
Parallel OWL 2 RL Materialisation in
Centralised, Main-Memory RDF Systems

Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks and Dan Olteanu
firstname.lastname@cs.ox.ac.uk

Department of Computer Science, Oxford University, Oxford, United Kingdom

Abstract. We present a novel approach to parallel materialisation (i.e., fixpoint
computation) of OWL RL Knowledge Bases in centralised, main-memory, multi-
core RDF systems. Our approach comprises a datalog reasoning algorithm that
evenly distributes the workload to cores, and an RDF indexing data structure that
supports efficient, ‘mostly’ lock-free parallel updates. Our empirical evaluation
shows that our approach parallelises computation very well so, with 16 physical
cores, materialisation can be up to 13.9 times faster than with just one core.

1 Introduction

The OWL 2 RL profile forms a fragment of datalog so that reasoning over OWL 2
RL knowledge bases (KB) can straightforwardly be rendered into answering datalog
queries. These datalog queries are either the OWL 2 RL/RDF rules [18, Section 4.3]
applied to the KB or the datalog translations [10] of the OWL 2 RL axioms of the
KB applied to the data portion (ABox) of the KB. Answering datalog queries can be
solved by backward chaining [2, 23], or one can materialise all consequences of the
rules and the data so that subsequent queries can be answered without the rules. Mate-
rialisation supports efficient querying, so it is commonly used in practice, but it is also
very expensive. We show that materialisation can be efficiently parallelised on modern
multi-core systems. In addition, main-memory databases have been gaining momen-
tum in academia and practice [16] due to the decreasing cost of RAM, so we focus
on centralised, main-memory, multi-core RDF systems. We present a new materialisa-
tion algorithm that evenly distributes the workload to cores, and an RDF data index-
ing scheme that supports efficient ‘mostly’ lock-free data insertion. Our techniques are
complementary to the ones for shared-nothing distributed RDF systems with nontrivial
communication cost between the nodes [23, 20, 25]: each node can parallelise compu-
tation and/or store RDF data using our approach.

Materialisation has P-complete data complexity and is thus believed to be inher-
ently sequential. Nevertheless, many practical parallelisation techniques have been de-
veloped; we discuss these using the following OWL 2 RL example axioms and their
translation into datalog rules.

A v B A(x, y)→ B(x, y) (R1)
C ◦ E v D C(x, y) ∧ E(y, z)→ D(x, z) (R2)
D ◦ E v E D(x, y) ∧ E(y, z)→ C(x, z) (R3)

Interquery parallelism identifies rules that can be evaluated in parallel. For example,
rules (R2) and (R3) must be evaluated jointly since C and D are mutually dependent,
but rule (R1) is independent since B is independent from C and D. Such an approach
does not guarantee a balanced workload distribution: for example, the evaluation of (R2)
and (R3) might be more costly than of (R1); moreover, the number of independent com-
ponents (two in our example) limits the degree of parallelism. Intraquery parallelism
assigns distinct rule instantiations to threads by constraining variables in rules to domain
subsets [7, 21, 9, 29, 27]. For example, with N threads and assuming that all objects
are represented as integers, the ith thread can evaluate (R1)–(R3) with (x mod N = i)
added to the rules’ antecedents. Such a static partitioning does not guarantee an even
workload distribution due to data skew. Systems such as WebPIE [23], Marvin [20],
C/MPI [25]; DynamiTE [24], and [13] use variants of these approaches to support OWL
2 RL fragments such as RDFS or pD∗ [22].

In contrast, we handle general, recursive datalog rules using a parallel variant of the
seminaı̈ve algorithm [2]. Each thread extracts a fact from the database and matches it to
the rules; for example, given a factE(a, b), a thread will match it to atomE(y, z) in rule
(R2) and evaluate subquery C(x, b) to derive the rule’s consequences, and it will handle
rule (R3) analogously. We thus obtain independent subqueries, each of which is evalu-
ated on a distinct thread. The difference in subquery evaluation times does not matter
because the number of queries is proportional to the number of tuples, and threads are
fully loaded. We thus partition rule instantiations dynamically (i.e., as threads become
free), unlike static partitioning which is predetermined and thus susceptible to skew.

To support this idea in practice, an RDF storage scheme is needed that (i) supports
efficient evaluation of subqueries, and (ii) can be efficiently updated in parallel. To sat-
isfy (i), indexes over RDF data are needed. Hexastore [26] and RDF-3X [19] provide
six-fold sorted indexes that support merge joins and allow for a high degree of data
compression. Such approaches may be efficient if data is static, but data changes con-
tinuously during materialisation so maintaining sorted indexes or re-compressing data
can be costly and difficult to parallelise. Storage schemes based on columnar databases
[15] with vertical partitioning [1] suffer from similar problems.

