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ABSTRACT
An increasing number of today’s consumer devices such as
mobile phones or tablet computers are equipped with various
sensors. The extraction of useful information such as ges-
tures from sensor-generated data based on mainstream im-
perative languages is a notoriously difficult task. Over the
last few years, a number of domain-specific programming
languages have been proposed to ease the development of
gesture detection. Most of these languages have adopted a
declarative approach allowing programmers to describe their
gestures rather than having to manually maintain a history
of event data and intermediate gesture results. While these
declarative languages represent a clear advancement in ges-
ture detection, a number of issues are still unresolved. In this
paper we present relevant criteria for gesture detection and
provide an initial classification of existing solutions based on
these criteria in order to foster a discussion and identify op-
portunities for future gesture programming languages.
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INTRODUCTION
With the increasing interest in multi-touch surfaces (e.g. Sony
Tablet, Microsoft Surface or Apple iPad), controller-free sen-
sors (e.g. Leap Motion, Microsoft Kinect or Intel’s Percep-
tual SDK) and numerous sensing appliances (e.g. Seeeduino
Films and Nike+ Fuel), developers are facing major chal-
lenges in integrating these modalities into common appli-
cations. Existing mainstream imperative programming lan-
guages cannot cope with user interaction requirements due to
the inversion of control where the execution flow is defined
by input events rather than by the program, the high program-
ming effort for maintaining an event history and the difficulty
of expressing complex patterns.
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For example, commercial multi-touch hardware has evolved
from simple two-finger support to multi-user tracking with up
to 60 fingers1. Similarly, commercial depth sensors such as
the Microsoft Kinect were introduced in 2010 and supported
the tracking of 20 skeletal joints (i.e. tracking arms and limbs
in 3D space). Nowadays, numerous depth sensors such as the
Leap sensors or the DepthSense cameras by SoftKinetic also
provide short-range finger tracking. Recently, the Kinect for
Windows supports facial expressions and the Kinect 2 sup-
ports heart beat and energy level tracking. This rapid evolu-
tion of novel input modalities continues with announcements
such as the Myo electromyography gesture armband [21] and
tablet computers with integrated depth sensors, fingerprint
scanning and eye tracking.

In this paper, we consider a gesture as a movement of the
hands, face or other parts of the body in time. Due to the high
implementation complexity, most gesture recognition solu-
tions rely on machine learning algorithms to extract gestu-
ral information from sensors. However, the costs of apply-
ing machine learning algorithms are not to be underestimated.
The capture and annotation of training and test data requires
substantial resources. Further, the tweaking of the correct
learning parameters and analysis for overfitting require some
expert knowledge. Last but not least, one cannot decisively
observe and control what has actually been learned. There-
fore, it is desired to have the possibility to program gestures
and to ease the programming of gestural interaction. We ar-
gue that research in software engineering abstractions is of
utmost importance for gesture computing.

In software engineering, a problem can be divided into its ac-
cidental and essential complexity [1]. Accidental complexity
relates to the difficulties a programmer faces due to the choice
of software engineering tools and can be reduced by select-
ing or developing better tools. On the other hand, essential
complexity is caused by the characteristics of the problem to
be solved and cannot be reduced. The goal of gesture pro-
gramming languages is to reduce the accidental complexity
as much as possible. In this paper, we define a number of cri-
teria to gain an overview about the focus of existing gesture
programming languages and to identify open challenges to be
further discussed and investigated.
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MOTIVATION AND RELATED WORK
Gesture programming languages are designed to support de-
velopers in specifying their gestural interaction requirements
more easily than with general purpose programming lan-
guages. A domain-specific language might help to reduce
the repetitive boilerplate that cannot be removed in existing
languages as described by Van Cutsem2. General purpose
programming languages such as Java sometimes require an
excessive amount of constructs to express a developer’s in-
tention which makes them hard to read and maintain. Van
Cutsem argues that languages can shape our thought, for in-
stance when a gesture can be declaratively described by its
requirements rather than through an imperative implementa-
tion with manual state management. A gesture programming
language can also be seen as a simplifier where, for example,
multiple inheritance might not be helpful to describe gestural
interaction. Finally, domain-specific languages can be used as
a law enforcer. Some gesture languages, such as Proton [16],
disallow a specific sequence of events simply because it over-
laps with another gesture definition. It further enables the in-
ference of properties that help domain-specific algorithms to
obtain better classification results or reduced execution time.

