
Design and Implementation of a Rule-based

Recommender Application Framework for the Semantic

Web Data

Thanyalak Rattanasawad
1
, Marut Buranarach

2
, Ye Myat Thein

2
,

Thepchai Supnithi
2
, and Kanda Runapongsa Saikaew

1

1 Department of Computer Engineering, Faculty of Engineering,

Khon Kaen University, Khon Kaen, Thailand

thanyalak.rattanasawad@gmail.com, krunapon@kku.ac.th
2 Language and Semantic Technology Laboratory

National Electronics and Computer Technology Center (NECTEC), Pathumthani, Thailand

{marut.bur, thepchai.sup}@nectec.or.th, yemyatthein@gmail.com

Abstract. This paper describes the design and implementation of a recom-

mender application framework which aims to simplify development of ontolo-

gy-based recommender applications over the Semantic Web data. Recommend-

er system is a type of system that generates meaningful recommendations to

support user’s decision. Development of recommender system for the Semantic

Web data typically requires ontology, rules and rule-based inference engine to

be applied over the RDF data. To facilitate development of recommender appli-

cations, our application framework introduces a recommendation template that

is a specific form of rule language that provides high-level abstraction in gener-

ating recommendations. Recommendation rules can be created based on the

template using recommendation editor to hide complexity of rule language syn-

tax. The framework proposes two implementation approaches for generating

recommendation results based on the recommendation rules: rule-based reason-

er and SPARQL-based implementation. The preliminary evaluation results over

a data set in public health domain showed more efficient execution time using

the SPARQL-based implementation approach. The results suggested that, by

limiting expressiveness of recommendation rules, a specialized form of recom-

mendation processor can be developed for more efficient system performance.

Keywords: Semantic Web application framework, ontology application

framework, rule-based recommender system framework

1 Introduction

Although creation of the Semantic Web data rapidly grows, e.g. the Linked data

initiatives [1], applications and uses of the data are relatively limited. This is partly

due to high learning curve and efforts demanded in building Semantic Web and on-

tology-based applications. Recommender system is a type of system that generates

meaningful recommendations to support user’s decision. Recommender system de-

velopment for the Semantic Web data typically requires ontology, rules and rule-

based inference engine to be applied over the RDF data. To facilitate development of

54

recommender applications, development tools should allow application developers to

focus more on domain problems and knowledge rather than implementation details.

Our work proposes an application framework aimed to simplify development of

recommendation systems that apply the knowledge-based analysis technique [2] over

the Semantic Web data. A typical application of the technique includes modeling a

user’s profile information and resource properties based on ontology. Then, a recom-

mendation of list of resources recommended for the user can be generated based on

recommendation rules externally defined by domain expert users. Our framework

introduces a recommendation template that is a specific form of rule language that

provides high-level abstraction in generating such a recommendation. Recommenda-

tion rules can be created based on the template using recommendation editor to hide

complexity of rule language syntax. Subsequently, the template can be processed by a

recommendation processor to produce recommendation results.

This paper describes the design and implementation of the recommender applica-

tion framework developed as a part of the Ontology Application Management (OAM)

Framework [3], which is an application framework aimed to simplify development of

ontology-based applications over the Semantic Web data. Design of the framework

focuses on three main principles: abstraction, extensibility, and interoperability. It

proposes a generalized recommendation template for ontology-based recommender

applications. We also present two implementation approaches of recommendation

processor to execute the recommendation rules and evaluate the performance over a

data set in public health domain. The evaluation results showed that, by limiting ex-

pressiveness of recommendation rules, a specialized form of recommendation proces-

sor can be developed for more efficient system performance.

2 OAM Framework

Ontology-based Application Management (OAM) framework [3] is a framework to

simplify development of semantic web applications focusing on semantic search and

Fig. 1 Architecture of OAM framework

55

recommender systems. It enables the user to create customized applications based on

provided application templates without high learning curve. The framework was de-

veloped in Java programming language on top of existing tools: Jena framework1 for

processing RDF-based data and D2RQ2 for mapping data from relational databases to

RDF database. The layered architecture of the OAM framework is shown in Fig. 1.