To satisfy both (i) and (ii), we use hash-based indexes that can efficiently match
all RDF atoms (i.e., RDF triples in which some terms are replaced with variables) and
thus support the index nested loops join. Hash table access can be easily parallelised,
which allows us to support ‘mostly’ lock-free [14] updates: most of the time, at least
one thread is guaranteed to make progress regardless of the remaining threads; how-
ever, threads do occasionally resort to localised locking. Lock-free data structures are
resilient to adverse thread scheduling and thus often parallelise better than lock-based
ones. Compared to the sort-merge [3] and hash join [4] algorithms, the index nested
loops join with hash indexes exhibits random memory access which is potentially less
efficient than sequential access, but our experiments suggest that hyperthreading and a
high degree of parallelism can compensate for this drawback.

We have implemented our approach in a new system called RDFox and have eval-
uated its performance on several synthetic and real-world datasets. Parallelisation was
beneficial in all cases, achieving a speedup in materialisation times of up to 13.9 with
16 physical cores, rising up to 19.3 with 32 virtual cores obtained by hyperthreading.

Our system also proved competitive with OWLIM-Lite (a commercial RDF system)
and our implementation of the seminaı̈ve algorithm without parallelisation on top of
PostgreSQL and MonetDB, with the latter systems running on a RAM disk. We did not
independently evaluate query answering; however, queries are continuously answered
during materialisation, so we believe that our results show that our data indexing scheme
also supports efficient query answering over RDF data.

2 Preliminaries

A term is a resource (i.e., a constant) or a variable; we denote terms with t, and vari-
ables with x, y, and z. An (RDF) atom is a triple 〈s, p, o〉 of terms called the subject,
predicate, and object, respectively. A fact is a variable-free atom. A rule r has the form
(1), where H is the head atom, and B1, . . . , Bn are body atoms; we let h(r) ··= H and
bi(r) ··= Bi.

B1 ∧ . . . ∧Bn → H (1)

Rules must be safe: each variable in H must occur in some Bi. A program P is a finite
set of possibly recursive rules. The materialisation (i.e., the fixpoint) P∞(I) of a finite
set of facts I with P , a substitution σ and its application Aσ to an atom A, and the
composition τθ of substitutions τ and θ are defined as usual [2].

Our RDF system does not use the fixed OWL 2 RL/RDF rule set [18, Section 4.3].
Instead, we translate the OWL 2 RL axioms of the given KB into a datalog program;
such programs generally contain simpler rules with fewer body atoms and are thus
easier to evaluate. Our approach is, however, also applicable to OWL 2 RL/RDF rules.

3 Parallel Datalog Materialisation

We now present our algorithm that, given a datalog program P and a finite set of facts I ,
computes P∞(I) on N threads. The data structure storing these facts (which we iden-
tify with I) must support several abstract operations: I.add(F) should check whether
I contains a fact F and add it to I if not; moreover, I should provide an iterator factsI
where factsI .next returns a not yet returned fact or ε if such a fact does not exist, and
factsI .hasNext returns true if I contains a not yet returned fact. These operations need
not enjoy the ACID1 properties, but they must be linearisable [14]: each asynchronous
sequence of calls should appear to happen in a sequential order, with the effect of each
call taking place at an instant between the call’s invocation and response. Accesses to I
thus does not require external synchronisation via locks or critical sections.

Furthermore, I must support an interface for answering conjunctive queries con-
strained to a subset of I; the latter will be used to prevent repeated derivations by a
rule. To formalise this, we assume that I can be viewed as a vector; then, for F ∈ I
a fact, I<F contains all facts that come before F , and I≤F ··= I<F ∪ {F}. We make

1 Atomicity, Consistency, Isolation, Durability; These four properties are assumed to hold true
in database transactions and ensure their reliable execution.

no assumptions on the order in which factsI returns the facts; the only requirement
is that, once factsI .next returns a fact F , further additions should not change I≤F—
that is, returning F should ‘freeze’ I≤F . An annotated query is a conjunction of RDF
atoms Q = A ♦1

1 ∧ . . . ∧A

♦k
k where ♦ i ∈ {<,≤}. For F a fact and σ a substitution,

I.evaluate(Q,F, σ) returns the set containing each substitution τ such that σ ⊆ τ and
Aiτ ∈ I ♦ iF for each 1 ≤ i ≤ k. Such calls are valid only when set I≤F is ‘frozen’ and
hence does not change via additions.

Finally, for F a fact, P.rulesFor(F) is the set containing all 〈r,Qi, σ〉 where r is a
rule in P of the form (1), σ is a substitution with Biσ = F for some 1 ≤ i ≤ n, and

Qi = B<1 ∧ · · · ∧B<i−1 ∧B
≤
i+1 ∧ . . . ∧B

≤
n . (2)

To implement this operation efficiently, we index the rules of P using two hash ta-
bles H1 and H2 that map resources to sets. Each body atom Bi in a rule r obtained
as in [10] is of the form (i) 〈t, rdf:type, C〉, in which case we add 〈r, i,Qi〉 to H1[C],
or (ii) 〈t1, R, t2〉 with R 6= rdf:type, in which case we add 〈r, i, Qi〉 to H2[R]. Then,
to compute P.rulesFor(〈s, p, o〉), we iterate over H1[o] if p = rdf:type or H2[p] oth-
erwise, and for each 〈r, i, Qi〉 we determine whether a substitution σ exists such that
Biσ = 〈s, p, o〉. This strategy can be adapted to the OWL 2 RL/RDF rules.

