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Abstract. In this study we look at new requirements for event models
based on concepts defined for complex event processing. A corresponding
model for representing heterogeneous event objects in RDF is defined,
building on pre-existing work and focusing on structural aspects, which
have not been addressed before, such as composite event objects encap-
sulating other event objects. SPARQL querying of event objects is also
considered, to demonstrate how event objects based on the model can
be recognized and processed in a straightforward way with SPARQL 1.1
Query-compliant tools.
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1 Introduction

Event models (e.g. [17, 19]) currently available for tools using Semantic Web tech-
nologies do not address all necessary aspects of event processing, for example,
composite event objects where higher-level event objects encapsulate lower-level
event objects. Work on stream processing using Semantic Web technologies has
initially focused on processing streams of individual triples [3, 11, 10] rather than
events, but the use of larger subgraphs with more heterogeneous structures us-
ing RDF? and SPARQL* has also been described [15]. We extend current event
models to incorporate more aspects of (complex) event processing and demon-
strate how streams of structured and heterogeneous event objects, represented
based on our model, can be processed using SPARQL 1.1.

Complex event processing, as pioneered by Luckham, Etzion and Niblett [13,
6], is based on layered abstractions of events. An event is defined by [14] as “any-
thing that happens, or is contemplated as happening”. A complex event is “an
event that summarizes, represents, or denotes a set of other events”. Real-world
events are observed by sensors, which translate them to simple event objects,
i.e., records of the observations in the system environment, which constitute
the representation of an event that the system processes. Interconnected rule
processors, denoted “event processing agents” (EPA) [14], transform patterns of
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simple event objects, potentially from very heterogeneous sources, to complex
event objects of higher abstraction levels. As an example, we may have sensors
measuring the water level and flow in different parts of a network of rivers and
lakes. That information combined with a weather forecast for heavy rain could
be used to derive a flood warning, which in this case would be an abstract com-
plex event object. So far, none of the existing event ontologies address any of
the challenges of treating complex and composite event objects.

The solution has been modelled in the form of a Content Ontology Design
Pattern [7] (hereafter simply denoted ODP), which is a reusable ontology com-
ponent that can be used independently of the event models it is built upon, but
which is also aligned to several important models. The proposed ODP is avail-
able in the ODP Portal®. By defining a comprehensive and structured model
for representing event objects, this work addresses challenges on the level of ab-
straction as well as integration [5], and constitutes a novel and necessary step for
further research in event processing based on Semantic Web technologies. The
proposed model can be used as a tool for event processing systems to structure,
integrate and manage such streams (whatever their original vocabularies), and
for interchange of event objects. To use the model, it is not necessary that an
incoming stream is already structured according to the ODP, refactoring of the
streamed data can also be a task performed by the event processing system itself.

The paper starts by an in-depth discussion of the state of the art, existing
solutions and tools, which are reviewed in Section 2. Section 3 reviews the re-
quirements for an event model for event processing. Our solution is described
in Section 4, with a discussion on benefits and shortcomings, as well as future
work, in Section 5. Conclusions are presented in Section 6.

2 Background and Related Work

When something happens in the material world, it may be detected by mechan-
ical, electric, or human sensors. These sensors emit streams of observations. A
particular pattern of observations, detected by an event processing system, trig-
gers the creation of an event object mirroring and/or describing the real-world
event, as illustrated in Figure 1. Traditionally, observation streams have been
handled by data stream management systems, with their roots in databases,
where the processing unit is a row of a table [2]. Parameters, such as time, are
used to portion infinite streams into windows, which are processed by aggre-
gate operators to derive numerical conclusions descriptive of the contents. This
heritage has later been applied to the Semantic Web by constructing streams
out of time-annotated RDF triples [8, 9, 3] and extending SPARQL with window
operators [3, 11], which isolate portions of the streams based on the timestamps.

Processing based on individual triples is, however, very limited. Most data
sources, including sensors, can attach various measurements and other attributes
than time (e.g., location) to the units of data they provide [12]. Moreover, an
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Fig. 1: An event object compiled from sensor observations and other data sources.

event object can be associated with multiple time-related parameters, e.g., time
of sampling based on the clock of the sensor, time of entry to the data stream,
time of arrival in the event processing system and time of event object validity
[8], which need to be understood by the system to produce the desired result.
Computing aggregate values such as minimum, maximum, sum and average from
a single parameter is a practical way to summarize and clean noisy data, but it
is not yet a means to derive layered conclusions for complex event processing.

