-Organizational Business Process Models

In this section we present relevant existing work on the validation of business pro-
cesses modeled with the Business Process Model and Notation language [OMG11a],
UML Activity Diagrams [OMG11b], and the Business Process Execution Language
(BPEL) [OAS07], which represent the most popular modeling notations used in
both academy and industry.

2.1 Business Process Model and Notation (BPMN)

One of the most popular modeling languages for specifying business processes at
the level of domain analysis and high-level system design is the Business Process
Model and Notation (BPMN) language [OMG11a]. BPMN models are composed of
activity nodes denoting business events or tasks performed by people or software
applications within the business process, and control nodes capturing the flow of
control between activity nodes.
There exist many approaches on the functional validation of BPMN models. What
is mutual to the findings of all these approaches is the lack of precisely defined

74

semantics of BPMN which is a prerequisite for the behavioral interpretation of
BPMN models necessary for realizing their validation.
Dijkman et al. [DDO08] present an approach for statically analyzing business
process models defined with BPMN. In this approach mapping rules are defined
for transforming BPMN models into Petri Net models. The authors identified
several issues with the BPMN specification, such as imprecisely defined semantics of
executing a business process with several start events and proper process instance
completion. The obtained Petri Net model is used as input for the ProM tool to
check (1) the absence of dead tasks (i.e., tasks that cannot be executed) and (2) the
proper completion of the business process model (i.e., the state of a process model
in which an end event is reached and no other task is enabled).
Another similar approach is described by Raedts et al. [RPU+07]. Their approach
is based on translating a BPMN model into an Extended Petri Net model and then
translating the Extended Petri Net model into mCRL2, a process algebraic language,
after which the mCRL2 toolset can be used. Based on this approach, the modeled
business process can be statically analyzed, simulated, or verified, e.g., for analyzing
its performance (e.g., process execution time) and verifying soundness. A process
model is considered sound if each state in the Petri Net can be reached at least
once in one of the possible executions, the final state of the Petri Net is reachable
from any state of the possible executions (deadlock free), and for each execution of
the Petri Net the final state is reachable (proper process completion) [vdA98].
A different approach is presented by Ligeza et al. [LKNP12]. Their approach is based
on leveraging a rule-based system which is implemented in Prolog and composed of
business rules and BPMN models specifying a business process to analyze previously
defined correctness criteria, as well as the correctness of data flows. These criteria
include the correctness of process components (tasks), data flows, splits, merge
nodes, and finally of the overall process.

2.2 UML Activity Diagrams

The Unified Modeling Language (UML) [OMG11b] is a popular modeling language
for specifying structural and behavioral aspects of a software system. The structural
aspects describe the objects that exist in the system, as well as relationships among
these objects. Behavioral aspects define both the history of interactions between
objects over time, as well as the communication of objects to accomplish certain goals.
UML contains many types of diagrams, such as class, object, sequence, activity, and
state machine diagram, that enable a user to comprehensively specify all necessary
details of a system, both on a high and a low level of abstraction. An investigation of
the expressiveness and adequacy of the UML activity diagram notation for specifying
business processes is presented by Dumas and ter Hofstede [DtH01]. They conclude,
that despite some issues with the semantics specification and few missing modeling
concepts, UML activity diagrams are expressive enough to be used for specifying
business processes.

