
Laura Giordano Valentina Gliozzi Gian Luca Pozzato (Eds.)

CILC 2014

29◦ Italian Conference on Computational Logic

Torino 16-18 giugno 2014

c© 2014 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Editors’ addresses:
Dipartimento di Informatica
Universitá degli Studi di Torino
corso Svizzera 185
10149 Torino, Italy

laura.giordano@mfn.unipmn.it
valentina.gliozzi@unito.it
gianluca.pozzato@unito.it

Preface

The 29th edition of the Italian Convention of Computational Logic (CILC 2014),
the annual meeting organized by GULP (Gruppo ricercatori e Utenti Logic Pro-
gramming), was hosted by the University of Turin, from June the 16th to June
the 18th 2014.

Since the first conference, which took place in Genoa in 1986, the annual
conference organized by GULP is the most important occasion for meeting and
exchanging ideas and experiences between Italian researchers, working in the
field of computational logic. Over the years, CILC has extended its topics of
interest, from the traditional logic programming to most general ones, such as the
declarative programming and the application of computational logic to Artificial
Intelligence and Deductive Databases.

The technical program of CILC 2014 included 29 presentations. Different
topics related to computational logic have been addressed, including verification
of logic programs, answer set programming, proof theory, computable set the-
ory, machine learning, constraint logic programming, description logics, semantic
web, inductive logic programming, argumentation. Associated papers (21 full pa-
pers, 8 short contributions) have been selected for publication in the proceedings
of the event.

The 29th edition of CILC included also two invited talks:

– “From logic programming to argumentation and back”, given by Francesca
Toni from the Department of Computing, Imperial College London;

– “Tractable approaches to consistent query answering in ontology-based-data
access”, given by Riccardo Rosati from DIAG (Dipartimento di Ingegneria
informatica, automatica e gestionale), Sapienza Università di Roma).

A selection of the accepted papers will appear in a special issue of a scientific
journal. The complete program with links to full papers is available at http:

//cilc2014.di.unipmn.it/accepted.php.

We have been able to organize CILC 2014 thanks to the support of the:

– Department of Computer Science of the University of Turin;
– Department of Science and Technological Innovation (DISIT) of the Univer-

sity of Piemonte Orientale ÒAmedeo AvogadroÓ
– Association for Logic Programming (ALP)
– Gruppo ricercatori e Utenti Logic Programming (GULP)
– Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale

di Alta Matematica (INDAM) Turismo Torino e Provincia.

We would also like to thank all the people who have contributed to the success
of CILC 2014, including authors, speakers, reviewers, participants and local or-
ganizers, in particular Daniele Theseider Dupré and Matteo Spiotta. A special

3

thanks goes to the President of GULP, Agostino Dovier, and the secretary of
GULP, Marco Gavanelli, for their helpful suggestions and support to the orga-
nization of the event.

June 2014 Laura Giordano, Valentina Gliozzi, Gian Luca Pozzato

4

Conference Chairs

Laura Giordano, Università del Piemonte Orientale
Valentina Gliozzi, Università degli Studi di Torino
Gian Luca Pozzato, Università degli Studi di Torino

Program Committee

Elena Bellodi, Università degli Studi di Ferrara
Stefano Bistarelli, Università degli Studi di Perugia
Davide Bresolin, Università degli Studi di Bologna
Federico Chesani, Università di Bologna
Simona Colucci, Università della Tuscia, Viterbo
Stefania Costantini, Università degli Studi di L’Aquila
Alessandro Dal Palú, Università degli Studi di Parma
Agostino Dovier, Università degli Studi di Udine
Wolfgang Faber, University of Huddersfield, UK
Stefano Ferilli, Università degli Studi di Bari “Aldo Moro”
Fabio Fioravanti, Università “G. D’Annunzio” di Chieti-Pescara
Camillo Fiorentini, Università degli Studi di Milano
Andrea Formisano, Università degli Studi di Perugia
Enrico Franconi, Free University of Bozen - Bolzano
Marco Gavanelli, Università degli Studi di Ferrara
Chiara Ghidini, Fondazione Bruno Kessler - Trento
Laura Giordano, Università del Piemonte Orientale, CHAIR
Valentina Gliozzi, Università degli Studi di Torino, CHAIR
Francesca Alessandra Lisi, Università degli Studi di Bari “Aldo Moro”
Marco Maratea, Università degli Studi di Genova
Alberto Martelli, Università degli Studi di Torino
Alessandra Mileo, National University of Ireland, Galway
Marianna Nicolosi Asmundo, Università degli Studi di Catania
Nicola Olivetti, Aix-Marseille University (AMU)
Eugenio Omodeo, Università degli Studi di Trieste
Fabio Patrizi, DIAG - Sapienza Università di Roma
Alberto Pettorossi, Università di Roma Tor Vergata
Enrico Pontelli, New Mexico State University
Gian Luca Pozzato, Università degli Studi di Torino, CHAIR
Maurizio Proietti, IASI - Consiglio Nazionale delle Ricerche
Alessandro Provetti, Università degli Studi di Messina
Luca Pulina, Università degli Studi di Sassari
Francesco Ricca, Università della Calabria
Fabrizio Riguzzi, Università degli Studi di Ferrara
Gianfranco Rossi, Università degli Studi di Parma
Pietro Sala, Università degli Studi di Verona
Luigi Sauro, Università degli Studi di Napoli “Federico II”

5

Umberto Straccia, Istituto di Scienza e Tecnologie - ISTI-CNR, Pisa
Paolo Torroni, Università di Bologna

Local Organizing Committee

Laura Giordano, Università del Piemonte Orientale
Valentina Gliozzi, Università degli Studi di Torino
Adam Jalal, BE/CO/DA CERN, Ginevra
Gian Luca Pozzato, Università degli Studi di Torino
Matteo Spiotta, Università degli Studi di Torino
Daniele Theseider Dupré, Università del Piemonte Orientale

6

Table of Contents

Abstracts of invited talks 10

Francesca Toni.
From logic programming to argumentation and back 11

Riccardo Rosati.
Tractable approaches to consistent query answering in ontology-based-data ac-
cess 12

Full papers 13

Agostino Dovier.
Set Graphs VI: Logic Programming and Bisimulation 14

Davide Ancona, Daniela Briola, Amal El Fallah Seghrouchni, Viviana Mascardi
and Patrick Taillibert.
Exploiting Prolog for Projecting Agent Interaction Protocols 30

Mauro Ferrari, Camillo Fiorentini and Guido Fiorino.
JTabWb: a Java framework for implementing terminating sequent and tableau
calculi 46

Marco Gavanelli, Michela Milano, Stefano Bragaglia, Federico Chesani, Elisa
Marengo and Paolo Cagnoli.
Multi-Criteria Optimal Planning for Energy Policies in CLP 54

Stefania Costantini and Andrea Formisano.
Query Answering in Resource-Based Answer Set Semantics 69

Marco Montali, Diego Calvanese and Giuseppe De Giacomo.
Specification and Verification of Commitment-Regulated Data-Aware Multia-
gent Systems 84

Stefano Ferilli.
Toward an Improved Downward Refinement Operator for Inductive Logic Pro-
gramming 99

Emanuele De Angelis, Fabio Fioravanti,
Alberto Pettorossi and Maurizio Proietti.
Program Verification using Constraint Handling Rules and Array Constraint

Table of Contents

Generalizations 114

Loris Bozzato, Thomas Eiter and Luciano Serafini.
Defeasibility in contextual reasoning with CKR 132

Piero A. Bonatti, Iliana Petrova and Luigi Sauro.
A mechanism for ontology confidentiality 147

Domenico Cantone, Cristiano Longo and Marianna Nicolosi-Asmundo.
Herbrand-satisfiability of a Quantified Set-theoretical Fragment 162

Francesca Alessandra Lisi and Floriana Esposito.
Semantic Web Services for Integrated Tourism in the Apulia region 178

Domenico Cantone, Marianna Nicolosi-Asmundo and Ewa Orlowska.
A Dual Tableau-based Decision Procedure for a Relational Logic with the Uni-
versal Relation 194

Mathew Joseph, Gabriel Kuper and Luciano Serafini.
Query answering over Contextualized RDF knowledge with Forall-Existential
Bridge Rules: Attaining Decidability using Acyclicity 210

Roberto Micalizio and Gian Luca Pozzato.
Revising Description Logic Terminologies to Handle Exceptions: a First Step 225

Stefania Costantini and Giovanni De Gasperis.
Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical
Agent Systems 241

Stefania Costantini and Regis Riveret.
Complex Events and Actions in Logical Agents 256

Antonis Kakas, Francesca Toni and Paolo Mancarella.
Argumentation for Propositional Logic and Nonmonotonic Reasoning 272

Rodica Ceterchi, Eugenio G. Omodeo and Alexandru I. Tomescu.
The representation of Boolean algebras in the spotlight of a proof checker 287

Short papers 302

Francesco Alberti, Silvio Ghilardi and Natasha Sharygina.
A framework for the verification of parameterized infinite-state systems 303

8

Table of Contents

Irene Benedetti, Stefano Bistarelli and Paolo Piersanti.
On Relating Voting Systems and Argumentation Frameworks 309

Davide Bresolin, Emilio Muñoz-Velasco and Guido Sciavicco.
A First Study of the Horn Fragment of the Modal Logic of Time Intervals 314

Daniela Briola, Viviana Mascardi and Davide Ancona.
Distributed Runtime Verification of JADE and Jason Multiagent Systems with
Prolog 319

Simona Colucci, Silvia Giannini,
Francesco M. Donini and Eugenio Di Sciascio.
Finding Commonalities in Linked Open Data 324

Carlo Combi and Pietro Sala.
Keeping interval-based functional dependencies up-to-date 330

Tommaso di Noia, Marina Mongiello and Eugenio Di Sciascio.
A computational model for MapReduce job flow 335

Eugenio Omodeo, Carla Piazza,
Alberto Policriti and Alexandru I. Tomescu.
Hyper-extensionality and one-node elimination on membership graphs 341

9

Abstracts of invited talks

From logic programming to argumentation and
back

Francesca Toni

Department of Computing
Imperial College London

ft@imperial.ac.uk

Abstract. Argumentation has gained popularity in recent years as a
knowledge representation formalism to support, in particular, non-mono-
tonic and paraconsistent reasoning. I will trace back the origins of two
well-known argumentation frameworks (namely abstact argumentation
and assumption-based argumentation) to work on the semantics of logic
programming and abductive logic programming in the late eighties and
early nineties. I will then discuss recent work with Claudia Schulz on
the use of (assumption-based) argumentation to provide justifications
for (non-)membership of literals in answer sets, illustrating one way in
which argumentation can benefit back logic programming.