The SPARQL query language has the capability to match and isolate sub-
graphs of data, with significant new functionality added in v. 1.1, e.g., property
path handling. Processing heterogeneous event objects consisting of multiple
RDF triples with a common timestamp has been demonstrated in [15,16]. In
this paper we review those aspects of (complex) event modelling, which in our
view have not been fully addressed in the event (and semantic sensor) ontologies
currently available [17,19,12].

The final report of the W3C Semantic Sensor Network XG [12] reviews nu-
merous existing event and sensor ontologies, and subsequently describes a com-
prehensive ontology® (hereafter denoted the SSN ontology) for conveying the
output of sensors. The concepts “Observation” and “SensorOutput” in the SSN
ontology are, however, restricted to describing the output of exactly one sensor,
so they do not extend to the concept of event objects nor abstractions into com-
plex events. Our model extends the SSN ontology with such concepts, and follows
a common baseline by using the DOLCE Ultra Light” (hereafter denoted DUL)
top-level ontology as a formal basis, to be compatible with the SSN ontology.

When extending the SSN ontology with the concept of (complex) event ob-
jects, we have reviewed and considered to reuse existing event ontologies. The
Event Ontology®, rooted in describing music events, and the LODE ontology?,

Shttp://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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are both general enough to be applicable also for event processing, but lack
some of the structures needed, for instance, the notion of complex events as ab-
stractions over simple events. Taylor and Leidinger define an ontology [19] for
complex event processing'®, but it is highly specific to the problem domain, con-
taining references to particular observations, such as wind speed, which makes it
unsuitable as a general pattern. The Event-F ontology'! [17] on the other hand
is a comprehensive framework, also derived from DUL, which is general enough
to serve our purpose, but which still lacks the specifics of complex events. How-
ever, since Event-F is directly compatible with the SSN ontology, through DUL,
it provides a good foundation for our extension, hence, we align our concepts
also to Event-F. Another alignment between the two ontologies was made in
the SPITFIRE project, producing an extended ontology'? for describing sensor
contexts as well as energy requirements, but this extension still lacks classes and
properties for describing complex events. Also note that both SSN and Event-F
are large ontologies (as is the SPITFIRE extension), and being based on DUL
quite heavily axiomatized. In contrast to this, our model is published as an ODP,
without importing either ontology, but rather simply aligning to them.

3 Requirements of an Event Model for Complex Event
Processing

When developing the Event-F ontology, the WeKnowlt project collected a com-
prehensive set of requirements of general event models [18]. Such generic require-
ments include: participation of objects in events, temporal duration of events,
spatial extension of objects, relationships between events (mereological, causal,
and correlations), as well as documentation and interpretation of events. Addi-
tionally, a number of non-functional requirements, such as extensibility, formal
precision (axiomatization), modularity, reusability, and separation of concerns.
Even though the requirements are covered by Event-F, it does not cover all the
needs of modelling complex events, hence, we here add the requirements that
have not yet been addressed. The non-functional requirements have influenced
the design of the model we are proposing, while taking some of the requirements
even further, such as providing an ODP rather than a large core ontology of
complex events, which takes the modularity requirement even one step beyond
the design of the Event-F ontology.

Requirements not directly addressed by Event-F (nor any other current event
model, or the SSN ontology):

1. Ewents and event objects: In the commonly agreed terminology of [14] there is
a clear separation between events, as something occurring in the real world,
and event objects, which are representations of the real-world events as de-
scribed within some computer system that may be used to detect or process

Yhttp:/ /research.ict.csiro.au/conferences/ssn/EventOntology no_imports.owl
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the real-world events in some way. Although one could argue that an event
model will never contain the real-world events themselves, i.e., whatever is
modeled by an ontology will always be a representation of an event, we find
it important to allow this distinction in a model for complex events because
the breakdown of events into their parts and related events that a human
user finds reasonable may considerably differ from the event objects that are
actually present in the system for detecting or describing the event. Hence
two parallel modelling structures should be used for this purpose. For in-
stance, consider a music festival night as an event that occurs in the real
world. Intuitively we may, for instance, describe this event as a set of con-
certs by different artists that are held in sequence on the same stage. How-
ever, a system representation of this event, i.e., the event objects, may very
well display a completely different content and structural breakdown. For in-
stance, we may use sound level sensors to detect that there is some activity
on the stage, and make readings every minute, then the music festival night
is actually represented by a “loud period” event object in the system, which
consists of sub-events that are the individual sound level readings, together
with some mechanism detecting that what is heard is actually music.

