
Learning the Parameters of Probabilistic
Description Logics

Fabrizio Riguzzi1, Elena Bellodi2, Riccardo Zese2, and Evelina Lamma2

1 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

{fabrizio.riguzzi,elena.bellodi,evelina.lamma,riccardo.zese}@unife.it

Abstract. Uncertain information is ubiquitous in the Semantic Web,
due to methods used for collecting data and to the inherently distributed
nature of the data sources. It is thus very important to develop proba-
bilistic Description Logics (DLs) so that the uncertainty is directly rep-
resented and managed at the language level. The DISPONTE semantics
for probabilistic DLs applies the distribution semantics of probabilistic
logic programming to DLs. In DISPONTE, axioms are labeled with nu-
meric parameters representing their probability. These are often difficult
to specify or to tune for a human. On the other hand, data is usually
available that can be leveraged for setting the parameters. In this pa-
per, we present EDGE that learns the parameters of DLs following the
DISPONTE semantics. EDGE is an EM algorithm in which the required
expectations are computed directly on the binary decision diagrams that
are built for inference. Experiments on two datasets show that EDGE
achieves higher areas under the Precision Recall and ROC curves than
an association rule learner in a comparable or smaller time.

1 Introduction

Due to the ubiquity of uncertain information, many authors [9, 17, 8] have re-
cently studied approaches to add uncertainty to the Semantic Web. Since De-
scription Logics (DLs) are at the basis of the Semantic Web, in [12] we proposed
the DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”, Span-
ish for “get ready”) semantics. DISPONTE applies the distribution semantics of
probabilistic logic programming [15] to DLs.

In [14] we presented an algorithm, called EDGE for “Em over bDds for
description loGics paramEter learning”, for learning the parameters of proba-
bilistic DLs that follow the DISPONTE semantics. EDGE starts from examples
of instances and non-instances of concepts and builds a set of Binary Decision
Diagrams (BDDs) that represent their explanations. The parameters are then
tuned using an EM algorithm [6] in which the required expectations are com-
puted directly on the BDDs. In [14] the parameters learned by EDGE were com-
pared with those given by the confidence of Association Rules (ARs for short in



47

the following) on a dataset extracted from educational.data.gov.uk. EDGE
achieved significantly higher areas under the Precision Recall and the Receiver
Operating Characteristics curves (AUCPR and AUCROC).

In this paper we extend the experiments presented in [14] by also consider-
ing a dataset extracted from DBPedia and by recording the time required by
EDGE and by the computation of ARs’ confidence. EDGE achieves again higher
AUCPR and AUCROC. Moreover, the time taken by EDGE is comparable to
the one required for computing ARs’ confidence.

The paper is organized as follows. Section 2 introduces DLs and the DISPONTE
semantics while Section 3 introduces EDGE. Section 4 discusses related works
and Section 5 shows the results of experiments. Section 6 concludes the paper.

2 Description Logics and the DISPONTE semantics

DLs are particularly useful for representing ontologies and have been adopted
as the basis of the Semantic Web. They are usually represented using a syntax
based on concepts and roles. A concept corresponds to a set of individuals of the
domain while a role corresponds to a set of couples of individuals of the domain.
In the following we consider and describe ALC [16].

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role is an atomic role R ∈ R. Concepts are defined as follows.
Each A ∈ A, ⊥ and > are concepts. If C, C1 and C2 are concepts and R ∈ R,
then (C1 u C2), (C1 t C2) and ¬C are concepts, as well as ∃R.C and ∀R.C.

Let C and D be concepts, R be a role and a and b be individuals, a TBox T
is a finite set of concept inclusion axioms C v D, while an ABox A is a finite
set of concept membership axioms a : C and role membership axioms (a, b) : R.
A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation function
that assigns an element in ∆I to each individual a, a subset of ∆I to each
concept C and a subset of ∆I ×∆I to each role R. The mapping ·I is extended
to all concepts (where RI(x) = {y|(x, y) ∈ RI} and #X denotes the cardinality
of the set X) as:

>I = ∆I

(¬C)I = ∆I \ CI

(C1 t C2)I = CI
1 ∪ CI

2

(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

⊥I = ∅
(C1 u C2)I = CI

1 ∩ CI
2

(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}

A query over a KB base is usually an axiom for which we want to test the
entailment from the KB. The entailment test may be reduced to checking the
unsatisfiability of a concept in the KB, i.e., the emptiness of the concept.

DISPONTE applies the distribution semantics to probabilistic ontologies
[15]. In DISPONTE [2, 10–13] a probabilistic knowledge base K is a set of certain
and probabilistic axioms. Certain axioms take the form of regular DL axioms.