To compute P∞(I), we initialise a global counter W of waiting threads to 0 and
let each of the N threads execute Algorithm 1. In lines 2–5, a thread acquires an un-
processed fact F (line 2), iterates through each rule r and each body atom Bi that can
be mapped to F (line 3), evaluates the instantiated annotated query (line 4), and, for
each query answer, instantiates the head of the rule and adds it to I (line 5). This can
be seen as a fact-at-a-time version of the seminaı̈ve algorithm [2]: set {F} plays the
role of the ‘delta-old’ relation; atoms B<k in (2) are matched to ‘old’ facts (i.e., facts
derived before F); and atomsB≤k are matched to the ‘current’ facts (i.e., facts up to and
including F). Like the seminaı̈ve algorithm, our algorithm does not repeat derivations:
each rule instantiation is considered at most once (but both algorithms can rederive the
same fact using different rule instantiations).

A thread failing to extract a fact waits until either new facts are derived or all other
threads reach the same state. This termination check is performed in a critical section
(lines 7–15) implemented via a mutex m; only idle threads enter the critical section,
so the overhead of mutex acquisition is small. Counter W is incremented in line 7
and decremented in line 14 so, inside the critical section, W is equal to the number of
threads processing lines 7–13. We increment W before acquiring m since, otherwise,
termination will rely on fairness of mutex acquisition: the operating system may spu-
riously wake the threads waiting in line 13, forcing them, in this way, to continuously
acquire the mutex m, and hence potentially preventing W = N form becoming true. If
W = N holds in line 9, then all other threads are waiting in lines 7–13 and cannot pro-
duce more facts, so termination is indicated (line 10) and all waiting threads are woken
up (line 11). Otherwise, a thread waits in line 13 for another thread to either produce a
new fact or detect termination. The loop in lines 8–13 ensures that a thread stays inside
the critical section and does not decrement W even if it is woken up but no work is
available. Theorem 1 captures the correctness of our algorithm, and its proof is given in
the online technical report https://krr-nas.cs.ox.ac.uk/2014/DL/RDFox/paper.pdf.

Algorithm 1 The Parallel Materialisation Algorithm Algorithm 2 I.nestedLoops(Q,F, τ, j)

1: while run do
2: while F ··= factsI .next and F 6= ε do
3: for all 〈r,Qi, σ〉 ∈ P.rulesFor(F) do
4: for all τ ∈ I.evaluate(Qi, F, σ) do
5: I.add(h(r)τ)

6: incrementW atomically
7: acquire m
8: while factsI .hasNext = false and run do
9: ifW = N then

10: run ··= false
11: notify all waiting threads
12: else
13: release m, await notification, acquire m
14: decrementW atomically
15: release m

1: if j is larger than the number of atoms inQ then
2: output τ
3: else
4: letB

♦j
j be the j-th atom ofQ

5: for all θ such thatBjτθ ∈ I ♦j do
6: I.nestedLoops(Q,F, j + 1, τ ∪ θ)

Theorem 1 Algorithm 1 terminates and computes P∞(I); moreover, each combina-
tion of r and τ is considered in line 5 at most once, so derivations are not repeated.

Procedure I.evaluate(Qi, F, σ) in line 3 can use any join method, but our system
uses a left to right evaluation of the body atoms (index nested loops). To this end, we re-
order the atoms of eachQi to obtain an efficient left-to-right join orderQ′i and then store
Q′i in our rule index; we use a simple greedy strategy, but any known planning algo-
rithm can be used too. We then implement line 4 by calling I.nestedLoops(Q′i, F, σ, 1)
defined in Algorithm 2. The latter critically depends on efficient matching of atoms in
I , which we discuss in Section 4.

4 RAM-Based Storage of RDF Data

We next describe a main-memory RDF indexing scheme that (i) can efficiently match
RDF atoms in line 5 of Algorithm 2, but also (ii) supports concurrent updates. The
RDF stores presened in [26] and [19] satisfy (i) using ordered, compressed indexes,
but maintaining the ordering can be costly when the data changes continuously and
concurrently. Instead, we index the data using hash tables, which allows us to make
insertions ‘mostly’ lock-free.

As is common in RDF systems, we encode resources as integers using a dictionary.
We store encoded triples in a six-column triple table shown in Figure 1. Columns Rs,
Rp, and Ro contain the integer encodings of the subject, predicate, and object of each
triple. Each triple participates in three linked lists: an sp-list connects all triples with the
same Rs grouped (but not necessarily sorted) by Rp, an op-list connects all triples with
the same Ro grouped by Rp, and a p-list connects all triples with the same Rp without
any grouping; columns Nsp, Nop, and Np contain the next-pointers. Triple pointers are
implemented as offsets into the triple table.