75

One approach that enables to validate the functional correctness of UML activity
diagrams is presented by Staines [Sta08]. In this approach UML activity diagrams
are translated into Petri Net models, which can subsequently be translated into
Colored Petri Net models for which already existing analysis tools can be used to
check properties, such as soundness.
Engels et al. [ESW07] propose another approach for verifying the correctness of
UML activity diagrams. Their approach is based on applying Dynamic Meta
Modeling (DMM) for defining the behavioral semantics of activity diagrams based
on graph transformations. They apply the existing model checker tool GROOVE
to check the soundness of the analyzed activity diagram.
Eshuis and Wieringa [EW04] present a tool for verifying activity diagrams which is
an extension of the graph editing tool TCM. Upon specifying functional requirements
and an activity diagram, both are translated into a transition system according to
their formal semantics specification. This transition system serves as input for an
existing model checker. In case that the requirements are not satisfied, a counter
example is provided in the form of an execution trace that lead to the requirement
violation.
All of these approaches specify the semantics of UML activity diagrams on their
own, e.g., by translating them into Petri Nets. However, the semantics of a
subset of UML has recently been precisely defined and standardized by the fUML
standard [OMG11c] which specifies a virtual machine for executing UML activity
diagrams. Based on the fUML virtual machine we elaborated a testing framework
in previous work [MLMK13], which will be described in more detail in Section 5.

2.3 Web Services and Business Process Execution Language (BPEL)

In order to achieve interoperability between applications based on Web standards
(e.g., SOAP, WSDL, UDDI), Web services are commonly used as implementation
technology as they enable a loosely coupled integration of heterogeneous systems.
In order to define and execute a complex business process based on Web services, the
Business Process Execution Language (BPEL) can be used. It provides a model and
a grammar based on XML for describing collaborating business processes through
which a complex business process is realized. It entails interaction through Web
service interfaces and a logic for coordinating these interactions.
Mayer and Lübke [ML06] propose an architecture and implementation of a unit
testing framework for validating processes defined with BPEL. The architecture
of the framework is composed of four layers: test specification (i.e., how the test
data and its behavior are specified), test organization (tests are organized into test
cases, test suites, and test runs), test execution (test and process under test must be
executed), and test result layer (results must be gathered, logged, and presented to
the user). Possibly incorrect data received from the process under test is categorized
into three types: incorrect content, no message returned, or an incorrect number of
received messages.

76

Li and Sun [LS06] propose another implementation of a unit testing framework
for BPEL, called BPELUnit. The basic idea of the framework is to transform
process interactions through Web service invocations to class collaborations using
method calls, and to then apply object-oriented testing techniques. Firstly, interface
descriptions of the Web services under test are transformed into corresponding Java
interfaces upon which mock objects are created that represent partner processes
that are directly invoked by the process under test. A mock object for a process
defines expected invocations and return values of the process and validates that
invocations are performed with correct parameters during runtime. The authors
identified several advantages of their framework: the testing process does not rely
on the availability of partner processes, test case writing is simplified, the test case
execution time is improved, and automatic regression testing is enabled.
Weber et al. [WHM10] suggest that soundness of business process models is a
necessary but insufficient condition for correctness, and that it might me necessary
to take into account also the effects of executing individual activities within the
process. Their approach includes the verification of effect conflicts (consistency of
effects of parallel activities), precondition conflicts (consistency of preconditions of
activities), reachability (are there activities that are not reachable within possible
executions), and executability (are there activities whose preconditions are false at
the time they need to be executed).

3 Validating Inter-Organizational Business Process Models

To maintain a certain level of competitiveness, collaboration between partner
companies is essential. In this context, companies focus on their specialized functions
for which they have expertise, complementing their business processes with partners
and suppliers. In such an environment, companies rely on inter-organizational
business processes to realize their business. Bouchbout and Alimazighi [BA11]
define inter-organizational business process as an organized group of joined activities
carried out by two or more organizations to achieve a common business objective.
The design and implementation of inter-organizational business processes open
up new challenges that need to be addressed: the flexibility and ability to cope
with change, decentralized management, peer-to-peer interactions, preservation of
enterprise autonomy and privacy, and support for interoperability.
Breu et al. [BDE+13] point out several important aspects of inter-organizational
processes: distribution (either one party is serving as a controller of the complete
process, or no party is in control of the whole process), behavior (different languages
for describing choreographies exist), data (data can be distributed between collabo-
rating parties), and resources (quality of service and service-level agreements are
necessary for establishing trust between parties concerning provided resources). The
authors identify four main challenges of inter-organizational processes: flexibility,
correctness, traceability, and scalability. Flexibility is defined as the variability of
participating intra-organizational processes, looseness of their interactions, adapta-