48

Probabilistic axioms take the form p :: E, where p is a real number in [0, 1] and
E is a DL axiom. The idea of DISPONTE is to associate independent Boolean
random variables with the axioms. Thus, a single random variable is associated
with axiom E and p represents its probability of being true.

A DISPONTE KB defines a distribution over regular DL KB called worlds.
Each world is obtained by including every certain axiom. For each probabilistic
axiom, we decide whether or not to include it in the world. By multiplying the
probability of the choices made to obtain a world we can assign a probability to
it. The probability of a query is then the sum of the probabilities of the worlds
where the query holds true.

3 EDGE

EDGE [14] is based on the algorithm EMBLEM [4, 3] developed for learning the
parameters for probabilistic logic programs under the distribution semantics.
EDGE adapts EMBLEM to the case of probabilistic DLs under the DISPONTE
semantics. EDGE takes as input a DL KB and a number of positive and negative
examples that represent the queries in the form of concept assertions, i.e., of
the form a : C for an individual a and a class C. Positive examples represent
information that we regard as true and for which we would like to get high
probability while negative examples represent information that we regard as
false and for which we would like to get low probability.

EDGE first computes, for each example, the BDD encoding its explanations
using the reasoner BUNDLE [13]. For a positive example of the form a : C,
EDGE looks for the explanations of a : C and encodes them in a BDD. For a
negative example of the form a : C, EDGE looks for the explanations of a : C,
encodes them in a BDD and negates it with the NOT BDD operator. Then
EDGE enters the EM cycle, in which the steps of Expectation and Maximiza-
tion are repeated until the log-likelihood (LL) of the examples reaches a local
maximum or until the maximum number of iterations is reached. The EM al-
gorithm is guaranteed to find a local maximum, which however may not be the
global maximum. The LL of the examples is guaranteed to increase at each
iteration.

Function Expectation takes as input a BDD for each example Q, and com-
putes P (Xi = x|Q) for all the variables Xi in the BDD. Finally, it returns the
LL of the data that is used in the stopping criterion: EDGE stops when the
difference between the LL of the current iteration and that of the previous one
drops below a threshold ε or when this difference is below a fraction δ of the
previous LL. Function Maximization computes the parameters’ values for the
next EM iteration by relative frequency. For more details see [4].

The phase of explanations research for each example has high complexity
in the worst case, since the explanations may grow exponentially in number;
however, BUNDLE is able to handle domains of significant size. The EM phase
has a linear cost in the number of nodes since the E-step requires two traversals
of the diagram.



49

4 Related Work

crALC [9] is an extension of ALC that adopts an interpretation-based semantics
for allowing statistical axioms of the form P (C|D) = α (for each element x in
D that belongs to D, the probability that belongs also to C is α) and of the
form P (R) = β (for each couple of elements x and y in D, the probability that
x is linked to y by the role R is β). On the other hand, crALC does not allow
to express a degree of belief in axioms. A crALC KB K can be represented as
a directed acyclic graph G(K) in which a node represents a concept or a role
and the edges represent the relations between them. The algorithm of [9] learns
parameters and structure of crALC knowledge bases. It starts from positive and
negative examples for a single concept and learns the best probabilistic definition
for the concept chosen using an EM algorithm. Differently for us, the expected
counts are computed by resorting to inference in the graph, while we exploit the
BDD structures.

GoldMiner [17, 8] is an algorithm that exploits ARs for building ontologies.
GoldMiner extracts information about individuals, named classes and roles using
SPARQL queries. From these data, it builds two transaction tables: one that
stores the classes to which each individual belongs and one that stores the roles
to which each couple of individuals belongs. Finally, the APRIORI algorithm [1]
is applied to each table in order to find ARs. Implications of the form A⇒ B can
be converted to subclass axioms of the form A v B. Moreover, the confidence
associated with ARs can be interpreted as the probability of the axiom p :: A v
B. So GoldMiner can be used to obtain a probabilistic knowledge base.

5 Experiments

EDGE has been compared with ARs over two real world datasets from the Linked
Open Data cloud: educational.data.gov.uk and an extract of DBPedia. In our
experiment, we wanted to simulate the situation in which an expert provides the
structure of the ontology together with information on a set of individuals. The
ontologies were obtained with GoldMiner: we extracted 10,000 individuals for
educational.data.gov.uk and 7,200 for DBPedia and we learned ARs from
the resulting transaction tables. The ARs were then converted into subclass
axioms.

