
The Object with States Ontology Design Pattern

Raúl Garcı́a-Castro and Asunción Gómez-Pérez

Ontology Engineering Group, Center for Open Middleware
Universidad Politécnica de Madrid, Spain

{rgarcia,asun}@fi.upm.es

Abstract. This paper describes the Object with States content ontology design
pattern that allows modeling the different states of an object and the restrictions
on such object for its different states. It also presents an example of applying the
pattern in a concrete use case in the ALM iStack ontology.

1 Introduction

An object can have different states over time for which different restrictions apply. Ex-
amples of objects with different states can be persons (which can be single, then married
to another person and later become divorced or a widower) or research papers (which
can be submitted for publication and after a round of reviews they can be accepted or
rejected).

The goal of the Object with States content ontology design pattern described in this
paper is to allow modeling the different states of an object and the restrictions on such
object for its different states.

It is out of the scope of this pattern to model other information about object states
such as: the time intervals in which an object is in a concrete state, transitions between
states, or relationships or dependencies between states.

2 The Object with States Ontology Design Pattern

The Object with States ontology design pattern is a content pattern that aims to satisfy
the following ontology requirements:

– Objects must have a unique state.
– Object states must belong to a single collection of non-duplicate elements (i.e., to

a set).

Figure 1 depicts the Object with States pattern, which is available online as a reusable
OWL ontology1. As can be seen, the pattern contains three classes, one for represent-
ing objects, another for representing object states, and a third one for representing sets
of states. Besides, it contains object properties for relating objects and states (which
are subproperties of those defined in the Situation pattern2) and for relating states and

1 http://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
2 http://ontologydesignpatterns.org/wiki/Submissions:Situation



State Object 
hasState exactly 1 

isStateOf 
StateSet 

xsd:integer col:Collection 

set:Set 

set:size 

situ:Situation owl:Thing 

situ:hasSetting 

situ:isSettingFor 

col:hasMember 

col:isMemberOf exactly 1 

Fig. 1. The Object with states pattern.

sets of states (reused from the CollectionEntity pattern3) and a datatype property for
defining the size of a set of states (reused from the Set pattern4).

Taking into account some fictitious classes and properties, which serve as an ex-
ample of how to instantiate the pattern, the following ontology requirements can be
satisfied with the pattern:

– The possible object states are: StateA, StateB and StateC.
– An object can have three different states.
– Objects in StateA must have at least one value for property property1.
– Objects in StateB must have at most one value for property property2.
– Objects in StateC must have exactly one value for property property3.

The following steps must be performed for instantiating the pattern (figure 2 presents
a fictitious instantiation of it):

1. Represent all the possible states of the object as instances of the State class using
the Value Partition pattern [1].

2. Define the set of states, which includes all the states, and its size.
3. Define classes to represent the object in each of the states.
4. Apply state-specific restrictions to these classes.
5. Define the Object class as a disjoint union of these classes.

Clearly, in the case when an ontology developer just needs to describe the state of an
object, only the first of these steps is needed and an object description should just link
to the state of the object. Alternatively, the different states could be modeled as literals
but that is not recommended because it hinders extensibility; e.g., modeling them as
individuals enables using these states in complex class descriptions as in our case.

One advantage of the pattern is that it allows to explicitly define the restrictions
that an object must held in each of its states, instead of relying on documentation or
software behavior to discover them. Furthermore, it allows simplifying the use of the
ontology by hiding the disjoint union of state-specific object classes to end users, so
they just have to deal with the hasState property and the State instances, while keeping
the whole ontology for other purposes (e.g., data validation).

