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Abstract. Circular data, i.e., data in the form of 'natural' directions or
angles are very common in a number of di�erent areas such as biological,
meteorological, geological, and political sciences. Clustering circular data
is not an easy task due to the circular geometry of the data space. Some
clustering approaches, such as the spherical k-means, use the cosine dis-
tance instead of the euclidean distance in order to measure the di�erence
between points. In this paper, we propose a variation of the randomized
gravitational clustering algorithm in order to deal with circular data.
Basically, we use the cosine distance, we modify the gravitational law in
order to use the cosine distance and we use geodesics ('straight' lines in
curved spaces) in order to move points according to the gravitational dy-
namic. Our initial experiments indicate that the spherical gravitational
clustering algorithm is able to �nd clusters in noisy circular data.

1 Introduction

Circular data, i.e., data in the form of 'natural' directions or angles, are ob-
servations taken on compact Riemannian manifolds (curved spaces following
a Riemannian geometry) [1]. Circular data are seen in di�erent scienti�c areas:
wave directions in oceanography, directions of animal movement in biology, wind
directions in meteorology, rock fracture orientations in geology, periodic time in
economy and conformational angles obtained from the 3D coordinates of the
backbone chain of a protein in bio-informatics [1,2,3]. Modeling circular data (in
particular using machine learning or statistical approaches) is not an easy task
due to the curved geometry of the data space (Riemannian geometry). In par-
ticular, some approaches in the directional statistics �eld (the �eld of statistics
that deals with circular data) consider the circular data as data drawn from a
set of distributions of von Mises-Fisher (vMF) [4]. Some clustering approaches
(approaches that try to �nd groups of similar points) in the data mining and
machine learning �elds replace the euclidean distance with the cosine distance
(angular distance between points) in order to measure the di�erence between
points in the Riemannian space. Such is the case of the spherical k-means [5].

Gomez et al. in [6,7] proposed a clustering algorithm (the randomized grav-
itational clustering algorithm, Rgc), which is robust to noise and unsupervised
in the number of cluster, based on concepts of �eld theory in physics . Basically,



the gravitational dynamics is determined by moving points (in an euclidean
space) according to the gravitational �eld generated by other point randomly
selected. In this paper, we propose a variation of such randomized gravitational
clustering algorithm in order to deal with circular data. In this way, we replace
the euclidean distance with the cosine distance, we modify the gravitational law
in order to use the cosine distance and we use geodesics, the 'straight' lines in
curved spaces, in order to move points according to the gravitational dynamic.
This paper is divided in 5 Sections. Section 2 sumarizes the Rgc algorithm pro-
posed by Gomez et al in [6,7]. Section 3 explains the changes introduced to the
Rgc algorithm in order to deal with circular datasets using a cosine distance. Sec-
tion 4 analyzes preliminar results obtained with Rgc. Finally, Section 5 outlines
some conclusions.

2 Randomized Gravitational Clustering (Rgc)

Gravitational clustering (Gc) algorithms are considered agglomerative hierar-
chical algorithms based on concepts of �eld theory in physics [8,9]. The Gc al-
gorithm simulates the gravitational system obtained of considering data points
as initial particles with mass equal one in a space exposed to gravitational �elds.
Gomez et al. in [6,7] proposed a Gc algorithm which is robust to noise and
unsupervised in the number of clusters (see Algorithm 1). Basically, points do
not change in mass and are not removed during the simulation of the system
dynamic. Two points are merged into virtual clusters using a union-disjoint set
structure [10] (lines 1-2, 7 and 10, i.e., functionsMake, Find and Union), when
they are close enough (line 7). Gomez et al. estimated the greatest minimal sep-

aration (d̂) between N uniformly separated points3, (here N is the size of the
data set), using the 2-dimensional hexagonal packing of circles approach [12] and
used it as re-normalization factor to reduce the e�ect of the data set size in the
system dynamic. Moreover, instead of considering all points to move a point,
just another point is randomly selected and both points are moved (line 6) ac-

cording to an oversimpli�ed Universal Gravitational (
−−→
Fx,y = G

−−→
dx,y

 d̂∥∥∥−−→dx,y∥∥∥
3

)

and Second Newton's Motion Laws (yt+1 = yt + G
−−→
dx,y

 d̂∥∥∥−−→dx,y∥∥∥
3

), here
−−→
dx,y

is the vector ('straight' line between points y and x). These equations are the
vectorial representation of the Newton Gravitational and Second Laws[13,14].
The big crunch e�ect (one single big cluster at the end) is eliminated by intro-
ducing a cooling mechanism similar to the one used in simulated annealing (line

3 The problem of determining the optimal arrangement of points in such a way that
the greatest minimal separation between points is obtained, is an open problem in
Geometry [11].



Algorithm 1 Randomized Gravitational Clustering

Rgc( x, G, 4(G), M, ε)
x: Data set, G: Gravity strength,4(G): Cooling factor, M: Iterations, ε: Fusion distance
1. for i=1 to N do //Creates the Union-Disjoint cluster set
2. Make(i) //Each data points is initially a cluster
3. for i=1 to M do
4. for j=1 to N do
5. k = random point index such that k 6= j
6. Move( xj , xk ) //Move both points using gravity motion equation.
7. if dxj ,xk ≤ ε then Union( j, k) //Merges (virtually) to clusters
8. G = (1-4(G))*G //Reduces the gravity strength
9. for i=1 to N do //Canonical Union-Disjoint clusters set
10. Find(i)
11. return disjoint-sets

8). When the simulation is terminated, clusters are extracted if they have a min-
imum number of points (α). Finally, Gomez et al. determine an appropriated
value of G by using an extended bisection search algorithm [10]: the number
of clustered points qM (points that were assigned to some cluster with two or
more points), after some checking iterations of the Rgc algorithm M , is used as
indicator of the quality G, by comparing it against an expected value Q± τ .

