
15

A Notation and a Layered Architecture to Model Dynamic
Instantiation of Input Devices and Interaction Techniques:

Application to Multi-Touch Interactions

Arnaud Hamon
1,2

, Eric Barboni
1
, Philippe Palanque

1
, Raphaël André

2

1
ICS-IRIT, University Toulouse 3,

118, route de Narbonne,

31062 Toulouse Cedex 9, France

{lastname}@irit.fr

2
AIRBUS Operations

316 route de Bayonne

31060 Toulouse cedex 9

{Firstname.Lastname}@airbus.com

ABSTRACT

Representing the behavior of multi-touch interactive

systems in a complete, concise and non-ambiguous way is

still a challenge for formal description techniques. Indeed,

multi-touch interactive systems embed specific constraints

that are either cumbersome or impossible to capture with

classical formal description techniques. This is due to both

the idiosyncratic nature of multi-touch technology (e.g. the

fact that each finger represents an input device and that

gestures are directly performed on the surface without an

additional instrument) and the high dynamicity of

interactions usually encountered in this kind of systems.

This paper presents a formal description technique able to

model multi-touch interactive systems. A layered

architecture is also proposed that proposes a generic

structure for organizing models of multi-touch systems. We

focus the presentation on how to represent the dynamic

instantiation of input devices (i.e. finger) and how they can

then be exploited dynamically to offer a multiplicity of

interaction techniques which are also dynamically

instantiated.

Author Keywords

Multi-touch interactions, model-based approaches, formal

description techniques

ACM Classification Keywords

D.2.2 [Software] Design Tools and Techniques - Computer-

aided software engineering (CASE), H.5.2 [Information

Interfaces]: User Interfaces - Interaction styles.

INTRODUCTION

Over the last decade the field of interactive systems

engineering had to face multiple challenges at a pace never

encountered before. Indeed, while new interaction

techniques have been proposed on a regular basis by the

research community (e.g. multimodal gesture+voice

interactions by R. Bolt in [5], post-WIMP interactions such

as [4] …) recent years have seen the adoption and

deployment of such interaction techniques in many

different types of systems. Together with this evolution of

interaction techniques, the appearance and adoption of new

input devices is also a significant change with respect to the

past. Indeed, mass market computers remained for nearly

20 years equipped with standard mouse and keyboard while

nowadays, one interacts with more sophisticated input

devices such as multi-touch surfaces, Kinect, Wiimote, …

However, these new input devices and their associated

interaction techniques have significantly increased the the

development complexity of interactive systems. For

instance, multimodal interaction techniques are now

common both as input and output modalities. One of the

most challenging examples is the one of multi-touch

systems
1
. Indeed, even though some studies [4] show that

they improve the bandwidth between the users and the

system, they bring specific challenges such as handling

dynamic management of input devices (the fingers) and

their associated interaction techniques (including fusion and

fission of input (e.g. input fusion for a pinch) as well as

fusion and fission of rendering (e.g. output fusion for

fingers clustering)).

This paper first presents a formal description technique able

to describe in a complete and unambiguous way the

behavior of multi-touch systems. As it consists in

extensions of previous work, we make explicit the changes

that have been made to the ICO notation. We present the

basic constructs of the extensions and how they can be

applied on a simple example making particularly explicit

how dynamic management of both input devices and

interaction techniques are accounted for. This paper

addresses more specifically multi-touch input devices and

interaction techniques but the concepts are applicable to any

interactive system where input devices are connected and

1
 We use in this paper multi-touch systems as a shortcut for

interactive systems offering multi-touch interactions

EGMI 2014, 1st International Workshop on Engineering

Gestures for Multimodal Interfaces, June 17 2014, Rome,

Italy. Copyright 2014 for the individual papers by the

papers' authors. Copying permitted only for private and

academic purposes. This volume is published and

copyrighted by its editors.

http://ceur-ws.org/Vol-1190/.

16

disconnected at runtime and requiring reconfiguration of

interaction techniques. Secondly, the paper presents a

layered architecture that structures models of multi-touch

systems.

MODELLING CHALLENGES DUE TO DYNAMIC
ASPECTS OF MULTITOUCH SYSTEMS

In classical interactive systems, the set of input and output

devices are identified at design time and the interaction

techniques to be used for interacting with the application

are based on this predefined set and also defined

beforehand [3]. Multi-touch systems challenge this by

requiring the capacity for handling input devices (i.e.

fingers) that may appear and disappear dynamically while

the interaction takes place.