11

Tractable approaches to consistent query
answering in ontology-based-data access

Riccardo Rosati

Dipartimento di Ingegneria informatica, automatica e gestionale (DIAG)
Sapienza Università di Roma
rosati@dis.uniroma1.it

Abstract. In this talk, we address the problem of consistent query an-
swering in ontology-based data access (OBDA). A robust system for
ontology-based data access should provide meaningful answers to queries
even when the data conflicts with the ontology. This can be accom-
plished by adopting an inconsistency-tolerant semantics, with the consis-
tent query answering (CQA) semantics being the most prominent exam-
ple. Unfortunately, query answering under the CQA semantics has been
shown to be computationally intractable, even when extremely simple on-
tology languages are considered. First, we present and compare the CQA
semantics and other inconsistency-tolerant semantics that have been pro-
posed to overcome the above computational problem. Then, we propose
two new families of inconsistency-tolerant semantics which approximate
the CQA semantics from above and from below and converge to it in
the limit. We study the data complexity of conjunctive query answering
under these new semantics, and show a general tractability result for
all known first-order rewritable ontology languages. We also analyze the
combined complexity of query answering for ontology languages of the
DL-Lite family. This is joint work with Meghyn Bienvenu (CNRS and
Université Paris-Sud).

12

Full papers

Set Graphs VI:
Logic Programming and Bisimulation ?

Agostino Dovier

University of Udine, DIMI

Abstract. We analyze the declarative encoding of the set-theoretic graph
property known as bisimulation. This notion is of central importance in
non-well founded set theory, semantics of concurrency, model checking,
and coinductive reasoning. From a modeling point of view, it is partic-
ularly interesting since it allows two alternative high-level characteriza-
tions. We analyze the encoding style of these modelings in various dialects
of Logic Programming. Moreover, the notion also admits a polynomial-
time maximum fix point procedure that we implemented in Prolog. Sim-
ilar graph problems which are NP hard or not yet perfectly classified
(e.g., graph isomorphism) can benefit from the encodings presented.

1 Introduction

Graph bisimulation is the key notion for stating equality in non well-founded-set
theory [1]. The notion is used extensively whenever cyclic properties need to be
checked (e.g., in conductive reasoning [16]), in the semantics of communicating
systems [12], as well as in minimizing graphs for hardware verification, and in
model checking in general [9]. The problem of establishing whether two graphs
are bisimilar (hence, the sets ‘represented’ by those graphs are equivalent) is
easily shown to be equivalent to the problem of finding a maximum bisimulation
of a graph into itself. This problem admits fast polynomial time algorithms that
optimize a naive maximum fix point algorithm [14, 7]. As far as we know, the
problem of establishing whether there exists or not a linear-time algorithm for
the general case is still open.

The maximum bisimulation problem has the beauty of having two (equiv-
alent) declarative formalizations. The first one is the definition of a particular
morhpism that is similar to the one used for defining other “NP” properties such
as graph/subgraph simulation or isomorphism. The second one is based on the
notion of coarsest stable partition which is itself similar to the property exploited
for computing the minimum deterministic finite automata for a given regular lan-
guage. The focus of the paper is the analysis of the programming style to be used
for modeling the maximum bisimulation problem in as much declarative way as
possible in some dialects of logic programming, namely, Prolog, Constraint Logic
Programming on Finite Domains, Answer Set Programming, the less known, but
developed for coinductive reasoning, Co-inductive Logic Programming, and the

? This research is partially supported by INdAM-GNCS.

14

set-based constraint logic programming language {log} (read setlog). The contri-
bution of this paper is not on the direction of improving existing polynomial time
algorithms; however, we also encode in Prolog a polynomial-time max fixpoint
algorithm.

The paper is inserted either in the series of papers on “Set Graphs” (e.g.,
[13]) or in the series of papers aimed at comparing relative expressiveness of logic
programming paradigms on families of problems (e.g., [4, 20]). Proposed models
can be slightly modified to address the other similar properties recalled above,
some of which are not believed to admit a fast implementation and, therefore,
they can exploit the declarative style of logic languages and the speed of their
implementations, in particular, in the case of ASP modeling.

2 Sets, Graphs, and Bisimulation

We assume the reader has some basic notions of set theory and of first-order
logic with equality. We add here a set of notions needed for understanding the
contribution of the paper; the reader is referred, e.g., to [1, 11], for details. Basic
knowledge of Logic Programming is also assumed.

Sets are made by elements. The extensionality principle (E) states that two
sets are equal if and only if they contain the same elements:

∀z
(

(z ∈ x↔ z ∈ y)→ x = y

)
(E)

(the←, apparently missing, direction is a consequence of equality). In “classical”
set theory sets are assumed to be well-founded; in particular the ∈ relation fulfills
the so-called foundation axiom (FA):

∀x
(
x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)

)
(FA)

that ensures that a set cannot contain an infinite descending chain x0 3 x1 3
x2 3 · · · of elements. In particular, let us observe that a set x such that x = {x}
can not exist since x is not empty, its unique element y is x itself, and x ∩ y =
{y} 6= ∅ contradicting the axiom.

On the other side, cyclic phenomena are rather common in our experience.
For instance in knowledge representation, argumentation theory, operating sys-
tems design, concurrency theory, and so on. Representing and reasoning on these
problems lead us in working on (cyclic) directed graphs with a distinguished en-
try point. Precisely, an accessible pointed graph (apg) 〈G, ν〉 is a directed graph
G = 〈N,E〉 together with a distinguished node ν ∈ N (the point) such that all
the nodes in N are reachable from ν.

Intuitively, an edge a −→ b means that the set “represented by b” is an
element of the set “represented by a”. The graph edge −→ stands, in a sense, for
the Peano symbol 3.1 The above idea can be used to decorate an apg, namely,

1 Let us observe the morphing −→ −−−> −3 3, pointed out by Carla Piazza.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

15

assigning a (possibly non-well founded) set to each of the nodes. Sinks, i.e., nodes
without outgoing edges have no elements and are therefore decorated as the
empty set ∅. In general, if the apg is acyclic, it represents a well-founded set and
it can be decorated uniquely starting from sinks and proceeding backward to the
point (theoretically, this follows from the Mostowski’s Collapsing Lemma [11]).
See Figure 1 for two examples; in particular observe that redundant nodes and
edges can occur in a graph.

Fig. 1. Two acyclic pointed graphs and their decoration with well-founded sets

If the graph contains cycles, interpreting edges as membership implies that
the set that decorates the graph is no longer well-founded. Non well-founded sets
are often referred to as hypersets. Anti Foundation Axiom (AFA) [1] states that
every apg has a unique decoration. Figure 2 reports some examples. In particular,
the leftmost and the central apgs both represent the hyperset Ω which is the
singleton set containing itself. Applying extensionality axiom (E) for verifying
their equality would lead to a circular argument.

Fig. 2. Three cyclic pointed graphs and their decoration with hypersets

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

16

2.1 The notion of Bisimulation

Each apg has a unique decoration. Therefore two apgs denote the same hyperset
if and only if their decoration is the same. The notion introduced to establish
formally this fact is the notion of bisimulation.

Let G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 be two graphs, a bisimulation between
G1 and G2 is a relation b ⊆ N1 ×N2 such that:

1. u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)
2. u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

In case G1 and G2 are apgs pointed in ν1 and ν2, respectively, it is also required
that ν1 b ν2. If there is a bisimulation between G1 and G2 then the two graphs
are bisimilar.

Remark 1 (Bisimulation and Isomorphism). Let us observe that if b is required
to be a bijective function then it is a graph isomorphism. Establishing whether
two graphs are isomorphic is an NP-problem neither proved to be NP-complete
nor in P. Establishing whether G1 is isomorphic to a subgraph of G2 (subgraph
isomorphism) is NP-complete [15]. Establishing whether G1 is bisimilar to a
subgraph of G2 (subgraph bisimulation) is NP-complete [6]. Instead, establishing
whether G1 is bisimilar to G2 is in P (actually, O(|E1 +E2| log |N1 +N2|)—[14]).

In case G1 and G2 are the same graph G = 〈N,E〉, a bisimulation on G is a
bisimulation between G and G. It is immediate to see that there is a bisimulation
between two apg’s 〈G1, ν1〉 and 〈G2, ν2〉 if and only if there is a bisimulation b on
the graph G = 〈{ν}∪N1 ∪N2, {(ν, ν1), (ν, ν2)}∪E1 ∪E2〉 such that ν1 b ν2 (see,
e.g., [7], for a proof). Therefore, we can focus on the bisimulations on a single
graph; among them, we are interested in computing the maximum bisimulation
(i.e., the one maximizing the number of pairs u b v). It can be shown that it is
unique, that is an equivalence relation, and that contains all other bisimulations
on G. Therefore, we might restrict our search to bisimulations on G that are
equivalence relations on N such that:

∀u1, u2, v1 ∈ N
(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
(1)

The fact that we look for equivalence (hence, symmetric) relations makes the
case 2 of the definition of bisimulation superfluous. We will use the following
logical rewriting of (1) in some encodings:

¬∃u1, u2, v1 ∈ N
(
u1bu2∧〈u1, v1〉 ∈ E∧¬

(
(∃v2 ∈ N) (v1bv2∧〈u2, v2〉 ∈ E)

))
(1′)

The graph obtained by collapsing nodes according to the equivalence relation
is the one that allows to obtain the apg decoration, using the following procedure.

Let G = 〈〈N,E〉, ν〉 be an apg. For each node i ∈ N assign uniquely a
variable Xi, then add the equation Xi = {Xj : (i, j) ∈ E}. The set of
equations obtained defines the set decorating G, that can be retrieved
as the solution of Xν .

