
Concepts and realisations of �exible exercise

design and feedback generation in an

e-assessment system for mathematics

Nils Schwinning, Melanie Schypula, Michael Striewe and Michael Goedicke

Paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Campus Essen,

{nils.schwinning, melanie.schypula, michael.striewe,

michael.goedicke}@paluno.uni-due.de

Abstract. In computer aided assessment (CAA) and automated tu-
toring the feedback to a submitted solution is very important for the
learning outcome of students. It should help them to improve their per-
formances, which means it is designed to go beyond a classi�cation into
right or wrong. In this paper we consider the domain of mathematics and
introduce a general framework that allows to localise mistakes precisely
and o�ers many options in exercise and feedback design. We present �rst
experiences with the tool and discuss problems, we would like to work
on in the future.

Keywords: automated tutoring, e-assessment systems, feedback generation,
OpenMath, computer algebra systems

1 Introduction

Whenever large numbers of students apply for a single university course, it is
often not possible to provide a suitable number of face-to-face tutoring sessions.
Experiences show that training sessions and feedback to exercises are very useful
to promote learning success [6]. For this reason, the University of Duisburg-Essen
has set up an e-learning and e-assessment system with mathematics capabilities
in order to support several introductory courses at the department of economics1.

Four major requirements were de�ned for the system: First, the system is in-
tended to not only judge solutions in terms of right or wrong, but also to provide
feedback as detailed as possible. Second, it must allow and encourage students
to work on the same exercises more than once, e.g. by permitting di�erent ways
of solving tasks or by o�ering variations of tasks. Third, it must provide �exibil-
ity in the design of exercises so that exercises can be added and changed easily.
This implies the need for a generic way of representing mathematical content
independent of the means of input speci�c to an exercise (e.g. plain text input or

1 Work on this project was funded by the Federal Ministry of Education and Research
under grant number 01PL11075



input supported by formula editors) as well as of the means speci�c to grading
and feedback generation (e.g. connections to computer algebra systems). Finally,
the system is intended to not only cover school mathematics, but to provide all
necessary means for input and evaluation of exercises in higher mathematics to
cover a wide range of bachelor degree courses.

As a consequence of these requirements, the e-assessment system JACK is
used as a baseline for the project since it is designed as a �exible framework
for computer supported exercises [8]. It was extended to support a concept of
path-based exercises with variations, which allow students to work incrementally
on their tasks and receive feedback to each of their steps. As a generic way
of handling mathematical content, OpenMath2 was chosen, which provides a
generic XML representation of formulas.

Details on the current progress of the project are presented in this paper in
the following order: Section 2 reviews existing work both on e-learning systems
for mathematics and generic representation of mathematical content. Section 3
elaborates on the concept of path-based exercises as well as on the techniques of
feedback generation used within the JACK implementation. Section 4 digs into
the details of the implementation and the integration of di�erent parts of the
system by using OpenMath. Section 5 describes the use of JACK in university
classes. And Section 6 presents preliminary conclusions and next steps.

2 Related Work

Recently, many e-learning systems have been developed. The e-learning systems
ActiveMath[5] andMath Bridge[4] provide mostly the same exercise types as
JACK does. Although these systems are in general capable of o�ering alternative
paths in exercises, variable content and extensive stepwise feedback, they do not
consequently promote any of these features. Neither provide these tools a general
framework for interacting with di�erent computer algebra systems.

MathCoach[1] evolved from ActiveMath after the project with ActiveMath
ended. We could not �nd any hints, that MathCoach uses a semantic repre-
sentation for the submissions of students. MathCoach has an interface for the
communication with R, which, however, is only used for statistic computations
and plotting and not for the evaluation of solutions.

Another e-learning system is Lon-Capa[3], which is primarily a course man-
agement system. Exercises can be generated with variable content, which means
that every student gets an individual task. In contrast to the systems men-
tioned before, students more consequently get evaluative or descriptive feedback
in Lon-Capa, depending on the submission. However, we could not �nd any
hints for di�erent paths through an exercise that depend on the student submis-
sion or exercise content.

