
Towards a Theory of Query Stability in Business Processes

Elisa Marengo, Werner Nutt, Ognjen Savković

Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
firstname.lastname@unibz.it

1 Introduction

Data quality has attracted attention in theoretical database research in the past few years
and different aspects, such as consistency, accuracy, currency, and completeness have
been investigated [1–3]. One of the main factors that determine data quality is where
and how data originate. We believe that analyzing how business processes generate
data allows one to gather additional information on their fitness for use. Specifically,
we want to understand whether an ongoing business process that reads from and writes
into a database can affect the answer to a query or whether the answer is stable, that is,
it will not change as a result of the process.

As motivating example consider the student registration at the University of Bozen-
Bolzano. In November the student office distributed a report showing the numbers of
students enrolled in the offered courses. When comparing the numbers with those of
the previous years, the Master in Computer Science (MScCS) showed a decrease, in
contrast with other courses, like the Master in Economics (MScECO), that registered
a substantial increase. The reason for this discrepancy was a complication in the regis-
tration process, which foresees two routes to registration: an ordinary one and a second
one via international federated study programs to which some Bolzano courses, like the
MScCS, are affiliated. Due to different deadlines, ordinary registration was concluded
in November while registration for students from federated programs was not. Since
the MScCS is affiliated to some federated programs, but the MScECO not, the query
asking for all MScECO students was stable in November and returned a reliable figure,
while the query for all MScCS students was not and returned too low a number.

Even though in general a database may be constantly updating, and thus making data
unstable, certain queries may have stable answers, (at least for some period of time).
Registration at our University follows strict rules and is supported by an information
system. If not only the data of the registration process were explicitly available, but also
the rules, such a stability analysis of query answers could potentially be automated.

Assuming that data are created and manipulated according to a given business pro-
cess, a formal reasoning task is to determine whether in all possible executions of such
a process, the answer to a given query will remain the same. Then we say that the query
is stable, and therefore reliable.

In this work, we propose a simple yet expressive formalism to model business pro-
cesses that read, create and write data in an underlying database. We leverage the formal
definition of such a business process to deduce whether a query answer is stable in case



the data is managed according to the rules of the process. We establish exact com-
plexity measures for checking the stability of conjunctive queries in several variants of
processes. Since our upper complexity bounds stem from reductions to the evaluation
of certain FOL and Datalog queries, our work provides an immediate way for imple-
mentations using technologies such as SQL and ASP engines.

Related Work. Traditional approaches to business processes modeling are activity-
centric and are based on (high-level) Petri Nets [4] and standards such as BPMN and
BPEL. These approaches do not capture the specification of a database or the inter-
action with it. In recent years, the modeling of data and business processes under the
same umbrella has gained significant attention [5–8]. Our work can be considered as a
restricted case of [7, 8] where only database insertions are allowed but not updates or
deletions. Checking properties of processes that allow unboundedly many data is inher-
ently undecidable, and decidability is obtained by imposing additional restrictions (e.g.,
see state boundedness in [8]). As a difference, having insertions only allowed us to es-
tablish new decidable cases without additional restrictions. In the context of databases,
query stability can be related to the problem of queries independent from updates [9,
10], i.e. checking when a query is independent from a set of updates over the database,
by considering the update rules but not the database instance.

2 Data-aware Business Processes

With our model of data-aware business processes (DABP) we want to capture some
elementary aspects of how data are manipulated by business processes. A DABP over a
schema Σ is a pair B = 〈P, C〉, consisting of a process part P and a configuration part
C. Intuitively, the process part is fixed. It defines how and under which conditions ac-
tions can change data stored in the configuration part. The configuration part comprises
an instance of the underlying database and the state of all active process instances.
Process Part. The skeleton of the process part is a directed potentially cyclic graph
N = 〈P, T 〉, the process net, consisting of a set of vertices P , the places, and a set
of edges T , the transitions. There is one distinguished place in P , the start place start.
There is also a distinguished relation symbol, I , the input of a process instance. The last
argument of I is a timestamp τ , called the start time, to record the time when the process
instance was started. We denote the schema Σ augmented by I as ΣI . In a process
instance, an object holding an I-atom traverses the graph, starting from start. Thus,
the different transitions emanating from a place represent alternative developments of a
process instance.

