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Abstract The most common way for exposing RDF data on the Web is by means
of SPARQL endpoints. These endpoints are Web services that implement the
SPARQL protocol and then allow end users and applications to query just the
RDF data they want. However the servers hosting the SPARQL endpoints re-
strict the access to the data by limiting the amount of results returned by user
queries or the amount of queries per time and client that can be issued. For ad-
dressing this problem we analysed different alternatives that shall allow to obtain
complete query result sets from the SPARQL endpoints by rewriting the origi-
nal query using SPARQL1.1’s federated query extension. We show that some of
the commonly used SPARQL query patterns for this task provide unsound re-
sults while other patterns are more suitable for this task. We provide equivalent
query patterns that help users in obtaining complete result sets circumventing the
limitations imposed by servers.

1 Introduction

The Linked Open Data initiative promotes the publication and linkage of RDF data
on the Web. Under this initiative many organisations (either public or private) exposed
their data using the RDF data model and also provided links to other RDF datasets.
Currently there are about 450 RDF datasets [2] available on the Web exposing billions
of RDF statements. The most common way for accessing these RDF data is by means
of SPARQL endpoints. These endpoints are Web services that implement the SPARQL
protocol and then allow end users and applications to query just the RDF data they want.
A user can send an SPARQL query to this Web service by accessing the endpoint’s Web
interface and then obtain back the results to the SPARQL query. However the servers
hosting the SPARQL endpoints restrict the access to the data by limiting the server
resources used in each received query. This physical resources limitation most com-
monly results in a limitation of the size of result set returned to the end users (normally
a 10.000 result limit for each query) but it can also generate errors in the same query
execution (normally time outs). These imposed limitations are necessary for avoiding
the server to use too many resources to answer complex SPARQL queries.

However, this result set size limitation prevents users from obtaining complete an-
swers to their SPARQL queries. The result set size limitation is particularly relevant
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when a user wants to federate SPARQL queries to a number of SPARQL endpoints.
Imagine a query to DBpedia asking for authors born in Madrid for next querying the
Spanish National Library endpoint for more data about these authors. The first query
to DBpedia would return more than the DBpedia’s result set size limit resulting in an
incomplete result set, failing next to join with the other endpoint query results.

Using different combinations of SPARQL operators it is possible to overcome the
server’s result size limitation and obtain complete result sets. The most common oper-
ator that can be used for that purpose is the VALUES operator from the new SPARQL
1.1 Recommendation [3]. This operator performs a join using the results from a query
to the default local graph with the remote query results. In this way the local results are
submitted along the remote query and joined remotely. However this operator is still
not widely deployed [2] and other options have to be considered. This paper presents a
study of several combinations of SPARQL operators and query patterns that avoid the
server’s result set limitation, allowing users to obtain sound and complete answers to
their queries. We show that using the UNION operator for constraining remote queries
and next doing the union of their results may return unsound results. We also present
a subset of UNION SPARQL queries that return sound and complete results. As sum-
mary, using the SPARQL query pattern combinations we present in this paper it is
possible to avoid the remote server result size limitation obtaining sound and complete
results for our SPARQL queries. Still, an evaluation should be conducted for knowing
what characteristics of each server may affect these equivalent SPARQL query patterns.

2 Syntax and Semantics

We first describe the basics of the SPARQL syntax and semantics of SPARQL we
use within this paper. For the complete syntax and semantics of SPARQL we refer
the reader to the Appendix available at http://www.polleres.net/publications/buil-poll-
2014AMW.pdf.