The framework provides Application Template, the base template for creating seman-

tic web applications. It is a collaboration of application modules for processing each

type of data: Triple Store for storing and querying RDF data, Recommender for creat-

ing recommendations and managing recommendation rules, Ontology Processor for

processing details of ontology, Data Mapper for mapping data from relational data-

base to RDF database, and Configuration Manager for managing configurations of the

data mapping and other applications. This paper focuses on the Recommender module

of the OAM framework.

3 Recommendation Template

The recommender application framework focuses on simplifying creation and man-

agement of recommendation rules. It provides a recommendation rule management

tool that supports two processes: create recommendation and link recommendation.

Creating recommendation will create an instance of a recommendation container

class, e.g. “Promotion” where the user can define conditions of class instances to be

the recommendations, e.g. “Product”. Linking recommendation allows the user to

define conditions of class instances to recommendation receivers, e.g. “Customer”.

The framework facilitates the user to create such business logics using a form-based

user interface and hides complexity of the rule syntax to be processed by reasoning

engine.

In this framework, recommendation rule can be created based on a recommenda-

tion template, whose structure can be summarized as follows.

 Recommendation rule: A recommendation rule consists of rule name, two

condition sets for matching each part of recommendation rules: recommen-

dations and recommendation receivers, and a property of the receiver class

for receiving the recommendations.

 Condition set: A condition set consists of condition set name, matching

class, a class of the individuals to be matched, and conditions.

 Condition: A condition for matching individuals. It consists of a property

chain, an operator, and a value object.

 Property Chain: A property chain is an ordered series of one or more ob-

ject-type properties. Each property links to an individual of the object of a

triple recursively like joining many tables in relational database.

 Operator: An operator for matching or comparing between the condition’s

value object and a triple's object. The operators supported are mathematics

comparison operator (=, >, <, >=, <=), string operator (=, contains). They can

be used in the forms: <property> <operator> <value> and <property> <oper-

1 http://jena.apache.org/
2 http://d2rq.org/

56

ator> <property>. RDF comparison operator (type) can be used in the form

<property> <operator> <class>.

 Object: Object of a condition. It is in three types: literal value, URI, and

property chain node value. A literal value is an RDF literal with a specified

data-type. A property chain node is a node that refers to value of another

property chain, allowing it to be operated with the literal value of the current

condition.

Recommendation rules are stored in an intermediate format using JSON and can

also be exported to a number of interchange formats.

To exemplify the format of the rule template, we make an example of a recom-

mendation "Recommend the products which have discount rate more than 10 percent,

and have price more than 10 dollars but less than 15 dollars, to the customers which

have bought products from the store more than 20 times".

Fig. 2 illustrates elements of the recommendation rule and linked condition sets in

JSON format. Condition sets are illustrated in Fig. 3. The user can use a provided rule

editor to create recommendation rules based on the template that hides the complexity

of the created rule syntax.

Fig. 2 Elements of recommendation rule and linked condition sets

Fig. 3 Matching Condition Sets

4 Design and Implementation of the Recommender Application

Framework

The framework is designed based on three main principles: abstraction, extensibility,

and interoperability. Abstraction is achieved by providing higher level of constructs

than those provided by the RDF data model for building Semantic Web-based rec-

ommender applications. Extensibility is achieved by designing each module that is

independent of the underlying implemented systems, i.e. inference engines and data-

"DiscountedProducts": {

matchingClass: "http://ex.org/Product", conditions: [

{ propertyChain: ["http://ex.org/discountRate"], operator: ">", object: ["float","10.00"]},

{ propertyChain: ["http://ex.org/price"], operator: ">", object: ["float", "10.00"]},

{ propertyChain: ["http://ex.org/price"], operator: "<", object: ["float", "15.00"]]}

"FrequentlyVistingCustomers": {

matchingClass: " http://ex.org/Customer",

conditions: [{ propertyChain: ["http://ex.org/boughtRecord", “http://ex.org/boughtTimes”],

operator: ">", object: ["int", "20"]]}

"ClearancePromotion": {

 recOfRule: "DiscountedProducts",

 recToRule: "FrequentlyVisitingCustomers",

 recProperty: "http://ex.org/suggestedProducts" }

57

bases. Interoperability is achieved by allowing exports to the standard rule formats to

enable interchanging and integration with other rule-based systems.

