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Abstract. This paper illustrates how to integrate software components at a semantic level 
without the need for software development. An Ontology Management System is used as a tool 
to create a domain ontology as well as ontologies for common software components: a 
relational database and a web service. We generate the database ontology from the relational 
algebra and the web service ontology from the Web Services Description Language file. We 
manually input additional semantics through the Ontology Management System, and subject 
matter experts use it to link the Component Ontologies to the Domain Ontology. By using this 
methodology, we are able to automatically generated integration code from the linked ontology 
graph. Thus, in integrating new software components, we trade the work of subject matter 
experts for that of code developers. We illustrate the procedure with simple examples. 
 

1 Introduction 

This paper uses Semantic Web technologies [1-3] to integrate disparate software 
components – without the need for new software development. We capture the 
entities, relationships, and business rules of the information system (IS) in a domain 
ontology, as defined by Gruber [4] and Guarino [5]. We likewise build ontologies for 
software components that exist at any layer of an N-tier architecture, e.g., a relational 
database (RDB) at the Data Tier and a web service (WS) at the Web Tier. We build 
and link the domain and component ontologies through an ontology management 
system (OMS) that exposes those resources in a language familiar to the business 
users and subject matter experts (SMEs).  The linked ontologies serve as semantic 
“glue” that integrates software components in the various tiers, and the OMS serves as 
the mechanism to identify integration paths, i.e., executable paths through the 
ontology graphs.  Not only can users now access disparate software components 
through these integration paths, but also the system can automatically generate code 
following these paths.  A new integration paradigm emerges: 

1. Express any software component’s formalism as an ontology, 

2. Map the component’s ontology to the domain ontology, and thus 

3. Integrate components at the semantic level without writing integration code. 

 
We have successfully demonstrated these techniques in several prototype 

applications. 



For this analysis we consider the integration of a legacy RDB and a new WS. We 
postulate ontologies, for the information system and each of the components, 
consisting of RDF/OWL [6,7] triples and their corresponding graphs. The database 
ontology consists of a database upper (or at least mid-level) ontology coupled with the 
ontological representation of the database relations (tables). The upper ontology 
specifies the structure, algebra and constraints of a generic relational database [8]. The 
Web service ontology is similarly based on the Web Services Description Language 
(WSDL) file. [9] 

We use existing Ontology Management System (OMS) tools [10,11] to create 
and integrate ontological elements. SME’s map concepts from the component 
ontologies to the domain ontology, then the OMS augments the domain ontology with 
instance data according to those defined mappings. The OMS manages the ontology 
analogously to the way the RDBMS manages data for legacy applications. Paths 
through the augmented ontology graph represent integrated information. 

We then implement a Semantic Viewer that, for a given request, generates 
executable paths satisfying the request. We present the details and give simple 
examples.   We also present a comparison with OWL-S and traditional middleware 
approaches. 

2 Integration Using Semantic Web Technologies 

To perform a simple test of the theory, we used an RDB that held customer locations 
and a WS (outside the core information system) that placed locations on a map. The 
steps we took to integrate the two components are as follows: 

1. Create a domain ontology 

2. Create and link the RDB component ontology to the domain ontology 

3. Create and link the WS component ontology to the domain ontology 

4. Broker a user request to suggest executable paths through the augmented 
ontology 

5. Manually view the result of implementing one of the executable paths, or  

6. Automatically generate a web service to do so 

 
The information system uses the terminology “Street,” “City or Town,” “State,” 

“Postal ZIP” and has the concepts of “customer” and “location” (of customer). The  
mapping web service, in this case Mapquest [12], has the different terminology 
“Address or Intersection,” “City,” “State,” “ZIP Code” and the concept of “Map.”  

2.1 The Domain Ontology 

In our domain ontology D we define the RDF classes Business, Customer, 
Name, Location, Street, CityOrTown, State and PostalZIP, the OWL object 
properties sellsTo, doesBusinessAs, and residesAt , and the OWL datatype property 
hasA with domain rdf:Class and range datatype string. 
D is shown in figure 1. 



Figure 1 - Portion of the Domain Ontology 

2.2 Integration of a Database into the Domain Ontology 

Next we link concepts in the RDB ontology to concepts in the Domain Ontology. This 
not only allows us to automatically generate database queries based on the mappings, 
but also to classify the returned data as instances of the Domain Ontology.  To do this 
we create a database component ontology. Note, it is not our intention to fully 
establish the OWL/RDF representation of the RDB relational algebra here, and we 
recognize that in some cases it will be a big task to represent a legacy RDB 
ontologically.  However, we believe this can be mitigated by representing only 
portions of the  RDB – i.e.,  those relational variables that map to the domain 
ontology. 