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

17

Another characterization of the maximum bisimulation is based on the notion
of stability. Given a set N , a partition P of N is a collection of non-empty disjoint
sets (blocks) B1, B2, . . . such that

⋃
iBi = N . Let E be a relation on the set N ,

with E−1 we denote its inverse relation.
A partition P of N is said to be stable with respect to E if and only if

(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨B1 ∩ E−1(B2) = ∅) (2)

which is in turn equivalent to state that there do not exist two blocks B1 ∈ P
and B2 ∈ P such that:

(∃x ∈ B1)(∃y ∈ B1) (x ∈ E−1(B2) ∧ y /∈ E−1(B2)) (2′)

We say that a partition P refines a partition Q if each block (i.e., class) of
P is contained in a block of Q. A class B2 of P splits a class B1 of P if B1

is replaced in P by C1 = B1 ∩ E−1(B2) and C2 = B1 \ E−1(B2); if C1 or C2

is empty, it is not added in P . The split operation produces a refinement of a
partition P ; if P is stable with respect to E, no split operations changes P .

It can be shown that given a graph G = 〈N,E〉, starting from the partition
P = {N}, after at most |N | − 1 split operations a procedure halts determining
the coarsest stable partition (CSP) w.r.t. E. Namely, the partition is stable and
any other stable partition is a refinement of it. Moreover, and this is relevant
to our task, the CSP corresponds to the partition induced by the maximum
bisimulation, hence this algorithm can be employed to compute it in polynomial
time. Paige and Tarjan showed us the way for fast implementations in [14].

3 Logic Programming Encoding of Bisimulation

We first focus on the logic programming encoding or the definition of bisim-
ulation (1) or (1′) and of the part needed to look for the maximum bisim-
ulation on a input apg. We impose the relation is symmetric and reflexive.
In the remaining part of the paper we assume that apg’s are represented by
facts node(1). node(2). node(3). ... for enumerating the nodes, and facts
edge(u,v). where u and v are nodes, for enumerating the edges. For the sake
of simplicity, we also assume that node 1 is the point of the apg.2

3.1 Prolog

The programming style used in the Prolog encoding is generate & test. The core
of the encoding is reported in Figure 3. A bisimulation is represented by a list of
pairs of nodes (U, V). Assuming a “guessed” bisimulation is given as input, for
every guessed pair the morphism property (1) is checked. As usual in Prolog, the
“for all” property is implemented by a recursive predicate (although a slightly

2 Complete codes are available at http://clp.dimi.uniud.it

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

18

more compact foreach statement is available in most Prolog systems and will
be used in successive encodings).

bis/1 is called by a predicate that guesses a bisimulation of size at least k
between nodes, itself called by a meta predicate that increases the value of k
until no solution is found. The guess predicate forces all identities, all the pairs
between nodes without outgoing edges, and imposes symmetries; this extra part
of the code is rather boring and we have omitted the code. As a (weak) search
strategy, the guess predicate tries first to insert as much pairs as possible: this
will explain the difference of computational times on different benchmarks of the
same size.

3.2 CLP(FD)

The programming style is constraint & generate. In this case the bisimulation
is stored in matrix, say B, of Boolean variables. B[i, j] = 1 means that i b j
(B[i, j] = 0 means that ¬(i b j)). We omit the definitions of the reflexivity

predicate that sets B[i, i] = 1 for all nodes i and of the symmetry predicate
that sets B[i, j] = B[j, i] for all pair of nodes i and j. Let us focus on the
morphism requirements (1). morphism/2 collects all edges and calls morphism/3.
This predicate scans each edge (U, V) and then each node U1 and adds the
property that if B[U,U1] = 1 then

∑
(U1,V 1)∈E B[V, V 1] = 1. Let us observe

that O(|E||N |) of these constraints are generated. We omit the definitions of
some auxiliary predicates, such as access(X,Y,B,N,BXY) that simply sets BXY

= B[X,Y]. The whole encoding is longer and perhaps less intuitive than the
Prolog one. However, the search of the maximum bisimulation is not delegated
to a meta predicate as in Prolog but it is encoded directly into the maximize

option of the labeling primitive. The “down” search strategy, trying to assign 1
first, is similar to the strategy used in the Prolog code.

3.3 ASP

ASP encodings allow to define explicitly the bisimulation relation. Two rules are
added for forcing symmetry and reflexivity. Then a non-deterministic choice is
added to each pair of nodes. The great declarative advantage of ASP in this case
is the availability of constraint rules that allows to express universal quantifica-
tion (negation of existential quantification). The morphism requirement (1′) can
be therefore encoded as it is, with the unique addition of the node predicates
needed for grounding (Figure 5). Then we define the notion of representative
nodes (the nodes of smaller index among the nodes equivalent to it) and mini-
mize the number of them. This has proven to be much more efficient that max-
imizing the size of bis. A final remark on the expected size of the grounding.
Both the constraint and the definition of one son bis ranges over all edges and
another free node: this generates a grounding of size O(|E||N |).

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

19

bis(B) :- bis(B,B). % Recursively analyze B

bis([],_).

bis([(U1,U2) |RB],B) :- %%% if U1 bis U2

successors(U1,SU1), %%% Collect the successors SU1 of U1

successors(U2,SU2), %%% Collect the successors SU2 of U2

allbis(SU1,SU2,B), %%% Then recursively consider SU1

bis(RB,B).

allbis([],_,_).

allbis([V1 | SU1],SU2,B) :- %%% If V1 is a successor of U1

member(V2,SU2), %%% there is a V2 successor of U2

member((V1,V2),B), %%% such that V1 bis V2

allbis(SU1,SU2,B).

successors(X,SX) :- findall(Y,edge(X,Y),SX).

Fig. 3. Prolog encoding of the bisimulation definition. Maximization code is omitted.

bis :- size(N), M is N*N, %%% Define the N * N Boolean

length(B,M), domain(B,0,1), %%% Matrix B

constraint(B,N), Max #= sum(B), %%% Max is the number of pairs

labeling([maximize(Max),ffc,down],B). %%% in the bisimulation

constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).

morphism(N,B) :-

findall((X,Y),edge(X,Y),EDGES),

foreach(E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).

morphismcheck((U1,V1),U2,N,B) :-

access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)

successors(U2, SuccU2), % Collect all edges (U2,V2)

collectlist(SuccU2,V1,N,B,BLIST),% BLIST contains all possible flags BV1V2

BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)

Fig. 4. Portion of the CLP(FD) encoding of the bisimulation definition

%% Reflexivity and Symmetry

bis(I,I) :- node(I).

bis(I,J) :- node(I;J), bis(J,I).

%%% Nondeterministic choice

{bis(I,J)} :- node(I;J).

%%% Morphism requirement (1’)

:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).

one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).

%% Minimization (max bisimulation)

non_rep_node(A) :- node(A), bis(A,B), B < A.

rep_node(A) :- node(A), not non_rep_node(A).

rep_nodes(N) :- N=#sum[rep_node(A)].

#minimize [rep_nodes(N)=N].

Fig. 5. ASP encoding of the bisimulation definition

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

20

3.4 co-LP

In this section we exploit a less standard logic programming dialect. Coinduc-
tive Logic Programming (briefly co-LP) was introduced by Gupta et al. [17] and
recently presented in a concise way in [2], where computability results and a
working SWI interpreter are provided. The same syntax of pure Prolog should
be used. The differences lay in the semantics: the maximum fix point of a con-
ductive predicate is looked for, as opposite to the least fix point of classical logic
programming. Although this can easily lead to a non recursively enumerable se-
mantics, the finiteness of the graphs makes this option available for this problem.
As a matter of fact, the piece of code reported in Figure 6 encodes the prob-
lem and, by looking for the maximum fix point, the maximum bisimulation is
computed without the need of additional minimization/maximization directives.
bis and allbis are declared as coinductive. The definition of successors is the
same as in Figure 3 and declared as inductive, as well as the member predicate.

bis(U,V) :- successors(U,SU), successors(V,SV),

allbis(SU,SV), allbis(SV,SU).

allbis([],_).

allbis([U|R],SV) :- member(V,SV), bis(U,V), allbis(R,SV).

Fig. 6. co-LP (complete) encoding of the definition of Bisimulation

4 Logic Programming Encoding of CSP

We focus first on the encoding of the definition of stable partition (2) and finally
on the (less declarative) computation of the CSP.

4.1 Prolog

The programming style is generate & test. A partition is a list of non-empty
lists of nodes (blocks). Sink nodes (if any) are deterministically set in the first
block. Possible partitions of increasing size are non-deterministically generated
until the first stable one is found. Once the partition is guessed the verify part is
made by a double selection of blocks within the list of blocks. The main predicate
that encodes property (2) is the following:

stablecond(B1,B2) :- edgeinv(B2,InvB2),

(subseteq(B1,InvB2) ; emptyintersection(B1,InvB2)).

where edgeinv collects the nodes that enter into B2 (definable as findall(X,

(edge(X,Y), member(Y,B)), REVB)) while the two set-theoretic predicates are
defined through list operations.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

21

4.2 CLP(FD)

In this case the data structure used is a mapping from nodes to blocks indexes,
stored as a list of finite domain variables. The set inclusion and empty inter-
section requirement of (2) are not naturally implemented by a constraint &
generate style. As in the encoding 3.2 maximization is forced by a parameter of
the labeling; some symmetry breaking is encoded (e.g.. sink nodes are determin-
istically forced to stay in partition number one). We only report the excerpt of
the encoding, where we made use of the foreach built-in. With a rough analysis,
the number of constraints needed is O(|N |3) but each constraint generated by
alledge can be of size |N | itself.

4.3 ASP

Also in this case ASP allows a concise encoding (Figure 8). The assignment is
implemented defining the function inblock/2. The possibility of reasoning “a
posteriori” and the availability of the constraint rule allows to naturally encode
the property (2′). The remaining part of the code is devoted to symmetry break-
ing and minimization of the number of blocks. The bottleneck for the grounding
stage is the constraint rule that might generate O(|N |4) ground instantiations.

4.4 {log}
The CLP language {log}, originally presented in [5], populated with several
set-based constraints such as the disjoint constraint (disj—imposing empty in-
tersection) in [8] and later augmented with Finite Domain constraints in [3] is a
set-based extension of Prolog (and a particular case of constraint logic program-
ming language). Encoding the set-theoretic stable property (2) is rather natural
in this case. We report the definition in Figure 9. subset, disj, in are built-in
constraints. Similarly, restricted universal quantifiers (forall(X in S, Goal))
and intensional set formers ({X : Goal(X)}) are accepted.