Syntax. The official syntax of SPARQL1.1 [3] considers operators OPTIONAL, UNION,
FILTER, SELECT and concatenation via a point symbol (.), to construct graph pattern
expressions. The syntax of the language also considers { } to group patterns, as well
as keywords (new in SPARQL 1.1) SERVICE to delegate parts of a query to remote
endpoints, and VALUES to define sets of bindings of variable bindings. We use the ap-
proach proposed in [5] for defining the SPARQL 1.0 syntax operators and the syntax
proposed in [1] for the SPARQL 1.1 VALUES and SERVICE operators. More precisely
we use the following syntax for the VALUES operator:

– VALUES WA is a graph pattern where W = [?X1, . . . , ?Xn

] is a sequence of
pairwise distinct variables, and

A =

2

6664

a1,1, . . . , a1,n

a2,1, . . . , a2,n

...
a

m,1, . . . , am,n

3

7775

is a matrix of values where a

i,j

2 (I [ L [ {UNBOUND}).



For the exposition of this paper, we leave out more complex SPARQL patterns such
as GRAPH patterns as well as SPARQL 1.1 [3] patterns including, aggregates, and
property paths. We highlight that solution modifiers are important for paginating results
from the SPARQL endpoints and thus obtaining complete results. We mark the analysis
of these modifiers as future work. We use the notion FILTER expressions as defined in
[5]. We also use unary predicates like bound, isBlank, and the binary equality predicate
’=’, which herein we consider as synonym to sameTerm(·, ·) from [3].

Let P be a graph pattern; in what follows, we use var(P ) to denote the set of
variables occurring in P . In particular, if t is a triple pattern, then var(t) denotes the set
of variables occurring in the components of t. Similarly, for a built-in condition R, we
use var(R) to denote the set of variables occurring in R.

Semantics. We use the SPARQL 1.0 semantics and the terminology defined in [5] and
for the SPARQL 1.1 operators we use the definitions in [1]. We use letters B, I , L for
denoting the sets of blank nodes, IRIs and RDF literals. As usual, we use dom(µ) for
denoting the variables bound within – i.e. the domain of – a SPARQL solution mapping
µ. We remind the reader of the most relevant definitions in Fig. 2 ; the evaluation of a
FILTER expression R wrt. solution mapping µ, also defined in [5], is also relevant here:

- R is bound(?X) and ?X 2 dom(µ);
- R is isBlank(?X), ?X 2 dom(µ) and µ(?X) 2 B;
- R is ?X = c, ?X 2 dom(µ) and sameTerm(µ(?X), c);
- R is ?X =?Y , ?X 2 dom(µ), ?Y 2 dom(µ) and sameTerm(µ(?X), µ(?Y ));
- R is (R1 _R2), and µ |= R1 or µ |= R2;
- R is (R1 ^R2), µ |= R1 and µ |= R2.

Here, B denotes the set of blank nodes, I the set of IRIs’ and L the set of literals.

(1) If P is (P1 FILTER R), then JP KG = {µ 2 JP1KG | µ |= R}.
(2) If P = VALUES W A then

JP KG = {µj |1  j  m, dom(µj) = {?Xi 2 W | ai,j 6= UNBOUND}, µj(?Xi) = ai,j}

Figure 1. Definition of JP KG for a graph pattern P using FILTER and VALUES operators.

3 SPARQL endpoint query completeness alternatives

In this section we outline potential alternatives for obtaining complete results from
queries to a remote SPARQL endpoints using SERVICE patterns. These alternatives
are the use of VALUES , as well as combinations of UNION and FILTERs.

3.1 Naive approaches for replacing operators in federated queries

The VALUES operator can be used for restricting a remote SPARQL query that
is sent using the SERVICE operator as illustrated in the following example: Let



P = P1 AND (SERVICE c P2) be a SPARQL pattern where P1 = (?X, a, ?Y )
and P2 = (?Y, d, ?Z). If we pre-evaluate the solution bindings for P1, written JP1KG,
the SERVICE operator could then be equivalently evaluated by sending pattern