In order to generate a set of examples for EDGE, for each extracted individual
a we sampled three named classes: A and B were sampled from the named classes
to which a explicitly belonged, while C was sampled from the named classes to
which a did not explicitly belong but that exhibited at least one explanation for
the query a : C. Then, we randomly split individuals into two equally sized sets:
the membership assertions regarding the individuals from the first set constituted
the training set while the ones in the second set constituted the testing set.
The axiom a : A is added to the KB, while a : B is considered as a positive
example and a : C as a negative example. The training set contained only the
membership assertions for the first set of individuals, while for the testing phase



50

we removed the membership assertions of the training set from the KB and
added the assertions of the second set.

We compared the parameters learned by EDGE with ARs’ confidence. For
each AR corresponding to the subclass axiom A v B, we computed the confi-
dence by running two SPARQL queries over the training KBs, one for finding all
the individuals that belong to AuB and one for those that belong to A. The con-
fidence is then given by the ratio of the number of individuals in AuB over those
in A. We created 330 different SPARQL queries for educational.data.gov.uk
and 2,243 for DBPedia.

Next we ran EDGE over the KBs where all the subclass axioms were assigned
an initial random probability. We then computed the probability of the examples
in the testing set according to the theory learned by EDGE and to the theory
composed of the ARs with the confidence as probability. We drew the Precision-
Recall and the Receiver Operating Characteristics curves and computed the Area
Under the Curve (AUCPR and AUCROC) following the methods of [5, 7]. Table
1 shows the AUCPR, the AUCROC and the execution times (in seconds). Note
that the elapsed time for EDGE depends on the number of executed queries and
the number of different explanations involved in each query, while the elapsed
time for ARs depends on the number of classes in the KB. EDGE achieves much
higher areas in a time that is of the same or lower order of magnitude with
respect to ARs.

Areas Under Curves EDGE ARs

educational.data.gov.uk
AUCPR 0.9702 0.8804
AUCROC 0.9796 0.9158
Time (s) 65,170 10,490

DBPedia
AUCPR 0.9784 0.5916
AUCROC 0.9902 0.4346
Time (s) 50,800 578,420

Table 1. Resulting AUCPR, AUCROC and execution times.

6 Conclusions

EDGE applies an EM algorithm for learning the parameters of probabilistic
knowledge bases under the DISPONTE semantics. It exploits the BDDs that
are built during inference to efficiently compute the expectations for hidden vari-
ables. EDGE is available for download from http://sites.unife.it/ml/edge.
The experiments over two real world datasets show that EDGE achieves larger
areas both under the PR and the ROC curve with respect to an algorithm based
on ARs in a comparable or smaller time, thus demonstrating that EDGE is a
viable alternative to ARs.
We plan to extend EDGE for learning the structure together with the parame-
ters.



51

7 Acknowledgements

Elena Bellodi is partially supported by Gruppo Nazionale per il Calcolo Scien-
tifico, Istituto Nazionale di Alta Matematica ”F. Severi”.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994. pp. 487–499. Morgan Kaufmann (1994)

2. Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for prob-
abilistic ontologies. In: URSW 2011. CEUR Workshop Proceedings, vol. 778. Sun
SITE Central Europe (2011)

3. Bellodi, E., Riguzzi, F.: Experimentation of an expectation maximization algorithm
for probabilistic logic programs. Intelligenza Artificiale 8(1), 3–18 (2012)

4. Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams
for probabilistic logic programs. Intelligent Data Analysis 17(2), 343–363 (2013)

5. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: ICML 2006. pp. 233–240. ACM (2006)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Statistical Society. Series B 39(1), 1–38 (1977)

7. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8),
861–874 (2006)

8. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: OTM
Conferences 2011. LNCS, vol. 7045, pp. 680–697. Springer (2011)

9. Luna, J.E.O., Revoredo, K., Cozman, F.G.: Learning probabilistic description log-
ics: A framework and algorithms. In: MICAI 2011. LNCS, vol. 7094, pp. 28–39.
Springer (2011)

10. Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic Datalog+/- under the distribu-
tion semantics. In: DL 2012. CEUR Workshop Proceedings, vol. 846. Sun SITE
Central Europe (2012)

11. Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic ontologies in Datalog+/-. In:
CILC 2012. CEUR Workshop Proceedings, vol. 857, pp. 221–235. Sun SITE Central
Europe (2012)

12. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic
ontologies. In: URSW 2012. CEUR Workshop Proceedings, vol. 900, pp. 3–14. Sun
SITE Central Europe (2012)

13. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: BUNDLE: A reasoner for proba-
bilistic ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp.
183–197. Springer (2013)

14. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic
ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 265–270.
Springer (2013)

15. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: ICLP 1995. pp. 715–729 (1995)

16. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

17. Völker, J., Niepert, M.: Statistical schema induction. In: ESWC 2011. LNCS, vol.
6643, pp. 124–138. Springer (2011)


