
RDF Data Descriptions

Georg Lausen1 and Michael Schmidt2

1 University of Freiburg, Institute for Computer Science, 79110 Freiburg, Germany
lausen@informatik.uni-freiburg.de

2 Kaiserstraße 86, 66133 Scheidt, Germany
m.schmidt00@gmail.com

Abstract. Linked Open Data (LOD) sources on the Web are increas-
ingly becoming more popular. RDF constraints can be used to charac-
terize the RDF graphs being provided by such sources. For applications
that process data retrieved from several of such RDF graphs it becomes
interesting to analyze the relationships of the different sets of constraints
associated with the sources providing the RDF graphs. In this short pa-
per we discuss how the constraints from different sources can be aggre-
gated to a set of constraints characterizing the union of the RDF graphs
under consideration. For expressing constraints we use Datalog+/-.

The recent RDF Validation Workshop [9] states a gap between the cur-
rent standards offering and the industry needs for validation of RDF data.
As a possible solution, in continuation of our previous work [7], we have
developed a constraint language RDD (RDF Data Descriptions) [8], that
captures a broad range of constraints including keys, cardinalities, sub-
class, and subproperty restrictions, making it easy to implement RDD
checkers and clearing the way for semantic query optimization.

The intention of an RDD is similar to Stardog ICV [1], where con-
straints are stated using OWL and considered relative to a certain in-
ference machinery whose type may range from no inferencing, RDFS- to
OWL-inferencing. In contrast, RDD is a language using a compact special-
purpose syntax designed for only expressing constraints independent of a
specific inference machinery. This makes RDD in particular applicable for
RDF under ground semantics, which is a common scenario in the Linked
Data context.

While in [8] we considered a restricted scenario where a single RDD
defines the constraints given in a single RDF graph, in this short paper
we suggest to broaden the view to a set of RDF graphs, each described
by its own RDD defining a set of associated constraints. The major dif-
ficulties of such a scenario arise as the information represented by the
graphs may overlap in the sense that certain resources may be described
in more than one graph. To accomplish such situations the notion of a

context has been coined [6]. While in this paper RDF in different context
is discussed with respect to information aggregation, our concern is ag-
gregation of constraints, which has not been studied before, to the best
of our knowledge.

Let us consider RDF graphs Ga and Gb and corresponding RDDs
RDDa and RDDb, respectively. Both graphs are assumed to be consis-
tent, i.e. all the constraints in the respective RDD are fulfilled. The main
question we are interested in is how the union of the graphs Ga ∪ Gb is
related to the union of the respective sets of constraints Σa and Σb. As Ga

and Gb may contain triples referring to subjects with the same URI, in
general it will hold Ga ∪Gb does not fulfill all constraints in Σa ∪Σb. For
example, whenever a certain predicate p is defined to be single-valued in
RDDa and RDDb, then two corresponding triples (s, p, o1) and (s, p, o2)
may appear in the union Ga ∪Gb of both graphs, so that the constraint
is not guaranteed to hold in Ga ∪Gb. As solution for such cases we pro-
pose aggregation of constraints what in our example would mean that the
single-valued constraint is replaced by a constraint restricting the number
of occurrences of values to 2. In general, given RDDs Σa and Σb, we are
interested to construct an RDD Γ (Σa, Σb) such that for any RDF graphs
Ga and Gb, where Ga |= Σa and Gb |= Σb, we have Ga |= Γ (Σa, Σb),
Gb |= Γ (Σa, Σb) and Ga∪Gb |= Γ (Σa, Σb). The task of deriving Γ (Σa, Σb)
is called constraint aggregation.

Recently, Cortés-Calabuig and Paredaens [4] have presented a con-
straint language for RDF equipped with deductive rules for equality and
tuple generating dependencies. However, as can be seen from the following
example, their constraint language is not general enough to be used for an
RDD. For these reasons we have chosen the framework of Datalog+/- [2],
which offers the needed expressiveness.

In Figure 1 we exhibit two RDDs describing RDF graphs representing
employees and projects. To demonstrate constraint aggregation let us
consider predicate reportsTo, which is defined via a path-constraint in
RDDa. In RDDb for reportsTo it is defined that each employee must
report to exactly two objects. These constraints are written in Datalog+/-
as follows (predicate names are abbreviated):

G($s, rT, $o) → ∃$o1(G($s, wF, $o1), G($o1, aT, $o))
G($s, rT, $o1), G($s, rT, $o2), G($s, rT, $o3) → $o1 = $o2 ∨ $o1 = $o3 ∨ $o2 = $o3
G($s, type, E) → ∃$o1, o2(G($s, rT, $o1), G($s, rT, $o2), $o1 6= $o2)

Moreover, RDDa defines worksFor and assignedTo as total functions.
Therefore it can be inferred that reportsTo is a partial function, even
though this is not stated in RDDa. Using this additional information,

PREFIX ex: <http://www.example.com#>

CWA CLASS ex:Employee {

KEY rdfs:label : LITERAL

PARTIAL ex:employedBy : RESOURCE

MAX(2) ex:prevEmployedBy : RESOURCE

TOTAL ex:worksFor, RANGE (ex:Project)

PATH(ex:worksFor/ex:assignedTo)

ex:reportsTo, RANGE(ex:Consortium) }

CWA CLASS ex:Project {

TOTAL ex:assignedTo,

RANGE(ex:Consortium) }

PREFIX ex: <http://www.example.com#>

CWA CLASS ex:Employee {

KEY rdfs:label : LITERAL

PARTIAL ex:employedBy : RESOURCE

ex:prevEmployedBy : RESOURCE,

SUBPROPERTY employedBy

MIN(2), MAX(2) ex:reportsTo,

RANGE(ex:Association) }

Fig. 1. RDDa (left) and RDDb (right) describing employees in different contexts.
See [8] for a detailed explanation of the used concepts.

by constraint aggregation we get a min(0)- and max(3)-constraint for
predicate reportsTo. Note that without the inferred constraint, predi-
cate reportsTo has to be considered to be unrestricted and therefore
only the trivial constraint max(∞) can be derived by constraint aggre-
gation. Formally, inferring constraints in the Datalog+/- framework can
be done based on the chase procedure [5]. We are currently investigating
termination and complexity of the corresponding constraint implication
problem. However, constraint aggregation, as proposed in this paper, by
itself is independent from the concrete constraint language considered.
For example, in [3] for a wide number of ontology languages termination
and efficiency of the required chase procedure is demonstrated.

References

1. Stardog. http://http://Stardog.com/.
2. Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based

framework for tractable query answering over ontologies. J. Web Sem., 14:57–83,
2012.

3. Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology
languages: The query answering problem. Artif. Intell., 193:87–128, 2012.

4. Alvaro Cortés-Calabuig and Jan Paredaens. Semantics of constraints in rdfs. In
AMW, pages 75–90, 2012.

5. Alin Deutsch and Alan Nash. Chase. In Encyclopedia of Database Systems, pages
323–327. 2009.

6. R. Guha, R. Mccool, and R. Fikes. Contexts for the semantic web. In ISWC, pages
32–46. Springer, 2004.

7. Georg Lausen, Michael Meier, and Michael Schmidt. SPARQLing Constraints for
RDF. In EDBT, pages 499–509, 2008.

8. Michael Schmidt and Georg Lausen. Pleasantly consuming linked data with rdf
data descriptions. In COLD, volume 1034 of CEUR Workshop Proc., 2013.

9. W3C. Rdf validation workshop, practical assurances for quality rdf data.
http://www.w3.org/2012/12/rdf-val/, 2013.