4.1 System Architecture

Fig. 4 illustrates the system architecture of the recommender module. The follows

describe details of the related modules of recommendation data management.

 Triple Store: The module which provides database-independent interfaces

of common functions for querying RDF database. This module allows the

user to perform arbitrary queries and also provides query generator with

some query templates.

 Recommender: The module for recommendation processing which contains

sub-modules for managing and processing recommendation data: recom-

mendation rules and recommendation instances.

 Recommendation Rule Manager: The module for recommendation rule

management, which enables the user to create, view, edit, and delete recom-

mendation rules, import other rules in format of the rule template, and export

rules to interchange formats, e.g., RDF, JSON, and RIF [4], and a format of

supported reasoner, such as Jena rule [5] and Notation3 [6].

 Recommendation Processor: The sub-module which provides common in-

terfaces and encapsulates algorithms of recommendation creation, and rec-

ommendation results generation.

4.2 Implementations of Recommendation Processor

Recommendations are created and linked with the related resources by passing rec-

ommendation rules and data to the recommendation processor. The implementations

are categorized into two approaches: rule-based inference engine approach, and

Fig. 4 Architecture of the OAM recommender module

58

SPARQL-based approach, which are described as follows.

 Rule-based inference engine approach: We created implementations using

two different rule-based reasoners: Jena inference engine [5] and Euler YAP

Engine [7]. The recommendation processor generated recommendation rules

in form of if-then rule in the supported format of each reasoner. Recommen-

dation results are created by means of rule-based reasoning. Fig. 5 shows an

example of the recommendation rule created in Jena rule syntax.

Fig. 5 Jena rule syntax of the recommendation rule

 SPARQL-based approach: This approach adopts a SPARQL engine as the

recommendation processor [8][9], and generates recommendation rules by

means of SPARQL queries and updates. Fig. 6 shows an example of

SPARQL update syntax for generating recommendations and results.

Fig. 6 SPARQL update syntax of the recommendation rule

5. Performance Evaluation

The performance of the framework implementations were evaluated in supporting the

Thalassemia clinical decision support system (CDSS) research [10]. The total of 34

rules was created based on the template to enable diagnosis of 17 Thalassemia disease

and carrier types. The test data were extracted from the Siriraj hospital database en-

tries of Thai patients who were examined for Thalassemia. Each patient data consists

of personal health data, lab and DNA test results. Five data sets containing different

sizes of patient data were prepared: 100, 500, 1000, 1500 and 2000 patients. Data

processing time was measured from when the RDF/XML file was read and processed

@prefix : <http://ex.org/>. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

(?recOf rdf:type :Product) (?recOf :discountRate ?v1) greaterThan(?v1, 10.00)

(?recOf :price ?v2) greaterThan(?v2, 10.00) lessThan(?v2, 15.00) ->

(ProductRec_1 :hasInstances ?recOf)

(?recTo rdf:type :Customer) (?recOf :boughtRecord ?v3)

(?v3 :boughtTimes ?v4) greaterThan(?v4, 20) ->

(?recTo :hasSuggestedProducts :ProductRec_1)

PREFIX : <http://ex.org/> PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT {

 ?recTo :hasSuggestedProducts :ProductRec_1.

 ?ProductRec_1 rdf:type :Product_Rec.

 ?ProductRec_1 :hasInstances ?recOf.

 ?ProductRec_1 :hasRecName “ProductSetA”.

 ?ProductRec_1 :hasRecId “1”. }

WHERE {

 ?recOf rdf:type :Product. ?recOf :hasDiscountRate ?v1. ?recOf :price ?v2.