77

tion as capability to adapt the process to emerging events, and evolution as ability
to change the process according to changed business requirements. Correctness
is a prerequisite of both intra- and inter-organizational processes, as it ensures
non-disrupted functioning of a business process. Traceability is defined as the need
to monitor which progress is made at which point in time for which steps of the
process. And finally, scalability is necessary for ensuring the reliability of the process
execution as the computing resource requirements change over time.
In Section 2 we gave an overview of existing approaches for validating intra-
organizational business process models. However, for validating inter-organizational
business processes, their peculiarities compared to intra-organizational business pro-
cesses have to be taken into consideration. In the following, we provide an overview
of existing approaches for validating the functional correctness of inter-organizational
business processes.
Van der Aalst [vdA98] presents an approach for analyzing and verifying inter-orga-
nizational workflows. Each workflow of each participating partner is modeled as
a Petri Net model and additional modeling concepts are used for defining the
connections between communicating workflows. For each individual Petri Net
model describing an intra-organizational workflow, the concept of soundness can
be verified by using standard Petri Net techniques. The communication between
partner processes in an inter-organizational process can be either synchronous or
asynchronous. Synchronous communication is modeled as direct connection between
transitions of Petri Nets defining the participating partner processes. Asynchronous
communication is modeled as a connecting place between transitions of the Petri
Nets defining the participating partner processes. A Petri Net model describing an
inter-organizational business process is considered sound if it is both locally sound
(each Petri Net model of each participating partner is sound) and globally sound
(the complete Petri Net model of the inter-organizational process is sound).
Martens et al. [MMGF06] present a similar approach for analyzing and verifying
the compatibility of BPEL processes. They define two dimensions of compatibil-
ity: syntactical compatibility (two BPEL processes can be composed only if the
provided interfaces of those two processes are mutually compatible) and behavioral
compatibility (the behavior provided by two processes must be compatible). The
approach is again based on Petri Net models. BPEL processes are translated into
Petri Net model representations which are then combined into a single Petri Net
model. Thereof the soundness is checked for the combined Petri Net model.
Similarly, Dumas et al. [DBN08] discuss the notion of protocol compatibility between
Web services and review a number of techniques for detecting incompatibilities and
for synthesizing adapters for otherwise incompatible services.
Benatallah et al. [BT04] define different types of protocol compatibility, corre-
sponding to different levels of service interoperability. They show how given two
services and their specifications it is possible to formally determine their level of
compatibility. In addition, they present how to identify similarities and differences
between protocols, in order to asses their equality and replaceability.

78

Authors Technique Static analysis Simulation Verification Testing

Dijkman et al. [DDO08] Translation into Petri Nets
Readts et al. [RPU+07] Translation into Extended Petri Nets and mCRL2
Ligeza et al. [LKNP12] Rule-based system

Staines [Sta08] Translation into Colored Petri Nets
Engels et al. [ESW07] Graph transformations
Eshuis and Wieringa [EW04] Translation into transition systems

Mayer and Lübke [ML06] Unit test framework based on XML and Xpath
Li and Sun [LS06] Unit testing framework based on JUnit
Weber et al. [WHM10] Verification method exploiting semantic annotations

Van der Aalst [vdA98] Composition of Petri Nets

Martens et al. [MMGF06] Translation into annotated Petri Nets

Intra-Organizational Business Processes

Inter-Organizational Business Processes

BPEL

PetriNet

BPMN

UML AD

BPEL

Table 1: Overview of approaches for validating business process models.