. Payload support: Following [6], an event object is split into an event object
header, which contains necessary information for processing the event object,
and optional payload, which may not be fully understood or processed by
the event processing network but needs to be kept associated with the event
object. We incorporate optional “header” and “body” segments for event
objects to demonstrate the capability of handling unknown components,
e.g., unknown vocabularies used for the body of the event object.

. Encapsulated event objects: The structurally most demanding type of event
object in [14] is a “composite event object”, which contains the event objects
it is composed of, in a separable form. As the event objects constituting a
composite event object may themselves be composite event objects, the re-
cursion of composite event objects within composite event objects should
be supported in any number of layers. It is worth noting that such a struc-
tural relation between actual events is already present in Event-F through
the mereological relations borrowed from DUL. However, as we have already
noted in the first requirement we need to clearly separate events from event
objects, hence, when aligning event objects to the SSN ontology, i.e., mod-
elling them as information objects in a system, we will need an additional
such structure for the event objects (in addition to the one in Event-F).

. References to triggering events: Complex event objects resemble composite
event objects, since both are referencing other event objects, but while the
parts of a composite event object are wholly dependent on the encapsulating
event object (through partonomy) a complex event object can also simply be
an event object that somehow is related to other event objects (referencing
other event objects), e.g., by being an abstraction of a set of low-level event
objects. The relation between complex event objects and their related event
objects is therefore a kind of constituency (in the DUL terminology) rather
than partonomy. An important use of such a relation is the ability to point



to the triggering event objects, so that it is possible to trace what triggered
the abstraction, and hence the appearance of this complex event object.

5. Multiple time-stamps: An event object can be associated with multiple time-
related parameters, e.g., time of sampling based on the clock of the sensor,
time of entry to the data stream, time of arrival to the stream processing
system and time of event object validity [8], which need to be understood
by the system to arrive at the desired outcome. An event model needs to be
able to distinguish between different kinds of timestamps.

6. Querying ability: An aspect that has been overlooked in, for instance, Event-
F is the usage of the model for supporting queries over event objects. Al-
though Event-F is logically sound and well-designed, it is not modelled par-
ticularly with querying in mind. Several structures in Event-F involve n-ary
relations in several layers, modelled as OWL classes, which contributes to
very long and complex query expressions. Although this may be an accept-
able price to pay for increased reasoning capabilities, we also raise the impor-
tance of being able to easily query the represented event objects, and being
able to formulate generic “query templates” for managing event objects.

In addition to these specific requirements, we have also tried to adhere to the gen-
eral characteristics of Content ODPs, as described in [7], which can be seen as a
list of desired features, including the provision of a reusable computational com-
ponent representing the ODP, making the ODP small and autonomous, enabling
inferencing on the ODP, and making it cognitively and linguistically relevant as
well as a representation of best practices (including to adhere to a commonly
agreed terminology, such as [14]).

4 Proposed Solution

4.1 Event Model in OWL

As a starting point for our proposed ODP model, we have taken the SSN on-
tology [12] and the Event-F ontology [18]. Event-F can be used together with
our proposed ODP to connect to more detailed or user-friendly descriptions of
the event itself, e.g., for reasoning purposes, when the rich axiomatization of
events from Event-F is desirable, or for describing the event in a more user-
oriented fashion. Both the SSN ontology and Event-F are based on DUL, and by
extending and aligning to both these models, our ODP also relies on the DUL
ontology. From our point of view, and in accordance with the terminology of [14],
the event object (Req. 1) is a central concept (see Figure 2), which is the sys-
tem representation, or record, of an event (real or system generated). An event
object can then be related to a “real” event, i.e., a dul:Event, which through
the alignment to the Event-F model, then has to be a documented event, i.e., a
dul:Event involved in some eventf :EventDocumentationSituation.

An event object can then be either a simple event object or a complex event
object, depending on if it abstracts (summarizes or represents) other, more low-
level, event objects or not. A complex event object is something that has some
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Fig.2: The core classes of the Event Processing ODP and their relations to
DUL concepts (using the UML-like notation of TopBraid Composer, where some
details have been omitted due to readability reasons).