4.5 Computing the coarsest stable partition

We have implemented the maximum fixpoint procedure for computing the coars-
est stable partition in Prolog. Initially nodes are split into (at most) two classes:
internal and non internal nodes. For each node U , a list of pairs U -I is computed
by stating that U is assigned to block I. Then a possible splitter is found and, in
case, a split is executed. The procedure terminates in at most n− 1 steps where
n is the number of nodes. The Prolog code is reported in Appendix (Figure 12).

5 Experiments

Although the focus of this work is on the expressivity of the declarative en-
coding (being this problem solved by fast algorithms in literature, such as [14,

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

22

stability(B,N) :-

foreach(I in 1..N, J in 1..N, stability_cond(I,J,B,N)).

stability_cond(I,J,B,N) :- % Blocks BI and BJ are considered

inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed

emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified

Cincl + Cempty #> 0. % OR condition

inclusion(X,N,_,_,_, 1) :- X>N,!.

inclusion(X,N,I,J,B, Cout) :- % Node X is considered

alledges(X,B,J,Flags), % Flags stores existence of edge (X,Y) with Y in BJ

LocFlag #= ((B[X] #= I) #=> (Flags #> 0)), %% Inclusion check:

X1 is X+1, % If X in BI then X in E-1(BJ)

inclusion(X1,N,I,J,B,Ctemp), % Recursive call

Cout #= Ctemp*LocFlag. % AND condition (forall nodes it should hold)

alledges(X,B,J,Flags) :- % Collect the successors of X

successors(X,OutgoingX), % And use them for assigning the Flags var

alledgesaux(OutgoingX,B,J,Flags).

alledgesaux([],_,_,0).

alledgesaux([Y|R],B,J,Flags) :- % The Flags variable is created

alledgesaux(R,B,J,F1), % Recursive call.

Flags #= (B[Y] #= J) + F1. % Add "1" iff there is edge (X,Y) and BY = J

Fig. 7. Excerpt of the CLP(FD) encoding of the stable partition property

blk(I) :- node(I).

%%% Function assigning nodes to blocks

1{inblock(A,B):blk(B)}1 :- node(A).

%%% STABILITY (2’)

:- blk(B1;B2), node(X;Y), X != Y, inblock(X,B1), inblock(Y,B1),

connected(X,B2), not connected(Y,B2).

connected(Y,B) :- edge(Y,Z),blk(B),inblock(Z,B).

%% Basic symmetry-breaking rules (optional)

:- node(A), internal(A), inblock(A,1).

internal(X) :- edge(X,Y).

leaf(X) :-node(X), not internal(X).

non_empty_block(B) :- node(A), blk(B), inblock(A,B).

empty_block(B) :- blk(B), not non_empty_block(B).

:- blk(B1;B2), 1 < B1, B1 < B2, empty_block(B1), non_empty_block(B2).

%% Minimization

number_blocks(N) :- N=#sum[non_empty_block(B)].

#minimize [number_blocks(N)=N].

Fig. 8. ASP complete encoding of the stable partition property

stable(P) :-

forall(B1 in P, forall(B2 in P, stablecond(B1,B2))).

stablecond(B1,B2) :-

edgeinv(B2,InvB2) &

(subset(B1,InvB2) or disj(B1,InvB2)).

edgeinv(A,B) :-

B = {X : exists(Y,(Y in A & edge(X,Y)))}.

Fig. 9. {log} encoding of the stable partition property

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

23

Fig. 10. From left to right, the graphs G1, G2 (n odd), G2 (n even), G3, and G5 used
in the experiments. G4 is the complete graph (not reported).

7]), we have reported the excerpt of the running times of the various proposed
encodings on some families of graphs, parametric on their number of nodes (Fig-
ure 10). Results can give us some additional information on the possibilities and
on the intrinsic limits of the logic programming dialects analyzed. All experi-
ments are made on a laptop 2.4GHz Intel Core i7, 8GB memory 1600MHz DDR3,
OSX 10.9.2. Systems used are B-Prolog Version 7.8#5 [19], clingo 3.0.5 (clasp
1.3.10) [10], and SWI Prolog Version 6.4.1 [18]. In particular, SWI Prolog has
been used in the co-LP tests, thanks to its rational terms handling. On the other
Prolog encodings B-Prolog proved to be from 2 to 3 times faster than SWI and
it has been therefore used. Speed-up increased still further using tabling for the
predicate edge but we have exploited this additional feature in the experiments
in Table 5 only. We tested the codes on five families of graphs G1–G5 parametric
on the number of nodes n (see Figure 10).

– Graph G1 is an acyclic graph with n− 1 edges, where n classes are needed.
– G2 is a cyclic graph with n nodes and edges. If n is even, just two classes are

sufficient; if n is odd, n+1
2 classes are needed. This is why in some experiments

we have two columns with this family of graphs.
– G3 is a binary tree populated following a breadth-first visit, with n−1 edges.
– G4 is, in a sense, symmetrical w.r.t. G1: it is a complete graph with n2 edges

but just one class is sufficient.
– G5 is a multilevel (cyclic) graph.

The results on the encoding of the bisimulation definition 1 are reported
in Tables 1–3. From a quick view one might notice that the ASP encoding is a
clear winner. Prolog generate & Test and the co-LP interpreter run in reasonable
time on very small graphs only (Prolog is used without tabling, tabling the edge

predicate allows a speed-up of roughly 4 times). The CLP approach becomes
unpractical soon in the case for the complete graph G4 where the n2 edges
generate too many constraints for the stack size when n ≥ 50 (as reported
in Section 3.2, O(|E||N |) constraints are added: in this case they are O(n5);
moreover each of those constraints includes a sum of n elements in this case).
Let us observe that the complete graph G4 produces the highest grounding

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

24

times in the ASP case. As reported in Section 3.3 grounding size is expected
O(|E||N |) = O(n3) in this case. This has been verified experimentally (table not
reported); in particular, for G4, n = 200 the grounded file (obtained with the
option -t) is of size 275MB. Moreover, by a simple regression analysis of Table 3,
the time needed for grounding is shown to be proportional to n6 for graph G4.

The results on the enconding of the coarsest stable partition definition 2 are
reported in Table 4. Also in this case ASP is a clear winner, although in this
case smaller graphs can be handled by all approaches. We have omitted the {log}
running times. This system proved to be definitely the slowest; just to have an
idea, for G1, n = 5 the computation took roughly 5 hours.

We conclude with the testing of the encoding of the polynomial time proce-
dure of coarsest stable partition computation by maximum fixpoint and splits.
In graphs G∗2 and G3 tabling the edge predicate improved the running time
of two orders of magnitude (reported times are those using tabling). As a fur-
ther consideration, we started finding stack overflow for n = 5000. Moreover,
the experimental complexity detected by a regression analysis on table 5 is
O(|N |3) in all columns, which is rather good, considering the purely declara-
tive nature of the encoding (fast solvers such as [7] run in O(|N |) in acyclic
graphs such as G1 and G3, and in the cyclic multi-level graph G5, while they
run in O(|E| log |N |) = O(|N |2 log |N |) in the other cases. By the way, complete
graph G4 could be solved in time O(1) with a simple preprocessing).

6 Conclusions

We have encoded the two properties characterizing the bisimulation definition,
and in particular, solving the maximum bisimulation problem, using some di-
alects of Logic Programming. As a general remark, the guess & verify style of
Prolog (and of ASP) allows to define the characterizing properties to be verified
‘a posteriori’, on ground atoms. In CLP instead, those properties are added as
constraints to lists of values that are currently non instantiated and this makes
things much more involved, and has a negative impact on code readability. The
expressive power of the constraint rule of ASP allows a natural and compact
encoding of “for all” properties and this improved the conciseness of the en-
coding (and readability in general); recursion should be used instead for it in
Prolog and CLP. co-LP (resp., {log}) allows to write excellent code for property
(1) (resp., property (2)). However, since they are implemented using meta in-
terpreters (naive in the case of co-LP) their execution times are prohibitive for
being used in practice.

The ASP encoding is also the winner from the efficiency point of view, as far
as a purely declarative encoding of the NP property is concerned. This would
suggest the reader that this is the best dialect to be used to encode graph
properties if a polynomial time algorithm is not yet available (or it does not
exist at all). This is not the case of the maximum bisimulation problem where
polynomial time algorithms for computing the coarsest stable partition can be

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

25

n G1 G2 G3 G4

BP co-LP BP co-LP BP co-LP BP co-LP

4 1 2 1 3 1 1 0 45382

5 18 3 16 6 14 47 1 so

6 508 8 179 33 441 496 1 so

7 33252 14 8240 20 6340 91272 1 so

8 4303576 28 203191 118 884614 47 8 so

Table 1. Property (1). Running time (ms) for the Prolog (BP) and the co-LP encoding
on very small graphs. so=stack overflow. G5 is not considered for these values of n,
since its structure requires at least 11 nodes. Let us observe that G3 is a tree of height
3 for n = 7 and of height 4 for n = 8. This explain the strange behavior of co-LP.

n G1 G2 G3 G4 G∗
5

C S C S C S C S C S

10 1 0 1 0 1 0 17 1 3 0

20 5 0 7 1 6 0 529 14 21 0

30 22 0 31 3 29 2 6001 423 69 0

40 59 0 64 6 68 5 33751 3574 202 1

50 147 0 141 12 141 8 so 438 2

60 240 0 277 38 259 18 so 896 2

70 428 0 492 41 460 34 so 1662 2

80 705 0 810 61 762 58 so 2756 3

90 1119 0 1463 99 1179 98 so 4441 4

100 1703 0 1913 158 1803 143 so 6798 4

Table 2. Property (1). Running time (ms) for clp(fd) on small graphs (C=constraint,
S=search). so=stack overflow. For G5 nodes are n + 1

n G1 G2 G3 G4 G∗
5

G S G S G S G S G S

100 670 50 650 100 620 110 998 140 250 20

110 880 80 830 170 820 170 15010 170 330 30

120 1180 100 1090 170 1090 210 23810 240 390 30

130 1510 130 1340 300 1440 280 30860 370 470 30

140 1890 150 1670 290 1690 360 43710 370 560 50

150 2270 180 2030 430 2120 210 55330 460 650 50

160 2740 230 2510 440 2590 260 74030 570 780 50

170 3310 240 2960 760 3120 330 99200 650 860 70

180 3930 280 3520 690 3600 350 123440 810 960 80

190 4600 320 4090 1130 4250 400 151550 950 1110 90

200 5350 350 4910 1140 4850 440 195790 1080 1240 110

Table 3. Property (1). Running time (ms) for clingo on medium graphs
(G=grounding+preprocessing, S=search). For G5 nodes are n + 1