We next discuss RDF atom matching and the indexes used. Note that RDF atoms
have eight different ‘binding patterns’. We can match 〈x, y, z〉 (only variables) by iter-
ating over the triple table; if, for example, x = y, we skip triples withRs 6= Rp. For the
remaining seven patterns, we maintain six indexes of pointers into the sp-, op- and p-
lists. Index Ispo contains each triple in the table, and so it can match RDF facts 〈s, p, o〉.
Index Is maps each s to the head Is[s] of the respective sp-list; to match an RDF atom

1	
 3	
 2	

2	
 1	
 4	

1	
 1	
 2	

1	
 3	
 4	

2	
 1	
 3	

1	
 1	
 1	

Rs	
 Rp	
 Ro	
 Nsp	
 Np	
 Nop	
 Ispo	

Isp	

Is	

1	

2	

⟨1,3⟩	

⟨2,1⟩	

⟨1,1⟩	

Fig. 1: Data Structure for Storing RDF Triples

〈s, y, z〉 in I , we look up Is[s] and traverse the sp-list to its end; if y = z, we skip triples
with Rp 6= Ro. Index Isp maps each s and p to the first triple Isp[s, p] in an sp-list with
Rs = s and Rp = p; to match an RDF atom 〈s, p, z〉 in I , we look up Isp[s, p] and tra-
verse the sp-list to its end or until we encounter a triple with Rp 6= p. We could match
the remaining RDF atoms analogously using indexes Ip and Ipo, and Io and Ios; how-
ever, in our experience, RDF atoms 〈s, y, o〉 occur rarely in queries, and Ios can be as
big as Ispo since RDF datasets rarely contain more than one triple connecting the same
s and o. Therefore, we use instead indexes Io and Iop to match 〈x, y, o〉 and 〈x, p, o〉,
and an index Ip to match 〈x, p, z〉. Finally, we match 〈s, y, o〉 by iterating over the sp-
or op-list skipping over triples with Rs 6= s or Ro 6= o; we keep in Is[s] and Io[o] the
sizes of the two lists and choose the shorter one. To restrict any of these matches to I<F

or I≤F , we compare the pointer to F with the pointer to each matched tuple, and we
skip the matched tuple if necessary.

Indexes Is, Ip, and Io are realised as arrays. Indexes Isp, Iop, and Ispo are realised
as open addressing hash tables storing triple pointers, and they are doubled in size when
the fraction of used buckets exceeds some factor f . To determine worst-case memory
usage per triple (excluding the dictionary), let n be the number of triples; let p and r
be the numbers of bytes used for pointers and resources; and let dsp and dop be the
numbers of distinct sp- and op-groups divided by n. Each triple uses 3(r + p) bytes in
the triple table. Index Ispo holds up to size(Ispo) · f = n many triples and uses most
memory per triple just after resizing: size(Ispo) = 2n/f buckets then require 2p/f
bytes per triple. Analogously, worst-case per-triple memory usage for Isp and Iop is
dsp · 2p/f and dop · 2p/f . Finally, Is, Ip, and Io are usually much smaller than n so
we disregard them. Thus, for the common values of r = 4, p = 8, f = 0.7, dsp = 0.5,
and dpo = 0.4, we need at most 80 bytes per triple; this drops to 46 bytes for p = 4 (but
then we can store at most 232 triples).

4.1 ‘Mostly’ Lock-Free Insertion of Triples

Lock-freedom is usually achieved using compare-and-set: CAS(loc, exp, new) loads
the value stored at location loc into a temporary variable old, stores new into loc if
old = exp, and returns old; hardware ensures that these steps are atomic (i.e., with-
out thread interference). Inserting triples lock-free is difficult as one must atomically
query Ispo, add the triple to the table, and update Ispo. CAS does not directly support
atomic modification of multiple locations, so descriptors [8] or multiword-CAS [12] are

Algorithm 3 add−triple(s, p, o) Algorithm 4 insert−sp−list(Tnew, T)

Input:
s, p, o : the components of the triple to be inserted

1: i ··= hash(s, p, o) mod |Ispo.buckets|
2: do
3: If needed, handle resize and recompute i
4: while T ··= Ispo.buckets[i] and T 6= null do
5: if T = INS then continue
6: if 〈T.Rs, T.Rp, T.Ro〉 = 〈s, p, o〉 then
7: return
8: i ··= (i+ 1) mod |Ispo.buckets|
9: while CAS(Ispo.buckets[i], null, INS) 6= null

10: Let Tnew point to a fresh triple in the triple table
11: Tnew.Rs ··= s, Tnew.Rp ··= p, Tnew.Ro ··= o
12: Ispo.buckets[i] ··= Tnew

13: Update all remaining indexes

Input:
Tnew : pointer to the newly inserted triple

T : pointer to the triple that Tnew comes after

1: do
2: Tnext ··= T.Nsp

3: Tnew.Nsp ··= Tnext

4: while CAS(T.Nsp, Tnext, Tnew) 6= Tnext

needed. The latter techniques can be costly, so we instead resort to localised locking, cf.
Algorithm 3. Here, Ispo.buckets is the bucket array of the Ispo index; |Ispo.buckets| is
the array’s length; and, for T a triple pointer, T.Rs is the subject component of the triple
that T points to, and T.Rp, T.Ro, T.Nsp, T.Np, and T.Nop are defined analogously.