 ?recTo rdf:type :Customer. ?recTo :boughtRecord ?v3. ?v3 :boughtTimes ?v4.

 FILTER(?v1 > 10.00) FILTER(?v2 > 10.00) FILTER(?v2 < 15.00) FILTER(?v4 > 20)}

59

by the recommendation processor and stored in the RDF data storage. Wrappers for

three different implementations of the recommendation processor, Jena inference

engine, Euler YAP Engine (EYE) and the SPARQL-based implementation were de-

ployed and compared in terms of system response time. The tests were performed on

a computer with the following specifications: Intel core i5 – 430M CPU with 8 GB

DDR3 memories, using JDK version 1.6 with minimum memory size 1 GB and max-

imum memory size 4GB.

The detailed comparison of total processing time for different implementations is

shown in Fig. 7. The total response time for data processing and analysis for 2,000

patient data, which consist of 0.12 million triples and 1.14 million triples before and

after recommendation respectively, is approximately under 14 minutes using Jena’s,

under ten minutes using EYE and under two minutes using the SPARQL-based im-

plementation. Based on the results, the Thalassemia CDSS can achieve a reasonable

system performance by using the SPARQL-based implementation.

Fig. 7 Results of data processing time in Thalassemia CDSS using different implementations

The good performance of the SPARQL-based implementation is largely achieved

by limiting rule expressiveness. Currently, it can only support rules that generate re-

sults which do not fire another rule. By limiting rule expressiveness of the recom-

mendation template, the SPARQL-based implementation is more efficient than rule-

based inference engine implementation since less reasoning operations are performed.

6. Conclusion

In this paper, we presented design and implementation of a rule-based recommender

application framework for the Semantic Web data. The framework is different from

existing Semantic Web application framework in that it simplifies the development of

recommender applications by providing a generalized recommendation template that

can be used in ontology-based recommender applications. The template can be man-

aged and processed by specialized recommendation editor and processor. The design

of the framework also focuses on extensibility and interoperability to allow it to be

0
100
200
300
400
500
600
700
800
900

P
ro

ce
ss

in
g

 t
im

e
(s

ec
)

write

recommend

read

60

independent of underlying implemented systems. An evaluation study was conducted

by comparing performance of different implementations of the recommendation pro-

cessor using a data set in public health domain.

Our planned future work includes improving design of the recommendation tem-

plate to support more expressiveness and functionality. We also plan to improve the

SPARQL-based implementation to support more expressive recommendation rules.

Acknowledgement

The financial support from Young Scientist and Technologist Programme, NSTDA

(YSTP: SP-56-NT03) is gratefully acknowledged.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semant.

Web Inf. Syst. 5, 1–22 (2009).

2. Burke, R.: Knowledge-Based Recommender Systems. Encycl. Libr. Inf. Syst. 69,
(2000).

3. Buranarach, M., Thein, Y.M., Supnithi, T.: A Community-Driven Approach to

Development of an Ontology-Based Application Management Framework. Joint
International Semantic Technology Conference (2012).

4. Kifer, M., Boley, H.: RIF Overview (Second Edition), http://www.w3.org/TR/rif-

overview/.

5. The Apache Software Foundation: Apache Jena - Reasoners and rule engines Jena

inference support, http://jena.apache.org/documentation/inference.

6. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax,
http://www.w3.org/TeamSubmission/n3/.

7. Roo, J. De: Euler Yet Another Proof Engine, http://eulersharp.sourceforge.net/.

8. Hawke, S., Herman, I., Parsia, B., Seaborne, A.: SPARQL 1.1 Entailment Regimes,
http://www.w3.org/TR/sparql11-entailment/.

9. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - Overview and Motivation,

http://www.w3.org/Submission/spin-overview/.

10. Assawamakin, A., Chalortham, N., Ruangrajitpakorn, T., Limwongse, C., Supnithi, T.,

Tongsima, S.: A development of knowledge representation for thalassemia prevention

and control program. Natural Language Processing and Knowledge Engineering

(NLP-KE), 2011 7th International Conference on. pp. 190–193 (2011).

61