“sub-event objects” (Req. 4). A special case of a complex event object is a
composite event object (Req. 3), which is a complex event object that is actually
made up of a set of other event objects, i.e., acting as its parts. As noted by [14]
a composite event object is always a complex event object, but every complex
event object is not necessarily a composite event object, if it only represents or
references other related event objects but does not include them as components.
Encapsulated and referenced event objects can be modelled using two separate
sets of properties, so that each type of relation can be treated independently.
The structure does not require OWL reasoning per se, but gives the opportunity
to reason over the structures, using transitivity and inverse properties.

Payload support (Req. 2) is provided through introducing classes for the
header and body of an event object, making it possible to distinguish between the
known parts of the information and the body, i.e., the payload that may not use
any known vocabulary. Nevertheless, we feel that this legacy from earlier event
processing systems may not be ideal to include in all RDF stream processing
systems, whereby we have modeled the pattern in such a way that it is an
optional feature. Event objects can be modelled directly, without header and
body parts distinguished, which is more in line with the modelling “freedom”
and simplicity of Linked Data and RDF graph data in general.

Multiple timestamps (Req. 5) are supported through a set of separate datatype
properties: hasEventObjectSamplingTime, hasEventObjectApplicationTime,
hasEventObjectSystemTime, and hasEventObjectExpirationTime, correspond-
ing to the time points when the event object was sampled (e.g., recorded by a
sensor), entered the data stream, arrived in the event processing system via the
stream, and any known end time for the event objects validity, respectively. Al-
though this does not solve the problem of different time references in general, at



least one can now explicitly say what time is actually recorded, and if needed,
record several timestamps for each object. An additional desirable feature would
be the ability to express which of the timestamps should be the default for time
window operations, however, we feel that this lies outside the scope of our cur-
rent pattern. Rather such capabilities should lie in a vocabulary for describing
RDF streams, or event processing systems, not event objects themselves.

Finally, event objects can be effectively processed through SPARQL queries
(Req. 6). In particular, we have made sure that some of the most common queries
can be expressed in a generic manner, i.e., as “query patterns” (discussed in the
following section), to facilitate reuse and to make event processing as uniform
as possible between systems. More details on the modelling decisions and the
detailed structure of the ODP can be found in the annotations of the ODP model
itself, and in the pattern abstract that accompanies it [4].

4.2 Processing Events with SPARQL

Having an ODP for describing the event objects handled by an event processing
system is a (practical) contribution in itself, since such a model has not existed
before. However, for this contribution to be significant in the future it needs to
be practically usable and beneficial to a large class of systems. As also stated
in our list of requirements an important aspect of the work is to be able to
effectively query the event data structured according to the model, which will
make it useful in a system setting. Ideally, the ODP presented above would come
with its set of generic query patterns that represent common operations on event
objects, which can be reused within any domain. In this section, we show a step
towards such generic query patterns, although we also point at some limitations
with the current model and SPARQL standard that restrain us from providing
a completely generalized solution.

The following example set of four event objects is used to demonstrate oper-
ations on composite complex event objects containing a header and a body and
having a capability to reference other event objects without encapsulating them:

:floodWarning0001 a ep:EventObject ;

ep:hasEventObjectHeader [
rdfs:label "Flood Warning composite event" ;
ep:hasEventObjectTime "2013-07-03T08:18:21"""xsd:dateTime ;
ep:refersToEventObjectConstituent :weather0001 ;
ep:refersToEventObjectComponent :waterAlert0001 ;
floodex:forecast floodex:ImminentDanger ;

] ; #end of Header

ep:hasEventObjectBody [
rdfs:comment "Exemplifies a composite event." ;

] . #end of Body

:waterAlert0001 a ep:EventObject ;

ep:hasEventObjectHeader [
rdfs:label "Water-related alert composite" ;
ep:hasEventObjectTime "2013-07-03T08:17:21"""xsd:dateTime ;
ep:refersToEventObjectComponent :waterLevel2341 ;
floodex:waterLevelChangeRate floodex:high ;

] ; #end of Header

ep:hasEventObjectBody [

rdfs:comment "Information external to our system." ;



foaf :mbox <mailto:contactrelevanttoanothersystem@example.org> ;

1.

:waterLevel2341 a ep:EventObject ;
ep:hasEventObjectHeader [
ssn:isProducedBy [
a ssn:SensingDevice ;
rdfs:label "Water Level Measurement" ;
15
ep:hasEventObjectTime "2013-07-03T08:17:15"""xsd:dateTime ;
ssn:hasValue [
dul:hasRegionDataValue 22 ;
1
1.