Lines 1–12 of Algorithm 3 follow the standard approach for updating hash tables
with open addressing: we determine the first bucket index (line 1), and we scan the
buckets until we find an empty one (lines 4–8) or encounter the triple being inserted
(line 7). The main difference to the standard approach is that, once we find an empty
bucket, we need to lock it so that we can allocate a new triple. This is commonly done by
introducing a separate lock that guards access to a range of buckets [14]. We, however,
avoid the overhead of separate locks by storing into the bucket a special marker INS
(line 9), and we make sure that other threads do not skip the bucket until the marker
is removed (line 5). We lock the bucket using CAS so only one thread can claim it,
and we reexamine the bucket if CAS fails as another thread could have just added the
same triple. If CAS succeeds, we allocate a new triple Tnew (line 10); if the triple table
is big enough this requires only an atomic increment and is thus lock-free. Finally, we
initialise the new triple (line 11), we store Tnew into the bucket (line 12), and we update
all remaining indexes (line 13).

To resize the bucket array (line 3), a thread locks the index, allocates a new array,
raises a resize flag, and unlocks the index. Any thread that accesses the index first checks
whether the resize flag is raised; if so, it keeps transferring blocks of 1024 buckets from
the old array into the new array (which can be done lock-free since triples already
exist in the table) until all buckets have been transferred; the thread processing the last
block deallocates the old bucket array and resets the resize flag. Resizing is thus divided
among threads and is lock-free, apart from the array allocation step.

To update the Isp index in line 13, we scan its buckets as in Algorithm 3. If we
find a bucket containing some T with T.Rs = s and T.Rp = p, we insert Tnew into the
sp-list after T , which can be done lock-free as shown in Algorithm 4: we identify the
triple Tnext that follows T in the sp-list (line 2), we modify Tnew.Nsp so that Tnext
comes after Tnew (line 3), and we update T.Nsp to Tnew (line 4); if another thread
modifies T.Nsp in the meantime, we repeat the process. If we find an empty bucket
while scanning Isp, we store Tnew into the bucket and make Tnew the head of Is[s];
since this requires multiword-CAS, we again use local locks: we store INS into the

bucket of Isp, we update Is lock-free analogously to Algorithm 4, and we store Tnew
into the bucket of Isp thus unlocking the bucket.

We update Iop and Io analogously, and we update Ip lock-free as in Algorithm 4.
Updates to all indexes are independent, which promotes concurrency.

4.2 Reducing Thread Interference

Each processor/core in modern systems has its own cache so, when core A writes to
a memory location cached by core B, the cache of B is invalidated. If A and B keep
writing into a shared location, cache synchronisation can significantly degrade the per-
formance of parallel algorithms. Our data structure exhibits two such bottlenecks: each
triple 〈s, p, o〉 is added at the end of the triple table; moreover, it is added after the first
triple in the sp- and op-groups, which changes the next-pointer of the first triple.

To address the first bottleneck, each thread reserves a block of space in the triple
table. When inserting 〈s, p, o〉, the thread writes 〈s, p, o〉 into a free location Tnew in
the reserved block, and it updates Ispo using a variant of Algorithm 3: since Tnew is
known beforehand, one can simply write Tnew into Ispo.buckets[i] in line 9 using CAS;
moreover, if one detects in line 7 that Ispo already contains 〈s, p, o〉, one can simply
reuse Tnew later. Different threads thus write to distinct portions of the triple table,
which reduces memory contention; moreover, allocating triple space in advance allows
Algorithm 3 to become fully lock-free.

To address the second bottleneck, each thread i maintains a ‘private’ hash table Iisp
holding ‘private’ insertion points for s and p. To insert triple 〈s, p, o〉 stored at location
Tnew, the thread determines T ··= Iisp[s, p]. If T = null, the thread inserts Tnew into
the global indexes Isp and Is as usual and sets Iisp[s, p] ··= Tnew; thus, Tnew becomes
a ‘private’ insertion point for s and p in thread i. If T 6= null, the thread adds Tnew
after T ; since T is ‘private’ to thread i, updates are interference-free and do not require
CAS. Furthermore, for each s the thread counts the triples 〈s, p, o〉 it derives, and it uses
Iisp[s, p] only once this count exceeds 100. ‘Private’ insertion points are thus maintained
only for commonly occurring subjects, which keeps the size of Iisp manageable. Thread
i analogously maintains a ‘private’ index Iiop.

The former optimisation introduces a problem: when factsI eventually reaches a
reserved block, the block cannot be skipped since further additions into the reserved
space would invalidate the assumptions behind Theorem 1. So, when factsI reaches a
reserved block, all empty rows in the reserved blocks are invalidated, and later ignored
by factsI , and from this point onwards all triples are added at the end of the table.