2 http://www.openmath.org/



3 Path-based exercises and feedback generation

As a general tool for e-assessment and automated tutoring, exercises in JACK
are not limited to the domain of mathematics. Instead, exercises may contain
multiple choice, �ll-in, and drop-down elements for receiving input from the
students. Thus a minimal exercise consists of some sort of task description, at
least one element that receives input from students, and at least one feedback
message. However, JACK o�ers some options for a more sophisticated exercise
design and more detailed feedback messages, in particular for exercises with
mathematical content, including the support of LATEX, input with a formula
editor and an evaluation of solutions with a computer algebra system. We will
discuss the options in the following subsection.

3.1 Design of path-based exercises

As a basic feature of JACK, tasks may be generic by using variables as place-
holder. These placeholders are �lled in dynamically, so the exercise presents
di�erent content to the student every time it is attended. There is no limitation
in where to use these variables, so the task description may vary, the number or
content of multiple choice or drop-down options may vary, the expected correct
results may vary, and so on. While this is of no immediate use for a single visit
on a single exercise, it is very helpful when students work with the tutoring
system for a longer time. In this case, they can work on the same exercise more
than once, receiving di�erent values within that exercise. Thus exercises remain
challenging for a longer period of time. Moreover, it possibly helps students to
understand the abstract concepts and encourages them to talk to each other
about solution strategies instead of plain solutions.

In addition, JACK not only allows for single tasks within an exercise, but
also for so-called path-based exercises. A path-based exercise in JACK consists
of an arbitrary number of steps, where each step de�nes a single task. Usually,
these tasks are related to each other in some way, e.g. by sharing some context
or by reusing values or even inputs from a previous step. A good example of such
an exercise is the sketching of a curve, where the determination of each feature
of the curve can be seen as a step in the sense of path-based exercises.

Path-based exercises in JACK are not limited to linear sequences of steps,
but can be considered as a directed graph. In this graph, each node represents
a step of the exercise, and edges are allowed between any two steps. Each step
(except for a pre-de�ned one, called �end�-step, that terminates the exercise) has
at least one outgoing edge for the next step. If there is more than one outgoing
edge, conditions must be provided under which the system takes the student
to the particular step. In this way, not only the values inside a task can vary,
but also the sequence of steps can be di�erent every time a student attends the
exercise. A sample graph for a path-based exercise is shown in �gure 1.

Conditions for choosing an edge can depend on the following parameters:
Variables: As we discussed earlier, exercises in JACK can be generic, e.g. the
coe�cients of a polynomial can vary every time a student attends the exercise.



Fig. 1. The graph of a path-based exercise.

Hence it might depend on the variables, whether the polynomial has or hasn't got
zeroes. In case the function has got zeroes, the student might have to compute
these, while it wouldn't make sense to confront the student with this task when
there are no zeroes.
Student's result: The system can react di�erently to correct and incorrect
solutions. For example the student might have to redo the step if he gave the
wrong answer, while he may continue otherwise. This approach enables teachers
to simulate a strategy often used in oral exams.
Student's input: The student's input from previous steps can be used by the
system in the following ones. This enables students to dictate their own pace of
work. For example, when students have to solve a linear equation system, JACK
is able to accept every correct transformation of the system and provide a new
step, where the student has to continue with his input from the previous step.

For students who are not capable of solving a task, authors can de�ne a
special succeeding step in case a student wants to "skip" the step. In this case,
the student has the option to get to the next step without submitting a solution.
In addition to that, the author has to de�ne a message, that is shown to the
student instead of the usual feedback message. The possibility of skipping a step
can help to prevent students from losing their motivation and thus giving up
during an exercise. In summary, path-based generic exercises o�er a big variety
of possibilities for authors. Using these features, many aspects of an exercise
from an oral or a written exam can be simulated.