The whole process part is a pair P = 〈N,L〉, which in addition to a network N
comprises a labeling function L that assigns to every transition t ∈ T a pair L(t) =
(Et,Wt). Here, Et, the execution condition, is a Boolean query over ΣI and Wt, the
writing rule, is a ruleQt(x̄)→ R(x̄) whose head is a relation ofΣ and whose body is a
ΣI -query that has the same arity as the head relation. Evaluating Wt over a Σ-instance
D results in the set of ground atoms Wt(D) = {R(c̄) | c̄ ∈ Qt(D)}. Intuitively,
Et specifies in which state of the database which object can perform the transition t
and Wt specifies which new information is (or can be) written into the database when



Table 1. (a) Graphical representation of the DABP process net for student registration scenario,
execution conditions and writing rules. (b) A Database instance for the reference scenario.

(a) (b)

ordinary

affiliated

a_ontimeadmitted

refuse accept

reject

register

a_late

o_late

o_ontime

start end

acad
check

Eaffiliated = I(S, P, T ), studyplan(P, affil,M)

Eordinary = I(S, P, T ), studyplan(P, ord,M),¬studyplan(P, affil,M)

Eadmitted = I(S, P, T ), admitted(S, P )

Erefuse = I(S, P, T ),¬admitted(S, P ), studyplan(P, ord,M)

Ea late = I(S, P, T ), deadline(affil, D), T > D

Ea ontime = I(S, P, T ), deadline(affil, D), T < D

Wregister = I(S, P, T ), studyplan(P,R,M) → registered(S,M,P )

Eo late = I(S, P, T ), deadline(ord, D), T > D

Eo ontime = I(S, P, T ), deadline(ord, D), T < D

Eregister = Eaccept = Ereject = true

studyplan
program registr. master

emSE affil mscCS
emCL affil mscCS
emCL ord mscCS

db ord mscCS
econ ord mscECO

admitted
student program

bob emCL
mary emSE

deadline
registr. date

ord 1st Oct
affil 1st Dec

registered
student master program

bob mscCS emCL

performing t. In this paper we assume that Et and Qt are conjunctive queries with
negated atoms and possibly comparisons involving timestamps.

Example 1. Consider again the scenario described in the Introduction. Table 1(a) con-
tains a graphical representation of a DABP process net for a simplified student registra-
tion process, together with execution conditions and writing rules.

A student who wants to register to a program needs to fill a form providing her
name and the program she wants to apply to. When received by the administration, the
request is associated with a timestamp. We represent this information by a ground atom
I(s, p, τ) of the relation I . The available programs are of two kinds: those that are affili-
ated to international federated programs, and ordinary ones. For federated programs, an
international commission decides about whom to admit and these decisions are stored
in the table admitted. For ordinary programs, the university takes the decision.

According to this distinction, the first check in the process is to determine to which
kind of program the request I refers to: affiliated (Eaffiliated) or ordinary (Eordinary). In
the first case, a student who is already admitted to the federated program can proceed
towards registration. Non-admitted students can go for an ordinary registration pro-
vided the program is open also to this kind of students (Erefuse). In case the student is
admitted to the federated course, then the corresponding deadline for the application is
looked up in the database: if the request arrived after the deadline (Ea late) then the reg-
istration process ends. Otherwise, if the request arrived on time (Ea ontime) the student
is registered (Eregister) and a corresponding atom is inserted into the database instance
(Wregister). Similarly, for a late ordinary request (Eo late) the process is ended, while for
a request arrived on time (Eo ontime) the academic merits are checked (acad check). This
human intervention is modelled as a non-deterministic choice that can result in the re-
quest being accepted (Eaccept) or rejected (Ereject). If accepted, the student is registered.



Configuration Part. This part models the data that is manipulated by the process part.
Formally, a configuration is a quadruple 〈D,O,M, τ〉, where D is an instance of the
schema Σ, O is a set of process instances, which we call process objects, M is a map-
ping that associates every object o ∈ O with a place MP (o) ∈ P and with a ground
I-atom I(c̄) = MI(o), and τ is a timestamp, the current time. We assume that for all
objects o ∈ O the start time in MI(o) is less or equal than the current time.