Another approach for ensuring the correctness of a business process in an inter-
organizational context is to analyze its compliance with so-called reference models.
Reference models provide a set of generally accepted, sound, and efficient processes
and can help to speed up and optimize the design of business process models
as well as ease the compliance with regulations and requirements. An approach
for measuring the compliance of processes with reference models is described by
Gerke et al. [GCC09]. In their approach they define compliance as the degree to
which a process model behaves in accordance with a reference model. Compliance
is measured by validating the process instances of a model (i.e., possible executions)
against the reference model by determining whether they are valid instances of the
reference model or their degree of deviation.
A similar approach is provided by Weidlich et al. [WMPW11]. In this approach
the behavioral consistency between a business process model specifying the system
and a workflow model as implementation of that system is analyzed. Behavioral
consistency of the two models is defined in terms of a causal behavioral profile,
which represents a behavioral abstraction that includes dependencies in terms of
order, exclusiveness, and causality between pairs of activities in the models. Besides
the order of potential occurrences, also optionality and causality are described.
Optionality of a transition is defined as the existence of a firing sequence leading
from the initial to the final marking of the system which does not contain the
transition. Causality is defined as the restriction that the transition can occur in
the firing sequence only after another given transition. One application for causal
behavioral profiles is to check the conformance of process logs captured for the
execution of a system to the modeled process. This conformance is measured as to
what degree the behavior of the log is captured in the respective model.

79

4 Challenges of Validating Business Process Models

In Section 2 and Section 3 we presented existing approaches for validating the
functional correctness of intra- and inter-organizational business processes. An
overview of the discussed approaches is provided in Table 1. Most of these approaches
focus on analyzing the soundness of the modeled processes and are restricted to a
specific modeling language—most of the modeling languages have no standardized
formal behavioral semantics defined. Furthermore, there are many challenges in
validating inter-organizational business processes, such as compositions of process
models where some depending processes of business partners might only be available
through contracts while their internals are not visible. Another challenge is the need
for flexibility in terms of enabling the evolution of business processes without central
control. All this leads to some still open challenges in validating inter-organizational
business processes.
Another important challenge in validating business processes is the variety of avail-
able modeling languages for defining business processes and the lack of standardized
behavioral semantics of these languages. Having a common language to specify the
behavioral semantics of modeling languages might lead to standardized methods
and tools for validating the correctness of business process models regardless of the
used modeling language.
In inter-organizational business processes, several intra-organizational business
processes of collaborating business partners are combined in order to accomplish
a common business goal. If all of these intra-organizational business processes
are defined by business process models and the connection between those busi-
ness process models are defined, it is possible to combine them into one process
model defining the complete inter-organizational process. Hence, based on this
combined business process model, it is possible to validate the correctness of the
inter-organizational process using the approaches for validating business process
models presented in Section 2. This approach was followed by van der Aalst [vdA98]
and Martens et al. [MMGF06] as described in Section 3.
However, one important challenge that has to be addressed when dealing with
inter-organizational business processes is flexibility in terms of the variability of
participating intra-organizational processes. Thus, cooperating partners might be un-
known in advance and might change during the execution of an inter-organizational
business process. In such a context, it is not realistic to assume the existence
of a business process model defining the complete inter-organizational business
process. In order to enable the validation of the correctness of each participating
intra-organizational business process in this situation, the technique of mocking
can be applied. In the realm of Web service testing, there exists some work on the
automatic or semi-automatic generation of so-called mock services that imitate the
services provided by partner organizations. The work done by Li and Sun [LS06]
presented earlier is an example for such an approach. Furthermore, reference models
and behavioral profiles can help to validate the correctness of inter-organizational
business processes in the situation where no business process model for the overall

80

process is available. In this context, validating the conformance of the business pro-
cesses to mock objects or reference models respectively behavioral profiles is required.
Work done in this area by Gerke et al. [GCC09] and Weidlich et al. [WMPW11]
was described earlier. However, there is still an open issue of implementing these
approaches in different modeling context.
The challenge of flexibility of inter-organizational business processes also includes
the fact that business processes can change over time. Regression testing can be an
essential technique for validating the correctness of inter-organizational processes
in the event of changes. In software testing, regression testing is the process of
selectively re-testing the software system to ensure that new bugs have been fixed
and no other previously working functions have failed (regressed) as a result of
changes to the system. With the application of test automation as provided by
unit testing frameworks, regression testing is eased as it enables to specify tests
and re-run them automatically. In Section 2 we have discussed two unit testing
frameworks for business process models developed by Mayer and Lübke [ML06],
and Li and Sun [LS06]. However, advanced techniques available for regression
testing of software systems, such as automatically selecting the test cases that
have to be re-run after a change, measuring the test coverage, and automatically
generating additionally required test cases, have not been addressed so far by testing
approaches for business processes.