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

26

G1 G2 G3 G4

Prolog and CLP(FD)
n BP C S BP C S BP C S BP C S

5 3 11 4 2 13 2 0 13 1 0 129 10

6 26 31 58 0 38 1 0 32 5 0 230 8

7 351 78 146 15 79 12 0 79 5 0 372 19

8 5057 115 1257 1 232 8 3 119 11 0 803 47

9 76044 145 29507 196 384 197 5 151 33 0 1895 104

10 1338632 179 222047 1 198 5 8 355 139 0 5352 143

Clingo
G S G S G S G S

10 20 990 10 0 10 0 20 0

11 20 9980 20 40 10 0 40 0

12 40 103700 0 0 20 0 60 0

13 90 1077220 50 370 30 0 90 0

14 110 12714900 50 0 70 0 120 0

Table 4. Property (2). Running time (ms) for the Prolog (BP) and CLP(FD)
(C=constraints, S=search) and ASP (G=grounding+preprocessing, S=search) encod-
ings on very small graphs.

n G1 G∗
2 G2 G3 G4 G∗

5

100 24 38 22 15 40 34

200 137 208 87 54 253 244

400 885 968 324 204 1659 1458

600 2769 2804 697 463 5613 4553

800 6544 6169 1365 809 12895 10735

1000 12639 11650 2145 1210 24462 20069

Table 5. Running time (ms) of the B-Prolog encoding of the fixpoint procedure for
computing the Coarsest Stable Partition on large graphs. ∗ indicates that in those
columns the number of nodes is n + 1.

Fig. 11. An overall picture on the computational results on graph G2. Encoding (1)—
left, encoding (2)—right. Logarithmic scales for axis have been used.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

27

employed. The one implemented in Prolog and reported in Appendix proved also
to be the fastest approach presented in this paper.

References

1. Aczel, P. Non-well-founded sets. CSLI Lecture Notes, 14. Stanford University,
Center for the Study of Language and Information, 1988.

2. Ancona, D., and Dovier, A. co-LP: Back to the Roots. TPLP 13, 4-5-Online-
Supplement (2013).

3. Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. Integrating finite
domain constraints and clp with sets. In PPDP (2003), ACM, pp. 219–229.

4. Dovier, A., Formisano, A., and Pontelli, E. An empirical study of con-
straint logic programming and answer set programming solutions of combinatorial
problems. J. Exp. Theor. Artif. Intell. 21, 2 (2009), 79–121.

5. Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. {log}: A Logic
Programming Language with Finite Sets. In Proc of ICLP (1991), K. Furukawa,
Ed., The MIT Press, pp. 111–124.

6. Dovier, A., and Piazza, C. The subgraph bisimulation problem. IEEE Trans.
Knowl. Data Eng. 15, 4 (2003), 1055–1056.

7. Dovier, A., Piazza, C., and Policriti, A. An efficient algorithm for computing
bisimulation equivalence. Theoretical Computer Science 311, 1-3 (2004), 221–256.

8. Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. Sets and constraint logic
programming. ACM Trans. Program. Lang. Syst. 22, 5 (2000), 861–931.

9. Fisler, K., and Vardi, M. Y. Bisimulation and model checking. In CHARME
(1999), L. Pierre and T. Kropf, Eds., vol. 1703 of Lecture Notes in Computer
Science, Springer, pp. 338–341.

10. Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. clasp : A conflict-
driven answer set solver. In LPNMR (2007), C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483 of Lecture Notes in Computer Science, Springer, pp. 260–265.

11. Kunen, K. Set Theory. North Holland, 1980.
12. Milner, R. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in

Computer Science. Springer, 1980.
13. Omodeo, E. G., and Tomescu, A. I. Set Graphs. III. Proof Pearl: Claw-Free

Graphs Mirrored into Transitive Hereditarily Finite Sets. J. Autom. Reasoning 52,
1 (2014), 1–29.

14. Paige, R., and Tarjan, R. E. Three partition refinement algorithms. SIAM J.
Comput. 16, 6 (1987), 973–989.

15. Papadimitriou, C. H. Computational complexity. Academic Internet Publ., 2007.
16. Sangiorgi, D. On the origins of bisimulation and coinduction. ACM Trans.

Program. Lang. Syst. 31, 4 (2009).
17. Simon, L., Mallya, A., Bansal, A., and Gupta, G. Coinductive logic program-

ming. In ICLP (2006), S. Etalle and M. Truszczynski, Eds., vol. 4079 of Lecture
Notes in Computer Science, Springer, pp. 330–345.

18. Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. SWI-Prolog.
TPLP 12, 1-2 (2012), 67–96.

19. Zhou, N.-F. The language features and architecture of b-prolog. TPLP 12, 1-2
(2012), 189–218.

20. Zhou, N.-F., and Dovier, A. A tabled prolog program for solving sokoban.
Fundam. Inform. 124, 4 (2013), 561–575.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

28

Appendix

stable_comp(Final, Nclasses) :-

findall(X,node(X),Nodes),

initialize(Nodes, Initial),

maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"

%%% maxfixpoint procedure. If possible, split, else stop.

maxfixpoint(AssIn, I, AssOut, C) :-

split(I,AssIn,AssMid),!,

I1 is I+1,

maxfixpoint(AssMid, I1, AssOut, C).

%%% When stop, simply compute the number of classes used

maxfixpoint(Stable,C,Stable,C1) :-

count_classes(C,Stable,C1).

%%% Split operation.

%%% First locate a block that can be split. Then find the splitter

split(MaxBlock,AssIn,AssMid) :-

between(1,MaxBlock,I),

findall(X,member(X-I,AssIn),BI),

BI = [_, _ | _], %% BI might be split (not empty, not singleton)

%%% Find potential splitters BJ (and remove duplicates)

findall(Q,(member(V-Q,AssIn),edge(W,V),member(W,BI)),SP),

sort(SP,SPS), member(J,SPS),

findall(Z,(member(Y-J,AssIn),edge(Z,Y)),BJinv),

my_delete(BI,BJinv,[D|ELTA]), %%% The difference is computed when not empty

MaxBlock1 is MaxBlock + 1,

update(AssIn,AssMid,MaxBlock1,[D|ELTA]).

%% Initial partition: Sinks -> B1; Internal -> B2

initialize([],[]).

initialize([A|R], [A-B|Ass]) :- (internal(A), !, B=2; B=1), initialize(R,Ass).

%%% AUXILIARY

count_classes(C,Stable,C1) :- (C > 3, !, C1 = C;

C =< 2, member(_-1,Stable),member(_-2,Stable),!,C1=2; C1 = 1).

my_delete([],_,[]).

my_delete([A|R],DEL,S) :- select(A,DEL,DEL1),!, my_delete(R,DEL1,S).

my_delete([A|R],DEL,[A|S]) :- my_delete(R,DEL,S).

update([],[],_,_).

update([X-_|R],[X-I|S],I,D) :- select(X,D,D1),!, update(R,S,I,D1).

update([X-J|R],[X-J|S],I,D) :- update(R,S,I,D).

internal(X) :- edge(X,_).

Fig. 12. Prolog computation of the CSP as a maxfixpoint procedure (complete code)

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

29

Exploiting Prolog for Projecting Agent
Interaction Protocols?

Davide Ancona, Daniela Briola, Amal El Fallah Seghrouchni,
Viviana Mascardi, and Patrick Taillibert

1DIBRIS, University of Genova, Italy
{Davide.Ancona,Daniela.Briola,Viviana.Mascardi}@unige.it

2LIP6, University Pierre and Marie Curie, Paris, France
{Amal.Elfallah,Patrick.Taillibert}@lip6.fr

Abstract. Constrained global types are a powerful means to represent
agent interaction protocols. In our recent research we demonstrated that
they can be used to represent complex protocols in a very compact way,
and we exploited them to dynamically verify correct implementation of a
protocol in a real MAS framework, Jason. The main drawback of our pre-
vious approach is the full centralization of the monitoring activity which
is delegated to a unique monitor agent. This approach works well for
MASs with few agents, but could become unsuitable in communication-
intensive and highly-distributed MASs where hundreds of agents should
be monitored.

In this paper we define an algorithm for projecting a constrained global
type onto a set of agents Ags, by restricting it to the interactions in-
volving agents in Ags, so that the outcome of the algorithm is another
constrained global type that can be safely used for verifying the compli-
ance of the sub-system Ags to the protocol specified by the original con-
strained global type. The projection mechanism is implemented in SWI
Prolog and is the first step towards distributing the monitoring activity,
making it safer and more efficient: the compliance of a MAS to a protocol
could be dynamically verified by suitably partitioning the agents of the
MAS into small sets of agents, and by assigning to each partition Ags a
local monitor agent which checks all interactions involving Ags against
the projected constrained global type. We leave for further investigation
the problem of finding suitable partitions of agents in a MAS, to guar-
antee that verification through projected types and distributed agents is
equivalent to verification performed by a single centralized monitor with
a unique global type.
Keywords: Constrained Global Type, Projection, Dynamic Verification,
Agent Interaction Protocol, SWI Prolog

? The long version of this paper appears in the informal proceedings of the Second
International Workshop on Engineering Multi-Agent Systems (EMAS 2014) with
title “Efficient Verification of MASs with Projections”. This is the shortened version
presented at CILC 2014.

30

1 Introduction and Motivation

Distributed monitoring of agent interaction protocols is interesting for various
reasons. First, the distribution of monitoring reduces the bottleneck issue due
to the potentially high number of communications between the central monitor
and the agents of the system. Consequently, the communications are localized
according to the distribution topology (how many local monitors are available
and where they are localized in the system), improving the efficiency of the
monitoring. As usual, distribution increases the robustness of the whole system
and prevents for a breakdown, crash or failure of the system. In particular,
in the context of distributed environments, having a robust monitoring system
requires to distribute the monitoring on several agents which ensure their prompt
reaction to events. In addition, the distributed approach is more suitable than
the centralized one for asynchronous and/or distributed contexts.

In order to distribute the monitoring activity, the first step to face is to
distribute the specification of the global interaction protocol in such a way that
a subset of agents can monitor a subset of the interactions, still respecting the
constraints stated by the global protocol.