3 http://ontologydesignpatterns.org/wiki/Submissions:CollectionEntity
4 http://ontologydesignpatterns.org/wiki/Submissions:Set



<Restriction>(p1) 
<Restriction>(p2) 
… 

<Restriction>(p1) 
<Restriction>(p2) 
… 

<Restriction>(p1) 
<Restriction>(p2) 
… 

State Object 
hasState exactly 1 

ObjectStateA 

ObjectStateB 

ObjectStateC 

StateA 

StateB 

StateC 

DisjointUnionOf 
ObjectOneOf 
DifferentIndividuals 

p1 

p2 

p3 

hasState value 

hasState value 

hasState value 

isStateOf 
StateSet 

ObjectStateSet 

col:isMemberOf value 

xsd:integer col:Collection 

set:Set 

set:size 

col:hasMember 

col:hasMember 

col:hasMember 
“3”^^xsd:integer 

set:size 

situ:Situation owl:Thing 

situ:hasSetting 

situ:isSettingFor 

col:hasMember 

col:isMemberOf exactly 1 

Fig. 2. A fictitious instantiation of the Object with states pattern.

Furthermore, regarding reasoning, the pattern allows checking the consistency of
objects according to their states and classifying objects into their corresponding state
by means of the hasState property (e.g., an object with the hasState property with a
value of StateB can be automatically classified as an instance of ObjectStateB).

Even if it is not its primary intended use, the pattern does not disallow to define
multiple states for a single object (e.g., a person can have a state of single or married
and another state of child, adult, or senior). To instantiate the pattern to that end, the
members of each state set should be defined in a subclass of State (which would define
the value partition) and the classes for the object in each state should be defined in a
separate disjoint union of classes.

3 Application of the Pattern

The Object with States ontology design pattern has been applied in the development of
the ALM iStack ontology5, which allows describing entities for software Application
Lifecycle Management.

Software defects are one of the main concepts in that ontology. Defects have a con-
crete lifecycle, shown in figure 3, and in each of its states a defect has a set of required
properties. Once a defect is registered into the ALM iStack platform it must have a cer-
tain status (usually the status will be New upon defect creation) and must satisfy a set of
restrictions. In this case, a New defect must be assigned to some contributor and an In-
progress defect must have a priority. These restrictions are propagated to the following
states in the lifecycle.

As mentioned in the previous section, the class for registered defects and its sub-
classes do not need to be explicitly used when interchanging data between the differ-

5 http://delicias.dia.fi.upm.es/ontologies/alm-istack.owl



New 

InProgress 

WorksForMe 

Closed 

Reproducible? 

oslc_cm:status 
dc:title 
dc:creator 
dc:contributor 
oslc_asset:relatedAsset 

oslc_cm:status 
dc:title 
dc:creator 
dc:contributor 
oslc_asset:relatedAsset 
hasPriority 

Yes 

No 

Fig. 3. The lifecycle of a defect.

ent components of the ALM iStack platform, i.e., components can simply talk about
defects. These classes have been defined to explicitly specify the restrictions in each
defect state and are mainly intended to be used for data validation.

Figure 4 depicts the subset of the ALM iStack ontology that is used to describe the
different states of a defect. As can be seen, all those restrictions that are shared by a
group of classes have been defined in the higher class in the hierarchy.

Version 

foaf:Person 

DefectStatus 

Defect 

oslc_cm:status exactly 1 

xsd:string 

DefectPriority 

oslc_asset:relatedAsset min 1 

OSLC Core+ dc:creator min 1 

dc:title min 1 
OSLC Asset+ 

NewDefect 
status = New 

WorksForMeDefect 
status = WorksForMe InProgressDefect 

status = InProgress 
ClosedDefect 

status = Closed dc:contributor min 1 
hasPriority min 1 

DisjointUnionOf 

RegisteredDefect 

New 

WorksForMe 

InProgress 

Closed 

ObjectOneOf 
DifferentIndividuals 

Fig. 4. The Object with states pattern applied in the ALM iStack ontology.

Acknowledgements

The authors are partially supported by the ALM iStack project of the Center for Open
Middleware.

References

1. Rector, A.: Representing Specified Values in OWL: “value partitions” and “value sets”. W3C
Working Group Note 17 May 2005. http://www.w3.org/TR/swbp-specified-values/