Midas [7, 22] by Hoste et al., the Gesture Description Lan-
guage (GDL) by Khandkar et al. [14], GeFormt by Kam-
mer et al. [13] and the Gesture Description Language (GDL)
by Echtler et al. [4] form a first generation of declarative lan-
guages that allow programmers to easily describe multi-touch
gestures rather than having to imperatively program the ges-
tures. This fundamental change in the development of ges-
tures moved large parts of the accidental complexity—such as
the manual maintenance of intermediate results and the exten-
sion of highly entangled imperative code—to the processing
engine.

With these existing solutions, gestures are described in a
domain-specific language as a sequence or simultaneous oc-
currences of events from one or multiple fingers. The mod-
ularisation and outsourcing of the event matching process
paved the way for the rapid development of more complex
multi-touch gestures. With the advent of novel hardware
such as the Microsoft Kinect sensor with a similar or even
higher level of complexity, domain-specific solutions quickly
became a critical component for supporting advanced gestu-
ral interaction. The definition of complex gestures involves
a number of concerns that have to be addressed. The goal of
this paper is to enumerate these criteria for gesture program-
ming languages and to provide an overview how existing ap-
proaches focus on different of these criteria.

CRITERIA
We define a number of criteria which can shape (1) the choice
of a particular framework, (2) the implementation of the ges-
ture and (3) novel approaches to solve open issues in ges-
ture programming languages. These criteria were compiled
based on various approaches that we encountered over the
last few years, also including the domains of machine learn-
ing or template matching which are out of the scope of this
paper. We aligned the terminology, such as gesture spotting
2http://soft.vub.ac.be/∼tvcutsem/invokedynamic/node/11

and segmentation, and performed an indicative evaluation of
nine existing gesture languages as shown in Figure 1. For
each individual criterion of these nice approaches we provide
a score ranging from 0 to 5 together with a short explana-
tion which can be found in the online data set. A score of 1
means that the approach could theoretically support the fea-
ture but it was not discussed in the literature. A score of 2
indicates that there is some initial support but with a lack
of additional constructs that would make it useful. Finally,
a score in the range of 3-5 provides an indication about the
completeness and extensiveness regarding a particular cri-
terion. Our data set, an up-to-date discussion as well as
some arguments for the indicative scoring for each criterion
of the different approaches is available at http://soft.vub.ac.
be/∼lhoste/research/criteria/images/img-data.js. We tried to
cluster the approaches based on the most up-to-date infor-
mation. However, some of the criteria could only be evalu-
ated subjectively and might therefore be adjusted later based
on discussions during the workshop. An interactive visu-
alisation of the criteria for each of the approaches can be
accessed via http://soft.vub.ac.be/∼lhoste/research/criteria.
Note that the goal of this assessment was to identify general
trends rather than to draw a conclusive categorisation for each
approach.

Software Engineering and Processing Engine
The following criteria have an effect on the software engi-
neering properties of the gesture implementation. Further-
more, these criteria might require the corresponding features
to be implemented by the processing engine.

Modularisation
By modularising gesture definitions we can reduce the effort
to add an extra gesture. In many existing approaches the en-
tanglement of gesture definitions requires developers to have
a deep knowledge about already implemented gestures. This
is a clear violation of the separation of concerns principle,
one of the main principles in software engineering which dic-
tates that different modules of code should have as little over-
lapping functionality as possible. Therefore, in modular ap-
proaches, each gesture specification is written in its own sep-
arate context (i.e. separate function, rule or definition).

Composition
Composition allows programmers to abstract low-level com-
plexity by building complex gestures from simpler building
blocks. For instance, the definition of a double tap gesture
can be based on the composition of two tap gestures with a
defined maximum time and space interval between them. A
tap gesture can then be defined by a touch down event shortly
followed by a touch up event and with minimal spatial move-
ment in between. Composition is supported by approaches
when a developer can reuse multiple modular specifications
to define more complex gestures without much further effort.