In this paper, we address this first step by defining and implementing an
algorithm for projecting the protocol representation onto subsets of agents, and
then allowing interactions taking place within these subsets to be monitored
by local monitors. Automatically identifying these subsets of agents in order to
guarantee that the distributed monitoring behaves like the centralized one goes
beyond the aims of this paper, but is matter of our current research activity.

Another interesting issue concerns dynamic redistribution of monitoring agents;
even if not explored in this work, projected types could be recomputed dynam-
ically to balance the load among local monitors depending on the currently
available resources, and according to some “meta-protocol”.

The formalism that we exploit for representing and dynamically verifying
agent interaction protocols, is constrained global types [2]. Global types [4] are
behavioral types for specifying and verifying multiparty interactions between
distributed components. We took inspiration from global types to propose “con-
strained global types”, suitable for representing agent interaction protocols. They
are based on interactions, namely communicative events between two agents; in-
teraction types, modeling the message pattern expected at a certain point of the
conversation; producers and consumers which allow us to express constrained
shuffle of interaction traces. On top of these components, type constructors are
used to model sequences, choices, concatenation and shuffle of protocols.

In our recent research we demonstrated that constrained global types can be
used to represent complex protocols in a very compact way, and we exploited
them to detect deviations from the protocol in a real MAS framework based on
logic programming, Jason [1], and in the Java-based JADE framework1, thanks
to a bidirectional Java-Prolog interface [3]. Extensions of the original formalism
with attributes have been described [5] and exploited to model a complex, real

1 http://jade.tilab.com/.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

31

protocol in the railway domain [6]. The integration of these This paper shows how
a constrained global type can be projected onto a set of agents Ags, obtaining
another constrained global type which contains only interactions involving agents
in Ags. Although the projection is always possible, this does not mean that it
is always useful: as an example, the Alternating Bit Protocol discussed in this
paper can be projected onto any individual agent in the MAS, but needs to be
monitored in a centralized way to verify all its constraints.

The paper is organized in the following way: Section 2 briefly overviews the
state of the art in distributing the monitoring activity of complex systems; Sec-
tion 3 gives the technical background on constrained global types needed for
presenting the projection algorithm in Section 4, Section 5 describes the imple-
mentation of the algorithm in SWI Prolog, Section 6 describes the algorithm at
work, and Section 7 concludes.

2 State of the art

Many frameworks and formalism for monitoring the runtime execution of a dis-
tributed system have been proposed in the last years.

One of the most recent and relevant works in this area is SPY (Session
Python) [7], a tool chain for runtime verification of distributed Python programs
against Scribble (http://www.scribble.org) protocol specifications. Scribble is a
language to describe application-level protocols among communicating systems
initially proposed by Kohei Honda. Given a Scribble specification of a global
protocol, the SPY tool chain validates consistency properties, such as race-free
branch paths, and generates Scribble (i.e. syntactic) local protocol specifications
for each participant (role) defined in the protocol. At runtime, an independent
monitor (internal or external) is assigned to each Python endpoint and veri-
fies the local trace of communication actions executed during the session. This
work shares the same motivations and approach with our work, and like our
work concentrates on the projection of the global type to the local one rather
than on the criteria for identifying in an automatic way how to distribute the
monitoring activity. The main differences lie in the expressive power of the two
languages, which is higher for constrained global types due to the constrained
shuffle operator which is missing in Scribble, and in the availability of tools for
statically verifying properties of Scribble specifications, which are not available
for constrained global types.

Many other approaches for runtime monitoring of distributed systems and
MASs exist, but with no emphasis on the projection from global to local moni-
tors. This represents the main difference between those proposals and ours; the
long version of this paper provides a detailed overview of many recent ones.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

32

3 Background

This section briefly recaps on constrained global types, omitting their extension
with attributes [5] because the projection algorithm discussed in Section 4 is
currently defined on “plain” constrained global types only.

Constrained global types (also named “types” in the sequel, when no ambi-
guity arises) are defined starting from the following elements:

Interactions2. An interaction a is a communicative event taking place between
two agents. For example, msg(right robot, right monitor, tell, put sock)

is an interaction involving the sender right robot and the receiver right monitor,
with performative tell and content put sock.

Interaction types. Interaction types model the message pattern expected at a
certain point of the conversation. An interaction type α is a predicate on inter-
actions. For example, msg(right robot, right monitor, tell, put sock) ∈
put right sock means that interaction msg(right robot, right monitor, tell,

put sock) has type put right sock.

Producers and consumers. In order to model constraints across different
branches of a constrained fork, we introduce two different kinds of interaction
types, called producers and consumers, respectively. Each occurrence of a pro-
ducer interaction type must correspond to the occurrence of a new interaction;
in contrast, consumer interaction types correspond to the same interaction speci-
fied by a certain producer interaction type. The purpose of consumer interaction
types is to impose constraints on interaction traces, without introducing new
events. A consumer is an interaction type, whereas a producer is an interaction
type α equipped with a natural superscript n specifying the exact number of
consumer interactions which are expected to coincide with it.

Constrained global types. A constrained global type τ represents a set of
possibly infinite traces of interactions, and is a possibly cyclic term defined on
top of the following type constructors:

– λ (empty trace), representing the singleton set {ε} containing the empty
trace ε.

– αn:τ (seq-prod), representing the set of all traces whose first element is an
interaction a matching type α (a ∈ α), and the remaining part is a trace
in the set represented by τ . The superscript3 n specifies the number n of
corresponding consumers that coincide with the same interaction type α;
hence, n is the least required number of times a ∈ α has to be “consumed”
to allow a transition labeled by a.

– α:τ (seq-cons), representing a consumer of interaction a matching type α
(a ∈ α).

– τ1 + τ2 (choice), representing the union of the traces of τ1 and τ2.

2 “Interactions” were named “sending actions” in our previous work. We changed
terminology to be consistent with the one used in the choreography community.

3 In the examples throughout the paper we use the concrete syntax of Prolog where
producer interaction types are represented by pairs (α,n).

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

33

– τ1|τ2 (fork), representing the set obtained by shuffling the traces in τ1 with
the traces in τ2.

– τ1 · τ2 (concat), representing the set of traces obtained by concatenating the
traces of τ1 with those of τ2.

Constrained global types are regular terms, that is, can be cyclic (recursive),
and they can be represented by a finite set of syntactic equations. We limited
our investigation to types that have good computational properties, namely con-
tractiveness and determinism.

Since constrained global types are interpreted coinductively, it is possible to
specify protocols that are not allowed to terminate like for example the PingPong
protocol defined by the equation

PingPong = (ping,0):(pong,0):PingPong

where PingPong is a logical variable which is unified with a recursive (or cyclic,
or infinite) Prolog term consisting of the producer interaction type ping, followed
by the producer interaction type pong (both requiring 0 consumers), followed
by the term itself. The only valid interaction trace respecting this constrained
global type is the infinite sequence ping pong ping pong ping pong The
valid traces for the type

PingPong = ((ping,0):(pong,0):PingPong + lambda)

instead, are {ε, ping pong, ping pong ping pong, ...}, namley all the traces
consisting of an arbitrary number (even none or infinite) of ping pong.

Let us consider the following simple example where there are two robots
(right and left), two monitors (right and left) associated with each robot, and a
plan monitor which supervises them (Figure 1). The goal of the MAS is to help

Fig. 1. The “socks and shoes” MAS

mothers in speeding up dressing their kids by putting their shoes on: robots must
put a sock and a shoe on the right (resp. left) foot of the kid they help. As robots
are autonomous, they could perform the two actions in the wrong order, making
the life of the mothers even more crazy... Monitors are there to ensure that wrong
actions are immediately rolled back. Robots communicate their actions to their
corresponding monitors, which, in turn, notify the plan monitor when the robots
accomplish their goal. Each robot can start by putting the sock, which is the

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

34

correct action to do, or by putting the shoe, which requires a recovery by the
(right or left, resp.) robot monitor.

As we will see, the left and right monitors play two different roles: they inter-
act with robots to detect wrong actions and recover them, and they also verify
part of the protocol, notifying the user of protocol violations. In this MAS, mon-
itors are part of the protocol itself. In the MASs described in our previous papers,
monitors performed a runtime verification of all the other agents but themselves,
and their sole goal was to detect and signal violations. Extending monitors with
other capabilities (or, taking another perspective, extending “normal” agents
with the capability to monitor part of the protocol) does not represent an ex-
tension of the language or framework. The possibility of having agents that can
monitor, can be monitored, and can perform whatever other action, was already
there, but we did not exploit it before.

The interactions involved in the protocol and their types are as follows:

msg(right robot, right monitor, tell, put sock) ∈ put right sock

msg(right robot, right monitor, tell, put shoe) ∈ put right shoe

msg(right robot, right monitor, tell, removed shoe) ∈ rem right shoe

msg(right monitor, right robot, tell, obl remove shoe) ∈ obl rem right shoe

msg(right monitor, plan monitor, tell, ok) ∈ ok right

msg(left robot, left monitor, tell, put sock) ∈ put left sock

msg(left robot, left monitor, tell, put shoe) ∈ put left shoe

msg(left robot, left monitor, tell, removed shoe) ∈ rem left shoe

msg(left monitor, left robot, tell, obl remove shoe) ∈ obl rem left shoe

msg(left monitor, plan monitor, tell, ok) ∈ ok left

The protocol can be specified by the following types, where SOCKS corre-
sponds to the whole protocol.

RIGHT = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT),

LEFT = ((put left sock,0):(put left shoe,0):(ok left,0):lambda) +

((put left shoe,0):(obl rem left shoe,0):(rem left shoe,0):LEFT),

SOCKS = (RIGHT | LEFT)

The type SOCKS specifies the shuffle (symbol “|”) of two sets of traces of inter-
actions, corresponding to RIGHT and LEFT, respectively. The shuffle expresses the
fact that interactions in RIGHT are independent (no causality) from interactions
in LEFT, and hence traces can be mixed in any order.

Types RIGHT and LEFT are defined recursively, that is, they correspond to
cyclic terms. RIGHT consists of a choice (symbol “+”) between the finite trace
(the constructor for trace is “:”) of interaction types (put right sock,0), (put-
right shoe,0), (ok right,0) corresponding to the correct actions of the right

robot, and the trace of interaction types (put right shoe,0), (obl rem right-

shoe,0), (rem right shoe,0) corresponding to the wrong initial action of the
robot, followed by an attempt to perform the RIGHT branch again. Basically,
either the right robot tells the right monitor that it put the sock on first, and
then it can go on by putting the shoe, or it tells that it started its execution by

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

35

putting the shoe on. In this case, the right monitor forces the robot to remove the
shoe, the robot acknowledges that it removed the shoe, and then starts again.
The LEFT branch is the same as the RIGHT one, but involves the left robot and
the left node monitor.