This database ontology consists of a database upper (or at least mid-level) 
ontology coupled with the ontological representations of the database relations 
(tables) as instances of the upper ontology. 

The upper ontology RU specifies the structure, algebra and constraints of any 
relational databases in RDF/OWL triples. We define the RDF classes Database, 
Relation, Attribute, PrimaryKey and ForeignKey. A portion of RU is given below: 

 
RU::{Database, hasRelation, Relation} 
RU::{Relation, hasAttribute, Attribute} 
RU::{PrimaryKey, subClassOf, Attribute } 
RU::{ForeignKey, subClassOf, Attribute } 
 

where hasRelation and hasAttribute are OWL object properties, and subClassOf is 
defined in the RDF schema. 

Consider the database relation ADDRESS with Address_ID as the primary key, 
and Street, City, State, and Zip as attributes.  Two partial records are shown in Fig 2. 
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Address_ID Street Zip -- 
001 255 North Rd. 01824 -- 

002 21 High St. 01851 -- 

Figure 2. Address Table 

The ontological representation of Fig.2 is partly given by: 
RL::{Address, isInstanceOf , Relation} 
RL::{ Address, hasAttribute, Address_ID } 
RL::{ Address, hasAttribute, Street } 
RL::{ Address, hasAttribute, Zip } 
RL::{Street, isInstanceOf, Attribute } 
RL::{Zip, isInstanceOf, Attribute } 
RL::{Address_ID, isInstanceOf, PrimaryKey } 

where isInstanceOf specifies a class individual without inheriting the class 
properties (indicated in Figure 3 with ). 

The database ontology R is the conjuction of RL and RU as is shown in Figure 3. 

Figure 3. A Portion of the Database Ontology R 

 



D+::{ D::Location, hasSource, R::Address} 
D+::{ D::Street, hasSource, R::Street} 
D+::{ D::CityOrTown, hasSource, R::City} 
D+::{ D::State, hasSource, R::State} 
D+::{ D::PostalZip, hasSource, R::Zip} 
 

A portion of the augmented Domain Ontology D+ containing database instance 
data is shown in Figure 4. 

Figure 4. Augmented Domain Ontology D+ Evaluated 

At this point and in what follows, we drop the triple notation and revert to the 
equivalent graph notation. 

2.3 Web Service Integration into the Domain Ontology D+ 

To integrate a Web service into the IS, we again augment the domain ontology with 
concepts from the Web services description language (WSDL) file, and we create a 
WS component ontology that contains the invocation information of the Web service. 
Then, we link the WS ontology to the domain ontology. 



A. The Web Service Upper Ontology WU 

We postulate an upper ontology that models Web services as concepts of Inputs 
(inParameters), Output, Classification Conditions and Effects. Figure 5 shows a 
portion of the graph of WU.  Classification Conditions are conditions that relate inputs 
to concepts in the domain ontology. These conditions must hold true in order that a 
Web service be able to operate on an instance of the domain ontology. Effects reflect 
property changes that are true as a result of running the Web service on instance data 
in the domain ontology. The Semantic Viewer (described below) makes use of both 
Classification Conditions and Effects. WU is similar to the Service Profile of OWL-
S.[13] (see Section 4.1). 

Figure 5. Portion of the Web Service Upper Ontology 

B. Augmenting the domain ontology with WU to form Ontology D++ 

When integrating a Web service into the IS, an instance of ontology WU is created. 
The instance ontology WI, is then linked to the augmented domain ontology using the 
isInputTo relationship to form Ontology D++. Currently, this is done manually by the 
SME using the Edit service of the OMS. This is shown in Figure 6. 



Figure 6. Instance Ontology WI 

C. Web Service Invocation Upper Ontology VU 

We created an upper ontology that models how to access and invoke a Web service. 
The ontology formalizes the WSDL specification [9] in RDF/OWL  We have 
completed this upper ontology for REST-style web services [19] and have nearly 
completed it with the addition of SOAP-style web services. [20]  Figure 7 shows a 
subgraph of this ontology. VU serves the same purpose as the Service Grounding of 
OWL-S [13] (see Section 4.1). 

Figure 7. Mapquest Ontology 



D. Web Service Ontology WM : Instance of VU 

When integrating a web service into the ontology, the WSDL file is read by the 
WSDL MAPPER tool in the OMS, and a Web service ontology WM is created. 