P

VALUESP1
2 = P2 VALUESWA

where W = [var(P1)\var(P2)] and A = JP1KG to endpoint c, i.e. if G
c

is the default
graph of service c

JP K
G

= JP1K
G

./ JPVALUESP1
2 K

Gc

However, the problem with this approach is that the VALUES operator is not yet
widely deployed in existing endpoints [2] and other operators have to be used in order
to simulate the desired behaviour. One alternative is the use of the UNION operator.
In the previous SPARQL pattern P a commonly used alternative is to execute first
pattern P1 and use its results to create a large UNION query that will be submitted to
the SERVICE address. In this way the results from one query are “injected” into the
remote SPARQL endpoint in each branch of the UNION . I.e., let P as above, the idea
would be to first evaluate P1 and then for JP1KG = {µ1, . . . , µn

} replace P2 by

P

UNIONP1
2 = {(µ1(P2))UNION . . .UNION(µ

n

(P2))}

Here, when writing µ(P ) we mean the pattern obtained from P by replacing all
v 2 dom(µ) \ vars(P ) with µ(v).

Unfortunately, this method fails in relatively simple queries. Assume that P1 =
(?X, c, d), c = I and P2 = ((?Y, ?Z, ?T) UNION (?X, ?Y, b)) FILTER (?X = ?Y).
With the local default graph G1 = {(a, c, d)} and the remote service’ default graph
G2 = {(a, a, b), (e, c, d)}, we obtain: JP1KG1 = {[?X ! a]} whereas JP2KG2 =

{[?X ! a, ?Y ! a]}. However, if we proceed as suggested above, then P

UNIONP1
2 =

((?Y, ?Z, ?T ) UNION (a, ?Y, b)) FILTER (a =?Y ) which yields an additional solu-
tion [?Y ! a, ?Z ! a, ?T ! b] that was not admissible in the original P2 but is also
compatible with {[?X ! a]}. If we thus use this method in a federation scenario, we
would obtain inconsistent results between the two queries if we use the result set from
the first execution into the remote query execution.

Another problem are blank nodes. Assume for instance P1 = P2 =(?X, c, d)
with G1 = {( : b, c, d)} and G2 = {(a, c, d)}. Here, as replacement would yield
P

UNIONP1
2 = ( : b, c, d) and since SPARQL engines treat blank nodes in patterns as

variables, again a non-admissible solution would arise.
As a second alternative to UNIONs, one may consider is using FILTERs to inject

the results of P1 into P2, namely,

P

FILTERP1
2 = {P2 FILTER

_

µ2JP1KG
(

^

v2dom(µ)\vars(P2)

v = µ(v))}

This version does not run into the same issues as the before-mentioned solution using
UNIONs. However, there are still problems here, as shown in the following example:
assume now P1 = (?X, b, c), c = I and P2 = ((?Y,d,e) UNION (?X,d,e )). With the local
default graph G1 = {(a, b, c)} and the remote service’ default graph G2 = {(a, d, e)},



we obtain: JP1KG1 = {[?X ! a]} and JP2KG2 = {[?X ! a], [?Y ! a]}; here, the
second solution for JP2KG2 , i.e. µ2 = [?Y ! a] is compatible with the single solution
for JP1KG1 , i.e., µ1 = [?Y ! a] yielding overall µ = [?X ! a, ?Y ! a]. However,
if we apply the method including FILTERs, then P

FILTERP1
2 ={ {(?Y,d,e) UNION

(?X,d,e )} FILTER( ?X = a)} would not yield µ as a solution.
So, while the first alternatives may yield in inconsistent results the version using

FILTERs seems to miss some results. In the next section we proceed to show refined
versions of both alternatives, that solve these issues.