In such context, when the interactive system is started input

devices are not present and thus not identified. Users’

fingers are considered as input devices and are only

detected as they touch (or get close enough to) the tactile

surface. The input devices (fingers) detected at execution

time need to be dynamically instantiated in order to be

registered and listened to. While this can be easily managed

using programming languages, such aspect is usually not

addressed by modelling techniques in the literature. While

model-based approaches provide well identified benefits

such as abstract description, possible reasoning about

models, complete and unambiguous descriptions, in order

to deal with multi-touch systems they have to address the

following challenges:

� Describe the dynamic management of input devices.

This includes the description (inside models) of

dynamic creation (instantiation) of input devices and

the description of how many of them are present at any

time. This management also requires the removal of the

devices from the models when they are freed;

� Make explicit in the models the connection between

the hardware (input devices) and their software

counterpart (i.e. device drivers and transducers as

introduced in [6] and formalized in [1]);

� Describe the set of states, the events produced and the

event consumed by the device drivers and the

transducers;

� Describe the interaction techniques that have to handle

references to dynamically instantiated models related

to the input devices (drivers and transducers);

� Describe how interaction techniques behavior evolves

according to the addition and removal of input devices.

Such capability is extremely demanding on the

specification techniques requiring dynamic

management of interaction techniques as demonstrated

in [13].

� Described fusion and fission of input and output within

the interaction technique. Indeed, the use of multiple

input devices (fingers) makes it possible for interaction

designers to define very sophisticated interaction

techniques making use of several fingers grouped

together for instance. Such grouping requires fusions of

events from the groups of fingers but also the fusion of

output information to provide feedback to the users

about the current state of recognition of the interaction.

For example, interaction techniques featuring a group

of two fingers will require modifying the initial

rendering of each finger’s graphical feedback as in

Figure 1-b). Figure 1-a) presents a graphical feedback

of three fingers on a multi-touch application.

These challenges go beyond the ones brought by

multimodal interactions identified in [12].

 a)

b)

Figure 1- a) 3 input device detected; b) output of the clustering
of two input devices (merged disks bottom left)

THE EXTENDED ICO NOTATION

17

Based on the study of the related work and the dimensions

described in [9], only the ICO notation allows the explicit

modelling of all the multi-touch characteristics. However,

extensive modelling of multi-touch systems has

demonstrated the need for modifying the ICO notation in

order to provide primitives for handling specificities of

multi-touch systems. It is important to note that these

primitives do not constitute extensions to the expressive

power of ICOs but bring the formal description technique

closer to what is needed to model multi-touch systems. This

is why the proposed extensions contribute beyond ICOs as

such extensions could be added to other notations, provided

their expressive power is sufficient for modeling multi-

touch systems.

Introduction

The ICO notation (Interactive Cooperative Objects) is a

formal description technique devoted to specify interactive

systems. Using high-level Petri nets [8] for dynamic

behavior description, the notation also relies on object-

oriented approach (dynamic instantiation, classification,

encapsulation, inheritance and client/server relationships) to

describe the structural or static aspects of systems.

The ICO notation is based on a behavioral description of

the interactive system using the Cooperative objects

formalism that describes how the object reacts to external

stimuli according to its inner state. This behavior, called the

Object Control Structure (ObCS) is described by means of

Object Petri Net (OPN). An ObCS can have multiple places

and transitions that are linked with arcs as with standard

Petri nets. As an extension to these standard arcs, ICO

allows using test arcs and inhibitor arcs. Each place has an

initial marking (represented by one or several tokens in the

place) describing the initial state of the system. As the

paper mainly focuses on behavioral aspects, we do not

describe them further (more can be found in [14].

ICO notation objects are composed of four components: a

cooperative object for the behavior description, a

presentation part (i.e. Graphical Interface), and two

functions (activation and rendering) describing the links

between the cooperative object and the presentation part.

ICOs have been used for various types of multi-modal

interfaces [11] and in particular for multi-touch [9]. This

notation is also currently applied for formal specification in

the fields of Air Traffic Control interactive applications

[14], space command and control ground systems [15], or

interactive military [2] or civil cockpits [1].