5 Testing UML Activities: A Framework Based on fUML

In order to provide a precise and complete specification of the behavioral semantics
of a subset of UML, the fUML standard [OMG11c] was developed by OMG. The
subset of UML addressed by the fUML standard consists of modeling concepts for
defining the structure of a system with UML classes and the behavior of a system
with UML activities. For defining activities, the fUML subset contains a set of
predefined actions which can be used for defining object manipulations (objects
and links between these objects can be created, destroyed, and modified) and
communications between activities (activities can call other activities synchronously
or asynchronously). Furthermore, modeling concepts for defining the flow of control
and the flow of data between actions and activities are included in the fUML subset.
The fUML standard defines a virtual machine that is capable of executing models
compliant to this subset. This precise and complete semantics specification of UML
activities enables the development of validation and verification methods and tools
for business processes which are defined by UML activity diagrams.
In recent work [MLMK13], we elaborated a testing framework for validating the
functional correctness of UML activity diagrams based on the virtual machine
provided by the fUML standard1. An overview of our testing framework is depicted

1We provide an implementation of our framework integrated with the Eclipse Modeling
Framework. For more information about the implementation, we refer the interested reader
also to our project website:

81

Test execution framework

1

Model
Execution

Artifact

Task
Automated

Caption:

in/out relation

Test
Evaluation

Execution
Trace Test Suite

fUML Model

Activities Classes

Test
Scenarios

Test Cases
 test t1 activity a1 {

 var v = act1.result
 assertState before
 act5 { v::x = 300 }
}

Test Verdict

 t1 failure
 ass1.1 failure
 ass1.2 success
 t2 success
 ass2.1 success

Figure 1: Testing framework for UML activity diagrams based on fUML.

in Figure 1. It consists of a test specification language and a test interpreter. The test
specification language enables to define test suites composed of test cases defining
assertions on the behavior of UML activities as well as test scenarios defining input
values for the execution of the UML activities under test. Each test case in the test
suite is evaluated by executing the activity under test with the input values defined
by a selected test scenario using the fUML virtual machine. From the execution
of the activity under test, an execution trace is obtained from the fUML virtual
machine, which captures the runtime behavior of the executed activity. Based on
this captured information, the assertions on the behavior of the activity defined by
the test case are evaluated and the test verdict is calculated.
We support two kinds of assertions that can be defined on the behavior of a UML
activity: execution order assertions for validating the execution order of nodes
contained by the activity and state assertions for validating the state of objects
modified by the activity.
Execution order assertions are specified by defining the order in which nodes
contained by the activity under test have to be executed. Furthermore, the testing
framework supports the assertion of the expected execution order of selected activity
nodes only. Validating the correct execution order of nodes contained by an activity
is an important capability when they are used to define the steps of business
processes. However, this is not considered by the approaches discussed in Section 2.
These approaches focus on the analysis of soundness properties which could also
be done using our testing approach. In this respect, we are currently working on
extending our testing framework to support parallelism in activity diagrams. For
this, execution paths of an activity relevant to the specified execution order may be
computed and can be checked against the specified order assertions. Furthermore,
by analyzing the activity and the calculated execution paths, we could for instance
identify dead tasks and validate the proper completion of an activity for a given
input.
State assertions can be used to validate the state of an object at a specific point
in time of the execution of the activity under test. To express the point in time
at which the object shall be validated, a temporal quantifier, a temporal operator,

http://www.modelexecution.org.