Customisation
Customisation is concerned with the effort a developer faces
to modify a gesture definition in order that it can be used in
a different context. How easy is it for example to adapt the
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(a) Midas [22]
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(b) GDL (Khandkar) [14]

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(c) GeForMT [13]
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(d) GDL (Echtler) [4, 2]
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(e) Proton [16]
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(f) GestureAgents [10]
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(g) EventHurdle [15]
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(h) GestIT [23]
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(i) ICO [6]

Figure 1. Indicative classification of gesture programming solutions. The labels are defined as follows: (1) modularisation, (2) composition, (3) customi-
sation, (4) readability, (5) negation, (6) online gestures, (7) offline gestures, (8) partially overlapping gestures, (9) segmentation, (10) event expiration,
(11) concurrent interaction, (12) portability, serialisation and embeddability, (13) reliability, (14) graphical user interface symbiosis, (15) activation
policy, (16) dynamic binding, (17) runtime definitions, (18) scalability in terms of performance, (19) scalability in terms of complexity, (20) identifica-
tion and grouping, (21) prioritisation and enabling, (22) future events, (23) uncertainty, (24) verification and user profiling, (25) spatial specification,
(26) temporal specification, (27) other spatio-temporal features, (28) scale and rotation invariance, (29) debug tooling, (30) editor tooling.
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existing definition of a gesture when an extra condition is re-
quired or the order of events should be changed? For graphi-
cal programming toolkits, the customisation aspect is broad-
ened to how easy it is to modify the automatically generated
code and whether this is possible at all. Note that in many
machine learning approaches customisation is limited due to
the lack of a decent external representation [11].

Readability
Kammer et al. [13, 12] identified that gesture definitions are
more readable when understandable keywords are used. They
present a statistical evaluation of the readability of various
gesture languages which has been conducted with a number
of students in a class setting. In contrast to the readabil-
ity, they further define complexity as the number of syntactic
rules that need to be followed for a correct gesture descrip-
tion, including for example the number of brackets, colons
or semicolons. Languages with a larger number of syntactic
rules are perceived to be more complex. However, it should
be noted that the complexity of a language as defined by
Kammer et al. is different from the level of support to form
complex gestures and we opted to include their definition un-
der the readability criterion.

Negation
Negation is a feature that allows developers to express a con-
text that should not be true in a particular gesture definition.
Many approaches partially support this feature by requiring a
strict sequence of events, implying that no other events should
happen in between. However, it is still crucial to be able to de-
scribe explicit negation for some scenarios such as that there
should be no other finger in the spatial neighbourhood or a
finger should not have moved up before the start of a gesture.
Other approaches try to use a garbage state in their gesture
model to reduce false positives. This garbage state is simi-
lar to silence models in speech processing and captures non-
gestures by “stealing” partial gesture state and resetting the
recognition process.

Online Gestures
Some gestures such as a pinch gesture for zooming require
feedback while the gesture is being performed. These so-
called online gestures can be supported in a framework by
allowing small online gesture definitions or by providing ad-
vanced constructs that offer a callback mechanism with a per-
centage of the progress of the larger gesture. Note that small
online gesture definitions are linked with the segmentation
criterion which defines that gestures can form part of a con-
tinuous event stream without an explicit begin and end condi-
tion.

Offline Gestures
Offline gestures are executed when the gesture is completely
finished and typically represent a single command. These
gestures are easier to support in gesture programming lan-
guages as they need to pass the result to the application once.
Offline gestures also increase the robustness due to the ability
to validate the entire gesture. The number of future events
that can change the correctness of the gesture is limited when
compared to online gestures.

Partially Overlapping Gestures
Several conditions of a gesture definition can be partially
or fully contained in another gesture definition. This might
be intentional (e.g. if composition is not supported nor pre-
ferred) or unintentional (e.g. if two different gestures start
with the same movement). Keeping track of multiple partial
matches is a complex mechanism that is supported by some
approaches, intentionally blocked by others (e.g. Proton) or
ignored by some approaches.