The ontology WM is an instance of VU. For our MapQuest example, the ontology 
is shown in Figure 7 (where [URL Val] =http://mapquest.com/ maps/map.adp). 

E. Linking the Augmented Domain Ontology to Ontology WM 

In this step, the SME uses the isValueOf, isServedAt, and hasResult relationships to 
link the ontology WM to the augmented domain ontology D++. The isValueOf links 
the range or object value of the hasLabel relationship in the ontology WM to concepts 
in the augmented domain ontology D++. The isServedAt relationship links the subject 
or domain of the hasOutput relationships in the D++ ontology to the object of the 
hasUrl relationship in the WM. The hasResult relationship links the range of hasLabel 
relationship in the WM to the range of hasOutput relationship in the ontology D++. 
This relationship is useful when the output of the Web service contains the inputs of 
another. This is shown in Figure 8 (where, for simplicity, WU and VU are not shown). 

Figure 8. Example of Ontology and Instance Data in Graph Format 

2.4 Broker a User Request to Suggest Executable Paths: The Semantic Viewer 

To handle user requests, we create a Semantic Viewer that accesses D++ and returns a 
sub-graph of executable paths linking what the user specified as inputs and desired 
outputs.  Reference [14] describes an algorithm to find such executable paths.  Note 
an executable path now contains concepts and instance data from D++ (i.e., from RU , 



RL , WU and WI ) that satisfy the user query.  When a user clicks on an instance of a 
Web service in D++, the Semantic Viewer automatically invokes the Web service; 
automatically translates its output from XML to RDF; and finally classifies the RDF 
returned result as an instance in the domain ontology.  

The Semantic Viewer application is created once and used many times in the 
application server layer (for all ontology-based integration of software components). 
We have built a Semantic Viewer as a web-enabled application.  A user interacts with 
the Semantic Viewer through the userInput, userOutput, and userCriteria 
relationships.  The userInput links the user’s input to the object value of the 
inParameter relationship in the augmented domain ontology. The userOutput links a 
goal in which the user is interested to a concept in the augmented domain ontology. 
The userCriteria  links user’s input to concepts in the augmented domain ontology that 
are not input to web services. To illustrate the inner workings of the Semantic Viewer, 
we examine several scenarios: 

CASE 1: Component Ontologies Have Matching Inputs/Outputs 

When a user enters input1 = “01851”, input2 = “255 North Rd.” and output = “Map,” 
i.e, the user requests a map, the SME links: 

1. input1 to ZIPCODE using the userInput 

2. input2 to STREET using the userInput 

3. output to Map using the userOutput 

Figure 9. Executable Path 



Having linked the request to concepts in the augmented domain ontology, and 
having found “01851”, “255 North Rd.” and “Map” in the augmented domain 
ontology D++, the Semantic Viewer does the following: 

1. The Semantic Viewer issues the request of the Compose service 

2. The Compose service selects a sub-graph from the ontology that connects 
“01851”, “255 North Rd.” with “Map,” as shown in Fig. 9. 

3. The Semantic Viewer displays the sub-graph to the user 

4. Upon a user’s mouse click, for example clicking map, the Viewer 
automatically invokes MapQuest.coml 

CASE 2: Component Ontologies Do Not Have Matching Inputs/Outputs of Web 
Sevices 

When a user enters input1 = “MITRE” and output = “Map,” i.e, the user requests a 
map for customer “MITRE”, the SME links: 

1. input1 to NAME using the userCriteria 

2. output to Map using the userOutput 
 
In this case, it is clear that "NAME" is not an input to MapQuest. Having linked 

the request to concepts in the augmented domain ontology, and having found 
“MITRE”, in the augmented domain ontology D+, the Semantic Viewer does the 
following: 

3. The Semantic Viewer issues the request of the Compose service 

4. The Compose service selects a sub-graph from the ontology that connects 
“MITRE”, with “Map,” and in the process retrieving the address of MITRE 
from the database as required by MapQuest. 

5. The Semantic Viewer displays the sub-graph to the user 

6. Upon a user’s mouse click, for example clicking map, the Viewer 
automatically invokes MapQuest.com passing it the ZIP Code and Street 
number found in the database associated with the name MITRE. 