3.2 Feedback in path-based exercises

As a very important consequence of splitting an exercise into steps, the student
may receive detailed individual feedback for each step. A feedback in general



Fig. 2. The student's view of the �rst step of an exercise in the system.

consists of a score and a feedback message. According to the typology of Tunstall
and Gsipps[9], JACK thus provides both evaluative and descriptive feedback:
The score is a number in the range of 0 to 100 based on a grading scheme provided
by the author. Hence it is an evaluative feedback that provides a judegment
and tells the student whether he was right or wrong. The feedback message may
contain any content, including dynamically created graphics. In particular, it can
refer to the student's input, reuse values from previous steps, and involve any
kind of calculation. Hence it is a descriptive feedback that refers to the student's
success and may provide guidance on how to improve a wrong solution.

We consider the latter kind of feedback as one of the central features of a
tutoring system. It is intended to help the students to comprehend where they
made mistakes or where they were correct. To be able to do so, JACK has to
understand the semantics of a solution. For this reason, a computer algebra sys-
tem (CAS) is used to evaluate solutions. On one hand, the CAS can verify the
correctness of a solution, even if there are in�nitely many correct ones. On the
other hand, it is able to locate errors precisely and to compare a student's solu-
tion with a standard solution. This enables authors to provide granular feedback,
evaluative feedback as well as descriptive feedback.

3.3 Example

Figure 2 shows the �rst step of the path-based exercise discussed earlier in this
section. It was used during an introductory course at the University of Duisburg-
Essen in October 2013. The author of the exercise has carved out the following
feedback cases:

1. Conceptual mistakes: In case a student submits a solution, that does not
have the desired form, JACK provides a special feedback for this purpose:
(1) If the submitted equation does not depend on x, the system generates a
feedback message, telling the student to use the variable x. (2) In case the
student uses x and another variable to describe the line, the feedback message
recapitulates how a line can be described through the equation y = mx+n.
(3) If the submitted equation depends only on x, the degree in x of the term
on the right-hand side still might be wrong. This means, the student has not
computed a line.



2. Mistakes in computing: When the student has understood the concept
of describing a line by its slope-intercept-form, he might still make mis-
takes during the computation of this form. Feedback cases were provided
for the following mistakes: (1) If the slope was computed correctly but the
y-intercept is wrong, the system generates a feedback message for this case.
(2) Inverse slope: When students mix-up numerator and denominator in the
formula that returns the slope for two given points, a feedback message is
generated for this case. (3) If the line only passes through one of the given
points, the feedback message that is generated can be seen in �gure 3. (4)
When none of the above mentioned feedback cases match, the feedback shows
the submitted solution and the points P and Q as shown in �gure 3, but
with a di�erent text. So the student can see, that the line passes through
none of the given points.

3. Formal mistakes: Even students who have understood the concepts of
computing a line from two given points and make no errors in computing
may fail in this step because they do not use the desired form. They could
for example use the form n+mx instead or extract some factor. While this is
possible from the mathematical point of view, it may miss a didactical point
of the exercise. Thus a special feedback and an additional step is de�ned for
this case (see �gure 1).

4 Technical realization

In exercises where a solution has to be entered into a text input �eld, there can
be virtually in�nite many possibilities to enter a correct solution. The expression
2a+ 2b could be written as 2a+ b+ b or a+ b+ a+ b, for example.

This is why a computer algebra system (CAS) needs to be used for the
evaluation of submitted solutions. A CAS is able to compare the student's input
with the correct solution and can tell whether they are semantically equal or not.
However, most CAS focus on one speci�c mathematical subdomain. Examples
are Maxima3 for analysis and Magma4 for algebra.

In contrast to that, a web-based assessment system for mathematics should
be able to cover a big variety of mathematical subdomains, such as algebra,
analysis, numerical analysis, statistics and many more. Hence it should be con-
sidered to use more than one CAS for the evaluation of solutions. At the same
time we cannot expect students to submit their solution in the syntax of the
CAS, responsible for the evaluation. In fact, students do not even need to know
which CAS is used to evaluate their particular input. Hence it is desirable to
have a standardised input syntax. For complex mathematical expressions it even
makes sense to support the input with a formula editor, which uses its own rep-
resentation for expressions. Consequently, an e-assessment system needs to be
able to translate between one or more input syntaxes and several CAS syntaxes.

3 http://maxima.sourceforge.net/
4 http://magma.maths.usyd.edu.au/magma/



Fig. 3. Feedback, in case the submitted line passes through P but not through Q.