5 Evaluation

We implemented and evaluated a new system called RDFox; all datasets, systems,
scripts, and test results are available online.2 We evaluated RDFox in three ways: we
investigated how materialisation scales with the number of threads; we compared a
sequential version (i.e., without CAS) of RDFox with the concurrent version on a sin-
gle thread to estimate the overhead of concurrency support; and we compared RDFox

2 http://www.cs.ox.ac.uk/isg/tools/RDFox/tests/

Table 1: Test Datalog Programs and RDF Graphs
LUBM UOBM DBpedia Claros

Ontology OL OLE OU OL OU OL OLE OL OLE OU

Rules 98 107 122 407 518 7,258 7,333 2,174 2,223 2,614

RDF Graph 01K 05K 010 01K
Resources 32.9M 164.3M 0.4M 38.4M 18.7M 6.5M
Triples 133.6M 691.1M 2.2M 254.8M 112.7M 18.8M

with other RDF systems. Unfortunately, no system we know of targets our setting ex-
actly: many do not support materialisation of recursive rules [1, 26, 19, 31] and many
are disk-based [6]. Hence, we compared RDFox with the following systems that, we
believe, cover a wide range of approaches.

OWLIM-Lite, version 5.3, is a commercial RDF system developed by Ontotext. It
stores triples in RAM, but keeps the dictionary on disk, and we configured it to evaluate
our custom datalog programs, rather than the fixed OWL 2 RL/RDF rule set. Ontotext
have confirmed that this is a fair way to use their system.

DBRDF is an RDF store we implemented on top of PostgreSQL (PG) 9.2 and Mon-
etDB (MDB), Feb 2013-SP3 release. DBRDF can use either the vertical partitioning
(VP) [1] or the triple table (TT) [5, 28] scheme for storing RDF data in a relational
database. Neither PG nor MDB support recursive datalog rules, so DBRDF implements
the seminaı̈ve algorithm by translating datalog rules into DDL and SQL update state-
ments and executing them sequentially; parallelising the latter is out of scope of this
paper. More detail is given in https://krr-nas.cs.ox.ac.uk/2014/DL/RDFox/paper.pdf.

Table 1 summarises our test datasets. LUBM [11] and UOBM [17] are synthetic
datasets so, for a parameter n, one can generate RDF graphs LUBMn and UOBMn.
The DBPedia dataset contains information about Wikipedia entities. Finally, Claros
integrates cultural heritage data using a common vocabulary. The ontologies of LUBM,
UOBM, and Claros are not in OWL 2 RL. In [30] such an ontology O is converted
into programs OL and OU such that OU |= O and O |= OL; thus, OL (OU) captures a
lower (upper) bound on the consequences of O. The former is a natural test case since
most RDF systems consider onlyOL, and the latter is interesting because of its complex
rules. In order to make reasoning more challenging and to enlarge the materialised data
set, we enriched OL to OLE with complex chain rules that encode relations specific to
the domain ofO; for example, we defined in DBPediaLE teammates as pairs of football
players playing for the same team. We identify each test by combining the names of the
datalog program and the RDF graph, such as LUBMLE 01K.

We tested RDFox on a Dell computer with 128 GB of RAM, 64-bit Red Hat Enterprise
Linux Server 6.3 kernel version 2.6.32, and two Xeon E5-2650 processors with 16
physical cores, extended to 32 virtual cores via hyperthreading (i.e., when cores main-
tain separate state but share execution resources). In our comparison tests, we used a
Dell computer with 128 GB of RAM, 64-bit CentOS 6.4 kernel version 2.6.32, and two
Xeon E5-2643 processors with 8/16 cores. Each test involved importing an RDF graph
and materialising a datalog program, and we recorded the wall-clock times for import
and materialisation, the final number of triples, and the memory usage before and af-
ter materialisation. RDFox was allowed to use at most 100 GB of RAM, and it stored
triple pointers using four bytes. To mitigate the overhead of disk access, we stored the

8 16 24 32

2

4

6

8

10

12

14

16

18

20

Threads

Speedup
ClarosL

ClarosLE
DBpediaL

DBpediaLE
LUBML01K

LUBMLE 01K
ClarosL ClarosLE DBpediaL DBpediaLE

LUBML
01K

LUBMLE
01K

Time Spd Time Spd Time Spd Time Spd Time Spd Time Spd
seq 1907 1.3 4128 1.2 158 1.0 8457 1.1 68 1.1 913 1.0
1 2477 1.0 4989 1.0 161 1.0 9075 1.0 73 1.0 947 1.0
2 1177 2.1 2543 2.0 84 1.9 4699 1.9 35 2.1 514 1.8
8 333 7.4 773 6.5 28 5.8 1453 6.2 14 5.2 155 6.1

16 179 13.9 415 12.0 26 6.1 828 11.0 8 8.7 88 10.8
24 139 17.8 313 15.9 25 6.4 695 13.1 7 10.9 77 12.4
32 127 19.5 285 17.5 24 6.6 602 15.1 7 10.1 71 13.4

Seq. imp. 61 57 331 335 421 408
Par. imp. 58 -4.9% 58 1.7% 334 0.9% 367 9.5% 415 1.4% 415 1.7%
Triples 95.5 M 555.1 M 118.3 M 1529.7 M 182.4 M 332.6 M

Memory 4.2 GB 18.0 GB 6.1 GB 51.9 GB 9.3 GB 13.8 GB
Active 93.3% 98.8% 28.1% 94.5% 66.5% 90.3%