An example where sets of traces could be expressed with a fork, but are
not completely independent, is given by the Alternating Bit Protocol ABP. We

Fig. 2. The ABP3 MAS

consider the instance of ABP where six different sending actions may occur
(Figure 2): Bob sends msg1 to Alice (interaction type m1), Alice sends ack1 to
Bob (sending action type a1), Bob sends msg2 to Carol (interaction type m2),
Carol sends ack2 to Bob (sending action type a2), Bob sends msg3 to Dave
(interaction type m3), Dave sends ack3 to Bob (interaction type a3) The ABP
is an infinite iteration, where the following constraints have to be satisfied for
all occurrences of the sending actions:

– The n-th occurrence of an interaction of type m1 must precede the n-th
occurrence of an interaction of type m2 which in turn must precede the n-th
occurrence of an interaction of type m3.

– For k ∈ {1, 2, 3}, the n-th occurrence of msgk must precede the n-th oc-
currence of the acknowledge ackk, which, in turn, must precede the (n + 1)-th
occurrence of msgk .

The ABP cannot be specified with forks of independent interactions, hence
a possible solution requires to take all the combinations of interactions into
account in an explicit way. However with this solution the size of the type grows
exponentially with the number of the different interaction types involved in the
protocol.

With producer and consumer interaction types it is possible to express the
shuffle of non independent interactions which have to verify certain constraints.
In this way the ABP can be specified in a very compact and readable way. The
whole protocol is specified by the following constrained global type ABP3:

M1M2M3=m1:m2:m3:M1M2M3, M1A1=(m1,1):(a1,0):M1A1,

M2A2=(m2,1):(a2,0):M2A2, M3A3=(m3,1):(a3,0):M3A3,

ABP3=((M1M2M3|M1A1)|(M2A2|M3A3))

Fork is associative and the way we put brackets in ABP3 does not matter.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

36

4 Projection Algorithm

In the “socks and shoes” example the monitors, besides checking that the robots
accomplish their goal, verify also the compliance of the system to the specifica-
tion of the protocol, given by the type SOCKS. If we assume that the right robot
and the right monitor reside on the same node, then it is reasonable that the
right monitor verifies only the interactions which are local to its node; to do
that, we must project the type SOCKS onto the agents of the node, that is, the
right robot and the right monitor.

What we would like to obtain is the type

RIGHT P = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT P),

SOCKS P = (RIGHT P|lambda)

which only contains interactions where the right robot and the right monitor are
involved, either as sender or as receiver.

We can project any protocol onto any set of agents (although it is not nec-
essarily meaningful or useful). For example, projecting the ABP3 on Dave should
result into

ABP3 P compact = (m3,0):(a3,0):ABP3 P compact

which just states that Dave must ensure to respect the order between messages
and acknowledges that involve it (Dave cannot be aware of the order among
messages coming from other agents). That projected type can be represented in
an equivalent way, even if less compact, as

M1M2M3 P = m3:M1M2M3 P,

M3A3 P = (m3,1):(a3,0):M3A3 P,

ABP3 P =((M1M2M3 P|lambda)|(lambda|M3A3 P))

Projecting the ABP3 on Bob, instead, should result into the ABP3 itself as
Bob is involved in all communications and hence no interaction will be removed
from the projection.

In order to allow agents to verify only a sub-protocol of the global interaction
protocol, we designed a projection algorithm that takes a constrained global type
and a set of agents Ags as input, and returns a constrained global type which
contains only interactions involving agents in Ags. The intuition besides the
algorithm is that interactions that do not involve agents in Ags are removed from
the projected constrained global type. Given the finite set AGS of all the agents
that could play a role in the MAS and an interaction type α, senders(α) is the set
of all the agents in AGS that could play the role of sender in actual interactions
having type α and receivers(α) is the set of all the agents in AGS that could play
the role of receiver in interactions of type α. The involves predicate holds on one
interaction type α and one set of agents Ags, involves(α,Ags), iff senders(α) ⊆
Ags ∨ receivers(α) ⊆ Ags.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

37

Projection can be described as a function Π : CT×P(AGS)→ CT where CT

is the set of constrained global types. Π is driven by the syntax of the type to
project; as a first attempt, the function could be coinductively defined as follows:

(i) Π(λ,Ags) = λ
(ii) Π(α : τ,Ags) = α : Π(τ,Ags) if involves(α,Ags)
(iii) Π(α : τ,Ags) = Π(τ,Ags) if ¬involves(α,Ags)
(iv) Π(τ ′ op τ ′′, Ags) = Π(τ ′, Ags) op Π(τ ′′, Ags), where op ∈ {+, |, ·}.
We have to consider the greatest fixed point (coinductive interpretation) of

the recursive definition above, since the least fixed point (inductive interpreta-
tion) would only include non cyclic types (that is, non recursive types).

Let us consider a simple non recursive term T defined by T = a : b : λ.
We want to project T on Ags. Suppose for that involves(a,Ags) holds, whereas
involves(b, Ags) does not, meaning that interaction type a must be kept in the
projection and b must be removed. From (ii) we get Π(a : b : λ,Ags) = a : Π(b :
λ,Ags) (a is kept in the projection), from (iii) we have Π(b : λ,Ags) = Π(λ) (b
is discarded from the projection), and finally, from (i) we know that Π(λ) = λ,
therefore Π(T,Ags) = a : λ.

Fig. 3. Projection of recursive types.

Let us now consider the recursive type T s.t. T = a : T ′ and T ′ = b : T .
Again, the projection is driven by the syntax of T ; from the definition above we
have Π(a : T ′, Ags) = a : Π(T ′, Ags) = a : Π(b : T,Ags) = a : Π(T) = a : Π(a :
T ′, Ags); while in the previous case we can conclude by applying the base case
corresponding to the λ type, in this case we do not have any basis, but we can
conclude by coinduction that Π(a : T ′, Ags) has to return the unique recursive
type T ′′ s.t. T ′′ = a : T ′′ (see lhs picture in Figure 3).

The definition above however needs to be refined because it does not always
specify a unique result for Π; to see that, let us consider the recursive type
T s.t. T = a : T ′ and T ′ = b : T ′. Now from the definitions above we get
Π(a : T ′, Ags) = a : Π(T ′, Ags), Π(T ′, Ags) = Π(b : T ′, Ags) = Π(T ′, Ags);
since Π(T ′, Ags) = Π(T ′, Ags) is an identity, Π is allowed to return any type
when applied to T ′, while the expected correct type should be λ, so that Π(a :
T ′, Ags) = a : λ (see rhs picture in Figure 3).

Finally, let us consider the recursive type T s.t. T = (a : T) + (b : T); by
(iv) Π(T,Ags) = Π(a : T,Ags) + Π(b : T,Ags), by (ii) Π(a : T,Ags) = a :
Π(T,Ags), and by (iii) Π(b : T,Ags) = Π(T,Ags), therefore by coinduction the
returned type is T ′ s.t. T ′ = (a : T ′) + T ′; although in this case there exists
a unique type that can returned by Π, such a type is not contractive. A type
is contractive if all possible cycles in it contain an occurrence of the sequence

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

38

constructor “:”; Figure 4 shows that type T ′ s.t. T ′ = (a : T ′) + T ′ is not
contractive, since the rhs cycle contains only the “+” operator. The notion of

Fig. 4. Non-contractive type T ′ = (a : T ′) + T ′

contractive type is crucial for implementing efficient runtime verification.
To ensure that the projection function always returns a contractive type and

that the correct coinductive definition is implemented, we need to keep track of
all types visited along a path; each type is associated with its depth, and with a
fresh variable which will be unified with the corresponding computed projection.
During the visit the depth DeepestSeq of the deepest visited sequence operator
is kept. If a type τ has been already visited, then a cycle is detected: if its depth
is less then DeepestSeq then the cycle contains an occurrence of the sequence
constructor, therefore the projected type associated with τ is contractive and,
hence, is returned; otherwise, the projection would not be contractive, therefore
λ is returned.

Let us consider again the type T = (a : T) + (b : T); when computing its
projection, the depth of T is 0, and initially DeepestSeq contains the value -1.
When visiting the lhs path starting from the “+” operator, the type a : T is
visited at depth 1, and DeepestSeq is set to 1, since the root of a : T is the
sequence constructor. Then T is revisited, and since its depth 0 is less then
DeepestSeq, the projection of the lhs is T ′ = a : T ′. When visiting the rhs path
starting from the “+” operator, DeepestSeq contains again the value -1, and the
type b : T is visited at depth 1, but because involves(b, Ags) does not hold, b is
discarded with the corresponding sequence constructor, hence DeepestSeq is not
updated. Then T is revisited, and since its depth 0 is not less then DeepestSeq,
the projection of the rhs is λ.

5 Implementation

The projection algorithm has been implemented in SWI Prolog, http://www.swi-
prolog.org/, which manages infinite (cyclic, recursive) terms in an efficient way.
Since we need to record the association between any type and its projection in
order to correctly detect and manage cycles, we exploited the SWI Prolog library
assoc for association lists, http://www.swi-prolog.org/pldoc/man?section=assoc.
Elements of an association list have 2 components: a (unique) key and a value.
Keys should be ground, values need not be. An association list can be used to

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

39

fetch elements via their keys and to enumerate its elements in ascending order
of their keys. The library(assoc) module uses AVL trees to implement asso-
ciation lists which makes inserting, changing and fetching a single element an
O(log(N)) operation. The three predicates of the library assoc that we use for
our implementation are

– empty assoc(-Assoc): Assoc is unified with an empty association list.
– get assoc(+Key, +Assoc, ?Value): Value is the value associated with Key

in the association list Assoc.
– put assoc(+Key, +Assoc, +Value, ?NewAssoc): NewAssoc is an association

list identical to Assoc except that Key is associated with Value. This can be
used to insert and change associations.

The projection is implemented by a predicate project(T, ProjAgs, ProjT)

where T is the constrained global type to be projected, ProjT is the result,
and ProjAgs is the set of agents onto which the projection is performed. The
algorithm exploits the predicate involves(IntType, ProjAgs) succeeding if
IntType may involve one agent, as a sender or a receiver, in ProjAgs.