CASE 3: Classification Conditions and Multiple Execution Paths 

In this case, we don't have a unique instance that the Web service can operate on as in 
the previous cases. This is where classification conditions become useful. A 
classification condition exists when the object of inParameter of a web service is 
linked to a concept in the domain ontology conditionally, (e.g., LessThan, 
GreaterThan,…) For instance, suppose a temperature weather forecast ontology exists 
for a region. i.e. temperature forecast for Northeast United States. Now suppose the 
existence of a Web service that for a given latitude and longitude, returns the 
temperature. In order for the Web service to operate on the temperature forecast, the 
latitude and longitude must fall within the Northeast United States region. In this case, 
the above mentioned service has in its WI ontology the following relationships: 

{Web Service, hasClassificationConditions, Latitude},{ Web Service, 
hasClassificationConditions, Longitude},{Longitude, lessThan, Longitude-



East},{Longitude, greaterThan, Longitude-West},{Latitude, lessThan, 
Latitude-North},{Latitude, greaterThan, Latitude-South},{ Web Service, 
inParameter, Longitude },{ Web Service, inParameter, Latitude },{ Web 
Service, inParameter, Forecast },{Forecast, isInputTo, Web Service 
},{Temperature, isOutputTo, Web Service } 
 
Thus, having not found latitude and longitude in the ontology D+, the semantic 

viewer does the following: 

1. Queries for a Web service with inParameter = latitude and inParameter = 
llongitude, which returns the Web Service. 

2. Queries for classification conditions on latitude and longitude, which returns 
Longitude-East, Longitude-West, Latitude-South, and Latitude-North. 

3. Queries for the values of Longitude-East, Longitude-West, Latitude-South, 
and Latitude-North that satisfies the conditions: Longitude lessThan 
Longitude-East, Longitude greaterThan Longitude-West, Latitude lessThan 
Latitude-North, and Latitude greaterThan Latitude-South. 

4. Passes the values in 3 along with the output temperature to the compose 
service. 

5. Proceeds as in the previous case. 

Case 4: Effects When There Is No Execution Path 

Effects are useful for Web services that operate on instance data in order to produce 
other instance data. Suppose a temperature weather forecast is produced according to 
the Navy Operational Global Atmospheric Prediction (NOGAP) System. Assume a 
user desires a temperature weather forecast that is produced according to the 
Mesoscale Model (MM5) forecasting model. Now, suppose the existence of a Web 
service that operates on NOGAP and produces MM5. Then, the input is a temperature 
weather forecast and the output is also a temperature weather forecast. However, the 
output is produced according to the MM5 model. In this case, the above mentioned 
service has in its WU ontology the following relationships: 
 

{Web Service, hasEffect, MM5},{ Web Service, inParameter, NOGAP},{ Web 
Service, inParameter, MM5},{Forecast, isInputTo, Web Service },{ Forecast, 
isOutputTo, Web Service } 
 
Thus, when the semantic viewer cannot match the userCriteria to an instance in 

the augmented domain ontology, it queries the augmented domain ontology for a Web 
service whose Effect matches the user criteria. If the service is found, the semantic 
viewer invokes it to produce the desired instance data, and then proceeds with its 
processing as in 2.4. 

3 Automatic Code Generation 

The Semantic Viewer identifies executable paths through the graph to satisfy a given 
request. Once an SME chooses one, we would like the system to automatically 



generate code that results in the request being satisfied. Technology exists to generate 
code from the executable path. This Code Generator is created once for D++ and is 
used many times. 

To implement the Code Generator, we used the CodeDom [15] technology 
provided by .Net from Microsoft.  CodeDom builds on .NET Reflection to generate 
high level source code (C, Java, or CSharp as is the case here), to instantiate an 
instance compiler, and to compile the code and link it to other system libraries in real-
time. 

The produced code is a web service that includes several elements: a JavaScript 
file containing the code for specifying the inputs and output and for invoking itself; 
the code necessary to retrieve data from the database; the code that forms the 
(Mapquest) WS URL with the data properly inserted into its parameters.The net effect 
is a dynamically generated web service that implements the integration of the 
database with Web services. This Web service is then deployed and ready to serve 
clients, and the Web service code is self-contained. i.e. it does not require the services 
of the OMS from this point on. Consider the scenario of the previous section where a 
user wishes to map the location of a business but he can only provide the business 
name. In this case, the semantic viewer displays the graph shown in Figure 10. Then 
the Web service generator implements a Web Method [16] with the values of 
userInput and userCriteria as the input arguments, and with return value as the URL of 
the MapQuest service with all of its parameters filled in with the right values. Then 
the Web service generator emits the body of this method by walking the graph starting 
from the Web service and stopping when the code for retrieving the values of input 
parameters has been emitted. At this point the URL is formed and the Web Method 
terminates. 