This observation is not limited to the input side of systems, but exists in
a similar way on the output side: It should be possible to include the output
produced by a CAS into the feedback messages displayed to the students. Since
the students may not know the output syntax used by a particular CAS, it again
has to be translated into a readable syntax like LATEX. Moreover, the feedback
may contain dynamically created graphics as shown in �gure 3, so the output
from the CAS needs to be translated into a syntax readable by the plotting tool.

For this reason, JACK uses the well-known approach of using OpenMath as
a standard representation for mathematical expressions [2], [7] together with a
system component or service that translates between the standard representation
and a particular syntax, called phrasebook.

Until now, two phrasebooks have been developed for the integration of ex-
ternal services to JACK, a Symja5 phrasebook and a LATEX-phrasebook

6. Both
phrasebooks are based on OpenMath Version 2.0 and they make use of the
o�cial OpenMath schema7. The two phrasebooks implement all the content
dictionaries (CD) with status "o�cial"8 but they can easily be extended because

5 https://code.google.com/p/symja/
6 Available at http://www.s3.uni-duisburg-essen.de/research/jack/phrasebooks.html
7 http://www.openmath.org/standard/om20-2004-06-30/openmath2.xsd
8 http://www.openmath.org/cdnames.html



Fig. 4. Sketch of the JACK architecture wrt. data �ow for mathematical exercises.

of their structure. To ensure a smooth integration into JACK, both phrasebooks
were implemented in Java.

The CAS Symja provides round about 300 functions and shows a certain
strength in the �eld of parsing and comparing expressions. Of course the rel-
atively small number of functions already shows, that Symja is limited in its
abilities. For instance, there are no implementations of the inverse hyperbolic
functions, which are part of the o�cial OpenMath content dictionaries. This
again shows the need for extensibility in terms of computer algebra systems,
which is why we have started to work on the integration of Sage9 into JACK. In
addition to that, variables can be determined with the programming language
R10. This method is already in use in some lectures that work with JACK.

5 JACK in practice

JACK is already successfully in use in some courses at the University of Duisburg-
Essen. We started in spring 2013 with microeconomics I, a lecture attended by
722 students. 28 exercises were produced for JACK, which students could work
on during the semester. Additionally, students could achieve bonus points in �ve
mini exams, held in JACK. The bonus points were then added to the students'
results in the �nal exam, but only if they had passed the exam. Before using
JACK only 48% of the students passed the exam (2011), while this semester
(2013) 76% of the students were successful. After the promising start with mi-
croeconomics I, we continued using JACK in the lectures microeconomics II in
the winter semester 2013/14 and microeconomics III in the summer semester
2014.

Since autumn 2013 JACK is used in classes for statistics, beginning with the
lecture descriptive statistics in the winter semester 2013/14. JACK was used in
the same way as in the courses for microeconomics. After a successful run with
descriptive statistics, JACK is now used in the course inductive statistics as well.
We gave workshops for both groups on how to write exercises for JACK, which

9 http://www.sagemath.org/
10 http://www.r-project.org/



allows them to provide the exercises for JACK on their own. As you can see in
table 1 both groups have produced a signi�cant amount of exercises for JACK
until now, which shows that the e�ort for creating an exercise is not too high.

In addition to that, JACK is used for a preperation course in mathematics as
a blended learning concept for the department of economics. Students work on
exercises in JACK to refresh their knowledge of school mathematics. Additionally
they can ask questions in a forum or in face-to-face sessions. In table 1 you can
see the number of exercises and number of students for all courses that used
JACK.

term course # of students # of exercises # of exams

summer 2012 prep course mathematics 131 169 10
spring 2013 microeconomics I 722 28 17

prep course mathematics 177 170 30
winter 2013/14 microeconomics I 415 52 15

microeconomics II 604 12 11
descriptive statistics 657 93 23

Table 1. List of all courses using JACK and number of students and exercises.

