
Towards a new Foundation for Keyword Search in
Relational Databases

Riccardo Torlone
Università Roma Tre, Italy

1 Introduction

The idea of querying relational databases using keywords emerged a decade ago [4]
as a way to provide an high-level access to data and free the user from the knowledge
of query languages and data organization. The common approach to this problem is as
follows: the database is viewed as a graphG in which the nodes represent tuples and the
edges represent foreign key references between them, a query is a set of stringsQ (the
keywords), and the result is a subgraphG′ of G whose nodes contain the keywords in
Q. Usually it is assumed that: (i) all the keywords should appear in the result and (ii) the
result should have minimal size. In this framework, query answering usually relies on
rather complex, graph-based techniques.

We believe that this approach has a main drawback: it relies on the specific distri-
bution of data in relational tables, which may depend on aspects that are not related to
the actual content of the database. Indeed, today the degreeof normalization is usually
based not only on data redundancy, but also on the database workload, which has to
do with the type and frequency of queries and updates. It follows that the result of a
keyword query can change by just modifying the organizationof the database (e.g., for
optimization purposes) even if its actual content does not change.

We then propose a new approach to keyword search in relational databases that re-
lies on the weak instance model [7, 6], an old yet still fascinating tool from relational
database theory in which a database is considered as a whole,regardless of the way in
which data are decomposed in the various relation schemes. In this model, we present a
simple semantics for the result of a keyword query that is independent of the database
schema and show that, by suitably extending a basic definition, we can introduce a rel-
evance criterium among different results of a query. We alsodiscuss the computational
complexity of keyword search by means of a basic method for query answering.

2 Keyword search over weak instances

Let U be a finite set of attributes andR = {R1(X1), . . . , Rn(Xn)} the schema of a
relational database such that the union of theXi’s is U . We say that an instancer of
R (globally) satisfies a set of functional dependencies (FDs)F if there is a relationw
onU , called aweak instancefor r, that satisfiesF and contains the relations ofr in its
projections over the respective relation schemes, that is:πXi

(w) ⊇ ri, for 1 ≤ i ≤ n.
LetTr for r betableauformed by taking the union of all the relations inr extended

to U by means of unique variables. Therepresentative instancefor r, indicated with
RI r, is the tableau obtained by chasing [5]Tr with respect toF .

Consider for instance a database scheme with relationsR1(ED), R2(DF),
R3(EP) and the functional dependenciesE → D, D → F as constraints. Figures 1
shows a database state on this scheme and the corresponding representative instance. It

r

r1
Emp Dept
John CS
Bob EE
Ann CS
Jim EE

r2
Dept Floor
CS 1
EE 5
MS 3

r3

Emp Proj
John Nana
John Trudy
Ann Nana
Ann Dante
Jim Dante

RI r Emp Dept Floor Proj
t1 John CS 1 Nana
t2 John CS 1 Trudy
t3 Bob EE 5 v1

t4 Ann CS 1 Nana
t5 Ann CS 1 Dante
t6 Jim EE 5 Dante
t7 v2 MS 3 v3

Fig. 1. A database state and its representative instance.

has been shown that a database state is consistent if and onlyif the corresponding repre-
sentative instance can be built without encountering contradictions [3]. Also, for every
consistent stater and for everyX , the set oftotal tuples (i.e., without variables) inRI r
onX (called theX-total projectionof RI r and denoted byπ↓

X(RI r)) is equal to the set
of tuples that appear in the projection onX of everyweak instance ofr [6]. According
to this definition,π↓

X(RI r) is the relation overX impliedby the current state.
We assume that akeyword queryQ is simply a finite and non-empty set of constants.

Given a tuplet overX ⊆ U , we say that: (i)t coversa set of constantsC if, for each
c ∈ C, c = t[A] for someA ∈ X , and (ii) t X-belongsto databaser if it belongs to the
X-total projection of the representative instance ofr (that is:t ∈ π↓

X(RI r)).

Definition 1 (Base result).A base result(also called1-result) of a keyword queryQ
on a databaser is a set of complete, total tuplesR such that, for every tuplet ∈ R: (i) t
coversQ and (ii) t X-belongs tor for someX ⊆ U .