Block Field Name Field Description

1: Name

block
name

unique name, not

necessary linked to the

eventName

2 :
Precondition

block

precondition
boolean expression

independent of the

event but depending on

marking

3 : Event

block

eventName
name of the event the

transition is linked to

eventSource
the source of the event

received

eventParameters

The collection of the

parameters of the

received event

eventCondition

boolean expression

based on the

eventParameters’

values used for the

firing

4 : Action

block
action an action

Table 1- Properties of the generic event transition

Informal description of dynamic instantiation

ICOs, due to their Petri nets underpinning, are particularly

efficient to create and destroy elements when they are

represented as tokens. As ICOs’ tokens refer to objects or

other ICOs, it is possible to use such high-level tokens to

represent input devices such as fingers on a touchscreen.

Such tokens refer to other ICO models describing the

detailed behavior of the input device. For instance, Figure 4

presents the behavior of a finger both in terms of states

(values for position, pressure, ...) and events (e.g. update

corresponding to move events).

The ICO model in Figure 3 describes how new input

devices are instantiated and stored in a manager. The top-

left transition in Figure 3 illustrates how new input devices

can be added to an ICO model with the creation of a model

of finger type (instruction finger=create Finger(touchinfo)).

The newly created reference is then stored in a waiting

place (called ToAddFinger) in order to be connected to an

interaction technique in charge of handling the events that

will be produced by the new device.

Handling events from dynamically instantiated sources

An ICO model may act as an event handler for events

emitted by other models or java instances. The detailed

description of these mechanisms is available in [16]. In

addition, the different transition blocks of Figure 3 (top-left

transition) are presented in Table 1.

Formal description

Due to space constraints, the formal definition of the

extensions is not given here but its denotational semantics

is given in terms of “standard” ICOs as defined in [14].

A LAYERED APPLICATION TO SUPPORT DYNAMIC
HANDLING OF INPUT DEVICES

This section proposes a layered architecture (see Figure 2)

making explicit the various models needed to describe

multi-touch systems as well as the way they communicate.

This architecture allows handling the dynamicity aspects of

18

input devices and interaction techniques. The proposed

architecture features “good” properties of software systems

mentioned in [17] (flexibility, separation of concerns,

extensibility and hardware independence). Our proposed

architecture is similar to the layered based architecture

described in [7] but explicitly describes the dynamic aspects

related to multi-touch such as dynamic instantiation.

Figure 2 presents this architecture starting (bottom) making

explicit the flow of events from the hardware (lower level)

to the multi-touch interactive application (higher level). The

architecture relies on existing coded layers and ICO models

and is OS independent. The hardware layer describes the

hardware equipment providing tactile input. In our case,

this layer relates to the touchscreens considered. The

hardware driver layer refers to the drivers used by the

operating system and produces low-level events (such as

“downs” with their basic attributes (posX, posY, …)) that

propagate the upper levels. On top of this layer, the JavaFX

layer provides object oriented events through an OS

independent layer.

The low-level transducer (bigger box in Figure 2) is in

charge of producing high-level events corresponding to the

interaction techniques recognized by the system. This layer

is modelled using ICO and manages the dynamicity of the

input devices. The detailed description of this layer and its

components is described in the followings sections.

Figure 2 - Layered architecture to support dynamic handling
of input devices

DEMONSTRATING HANDLING OF INPUT DEVICES: A
SIMPLE EXAMPLE USING ICOS

This paragraph describes the ICO models used for the

example presented Figure 1-b, which handles dynamically

referenced input devices and corresponds to the main

components of the architecture presented Figure 2.

Low-level transducer description

The model presented in Figure 3 is called a transducer as it

is located (in terms of software architecture) in between the

hardware devices and the interaction techniques as

illustrated in Figure 2. There could be a chain of such

models handling events from the lower level (raw events or

data from the hardware input devices) to high-level events

as a double click (see [1] for more details on transducers).

The low-level transducer encapsulates the references

towards the upper-level models of the handling mechanism

such as FingerModels and the interaction technique

ClusteringModel. The role of this low-level transducer is to

forward events received from the hardware to low-level

events in FingerModels (which model the fingers’

behavior).

Figure 3 – Excerpt of the model of a low level transducer

During the initialization, the low-level transducer

instantiates the ClusteringModel through the

createClustering transition and stores its reference in the

ClusteringModel place. When the low-level transducer

receives a “rawToucheventf_down” event from the

hardware, the fingerInstantiation transition is fired, the

event parameters (the touch iD, and its additional

information) are retrieved and used to dynamically

instantiate a new instance of FingerModel. The

addFingerToClustering transition then adds the

FingerModel reference to the cluster model. This is how the

interaction technique is informed of the detection of new

fingers. The low-level transducer then stores the reference

of the FingerModel in the FingerPool place (which contains

the list of all the detected fingers). When the transducer

receives “rawToucheventf_update” (resp.