3 Spherical Randomized Gravitational Clustering (Sgc)

Two elements should be considered to apply the Rgc algorithm to circular data:
(i) the system dynamic (gravitational �eld de�nition and movement of points
in hyper-sphere surface) and (ii) the greatest minimal separation between 'uni-
formly' separated points in the surface of the hyper-sphere.

3.1 Spherical Gravity Law (Gravity Law in the n−sphere surface)

Although classic Newton Gravitational Law is de�ned for Euclidean spaces
(spaces described by Euclidean geometry), it has been generalized to Curved
spaces (spaces described by Riemannian geometry) such as the surface of an
hyper sphere (in short n−sphere surface) [13,14]. In such curved spaces (the
n−sphere surface), a 'straight' line becomes an arc (segment of circle) and is
called geodesic. Since there is a one to one correspondence between the chord
(the Euclidean straight line between points in a n−sphere surface) and the
geodesic between them, and any Curved space behaves locally as an Euclidean
space (it is a manifold), it is possible to approximate the motion of a point due
to Gravitational Law and Newton motion law by using a cosine distance, the
Euclidean straight line vector and projecting the obtained point to the n−sphere
surface (renormalizing). In this way, the moving function of a point y due to the
gravitational �eld of other point x (line 6 in Algorithm 1), is computed using
Equation 1.



−−→yt+1 = normalize

−→yt +G−−−→x− y

(
d̂

cdx,y

)3
 (1)

where, cdx,y is the cosine distance between points x and y, −−−→x− y is the

Euclidean straight line between points x and y, and normalize (−→z ) =
−→
Z
‖−→z ‖

(‖−→z ‖ is the Euclidean norm of vector −→z ).

3.2 Greatest Minimal Separation between Points (d̂)

We analize the behavior of d̂ in the 2−sphere surface (circle in two dimensions) to

�nd a better estimation of d̂ when dealing with a n−sphere surface. Notice that,
the maximum distance between closest points is the cosine distance de�ned by
the angle 2π

N . Similar behavior is observed when working in a 3−sphere surface,
where, it is close to 2π√

N
. In this way, a rough approximation4 of the angle de�ned

by two closest points (of a data set of N points) in a n−sphere surface is provided
by 2π

n−1√
N
. Therefore, an estimation of d̂ in circular data is given by Equation 2.

d̂ = k ∗ cd
(

2π
n−1
√
N

)
(2)

Here N is the number of data points in the n-sphere surface, cd is the cosine
distance and k is a correction factor due to high dimensionality of the data set
(in our case we set it to 2).

4 Experiments

We use the Sgc algorithm for �nding clusters in di�erent real and synthetic
circular data sets. Due to the lack of space, we show (as proof of concept) the
results obtained by Sgc on two 3D synthetic data sets with six clusters, each
cluster following a vMF distribution with di�erent concentration parameter and
number of samples. The �rst data set is free of noise while the second one contains

20% of noise. In this paper, we �xed Q =
⌊√

N
2

⌋
, M = 1 and τ =

√
2Q for

estimating the value of G, since these values are good approximations to the
ones proposed by Gomez et al in [7] and reduce the time complexity of this
estimation algorithm to lineal O (N) respect to the number of data points.

Figure 1 shows the evolution of the Srg on the clean synthetic data set
after 25, 50 and 100 iterations. When noisy points are not part of the data set,
while points are moved to their clusters centers (lower row Figure 1), clusters are
formed quickly and points are not asigned to incorrect clusters (upper row Figure
1). The algorithm stops at iteration 119 when no more clusters can be formed
due to the cooling factor. Clearly, the Sgc algorithm is able to �nd cluster in
clean circular data sets.
4 By using the manifold property of the hyper-sphere surface, i.e. considering local
vecinities of the hyper-sphere surface as hyper-cubes.
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Fig. 1. Evolution of the Sgc algorithm on the clean 3D circular data set: Set of clusters
(upper row) obtained by Sgc and position of the moving points (lower row) after 25
iterations (left), after 50 iterations (middle), and after 100 iterations (right).

Figure 2 shows the evolution of the Srg on the noisy synthetic data set
after 25, 50 and 100 iterations. When noisy points are part of the data set, while
noisy points are maintained at their original positions, 'good' points are moved to
their clusters centers (lower row Figure 2), clusters are formed quickly (without
including noisy points) and points are not asigned to incorrect clusters (upper
row Figure 2). The algorithm stops at iteration 127 when no more clusters can
be formed due to the cooling factor, so noisy points can be removed since they
form cluster with size equal one 1. Clearly, the Sgc algorithm is able to �nd
cluster in noisy circular data sets.

5 Conclusions

Mining circular data (data in the form of 'natural' directions or angles) is a
challenging task due to the curve geometry of the data space. However, it is
possible to accomplish this task by considering the clustering process as the
result of a dynamic system, in particular, the result of a gravitational dynamic
system. In this direction, we were able to generalize the Newton gravitational
law and Newton Second Motion law to curved space (like the surface of an hyper-
sphere) in order to use the cosine distance instead of the euclidean distance for
simulating such dynamic system in a curved space. Our results indicate that the
Spherical Gravitational Clustering algorithm is able to �nd clusters in curved
spaces and in the presence of noise. Our future work will concentrate in using
the Sgc on analysis of protein structure and in higher dimensional spaces.
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Fig. 2. Evolution of the Sgc algorithm on the noisy 3D circular data set: Set of clusters
(upper row) obtained by Sgc and position of the moving points (lower row) after 25
iterations (left), after 50 iterations (middle), and after 100 iterations (right).
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