Example 2. Table 1(b) shows a simplified database instance for our reference scenario.
Relation studyplan stores the study programs offered by the university, the kind of reg-
istration they allow (ordinary or affiliated), and the master they belong to; admitted
contains the students already admitted to a federated program; deadline stores the reg-
istration deadlines for the registrations to ordinary and affiliated courses; registered
contains the students that successfully completed the registration process.

We consider an input relation I of arity 3, carrying the following information about
the request: (i) the student name; (ii) the requested program; and (iii) the time of the
request. In our example, there are no objects currently in the net.

Execution of DABP. Let B = 〈P, C〉 be a DABP, with current configuration C =
〈D,O,M, τ〉. There are two kinds of atomic execution steps of a DABP, (i) the traver-
sal of a transition in the net by an object or (ii) the introduction of a new object.
Traversal of an enabled transition by an object. Consider an object o ∈ O withM(o) =

(p1, I(c̄)). That is, o is at place p1 and I(c̄) are the input data of o. Let t be a tran-
sition from p1 to p2, with execution condition Et. Then we say that t is enabled
for o if D ∪ {I(c̄)} |= Et. Let Wt = (Qt(x̄) → R(x̄) be the writing action of t.
Then the effect of o traversing t is the transition from C = 〈D,O,M, τ〉 to a new
configuration C′ = 〈D′, O,M ′, τ〉, such that (i) D′ = D ∪Wt(D ∪ {I(c̄)}) is the
new database; (ii) the set of objects and the current time is the same, and (iii) M ′

is an update of M that reflects the change of place, that is, M ′(o) = (p2, I(c̄)) and
M ′(o′) = M(o′) for all other objects o′.

Introduction of an arbitrary object at the start place. Let o′ be a fresh object and let
I(c̄′, τ ′) be an atom where c̄′ is a vector of constants, and the timestamp τ ′ is
greater or equal than τC , the current time of C. Note that the constants in c̄′ need not
appear in the database or in the process. The result of introducing o′ with info c̄′ at
time τ ′ is the configuration C′ = 〈D,O′,M ′, τ ′〉, where (i) the database instance
is the same as in C; (ii) the set of objects O′ = O ∪ {o′} has been augmented
by o′; and (iii) the mapping M ′ is an extension of M to O′, obtained by defining
M ′(o′) = (start, I(c̄′, τ ′)) and M ′(o) = M(o) for all o ∈ O.

An arbitrary execution is a sequence of atomic execution steps. Since for every con-
figuration C one can introduce new objects at the start place, there are always several
atomic executions possible for C. We say that a configuration C′ is reachable from C if
there exists a finite sequence of atomic executions, such that C is the first and C′ is the
last configuration in the sequence.

Finally, we define the property of query stability.

Definition 1 (Query Stability). Given a DABP B = 〈P, C〉 and a CQ Q. Then Q is
stable in B if for any reachable configuration C′ = 〈D′, O′,M ′, t′〉 holds:

Q(D) = Q(D′).



We illustrate this property with our running example. Consider the queries Qcs(S) ←
registered(S,mscCS, P ) andQeco(S)← registered(S,mscECO, P ) that ask for the stu-
dents registered at the master in CS, and the master in Economics, respectively. Depend-
ing on the current time, one can analyze the stability of the two queries. If the current
time is before the 1st of October both queries are unstable since arbitrary new students
can register. If the current time is after the 1st of December, both queries are stable since
the two deadlines have passed. When the current time is between two deadlines, Qeco
is stable because the deadline for ordinary programs has passed and mscECO is not
affiliated to any program. On the other hand, Qcs is not stable because it is affiliated to
the program emSE, for which mary did not register yet. Note that if she was registered,
Qcs would be stable since all admitted student would be registered.

3 Reasoning about Query Stability in DABP

We investigated how to check whether a conjunctive query Q is stable in a DABP B.
To understand the possible sources of complexity, we studied several types of processes
that differ in the way they interact with the database and the way data can be entered
into the process.

The first distinction is whether the model allows a process object to read the facts
that itself or another object has written into the database. In the general case, denoted
DABP, this is allowed. The restricted case, denoted DABProwo (read-only write-only),
does not allow this. Formally, it splits the schema Σ into disjoint schemas, the reading
schema Σr and the writing schema Σw, such that the execution conditions and the
queries in the writing rules range over Σr while the heads range over Σw. Our running
example is in DABProwo.