Segmentation
A stream of sensor input events might not contain explicit
hints about the start and end of a gesture. The segmenta-
tion concern (also called gesture spotting) gains importance
given the trend towards the continuous capturing and free-
air interaction such as the Kinect sensor and Z-touch [25],
where a single event stream can contain many potential start
events. The difficulty of gesture segmentation manifests it-
self when one cannot know beforehand which potential start
events should be used until a middle or even an end candi-
date event is found to form the decisive gesture trajectory. It
is possible that potential begin and end events can still be re-
placed by better future events. For instance, how does one
decide when a flick right gesture (in free air) starts or ends
without any knowledge about the future? This generates a lot
of gesture candidates and increases the computational com-
plexity. Some approaches tackle this issue by using a ve-
locity heuristic with a slack variable (i.e. a global constant
defined by the developer) or by applying an efficient incre-
mental computing engine. However most language-based ap-
proaches are lacking this functionality. Many solutions make
use of a garbage gesture model to increase the accuracy of the
gesture segmentation process.

Event Expiration
The expiration of input events is required to keep the memory
and processing complexity within certain limits. The man-
ual maintenance of events is a complex task and most frame-
works offer at least a simple heuristic to automatically expire
old events. In multi-touch frameworks, a frequently used ap-
proach is to keep track of events from the first touch down
event to the last touch up of any finger. This might introduce
some issues when dealing with multiple users if there is al-
ways at least one active finger touching the table. Another
approach is to use a timeout parameter, effectively creating
a sliding window solution. An advantage of this approach is
that the maximum memory usage is predefined, however a
slack value is required. A static analysis of the gesture defi-
nitions could help to avoid the need for such a static value.

Concurrent Interaction
In order to allow concurrent interaction, one has to keep track
of multiple partial instances of a gesture recognition process.
For instance, multiple fingers, hands, limbs or users can per-
form the same gesture at the same time. To separate these
instances, the framework can offer constructs or native sup-
port for concurrent gesture processing. In some scenarios, it
is hard to decide which touch events belong to which hand or
user. For example, in Proton the screen can be split in half
to support some two player games. A better method is to set
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a maximum bounding box of the gesture [4] or to define the
spatial properties of each gesture condition. The use of GUI-
specific contextual information can also serve as a separation
mechanism. Nevertheless, it is not always possible to know
in advance which combination of fingers will form a gesture,
leading to similar challenges as discussed for the segmenta-
tion criterion where multiple gesture candidates need to be
tracked.

Portability, Serialisation and Embeddability
Concerns such as portability, serialisation and embeddability
form the platform independence of an approach. Portability
is defined by how easy it is to run the framework on different
platforms. Some approaches are tightly interwoven with the
host language which limits portability and the transfer of a
gesture definition over the network. This transportation can
be used to exchange gesture sets between users or even to
offload the gesture recognition process to a dedicated server
with more processing power. The exchange requires a form
of serialisation of the gesture definitions which is usually al-
ready present in domain-specific languages. The embeddabil-
ity has to do with the way how the approach can be used. Is it
necessary to have a daemon process or can the abstractions be
delivered as a library? Another question is whether it is pos-
sible to use the abstractions in a different language or whether
this requires a reimplementation.

Reliability
The dynamic nature of user input streams implies the pos-
sibility of an abundance of information in a short period of
time. A framework might offer a maximum computational
boundary for a given setting [19]. Without such a boundary,
users might trigger a denial of service when many complex
interactions have to be processed at the same time. Addition-
ally, low-level functionality should be encapsulated without
providing leaky language abstractions that could form poten-
tial security issues.

Graphical User Interface Symbiosis
The integration of graphical user interface (GUI) components
removes the need for a single entry point of gesture callbacks
on the application level. With contextual information and
GUI-specific gesture conditions the complexity is reduced.
For instance, a scroll gesture can only happen when both fin-
gers are inside the GUI region that supports scrolling [4]. This
further aids the gesture disambiguation process and thus in-
creases the gesture recognition quality. Another use case is
when a tiny GUI object needs to be rescaled or rotated. The
gesture can be defined as such that one finger should be on
top of the GUI component while the other two fingers are ex-
ecuting a pinch or rotate gesture in the neighbourhood.