3.2 Two Equivalence theorems for SPARQL Federated Queries

As we have seen, some queries may return unexpected result mappings when substi-
tuting a variable for a specific value. This affects us when we use naively the UNION
operator for dividing the remote query in several subqueries. Thus, we have to find a
restricted class of SPARQL remote queries for which we obtain correct results. It turns
out that one class of queries which avoid the above-mentioned problems is the class of
Strongly Bound queries [1]: this class imposes the restriction to a SPARQL pattern that
a variable ?X 2 P will always be bound to a value, independent of the underlying data
(we refer the reader to the Appendix for or a more detailed explanation of the Strongly
Bound notion). Indeed, the source of the problem in the queries before were the query
results containing the empty result mapping. That empty result mapping combined with
other operators generate result sets different to the original one (besides of being un-
expected) since the empty result mapping is not null rejecting. Let be P SPARQL a
pattern; we use the definition of Strongly Bound variables in a pattern, denoted SB(P )
as per [1] to assure that the variables used in both the SERVICE part of the query and
in the part of the query that will restrict the SERVICE pattern do not contain that empty
mapping:

Lemma 1. Given a SPARQL pattern P with v 2 SB(P ), let µ
e

= [v ! e] for an
e 2 I [ L, then Jµ

e

(P )K
G

./ µ

e

= {µ 2 JP K
G

|v 2 dom(µ) ^ µ(v) = e}.

Lemma 1 essentially states that replacing strongly bound variables with IRIs or
literals in a pattern will not yield additional results for P . In order to address the issue
of blank nodes we adapt the definition of PUNIONP1

2 from above as follows:

P

UNION0
P1

2 = {(µB

1 (P2))UNION . . .UNION(µB

n

(P2))}

where µ

B(P2) = {µ(P2) FILTER(¬(
W

v2dom(µ)\vars(P2)
isBlank(µ(v))))}, i.e. the

problematic solutions containing blank nodes are filtered out.
Indeed, we confirm that UNION replacement with this modification works for re-

mote patterns with only strongly bound variables; plus, it turns out that strongly bound
remote queries also are evaluated correctly using the FILTER approach:

Theorem 1. Let P = P1 AND (SERVICE c P2) such that (vars(P2)\ vars(P1)) ✓
SB(P2), i.e. all variables that participate in a join are strongly bound in the pattern
appearing on the service side, and let G

c

be the default graph of service c and let

P

UNIONP1
2 and P

FILTERP1
2 defined as above , then (i) JP K

G

= JP1K
G

./ JPUNION0
P1

2 K
Gc ,

and (ii) JP K
G

= JP1K
G

./ JPFILTERP1
2 K

Gc



We note that, in case the local graph G does not contain any blank nodes The-
orem 1(i) would also hold using the original replacement P

UNIONP1
2 . Moreover, it

turns out that we can generalize the result in Theorem 1(ii) to also work in the general
case with potentially unbound variables in the service pattern. To this end, we redefine
JPFILTERP1

2 K
Gc as follows:

P

FILTER0
P1

2 = {P2 FILTER
_

µ2JP1KG
(

^

v2dom(µ)\vars(P2)

(v = µ(v) _ ¬bound(v)))}

The trick to only filter for variable bound within P2 fixes the problem from the
example above, as stated in the following theorem.

Theorem 2. Let P = P1 AND (SERVICE c P2) and G

c

be the default graph of
service c then

JP K
G

= JP1K
G

./ JPFILTER0
P1

2 K
Gc

For proofs we refer to the Appendix.

4 Conclusions

In this paper we have aimed at illustrating the problem that querying remote SPARQL
endpoints with SERVICE patterns is a non-trivial task due to the limitations the server
hosting these endpoints impose. The most important restriction is the result set size
limitation that prevents users from obtaining complete results to their queries. We have
also shown some initial results in terms of defining equivalent SPARQL query pat-
terns involving the SERVICE operator that may help remedy this problem in practice.
We believe that such equivalences are highly relevant for practical use cases involving
queries on Linked data on existing SPARQL endpoints and deserve further investiga-
tion: Our next goal is to practically evaluate these and more equivalences for potentially
restricted SERVICE queries on real endpoints to arrive at strategies for obtaining com-
plete results on federated SPARQL queries over real endpoints.
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5. J. Pérez, M. Arenas, C. Gutierrez. Semantics and complexity of SPARQL. TODS, 34(3),

2009.