82

http://www.modelexecution.org

and a reference activity node can be defined. Combining the temporal quantifier
and the temporal operator it is possible to specify which states of the object should
be checked after or before the execution of the reference activity node. A state
assertion can contain several state expressions, each defining the expected value of
one of the checked object’s features. State assertions enable not only to validate the
output of an activity execution, but also its intermediate results. This capability is
usually not provided by unit testing frameworks, as they only enable to validate
input-output relations.
Our framework enables to specify repeatable tests that can be automatically ex-
ecuted. Hence, it provides the necessary foundation for regression testing, which
was identified as an enabling technique for supporting the evolution of inter-
organizational business processes. However, it still remains to investigate techniques
for test selection, measurement of test coverage, and the automated generation of
test cases.
In order to support testing of inter-organizational business processes in the situation
where each business partner has only access to his own intra-organizational business
process, mocking the required partner processes would be valuable. In such case
it is necessary to specify and analyze the correspondence of the partner process
implementations to mock activities. For this, the already described approach by
Weidlich et al. [WMPW11] could be used. We intend to investigate the possible
application of this approach to UML activity diagrams.

6 Conclusion

As business process models become the main artifacts in business process manage-
ment and information system development, validating their functional correctness
becomes essential. In this paper we have presented several approaches for validating
business process models in both intra- and inter-organizational context.
Most of these approaches are based on translating business process models into
another formalism, such as Petri Nets, upon which standardized tools for analysis,
simulation, and verification already exist. The reason for this is that the used
modeling languages lack in providing formal execution semantics. Furthermore,
most of the approaches concentrate on finding parts of a model that cannot be
executed, as well as validating the proper execution completion of a model.
In the inter-organizational context, several business processes of collaborating
partners are combined. Due to the needed flexibility of inter-organizational business
processes, each partner might only have access to those parts of the process that
they provide. In this situation it might be necessary to apply the techniques of
mocking, where the processes provided by other partners are imitated, to enable
the validation of the inter-organizational business process. The automatic or semi-
automatic generation of such mocks might provide huge benefits. However, specifying
behavioral contracts between business partners and checking the conformance of

83

implementations to those contracts are required.
The need for enabling the evolution of business processes constitutes another
challenge in validating inter-organizational business processes which can be addressed
by regression testing. However, advanced techniques, such as automated test case
selection and generation do not exist so far.
In previous work we elaborated a framework for testing UML activity diagrams
based on the fUML standard. Based on the identified challenges in validating
business processes we are considering further extensions of our framework.

References

[BA11] K. Bouchbout and Z. Alimazighi. Inter-Organizational Business Processes
Modelling Framework. In Proc. of 15th East-European Conference on Advances
in Databases and Information Systems (ADBIS’11), pages 45–54. CEUR-
WS.org, 2011.

[BDE+13] R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Köpke, P. Langer,
J. Mangler, J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte, S. Sobering,
and B. Weber. Towards Living Inter-organizational Processes. In Proc. of 15th
IEEE Conference on Business Informatics (CBI’13), pages 363–366. IEEE,
2013.

[BT04] B. Benatallah and F. Toumani. Analysis and Management of Web Service
Protocols. In Proc. of 23rd International Conference on Conceptual Modeling
(ER’04), volume 3288 of LNCS, pages 524–541. Springer, 2004.

[DBN08] M. Dumas, B. Benatallah, and H. R. M. Nezhad. Web Service Protocols:
Compatibility and Adaptation. IEEE Data Engineering Bulletin, 31(3):40–44,
2008.

[DDO08] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business
process models in BPMN. Information & Software Technology, 50(12):1281–
1294, 2008.

[DtH01] M. Dumas and A. H. ter Hofstede. UML Activity Diagrams as a Workflow
Specification Language. In Proc. of 4th International Conference on the Unified
Modeling Language (UML’01), volume 2185 of LNCS, pages 76–90. Springer,
2001.

[ESW07] G. Engels, C. Soltenborn, and H. Wehrheim. Analysis of UML Activities Using
Dynamic Meta Modeling. In Proc. of 9th International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’07), volume
4468 of LNCS, pages 76–90. Springer, 2007.