Activation Policy
Whenever a gesture is recognised, an action can be executed.
In some cases the developer wants to provide a more detailed
activation policy such as trigger only once or trigger when
entering and leaving a pose. Another example is the sticky
bit [4] option that activates the gesture for a particular GUI
object. A shoot-and-continue policy [9] denotes the execu-
tion of a complete gesture followed by an online gesture ac-
tivation. The latter can be used for a lasso gesture where at

least one complete circular movement is required and after-
wards each incremental part (e.g. per quarter) causes a gesture
activation.

Dynamic Binding
Dynamic binding is a feature that allows developers to define
a variable without a concrete value. For instance, the x loca-
tion of an event A should be between 10 and 50 but should
be equal to the x location of an event B. At runtime, a value
of 20 for the x location of event A will therefore require an
event B with the same value of 20. This is particularly use-
ful to correlate different events if the specification of concrete
values is not feasible.

Runtime Definitions
Refining gesture parameters or outsourcing gesture defini-
tions to gesture services requires a form of runtime modi-
fication support by the framework. The refinement can be
instantiated by an automated algorithm (e.g. an optimisation
heuristic) by the developer (during a debugging session) or
by the user to provide their preferences.

Scalability in Terms of Performance
The primary goal of gesture languages is to provide an ab-
straction level which helps developers to express complex
relations between input events. However, with multimodal
setups, input continuously enters the system and the user ex-
pects the system to immediately react to their gestures. There-
fore, performance and the scalability when having many ges-
ture definitions is important. Some approaches, such as
Midas, exploit the language constructs to form an optimised
direct acyclic graph based on the Rete algorithm [5]. This
generates a network of the gesture conditions, allows the
computational sharing between them and keeps track of par-
tial matches without further developer effort. In recent exten-
sions, Midas has been parallelised and benchmarked with up
to 64 cores [19] and then distributed such that multiple ma-
chines can share the workload [24]. Other approaches such as
Proton and GDL by Echtler et al. rely on finite state machines.
However, it is unclear how these approaches can be used with
continuous sensor input where segmentation is a major issue.
EventHurdle [15] tackles this problem by using relative po-
sitions between the definitions but might miss some gestures
due to the non-exhaustive search [8].

Scalability in Terms of Complexity
The modularity of gestures allows for a much better scalabil-
ity in terms of complexity. When adding an extra gesture, no
or minimal knowledge about existing definitions is required.
However, when multiple gestures are recognised in the same
pool of events, the developer needs to check whether they
can co-exist (e.g. performed by different users) or are con-
flicting (i.e. deciding between rotation, scaling or both). A
lot of work remains to be done to disambiguate gestures. For
example, how do we cope with the setting of priorities or dis-
ambiguation rules between gestures when they are detected
at a different timestamp? How can we cope with these dis-
ambiguation issues when there are many gesture definitions?
Furthermore, it is unclear how we need to deal with many
variants of a similar gesture in order that the correct one is
used during the composition of a complex gesture.
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Gesture Disambiguation
When multiple gesture candidates are detected from the same
event source, the developer needs a way to discriminate be-
tween them. However, this is not a simple task due to the lack
of detail in sensor information, unknown future events and
the uncertainty of the composition of the gesture.

Identification and Grouping
The identification problem is related to the fact that sensor
input is not always providing enough details to disambiguate
a scenario. Echtler et al. [3] demonstrate that two fingers
from different hands cannot be distinguished from two fin-
gers of the same hand on a multi-touch table due to the lack
of shadowing information. Furthermore, when a finger is
lifted from the table and put down again, there is no easy way
to verify whether it is the same finger. Therefore, a double
tap gesture cannot easily be distinguished from a two finger
roll. Similar issues exist with other types of sensors such as
when a user leaves the viewing angle of a sensor and later
enters again. Multimodal fusion helps addressing the identi-
fication problem. The grouping problem is potentially more
complex to solve. For instance, when multiple people are
dancing in pairs, it is sometimes hard to see who is dancing
with whom. Therefore the system needs to keep track of al-
ternative combinations for a longer time period to group the
individuals. Many combinations of multi-touch gestures are
possible when fingers are located near each other.