We consider a process under open semantics, where new process objects may start
in any moment. Alternatively, we also consider a process under closed semantics, that is
we only admit transition traversals as possible execution steps (no new instances can be
started). In this case, stability of a query depends only on the unfinished objects, while
in open processes, it depends also on new objects that may start.

We also distinguish the case in which the initial configuration of the process does
not contain any object, called fresh DABP, from the arbitrary case in which we do not
make any assumption on the presence or absence of objects. Notice that under closed
semantics the only interesting case is the arbitrary one (in a closed DABP with a fresh
configuration a query answer is trivially stable since no objects can be inserted).

Table 2 summarises the complexity of checking stability for the different cases. Due
to the limited space, we provide a brief intuition of the results while omitting the techni-
cal details. In general case, DABP allows unboundedly many new objects (data values)
which combined with negation allows us to encode halting problem. Decidability is
obtained either by disallowing negation (cases in brackets) or by disallowing new ob-
jects (closed semantics). For decidable cases, we established a correspondence between
checking stability and brave entailment in Datalog with negation under stable model se-
mantics. Similarly, for DABPs without negation we established a correspondence with
entailment in positive Datalog. In the case of DABProwo, the complexity drops signifi-
cantly due to the “non-recursive” rules. In particular, stability can be decided by FOL



Table 2. Computational complexity of checking stability in DABP for conjunctive queries. The
measures are lower and upper bounds (only AC0 is in). In general, the lower bounds already hold
for the processes without negation in the rules, except for the cases shown in brackets.

Semantics &
Init. Conf.

DABP DABProwo

Data Process Query Combined Data Process Query Combined
Open &
Arbitrary

UNDEC.
(CONP)

UNDEC.
(EXPTIME)

ΠP
2

UNDEC.
(EXPTIME)

in AC0 CONP ΠP
2 ΠP

2

Open &
Fresh

UNDEC.
(PTIME)

UNDEC.
(EXPTIME)

ΠP
2

UNDEC.
(EXPTIME)

in AC0 CONP ΠP
2 ΠP

2

Closed &
Arbitrary

CONP
(CONP)

CONEXPTIME
(EXPTIME)

ΠP
2

CONEXPTIME
(EXPTIME)

in AC0 CONP ΠP
2 ΠP

2

query evaluation. Given a DABProwo and a query we are able to encode the process
part and the query into a FOL query that evaluates to true over the configuration iff the
original query is not stable. The result of query complexity follows from the fact that
deciding whether the two answers of a conjunctive query over two databases are the
same is ΠP

2 -complete in the query size.

4 Future Work

In this work we investigated the problem of determining the stability of a query answer
when data is manipulated by a business process. As future work we plan to develop the
DABP formalism further in the following ways: (i) consider more expressive queries,
e.g., CQ¬ or FO; (ii) consider stability of aggregate queries and introduce aggregates
in the process rules; (iii) quantify instability (in case a query is not stable, compute the
minimal and maximal number of possible new answers, e.g., newly registered students);
(iv) consider data quality aspects such as data timeliness and data currency.

Acknowledgements. This work was partially supported by the projects MAGIC and
RARE, funded by the Province of Bozen-Bolzano.

References
1. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency and

accuracy. In: VLDB. (2007) 315–326
2. Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data. ACM Trans. Database

Syst. 37(4) (2012) 25
3. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases. PVLDB 4(11)

(2011) 749–760
4. van der Aalst, W.M.P.: Verification of workflow nets. In: ICATPN. (1997) 407–426
5. Abiteboul, S., Vianu, V., Fordham, B.S., Yesha, Y.: Relational transducers for electronic

commerce. In: PODS. (1998) 179–187
6. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-

centric business process models. In: BPM. (2007) 288–304
7. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web services.

In: PODS. (2004) 71–82
8. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of

relational data-centric dynamic systems with external services. In: PODS. (2013) 163–174
9. Elkan, C.: Independence of logic database queries and updates. In: PODS. (1990) 154–160

10. Levy, A.Y., Sagiv, Y.: Queries independent of updates. In: VLDB. (1993) 171–181