6 Conclusions and Future Work

In this paper, we introduced a web-based tutoring system for mathematics in
which exercises can be represented as directed graphs. Each node of the graph
is a subtask, that needs to be ful�lled to solve the exercise. Authors of exercises
have many options for connecting the nodes of such an exercise, which adds a
great didactical value to the system. Furthermore the system supports authors
with many feedback options, which enables them to respond very precisely to
student's mistakes. Feedback options include computations using the input as
well as dynamic plotting of functions. Combining both, exercise design and feed-
back options, the system o�ers a big variety of tutoring skills, which can serve
to improve the student's learning outcome. We have pointed out with the help
of some examples, how this can be done.

From the technical perspective, we have worked out that computer algebra
systems play a central role for the purpose of providing feedback. Hence we need a
semantic representation of mathematical expressions. A �rst step has been taken
with the connection to Symja, but we have seen that a more general solution
for translations between various syntaxes is required. In this context, the use of
OpenMath has proven its worth for the system, because an easy integration of
further CAS is possible by implementing further phrasebooks. Our experiences
from the implementation of the Symja phrasebook should be useful for this
purpose and we will actually try to reuse some parts of it.

The fact that JACK is already in use in some courses at the University of
Duisburg-Essen indicates that our approach is heading into the right direction.



The pool of exercises as well as the number of participating groups is constantly
growing. However, an analysis has shown that the abilities of JACK are not
enough for some courses. This is particularly the case for classes from the �eld
of classical mathematics, such as Linear Algebra or Analysis where exercises go
beyond computations and include proof strategies. It is our aim to extend our
framework with such exercise types, which requires further research in the �eld
of automated theorem proving and reasoning as well as in other �elds like math-
ematical user interfaces and representation formats for mathematical knowledge.

References

1. Jörg Herter Thomas Köppen Barbara Grabowski, Susanne Gäng. MathCoach
und LaplaceScript: Ein programmierbarer Mathematiktutor und eine XML-basierte
Skriptsprache für interaktive Übungsaufgaben. In Tagungsband der Leipziger Infor-
matiktage 2005, pages 211�218, 2005.

2. A. Cohen, H. Cuypers, D. Jibetean, M. Spanbroek, O. Caprotti, E. Eixarch, D. Mar-
ques, and A. Pau. LeActiveMath Integrated CAS with OpenMath. EU-Project
Deliverable No D12, June 2005.

3. Gerd Kortenmeyer, Guy Albertelli, Wolfgang Bauer, Felicia Berryman, Jeremy
Bowers, Matthew Hall, Edwin Kashy, Deborah Kashy, Helen Keefe, Behrouz
Minaei-Bidgoli, William F. Punch, Alexander Sakharuk, and Cheryl Speier. The
learningonline network with computer-assisted personalized approach (loc-capa).
In Proceedings of Computer Based Learning in Science Conference, Cyprus, 2003.
CBLIS.

4. Josje Lodder and Johan Jeuring. Math-bridge, bridging the math gap between
high school and universities. In Proceedings EADTU annual conference 2011, pages
177�185, 2011.

5. Erica Melis, Eric Andrés, Jochen Büdenbender, Adrian Frischauf, George Goguadze,
Paul Libbrecht, Martin Pollet, and Carsten Ullrich. Activemath: A generic and adap-
tive web-based learning environment. International Journal of Arti�cial Intelligence
in Education, 12:385�407, 2001.

6. Edna Holland Mory. Handbook of research on educational communications and
technology, chapter Feedback research revisited, pages 745�783. Erlbaum Associates,
2004.

7. H. Prieto, S. Dalmas, and Y. Papegay. Mathematica as an OpenMath application.
ACM SIGSAM Bulletin - Special Issue of OpenMath, 34:22�26, June 2000.

8. Michael Striewe, Moritz Balz, and Michael Goedicke. A �exible and modular soft-
ware architecture for computer aided assessments and automated marking. In Pro-
ceedings of the First International Conference on Computer Supported Education
(CSEDU), 23 - 26 March 2009, Lisboa, Portugal, volume 2, pages 54�61. INSTICC,
2009.

9. Pat Tunstall and Caroline Gsipps. Teacher Feedback to Young Children in Forma-
tive Assessment: a typology. British Educational Research Journal, 22(4):389�404,
1996.