“rawToucheventf_up”) events from the hardware, the

transition updatingFinger (resp. freeFinger) is then

19

triggered and updates accordingly the proper FingerModel.

These updates are provided using the communication

mechanism of ICO services and not using events since the

low-level transducer contains references toward the

FingerModels and is able to match the hardware events

with the right model.

Modelling touch fingers

Each time the low-level transducer receives an event

corresponding to the detection of a finger on the hardware,

it creates the model and links it with the interaction

technique model(s). When the event received corresponds

to an update of an already detected finger, the low-level

transducer notifies the corresponding finger model using

the services “update”. When the finger is removed from the

hardware, the low-level transducer fires the transition

freeFinger, which destroys the corresponding FingerModel.

For readability purposes, the model presented in Figure 4

features a limited set of fingers properties: position and

pressure. However, more complex finger models have been

described offering various properties such as finger tilt

angle, acceleration and direction of the movements.

Lastly, this finger model is an extensible model that can

describe very complex behaviors. For example, if one needs

to describe the behavior of a finger input as in Proton++

[10], this can be done in a finger model as the one

presented. Indeed this model specifies when the touch

events are broadcasted and that such broadcasting can be

controlled in order to match a sequential system sending

user events every 30ms as in [10].

Modelling the interaction technique “finger clustering”

This paragraph describes how the ICO notation handles

interaction techniques including output fusion of

information related to the reception of events produced by

dynamically instantiated input devices (see Figure 5). In

this example, the interaction technique model is in charge

of pairing co-located input devices so they can be handled

as a group of fingers. This corresponds to the interaction

presented in Figure 1 where the right-hand side of the figure

presents the rendering associated to the detection of a pair

Figure 4 – Generic Model of Finger

20

of fingers (bottom-left of the figure) while the other finger

remains ungrouped. The model presented in Figure 5 is

composed of a service (addFinger), two places (ListOfPairs

storing the pairs of fingers and SingleFingersList storing the

“single” fingers) and event-transitions to update the

clustering according to the evolution of the position of

fingers on the touchscreen. Each time a finger model is

created (a new finger touches the screen), the low level

transducer calls the “addFinger” service and a reference to a

new finger model is set in place SingleFinger. When a

finger from SingleFingerList (called finger1 for instance)

moves close enough to another finger (e.g. finger2) in that

place too, two cases are represented:

• finger2 is close enough of finger1 (condition in the

event condition zone of transition cluster2Fingers is

true) then transition cluster2Fingers is fired, finger1

and finger2 are removed from place SingleFingerList

and a new token consisting of the pair (finger1,

finger2) and their respective position is stored in place

ListOfFingerPairs.

• finger2 is too far from finger1 (condition in the event

condition zone of transition noClusterDetected is true)

then that transition is fired and the new position of

finger is updated.

• When a pair is detected, the user interface should

display graphically such dynamic grouping. This is

defined by the rendering function associated to the

interaction technique and presented in Table 2. When

two fingers are merged, the token referencing these two

models are removed from SingleFingerList place

which triggers the method hideFingerRendering for

each model. This method hides the elementary

rendering associated to each finger. When a pair is

detected, both references are combined in a token

added to the place LisfOfFingerPairs which calls the

method createPairedFingerRendering, which displays

the rendering associated to the two-finger cluster.It is

important to note that output is thus connected to state

changes in the models (which only occur when tokens

are added to or removed from places) while inputs are

event based and thus associated to transitions.

ObCS Node

name

ObCS

event
Rendering method

SingleFingerList tokenAdded showFingerRendering

SingleFingerList tokenRemoved hideFingerRendering

ListOfFingerPairs tokenAdded createPairedFingerRendering

ListOfFingerPairs tokenRemoved removePairedFingerRendering

Table 2 -Rendering functions of the interaction technique

CONCLUSION

This paper has identified a set of challenges towards the

production of complete and unambiguous specifications of

multi-touch systems. The main issues deal with the

dynamic instantiation of input devices and the dynamic

reconfiguration of interaction techniques. We have

Figure 5 - Model of the interaction technique “finger clustering”

21

highlighted the fact that such concerns have not previously

encountered (at least at this large scale) when engineering

interactive systems. This paper has presented a twofold way

for addressing these issues:

• A layered software architecture made up of

communicating models, which makes explicit a set of

components and their inter-relations in order to address

this dynamicity challenge;

• A formal description technique able to describe in a

complete and unambiguous way such dynamic

behaviors.