For instance, a base result of the keyword query{CS ,Nana} over the databaser in
Figure 1 is composed by the tuplest1 andt4 of RI r.

Let us now now refine this notion by assuming that the keywordsin the query can
appear in different tuples of the representative instance that are connected through com-
mon values on common attributes. We say that a tableauT is connectedif for each
t ∈ T there is another tuplet′ ∈ T that is joinable witht (that is, they share values on
the same attributes) and that a set of total tuplesT coversa set of constantsC if each
c ∈ C appears in some tuplet ∈ T.

Definition 2 (K-result). A k-result of a keyword queryQ on a databaser is a minimal
set of total tuplesRk such that: (i)Rk has sizek, is connected, and coversQ, and
(ii) every tuplet ∈ Rk x-belongs tor for someX ∈ U .

For instance, the query{Nana,EE} has one 3-result (R3 = {t4, t5, t6}) and no 2 or
1-results. This shows that the parameterk captures therelevanceof the result and then
provides an effective tool to order (and possibly limit) thetuples to return to the users.

3 Computing the results of a keyword query

In the framework we have defined, the first question focuses onfinding, possibly in an
efficient way, the top-k results of a keyword query and the computational complexity
of this problem. In this section we provide a preliminary result by discussing the Algo-
rithm that follows, which implements a basic, “brute force”technique for solving this
problem.

Algorithm 1: Computation of the top-k results of a keyword query

Input : A consistent database stater, a keyword queryQ, a limit k > 0
Output : TheRi-results ofQ onr (for 1 ≤ i ≤ k)

1 Build the representative instanceT of r;
2 foreach tuplet in T do if t coversQ then output t;
3 for (i = 2; i ≤ k; i++) do
4 foreach tuplet in T that covers somec ∈ Q do
5 search and return theRi-results includingt with a depth-first visit ofT from t;
6 removet from T

The algorithm consists of three main steps: the construction of the representative in-
stance (line 1), the search for theR1 results (line 2), and the search for the subsequent
Rk results, fork > 1 (lines 3-6). It is known that the first step requires polynomial
time in the size of the database. In step 2 all the tuples of therepresentative instance are
checked to verify if they (completely) cover the query and soit requires linear time in
the size ofRI r, which is proportional to|r|. Finally, step 3 involves, for each tuple of
RI r that covers some keyword in the query, a depth-limited search in a graphG where
the nodes represent the tuples and the edge represent the joinability relationship. In the
worst case, the cost of this task is proportional to the maximum number ofk-long paths
in G, which is bounded by|RI r|k. It is then possibile to show the following result.

Theorem 1. Algorithm 1 computes, for some finitek > 0, all the firstk-results of a
keyword queryQ of sizeq over a database stater of sizen in timeO(nq).

Algorithm 1 can be optimized in several ways. In particular,the representative instance
does not need to be built since, for significant classes of schemas, its total projection on
a set of attributes can be computed efficiently by means of simple SPJ expressions [2].
Using these results, together with a suitable use of an inverted index, we could restrict
our attention only to the relevant portion of the database. These issues and other exten-
sions of the framework presented here will be subject of future studies.

References

1. A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in relational databases.ACM Trans.
on Database Syst., 4(3):297–314, 1979.

2. P. Atzeni and E.P.F. Chan. Efficient and optimal query answering on independent schemes.
Theoretical Computer Science, 77(3):291–308, 1990.

3. P. Honeyman. Testing satisfaction of functional dependencies. Journal of the ACM,
29(3):668–677, 1982.

4. V. Hristidis and Y. Papakonstantinou. Discover: Keywordsearch in relational databases. In
VLDB, pages 670–681, 2002.

5. D. Maier,A.O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies.ACM
Trans. on Database Syst., 4(4):455–468, 1979.

6. D. Maier, J.D. Ullman, and M. Vardi. On the foundations of the universal relation model.
ACM Trans. on Database Syst., 9(2):283–308, 1984.

7. Y. Sagiv. A characterization of globally consistent databases and their correct access paths.
ACM Trans. on Database Syst., 8(2):266–286, 1983.