Prioritisation and Enabling
The annotation of gestures with different priority levels is a
first form of prioritisation which can have an impact on the
gesture recognition accuracy. However, it requires knowl-
edge about existing gestures and if there are many gestures it
might not be possible to maintain a one-dimensional priority
schema. Nacenta et al. [20] demonstrate that we should not
distinguish between a scale and rotate gesture on the frame-
by-frame level but by using specialised prioritisation rules
such as magnitude filtering or visual handles. A developer
can further decide to enable or disable certain gestures based
on the application context or other information.

Future Events
One of the major issues with gesture disambiguation is that
information in the near future can lead to a completely differ-
ent interpretation of a gesture. A gesture definition can, for
instance, fully overlap with a larger, higher prioritised ges-
ture. At a given point in time, it is difficult to decide whether
the application should be informed that a particular gesture
has been detected or whether we wait for a small time period.
If future events show that the larger gesture does not match,
users might perceive the execution of the smaller gesture as
unresponsive. Late contextual information might also influ-
ence the fusion process of primitive events that are still in the
running to form part of more complex gestures. The question
is whether these fused events should be updated to reflect the
new information and how a framework can support this.

Uncertainty
Noise is an important parameter when dealing with gestural
interaction. The jittering of multi-touch locations or limb po-
sitions might invalidate intended gestures or unintentionally

activate other gestures. To analyse gestures based on impre-
cise primitive events, a form of uncertainty is required. This
might also percolate to higher level gestures (e.g. when two
uncertain subgestures are being composed). The downside is
that this introduces more complexity for the developer.

Verification and User Profiling
Whenever a gesture candidate is found, it might be verified
using an extra gesture classifier. An efficient segmentation
approach may, for example, be combined with a more elabo-
rate classification process to verify whether a detected recog-
nition is adequate. Verification can also be used to further
separate critical gestures (e.g. file deletion) from simple ges-
tures (e.g. scaling). Note that couples of classifiers (i.e. en-
sembles) are frequently used in the machine learning domain.
In order to further increase the gesture recognition accuracy,
a developer can offer a form of user profiling for gestures
that are known to cause confusion. Either a gesture is speci-
fied too precisely for a broader audience or it is specified too
loosely for a particular user. This influences the recognition
results and accidental activations. Therefore, the profiling of
users by tracking undo operations or multiple similar invo-
cations could lead to an adaptation of the gesture definition
for that particular user. User profiling is valuable to improve
recognition rates but it might also be interesting to exploit it
for context-sensitive cases. Future work is needed to offer
profiling as a language feature.

Gesture Specification
The description of a gesture requires a number of primitive
statements such as spatial and temporal relations between
multiple events as described in the following.

Spatial Specification
We define the spatial specification of a gesture as the prim-
itive travelled path to which it has to adhere. The path can
be formed by sequential or parallel conditions (expressed by
using temporal constructs) where events are constrained in a
spatial dimension such as 10 < event1.x < 50. The use of
relative spatial operators (e.g. event1.x + 30 > event2.x as
used in [8, 15]) also seem useful to process non-segmented
sensor information. Note that approximation is required to
support the variability of a gesture execution.

Temporal Specification
Gestures can be described in multiple conditions. However,
these conditions cannot always be listed in a sequential order.
Therefore, most gesture languages allow the developer to ex-
press explicit temporal relations between the conditions. An
example of such a temporal relation is that two events should
(or should not) happen within a certain time period.

Other Spatio-temporal Features
Many frameworks offer additional features to describe a ges-
ture. For instance, Kammer et al. [13] use atomic blocks to
specify a gesture. These atomic blocks are preprocessors such
as direction (e.g. north or southwest) that abstract all low-
level details from the developer. They can also rely on a tem-
plate engine to offer more complex atomic building blocks.
This integration is a form of composition and is an efficient
way to describe gestures. Kinematic features can be used
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to filter gestures based on motion vectors, translation, diver-
gence, curl or deformation. Khandkar et al. [14] offer a closed
loop feature to describe that the beginning and end event of a
gesture should be approximately at the same location.