While the formal notation contribution is very specific to

the work presented here, the layered architecture is

independent from it and can be reused within any

framework dealing with multi-touch interactions.

REFERENCES

1. Accot J., Chatty S., Maury S. & Palanque P. Formal

Transducers: Models of Devices and Building Bricks for

Highly Interactive Systems. DSVIS 1997, Springer

Verlag, pp. 234-259.

2. Bastide R., Navarre D., Palanque P., Schyn A. &

Dragicevic P. A Model-Based Approach for Real-Time

Embedded Multimodal Systems in Military Aircrafts.

Int. Conference on Multimodal Interfaces (ICMI'04),

ACM DL, 10 pages.

3. Bellik Y., Rebaï I., Machrouh E., Barzaj Y., Jacquet C.,

Pruvost G., Sansonnet J.-P.: Multimodal Interaction

within Ambient Environments: An Exploratory Study.

INTERACT (2) 2009: 89-92

4. Bi X., Grossman T., Matejka J., and Fitzmaurice G.:

2011. Magic desk: bringing multi-touch surfaces into

desktop work. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '11). ACM, New York, NY, USA, 2511-2520.

5. Bolt, R and Herranz, E. (1992). “Two-Handed Gesture

in Multi-Modal Natural Dialog”, Proceedings of the

fifth annual ACM symposium on User interface

software and technology, ACM Press, p 7-14

6. Buxton W. A three-state model of graphical input, IFIP

TC 13 INTERACT’90, 1990, p. 449–456.

7. Echtler F. and Klinker G.. 2008. A multitouch software

architecture. In Proceedings of the 5th Nordic

conference on Human-computer interaction: building

bridges (NordiCHI '08). ACM, New York, NY, USA,

463-466.

8. Genrich, H. J. 1991. Predicate/Transitions Nets. In

High-Levels Petri Nets: Theory and Application. K.

Jensen and G. Rozenberg, (Eds.), Springer Verlag

(1991) pp. 3-43

9. Hamon A., Palanque P., Silva J-L., Deleris Y., &

Barboni E. 2013. Formal description of multi-touch

interactions.5th symp. on Engineering interactive

computing systems (EICS '13). ACM, 207-216

10. Kenrick K., Björn H., DeRose T. & Maneesh A. 2012.

Proton++: a customizable declarative multitouch

framework. Proc. of ACM symposium on User interface

software and technology (UIST '12). ACM, 477-486.

11. Ladry J-F., Navarre D., Palanque P. Formal description

techniques to support the design, construction and

evaluation of fusion engines for sure (safe, usable,

reliable and evolvable) multimodal interfaces. ICMI

2009: 185-192

12. Lalanne D., Nigay L., Palanque P., Robinson P.,

Vanderdonckt J. & Ladry J-F. Fusion engines for

multimodal input: a survey. ACM ICMI 2009: 153-160,

ACM DL

13. Spano L-D., Cisternino A., Paternò F., Fenu G. GestIT:

a declarative and compositional framework for

multiplatform gesture definition. EICS 2013: 187-196

14. Navarre D., Palanque P., Ladry J-F. & Barboni E. ICOs:

A model-based user interface description technique

dedicated to interactive systems addressing usability,

reliability and scalability. ACM Trans. Comput.-Hum.

Interact., 16(4), 18:1–18:56. 2009

15. Palanque P., Bernhaupt R., Navarre D., Ould M. &

Winckler M. Supporting Usability Evaluation of

Multimodal Man-Machine Interfaces for Space Ground

Segment Applications Using Petri net Based Formal

Specification. Ninth Int. Conference on Space

Operations, Italy, June 18-22, 2006

16. Palanque P. & Schyn A. A Model-Based Approach for

Engineering Multimodal Interactive Systems in

INTERACT 2003, IFIP TC 13 conf. on HCI, 10 pages.

17. Khandkar S.H. & Maurer F. A domain specific language

to define gestures for multi-touch applications. In

Proceedings of the 10th Workshop on Domain-Specific

Modeling (DSM '10). ACM, New York, NY, USA, ,

Article 2 , 6 pages.