8 16 24 32

2

4

6

8

10

12

14

16

18

20

Threads

Speedup
LUBMU 01K
UOBML01K
UOBMU 010
LUBML05K

LUBMLE 05K
LUBMU 05K

LUBMU
01K

LUBML
05K

LUBMLE
05K

LUBMU
05K

UOBMU
010

UOBML
01K

Time Spd Time Spd Time Spd Time Spd Time Spd Time Spd
seq 122 1.1 422 1.0 4464 1.1 580 1.1 2381 1.2 476 1.1
1 135 1.0 442 1.0 4859 1.0 635 1.0 2738 1.0 532 1.0
2 61 2.2 221 2.0 2574 1.9 310 2.1 1400 2.0 247 2.2
8 20 6.8 65 6.8 745 6.5 96 6.6 451 6.1 72 7.4

16 13 10.6 42 10.6 Mem 60.7 10.5 256 10.7 42 12.6
24 11 12.7 39 11.3 Mem 54.3 11.7 188 14.6 34 15.5
32 10 13.4 Mem Mem Mem 168 16.3 31 17.1

Seq. imp. 410 2610 2587 2643 6 798
Par. imp. 415 1.2% 2710 3.8% 3553 37% 2733 3.4% 6 0.0% 783 -1.9%
Triples 219.0 M 911.2 M 1661.0 M 1094.0 M 35.6 M 429.6 M

Memory 11.1 GB 49.0 GB 75.5 GB 53.3 GB 1.1 GB 20.2 GB
Active 85.3% 66.5% 90.3% 85.3% 99.7% 99.1%

Fig. 2: Scalability and Concurrency Overhead of RDFox (All Times Are in Seconds)

Table 2: Comparison of RDFox with DBRDF and OWLIM-Lite (All Times Are in Seconds)
RDFox PG-VP MDB-VP PG-TT MDB-TT OWLIM-Lite

Import Materialise Import Materialise Import Materialise Import Import Import Materialise
T B/t T B/t T B/t T B/t T B/t T B/t T B/t T B/t T B/t T B/t

ClarosL 48 89
2062 60

1138 165
25026 97

883 58
Mem

1174 217 896 94 300 54
14293 28

ClarosLE 4218 44 Mem Mem Time
DBpediaL 274 69

143 67
5844 148

Mem
15499 51

354 49
5968 174 4492 92 1735 171

14855 164
DBpediaLE 9538 49 Mem Mem Time
LUBML01K

332 74
71 65

7736 144
948 127

6136 56
27 41

7947 187 5606 104 2409 40
316 36

LUBMLE 01K 765 54 15632 112 Mem Time
LUBMU 01K 113 67 Time 138 44 Time
UOBMU 010 5 68 2501 43 116 154 Time 96 50 Mem 120 203 96 85 32 69 11311 24
UOBML01K 632 64 467 63 13864 119 6708 107 11063 41 358 33 14901 176 10892 101 4778 38 Time

databases of MDB and PG on a 100 GB RAM disk. For OWLIM-Lite, we kept the
dictionary on a 50 GB RAM disk; since the system materialises rules during import,
we loaded each RDF graph once with the test program and once with no program and
we subtracted the two times; Ontotext confirmed that this yields a good materialisation
time estimate. Each test was limited to 10 hours, and we report averages over three runs.

Figure 2 shows the speedup of RDFox with the number of used threads. The middle
part of the tables shows the sequential and parallel import times, and the percentage
slowdown for the parallel version. The lower part of the tables shows the number of
triples and memory consumption after materialisation (the number of triples before is
given in Table 1), and the percentage of active triples (i.e., triples to which a rule was
applied). Import times differ by at most 5% between the sequential and parallel version.
For materialisation, the overhead of lock-free updates is between 10% and 30%, so
parallelisation pays off already with two threads. With all 16 physical cores, RDFox
achieves a speedup of up to 13.9; this increases to 19.5 with 32 virtual cores, suggesting

that hyperthreading and a high degree of parallelism can mitigate the effect of CPU
stalls due to random memory access. The flattening of the speedup curves is due to the
limited capabilities of virtual cores, and the fact that each thread contributes to system
bus congestion. Per-thread indexes (see Section 4) proved very effective at reducing
thread interference, although they did cause memory exhaustion in some tests; however,
the comparable performance of the sequential version of RDFox (which does not use
such indexes) suggests that the cost of maintaining them is not high. The remaining
source of interference is in the calls to factsI .next, which are more likely to overlap with
many threads and few active triples. The correlation between the speedup for 32 threads
and the percentage of active triples is 0.9, explaining the low speedup on DBpediaL. The
excessive parallel import time observed for LUBMLE05K is due to a glitch and should
be in the same range as LUBML05K and LUBMU05K. Since every thread keeps its
private insertion points (cf. Section 4.2), the memory intensive LUBM∗05K test cases
run out of memory for higher numbers of threads.