:weather0001 a ep:EventObject ;
ep:hasEventObjectHeader [
rdfs:label "Weather forecast for London" ;
ep:hasEventObjectTime "2013-07-03T08:17:21"""xsd:dateTime ;
ep:hasEventObjectAttributeValue floodex:rain ;
] ; #end of Header
ep:hasEventObjectBody [

1 . #end of Body

The full example is available with the pattern and prefixes in the ODP portal.
The floodWarning is a composite event object, encapsulating a waterAlert.
The waterAlert is also composite, encapsulating a waterLevel measurement.
The floodWarning also refers to a weather event object, but the weather event
object is not encapsulated in the floodWarning. The challenge for querying is to
match the floodWarning composite event object (for any move, copy, delete or
other operation on the composite event object), with all levels of encapsulated
event objects, excluding referenced information not integral to the event object.

After the addition of property paths in version 1.1, SPARQL has some new
methods for supporting nested structures. Using the property path expression
(ep:hasEventObjectHeader / ep:refersToEventObjectComponent)*, an ar-
bitrary number of nested composite event objects can be supported. The refer-
enced event object weather0001 is not matched, as it is referred with ep:refers-
ToEventObjectConstituent.

Matching more levels of depth for the header and body in a generic way is
not as straightforward. Matching an arbitrary chain of unknown links would be
a very powerful tool, which in the world of linked data could eventually end up
matching that entire universe - not just the header and body triples we want. Us-
ing a property path of unspecified length with a known combination of predicates
(ep:hasEventObjectHeader and ep:refersToEventObjectComponent) can be
asserted safe in our controlled setting of an event object stream, where the pair
of predicates can be guaranteed only to refer to direct sub-event objects in the
same graph. Supporting an arbitrary number of levels of unknown predicates is,
however, much more challenging and potentially dangerous. SPARQL doesn’t
currently offer means to follow such a property path. The same functionality
would theoretically be available through negation, using a property path ex-
pression such as (! :foobar)x*, where “:foobar” is a fabricated predicate, which
should not appear in the data stream. In addition to the dangers explained
above, tool support for this approach is uncertain.



In case of the header the support for more depth can always be achieved by
making the SPARQL query more explicit, because the structure of the header
is assumed to be known by our event processing application, but the structure
of the body is assumed to be unknown. One way to support deeper structures
is to restrict such structures to be linked only through blank nodes, since blank
nodes cannot point to nodes outside the current graph. Linking through blank
nodes allows more depth in the event object structure without setting an explicit
requirement to know the contents.

Using these tools we can write a query, which correctly constructs a copy of
the floodWarning0001 composite event object including the encapsulated event
objects waterAlert0001 and waterLevel2341 without prior knowledge of their
existence or contents:

CONSTRUCT { # Create a copy of the matched event object, with encapsulated event objects

7event a ep:EventObject ;
ep:hasEventObjectHeader 7header .

Theader 7hp 7hv . # First level headers
Theader2 7hp2 7hv2 . # Second level nested headers
7event ep:hasEventObjectBody 7body .

?body 7bp 7bv . # First level body

} WHERE { # Match an event object with all nested levels of encapsulated event objects
:floodWarning0001 ( ep:hasEventObjectHeader /
ep:refersToEventObjectComponent )* 7event .

7event a ep:EventObject .
7event ep:hasEventObjectHeader 7header . # Mandatory header
OPTIONAL { ?header ?hp ?hv # Optional first-level headers

#0ptional second-level nested headers, only through blank nodes

OPTIONAL { BIND ( IF (isBlank(?hv), 7hv, 0) as ?7header2)

?header2 7hp2 7hv2 } }

OPTIONAL {
7event ep:hasEventObjectBody ?body . # Optional body
OPTIONAL { ?body 7bp ?bv } } # Optional first-level body content

}

To keep the query compact the amount of nested levels in the header and the
body has been set to match our example. More nested levels can be added by
adding more nested OPTIONAL-clauses, checking that linking is taking place
specifically through blank nodes. To the best of our knowledge matching an
unspecified number of nested levels through blank nodes only is not possible
with SPARQL 1.1 without explicit knowledge of the predicates, in which case
the query would again need to be explicitly defined for each nesting level. Apart
from the explicit subject (:floodWarning0001) the example query is generic
and would work with a structurally compliant event object independent of the
content. In a real-world application the explicit subject could be replaced by
some other criteria to match the desired event object in an event object stream.