Figure 10 – Graph To Generate a Web Service Code 

4 Relation to other work 

4.1 Comparison to OWL-S 

The approach that we have developed differs from the OWL-S approach in an 
important way:  OWL-S does not address web service integration with an existing 
database without first building a web service that abstracts that database.  In our 



approach, a web service can be integrated with a database (or any other software 
component for that matter) through simply linking ontologies.  Thus there is no 
preferential integration methodology – all software components are on an equal 
footing through their ontological representation. 

The Web service ontologies that we have developed are similar to the OWL-S 
web service ontology model. The upper domain ontology for a Web service contains 
information similar to the ServiceProfile of the OWL-S web service ontology model. 

In the OWL-S ServiceProfile the conditions are logical conditions that must be 
satisfied prior to the service being requested. And the effects are the result of the 
successful execution of the service. The required conditions and the expected effects 
are interpreted within the OWL-S ServiceProfile as specifying the state change 
produced by the execution of the service. For the WU ontology the use of conditions 
and effects are somewhat different from the OWL-S approach. The conditions 
specified by WU relate inputs of Web services to the concepts in the domain ontology. 
These conditions must be satisfied in order that the Web service be able to operate on 
an instance of the domain D++.  The Effects as specified in WU reflect property 
changes on an instance that occur as a result of running the Web service on a 
particular instance data in the domain ontology.  

The upper ontology VU information is similar to the ServiceGrounding of the 
OWL-S web service ontology model The OWL-S ServiceModel provides abstract 
descriptions of the properties, inputs and outputs etc., of the processes of the Web 
service. The OWL-S ServiceGrounding provides a mapping of the abstract 
descriptions contained within the ServiceModel to the concrete messages that carry 
the inputs and outputs in a transmittable format.  This mapping is done in an XSLT.  
In our approach, the mapping is done using links or OWL ObjectProperty.  The VU 
ontology described here is limited to atomic processes and does not provide the 
capability for describing composite processes.. However, the combination of 
processes is still possible. That is, it is the Semantic Viewer that infers which 
processes can be combined in order to satisfy a request and suggests a set of 
executable paths to the SME. Then, the SME selects one such path and persists the 
code that implements it.  We also don’t use control constructs as specified by OWL-S. 

Another aspect of this methodology is our ability to link a user’s input to various 
concepts in the domain ontology using userCriteria and userInput. These two 
relationships provide a mean to interpret a user’s input.  To illustrate this, consider the 
following: 

 
A user’s INPUT_1= “01851”, and OUTPUT= “Map”, and the SME links 
INPUT_1 to zip-code using the userInput relationship. In our 
methodology and in OWL-S, this would be interpreted as “map the area 
having zip-code of 01851”. However, if the SME links INPUT_1 to zip-
code using userCriteria, then our system returns the maps of all 
occurrences of addresses (within the database) where zip-code = 01851. 

 

4.2 Comparison with Middleware Solutions 

Traditional middleware technologies generate proxy/stub [17] code that hides 
distributed complexities (e.g., method invocation, marshalling, etc), but they do not 
generate glue code to integrate software components.   Unicorn Solutions, using 



Semantic-based middleware technology, translates between different XML schemas 
using a unifying information model [18].  The information model is active in that it 
can generate the transformation code from any one schema to any other, thus 
producing the XSL style sheet or the SQL but still doesn’t integrate software 
components.   By contrast, our solution does. 
 

5 Summary 

This work demonstrates the utility of building domain ontologies for information 
systems.  By representing software components ontologically (to characterize the 
structure of data), and by linking these component ontologies to the domain ontology, 
we effectively integrate the software components.  The execution paths that result 
from extracting a sub-graph from the ontologies not only represent glue code, but it 
also specifies the semantic agreement that must be achieved before an integration can 
take place. Our future work will articulate how semantic agreement can be achieved 
as a result of adopting this methodology.  Today, the semantic agreement takes years 
to accomplish for disparate information systems. Having used this framework to 
implement two prototypes we can offer the following insights regarding the utility of 
OWL and RDF.  This approach relies heavily on the existence of named relationship 
in the RDF triple.  This is evident in the linking between the ontologies.  Without this 
formalism, it is virtually impossible to make this approach work.  We also make 
heavy use of two inferences: The “IS-A”, and “Inverse-of” inferences which are 
fundamental to the working of the compose service.  Also, the ability to combine both 
instance data (RDF) and schema (RDF S.) proved very useful in prototyping the 
Semantic Viewer and the Web service generator.   We have established the 
methodolgy for using semantic web technologies to integrate software components.  
Next we will extend this approach to work with multiple domain ontologies in which 
each is mapped to multiple software components.   
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