[EW04] R. Eshuis and R. Wieringa. Tool Support for Verifying UML Activity Diagrams.
IEEE Transactions on Software Engineering, 30(7):437–447, 2004.

[GCC09] K. Gerke, J. Cardoso, and A. Claus. Measuring the Compliance of Processes
with Reference Models. In Proc. of Confederated International Conference On
the Move to Meaningful Internet Systems (OTM’09), volume 5870 of LNCS,
pages 76–93. Springer, 2009.

84

[LKNP12] A. Ligeza, K. Kluza, G. J. Nalepa, and T. Potempa. AI Approach to Formal
Analysis of BPMN Models. Towards a Logical Model for BPMN Diagrams. In
Proc. of Federated Conference on Computer Science and Information Systems
(FedCSIS’12), pages 931–934, 2012.

[LS06] Z. J. Li and W. Sun. BPEL-Unit: JUnit for BPEL Processes. In Proc. of 4th
International Conference on Service-Oriented Computing (ICSOC’06), volume
4294 of LNCS, pages 415–426. Springer, 2006.

[ML06] P. Mayer and D. Lübke. Towards a BPEL unit testing framework. In Proc.
of 2006 Workshop on Testing, Analysis, and Verification of Web Services and
Applications (TAV-WEB’06), pages 33–42. ACM, 2006.

[MLMK13] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel. A Framework for Testing
UML Activities Based on fUML. In Proc. of 10th International Workshop on
Model Driven Enginering, Verification and Validation (MoDeVVa’13), pages
1–10. CEUR-WS.org, 2013.

[MMGF06] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility of
BPEL Processes. In Proc. of Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Applications
and Services (AICT/ICIW’06), pages 147–154. IEEE, 2006.

[OAS07] OASIS. Web Services Business Process Execution Language (WS-BPEL),
Version 2.0, April 2007. Available at: http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html.

[OMG11a] OMG. Business Process Model and Notation (BPMN), Version 2.0, January
2011. Available at: http://www.omg.org/spec/BPMN/2.0/.

[OMG11b] OMG. OMGUnified Modeling Language (OMGUML), Superstructure, Version
2.4.1, August 2011. Available at: http://www.omg.org/spec/UML/2.4.1.

[OMG11c] OMG. Semantics of a Foundational Subset for Executable UML Models
(fUML), Version 1.0, February 2011. Available at: http://www.omg.org/spec/
FUML/1.0.

[RPU+07] I. Raedts, M. Petkovic, Y. S. Usenko, J. M. E. M. van der Werf, J. F. Groote,
and L. J. Somers. Transformation of BPMN Models for Behaviour Analysis. In
Proc. of 5th International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS’07), pages 126–137.
INSTICC Press, 2007.

[Sta08] T. S. Staines. Intuitive Mapping of UML 2 Activity Diagrams into Fundamental
Modeling Concept Petri Net Diagrams and Colored Petri Nets. In Proc. of
15th Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS’08), pages 191–200. IEEE, 2008.

[vdA98] W. M. P. van der Aalst. Modeling and Analyzing Interorganizational Workflows.
In Proc. of 1st International Conference on Application of Concurrency to
System Design (ACSD’98), pages 262–272. IEEE, 1998.

[WHM10] I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness: on the verification
of semantic business process models. Distributed and Parallel Databases,
27(3):271–343, 2010.

[WMPW11] M. Weidlich, J. Mendling, A. Polyvyanyy, and M. Weske. Causal Behavioral
Profiles - Efficient Computation, Applications, and Evaluation. Fundamenta
Informaticae, 113(3-4):1009–1025, 2011.

85

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/FUML/1.0
http://www.omg.org/spec/FUML/1.0

	Introduction
	Validating Intra-Organizational Business Process Models
	Validating Inter-Organizational Business Process Models
	Challenges of Validating Business Process Models
	Testing UML Activities: A Framework Based on fUML
	Conclusion