5 Discussion and Future Work

Our proposed model has been published as an ODP, which comes with several
advantages. For instance, both the SSN and Event-F ontologies may be perceived
as quite large and “heavy” to understand and use, while our small model only
contains a handful of classes and properties that can be grasped quite easily. It
can also be used independently of the DUL axiomatization, if this is not desirable



or compatible for a specific use case. On the other hand, the lack of upper level
axiomatization can be easily amended through our careful alignments (included
in the model as axioms), by simply adding the missing imports (SSN and Event-
F), if the upper level is needed for a particular use case.

A generic way of matching event objects using SPARQL 1.1 was demon-
strated, supporting:

— the distinction between events and event objects (Req. 1), if desired,

— inclusion of a header and an optional body (Req. 2), with unknown content,
in the event object structure,

— composite event objects encapsulating other event objects (Req. 3), poten-
tially over any number of nested layers (limited by the SPARQL implemen-
tation),

— referencing of other event objects without encapsulating them (Req. 4), and

— generation of query templates to process compliant event objects (Req. 6),
observing related restrictions.

Support for multiple timestamps (Req. 5) is built into the model, but selection
of the timestamp to use for a particular purpose was considered to be a stream-
specific parameter and outside the scope of this paper.

As a restriction to the generality of queries, knowledge of the maximum
number of nested levels of RDF triples supported within the header or body was
observed to be required a priori, with every level adding some complexity to the
query needed to match an event object. To avoid following links outside event
objects, nesting of the body should only be done using blank nodes. Deviations
of the format, such as allowing event objects both with and without explicit
header, or objects of other classes (such as ssn:SensorOutput) add complexity
to queries. The recommended approach would be to convert all event objects to
a uniform format upon entry to the event processing network. The specific con-
versions are outside the scope of this document, but due to the flexibility of RDF
most formats used for describing events can be converted to RDF representations
compliant with the presented model in a straightforward way.

On a more general note, currently available commercial complex event pro-
cessing tools'? use different means of defining the event processing network and
the agents within, apart from systems based on a common root. The introduction
of an event processing model meeting the requirements of complex event pro-
cessing enables tools based on Semantic Web technologies to address the same
application space. Compared to proprietary approaches, RDF and SPARQL have
the benefit of a specified definition language, paving the way for improved tool
compatibility. Integrated processing of event streams with static, linked and
open datasets in the cloud and the built-in reasoning capabilities of Semantic
Web tools are also strong benefits.

A longer-term target is to make semantic stream processing systems config-
urable to understand and process heterogeneous, layered event objects both on

Be.g. http://www.thetibcoblog.com /wp-content /uploads/2011/12/cep-market-
dec2011.png



live streams as well as recorded data. For recorded data, the systems will need
to follow the same stream parameters (e.g. time) to be used for both algebra and
relational operators. Descriptions of the operational semantics of flow processing
systems should be developed so that it is possible to know a priori, where results
of processing the same data using the same set of queries will be different.

To pave the way, harmonization of tools and specifications could be improved,
e.g., on the following aspects:

— Common event processing model (vocabulary). This paper makes a contri-
bution, but to be effective on a broad scale, further community consensus
on the model is needed.

— Common stream description vocabulary, and publication mechanisms. In
addition to describing the event objects inside the stream, and in the event
processing system, streams themselves need to be described and published,
e.g., similar to other web services, in an agreed upon format.

— Representations and handling of time. Understanding of a common time
reference between systems using a recorded stream should be possible with
a reasonable amount of configuration rather than requiring reprogramming
of system components.

— Harmonized descriptions of the operational semantics of semantic flow pro-
cessing systems [1]

— Benchmarking of semantic flow processing systems. There should be tests
both for data stream management as well as layered event processing. Cor-
rect results, in light of operational semantics, should be defined so that
performance and correctness of operation can be compared.

6 Conclusions

In this paper we propose a novel Event Processing ODP, i.e., a vocabulary for
representing and reasoning over complex and composite event objects, which is
needed for further progress in the area of RDF stream processing. In addition to
the model itself, another contribution is the demonstration of generic query pat-
terns for event object management using SPARQL 1.1, which facilitates event
processing. The model is aligned to important standards, such as the SSN on-
tology, and compatible with other event models, such as Event-F, and it also
meets all the requirements for representing and processing event objects that
were discussed in Section 3.
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