Scale and Rotation Invariance
Scale invariance deals with the recognition of a single gesture
trajectory regardless of its scale. Similarly, rotation invari-
ance is concerned with the rotation. Most approaches offer
this feature by rescaling and rotating the trajectory to a stan-
dard predefined size and centroid. However, a major limita-
tion is that scale and rotation invariance requires segmenta-
tion and therefore does not work well for online gestures.

Debug Tooling
In order to debug gestures, developers usually apply prere-
corded positive and negative gesture sets to see whether the
given definition is compatible with the recorded data. Gesture
debugging tools have received little attention in research and
are typically limited to the testing of accuracy percentages.
It might be interesting to explore more advanced debugging
support such as notifying the developer of closely related ges-
ture trajectories (e.g. gesture a is missed by x units [17]).

Editor Tooling
Gesture development can be carried out in a code-compatible
graphical manner such as done with tablatures [16], hur-
dles [15] or spatially [18]. When dealing with 3D input events
from a Kinect, a graphical representation is valuable to get to
the correct spatial coordinates.

DISCUSSION
We can identify some general trends with regard to open
issues and underrepresented criteria in existing work. Fig-
ure 2 reveals that some criteria such as (1) modularisation and
(7) offline gestures are well supported by most approaches
and are important to provide a minimal ability to program
gestures in a structured manner. Commonly used multi-touch
gestures such as pinch and rotate are (6) online gestures sup-
ported by most frameworks. However, additional work can
be done to streamline the implementation of online gestures
by providing (2) composition support, a deeper (14) GUI in-
tegration and more advanced (16) activation policies. We be-
lieve that these challenges can be resolved with additional en-
gineering effort in existing systems.

However, we see that more challenging issues such as (9) seg-
mentation, (19) scalability in terms of complexity or dealing
with (22) future events are poorly or not at all supported in
existing approaches. (9) Segmentation is crucial to deal with
continuous streams of information where no hints are given
by the sensor with regard to potential start and end condi-
tions. The recent trend towards near-touch sensors and skele-
tal tracking algorithms makes the segmentation concern of
crucial importance.

With the adoption of the discussed frameworks there is an
increasing demand to deal with (19) scalability in terms of
complexity. It is currently rather difficult to get an overview
on how many gestures work together. For instance, when a
two-finger swipe needs to be implemented by composing two
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Figure 2. A stacked bar chart of the summed values for each criterion

primitive swipes. However, more than one primitive swipe
variation might exist (long/short, fast/slow) and choosing the
correct one without introducing conflicts is challenging. A
way to deal with the issue is to provide test data but this is
work intensive. There might be software engineering-based
abstractions that could improve this situation.

Information coming from (22) events in the near future can
lead to a completely different interpretation of a gesture. Es-
pecially in a multimodal context where context or clarifying
information comes from additional sensors. An active ges-
ture might fully overlap with a larger and higher prioritised
gesture or be part of a composition that might or might not
succeed. In other cases the gesture should not be triggered at
all due (late) context data. There are currently no adequate
abstractions helping developers to deal with these concerns.

Finally, we would like to highlight that (23) uncertainty and
(24) user profiling abstractions are also lacking. Dealing with
uncertainty is currently completely hidden from the program-
mer. Nevertheless, a gesture might be better neglected when
composing from two or more uncertain subgestures. Addi-
tionally, when a user consistently undoes an operation exe-
cuted by a particular gesture, the gesture might require some
adjustments. This can be checked by profiling users and by
offering several resolutions strategies.

CONCLUSION
Gesture programming languages allow developers to more
easily express their interaction patterns. When designing such
a language, a number of concerns need to be addressed. Our
goal was to categorise and explicitly expose these design de-
cisions to provide a better understanding and foster a discus-
sion about challenges, opportunities and future directions for
gesture programming languages. We observed a number of
underrepresented concerns in existing work and highlighted
challenges for future gesture programming languages.
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