Table 2 compares RDFox with OWLIM-Lite and DBRDF on PG and MDB with
the VP or TT scheme. Columns T show the times in seconds, and columns B/t show
the number of bytes per triple. Import in DBRDF is about 20 times slower than in
RDFox, but half of this time is used by the Jena RDF parser. VP is 33% more memory
efficient than TT, as it does not store triples’ predicates, and MDB-VP can be up to
34% more memory-efficient than RDFox; however, MDB-TT is not, which is surprising
since RDFox does not compress data. We do not know how OWLIM-Lite splits the
dictionary between the disk and RAM, so the RAM consumption in Table 2 is a ‘best-
case’ estimate. On materialisation tests, both MDB-TT and PG-TT ran out of time in
all but one case (MDB-TT completed DBpediaL in 11,958 seconds): as observed in [1],
self-joins on the triple table are notoriously difficult for RDBMSs. In contrast, although
it implements TT, RDFox successfully completed all tests. MDB-VP was faster than
RDFox on two tests (LUBML01K and UOBML01K); however, it was slower on the
others, and it ran out of memory on many tests. PG-VP was always much slower, and it
could not complete many tests.

6 Conclusion & Outlook

We presented a novel and very efficient approach to parallel materialisation of datalog
in centralised, multi-core, main-memory RDF systems. However, when equality is ax-
iomatised and thus explicated in the materialised data, equality cliques cause a quadratic
blowup. We would like to address this challenge by using native equality reasoning in
which reasoning is performed over a factorised representation of the data. We further
intend to combine native equality reasoning with incremental reasoning techniques. Our
goals also include adapting the RDF indexing scheme to secondary storage, the main
difficulty of which will be to reduce random access.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically partitioned
DBMS for Semantic Web data management. VLDB Journal 18(2), 385–406 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1995)
3. Albutiu, M.C., Kemper, A., Neumann, T.: Massively Parallel Sort-Merge Joins in Main

Memory Multi-Core Database Systems. PVLDB 5(10), 1064–1075 (2012)
4. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on multi-core

CPUs: Tuning to the underlying hardware. In: ICDE. pp. 362–373 (2013)
5. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing

and Querying RDF and RDF Schema. In: ISWC. pp. 54–68 (2002)
6. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF Querying

Scheme. In: VLDB. pp. 1216–1227 (2005)
7. Dong, G.: On Distributed Processibility of Datalog Queries by Decomposing Databases.

SIGMOD Record 18(2), 26–35 (1989)
8. Fraser, K., Harris, T.L.: Concurrent Programming Without Locks. ACM TOCS 25(2), 1–61

(2007)
9. Ganguly, S., Silberschatz, A., Tsur, S.: A Framework for the Parallel Processing of Datalog

Queries. In: SIGMOD. pp. 143–152 (1990)
10. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining

Logic Programs with Description Logic. In: WWW. pp. 48–57 (2003)
11. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. JWS

3(2-3), 158–182 (2005)
12. Harris, T.L., Fraser, K., Pratt, I.A.: A Practical Multi-word Compare-and-Swap Operation.

In: DISC. pp. 265–279 (2002)
13. Heino, N., Pan, J.Z.: RDFS Reasoning on Massively Parallel Hardware. In: ISWC. pp. 133–

148 (2012)
14. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)
15. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K., Kersten, M.: MonetDB: Two

Decades of Research in Column-oriented Database Architectures. IEEE Data Eng. Bull.
35(1), 40–45 (2012)

16. Larson, P.A.: Letter from the Special Issue Editor. IEEE Data Engineering Bulletin, Special
Issue on Main-Memory Database Systems 36(2), 5 (2013)

17. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a Complete OWL Ontology
Benchmark. In: ESWC. pp. 125–139 (2006)

18. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language: Profiles, W3C Recommendation (2009)

19. Neumann, T., Weikum, G.: The RDF-3X Engine for Scalable Management of RDF Data.
VLDB Journal 19(1), 91–113 (2010)

20. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin:
Distributed Reasoning over Large-scale Semantic Web Data. JWS 7(4), 305–316 (2009)

21. Seib, J., Lausen, G.: Parallelizing Datalog Programs by Generalized Pivoting. In: PODS. pp.
241–251 (1991)

22. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. JWS 3(2–3), 79–115 (2005)

23. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: A Web-scale Par-
allel Inference Engine using MapReduce. JWS 10, 59–75 (2012)

24. Urbani, J., Margara, A., Jacobs, C.J.H., van Harmelen, F., Bal, H.E.: Dynamite: Parallel
materialization of dynamic rdf data. In: ISWC. pp. 657–672 (2013)

25. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds
of Millions of Triples. In: ISWC. pp. 682–697 (2009)

26. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic Web Data
Management. PVLDB 1(1), 1008–1019 (2008)

27. Wolfson, O., Ozeri, A.: Parallel and Distributed Processing of Rules by Data-Reduction.
IEEE TKDE 5(3), 523–530 (1993)

28. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Imple-
menting an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle.
In: ICDE. pp. 1239–1248 (2008)

29. Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Evaluation of Datalog Pro-
grams. IEEE TKDE 7(1), 163–176 (1995)

30. Zhou, Y., Cuenca Grau, B., Horrocks, I., Wu, Z., Banerjee, J.: Making the Most of Your
Triple Store: Query Answering in OWL 2 Using an RL Reasoner. In: WWW. pp. 1569–1580
(2013)

31. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: Answering SPARQL Queries via
Subgraph Matching. PVLDB 4(8), 482–493 (2011)