Currently involves looks for actual interactions ActInt whose type is IntType
and assumes that senders and receivers in ActInt are ground terms, but it could
be extended to take agents’ roles into account or in other more complex ways. It
uses the “or” Prolog operator ; and the member predicate offered by the library
lists. It exploits the predicate has type(ActInt, IntType) implementing the
definition of the type IntType of an actual interaction ActInt.

involves(IntType, List) :-

has type(msg(Sender, Receiver, ,), IntType),

(member(Sender, List);member(Receiver, List)).

For the implementation of project/3 we use an auxiliary predicate project

with six arguments, which are the same as those of the main predicate plus

– an initially empty association A to keep track of cycles;
– the current depth of the constrained global type under projection, initially

set to 0;
– the depth of the deepest sequence operator belonging to the projected type,

initially set to -1.

project(T, ProjAgs, ProjT) :-

empty assoc(A), project(A, 0, -1, T, ProjAgs, ProjT).

The predicate is defined by cases.

1. lambda is projected into lambda.

project(Assoc, Depth, DeepestSeq, lambda, ProjAgs, lambda):- !.

2. If Type has been already met while projecting the global type (get assoc(Type,

Assoc, (AssocProjType,LoopDepth)) succeeds), then its projection ProjT

is AssocProjType if LoopDepth =< DeepestSeq and is lambda otherwise.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

40

The “if-then-else” construct is implemented in Prolog as Condition ->

ThenBranch ; ElseBranch.

project(Assoc, Depth, DeepestSeq, Type, ProjAgs, ProjT) :-

get assoc(Type,Assoc,(AssocProjType,LoopDepth)),!,

(LoopDepth =< DeepestSeq -> ProjT=AssocProjType; ProjT=lambda).

3. T = (IntType:T1). IntType is a consumer as it has no integer number as-
sociated with it. ProjT is recorded in the association A along with the current
depth Depth (put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc)).
If IntType involves ProjAgs, ProjT=(IntType:ProjT1) where ProjT1 is ob-
tained by projecting T1 onto ProjAgs, with association NewAssoc, depth of
the type under projection increased by one, and depth of the deepest se-
quence operator equal to Depth. If IntType does not involve ProjAgs, then
the projection on T is the same of T1 with association NewAssoc, depth of
the type under projection equal to Depth, and depth of the deepest sequence
operator equal to DeepestSeq.

project(Assoc, Depth, DeepestSeq, (IntType:T1), ProjAgs, ProjT) :- !,

put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc),

(involves(AMsg, ProjAgs) ->

IncDepth is Depth+1,

project(NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),

ProjT=(IntType:ProjT1);

project(NewAssoc,Depth,DeepestSeq,T1,ProjAgs,ProjT)).

4. T = ((IntType,N):T1). (IntType,N) is a producer as it has an integer
number N associated with it. The projection is identical to the previous case,
apart from the fact that ProjT=((IntType,N):ProjT1) in the first branch
of the condition in the clause’s body.

5. T = T1 op T2, where op ∈ {+, |, *}: the association between T1 op T2

and the projected type ProjT is recorded in the association Assoc along
with the current depth Depth, T1 and T2 are projected into ProjT1 and
ProjT2 respectively, with association equal to NewAssoc, depth of the type
under projection increased by one and depth of the deepest sequence opera-
tor equal to DeepestSeq. The result of the projection is ProjT=(ProjT1 op

ProjT2). For example, if op is +, the Prolog clause is:

project(Assoc, Depth, DeepestSeq, (T1+T2), ProjAgs, ProjT) :- !,

put assoc((T1+T2),Assoc,(ProjT,Depth),NewAssoc),

IncDepth is Depth+1,

project(NewAssoc, IncDepth, DeepestSeq, T1, ProjAgs, ProjT1),

project(NewAssoc, IncDepth, DeepestSeq, T2, ProjAgs, ProjT2),

ProjT=(ProjT1+ProjT2).

Types SOCKS P and AP3 P shown at the beginning of Section 4 have been
obtained by applying the projection algorithm to types SOCKS and ABP3 respec-
tively. The reason why they are not as compact as possible, which is mainly
evident in AP3 P, is that the projection algorithm does not implement a further

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

41

normalization step and hence some types which have been projected into lambda

and might be removed, are instead kept.
The result of the projection may be a type equivalent to lambda. For exam-

ple, if we project ABP to the set {eric}, no interaction involves it and the result
is (lambda|lambda)|lambda|lambda. On the other hand, we have already ob-
served that the projection may be the same as the projected type. This happens
for example if we project ABP to the set {bob}, which interacts with all the agents
in the MAS.

6 Projection at Work

In SWI Prolog we have implemented a mechanism for generating all the different
traces (sequences of interactions) with length N, where N can be set by the
user, that respect a given protocol. This mechanism is necessary during the
design of the protocol and allows the protocol designer to make an empirical
assessment of the conversations that will be recognized as valid ones during the
runtime verification. We used this mechanism for validating both the complete
protocols and the projected ones; also with projected types, the generated traces
are correct w.r.t. the protocol specification.

For example, Table 1 (top left) shows one of the 16380 different traces with
length 12 of the SOCKS protocol and Table 1 (top right) shows one of the 2 differ-
ent traces with length 12 of the SOCKS protocol projected onto {right robot,

right monitor} (for sake of presentation, we abbreviate right robot in right r,
right monitor in right m, left robot in left r, left monitor in left m, msg
in m, and we drop the tell performative from interactions). Both traces corre-
spond to an execution where the protocol reached a final state and no other
interactions could be accepted after the last one. In the output produced by the
SWI Prolog algorithm, this information is given by means of an asterisk after
the last interaction. Traces that are prefixes of longer (maybe infinite) ones have
no asterisk at their end.

Table 1 (bottom left) shows an excerpt of one of the 30713 different traces
with length 16 of the ABP3 protocol and Table 1 (bottom right) shows the first
12 interactions of the only trace with length 16 of the ABP3 protocol projected
onto {dave}. Since the ABP3 is an infinite protocol, both traces are prefixes of
infinite ones.

By generating traces of different length and inspecting some of them, the pro-
tocol designer can get a clear picture of whether the protocol he/she designed
behaves in the expected way. Of course this manual inspection gives no guaran-
tees of correctness, but in our experience it was enough to early detect flaws in
the protocol specification.

We have implemented the “socks and shoes” MAS in Jason. The MAS is
represented in Figure 1. We projected the SOCKS constrained global type shown
in Section 3 onto the three sets of agents {left monitor}, {right monitor} and
{plan monitor}. The three resulting constrained global types are used by agents
left monitor, right monitor and plan monitor respectively.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

42

SOCKS protocol SOCKS protocol projected onto
{right robot, right monitor}

m(right r, right m, put sock)

m(left r, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left robot, left m, removed shoe)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

m(left robot, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left r, left m, removed shoe)

m(left r, left m, put sock)

m(left r, left m, put shoe)

m(left m, plan monitor, ok)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put sock)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

ABP3 protocol ABP3 protocol projected onto {dave}
msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(carol, bob, tell, a2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(bob, alice, tell, m1)

msg(carol, bob, tell, a2)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

Table 1. Examples of traces compliant with complete and projected protocols.

Each of these agents monitors all the messages that it either receives or sends,
using the “message sniffing” mechanism described in [1].

We run different experiments by changing the actual messages sent by the
agents in the MAS, in order to obtain both correct and wrong executions. All
our experiments gave the expected outcome. As an example, Figure 5 shows an
interaction where left robot sends a put boot message instead of put shoe,
which is correctly identified by the left monitor as a violation. The conversation
between the other agents goes on.

7 Conclusions and Future Work

In this paper we have defined an algorithm for projecting a constrained global
type onto a set of agents Ags, to allow distributed dynamic verification of the
compliance of a MAS to a protocol. This is important in communication-intensive
and highly-distributed large MASs, where a centralized approach with a unique
monitoring agent would be unfeasible.

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

43

Fig. 5. The left robot violates the protocol.

Besides describing the algorithm and its SWI Prolog implementation, we
have shown some preliminary experiments in Jason with the running example
“socks and shoes” where two local monitors with projected types are sufficient
for verifying the whole system.

For what concerns future work, we are investigating on the possible ways
to partition the set of agents for projecting types, to minimize the number of
monitors, while ensuring safety of dynamic verification.

We are also planning to extend the projection algorithm in order to be able
to properly deal with a more general form of type: attribute global types.

Finally, in the examples considered in this paper, types are projected stat-
ically (that is, before the system is started) because we have assumed that
agents cannot move between nodes, but monitoring would be also possible in
the presence of agent mobility. However, in this case the implementation of a
self-monitoring MAS is more challenging, because monitor agents have to dy-
namically project the global type in reaction to any change involving the set of
monitored agents. Tackling scenarios of this kind is the final goal of our research.

15

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

44

References

1. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In DALT X, volume
7784 of LNAI. Springer, 2012.

2. D. Ancona, V. Mascardi, and M. Barbieri. Global types for dynamic checking of
protocol conformance of multi-agent systems. Technical report, University of Gen-
ova, DIBRIS, 2013. Extended version of D. Ancona, M. Barbieri, and V. Mascardi.
Global Types for Dynamic Checking of Protocol Conformance of Multi-Agent Sys-
tems (Extended Abstract). In P. Massazza, editor, ICTCS 2012, pp. 39-43, 2012.

3. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
multiagent systems. In IDC, Studies in Computational Intelligence. Springer, 2014.

4. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, LNCS, pages 2–17. Springer, 2007.

5. V. Mascardi and D. Ancona. Attribute global types for dynamic checking of proto-
cols in logic-based multiagent systems. TPLP, 13(4-5-Online-Supplement), 2013.

6. V. Mascardi, D. Briola, and D. Ancona. On the expressiveness of attribute global
types: The formalization of a real multiagent system protocol. In AI*IA, 2013.

7. R. Neykova, N. Yoshida, and R. Hu. SPY: Local verification of global protocols. In
A. Legay and S. Bensalem, editors, Runtime Verification, volume 8174 of Lecture
Notes in Computer Science, pages 358–363. Springer Berlin Heidelberg, 2013.

16

D. Ancona et al. Exploiting Prolog for Projecting Agent Interaction Protocols

45

JTabWb: a Java framework for implementing
terminating sequent and tableau calculi

Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
2 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. JTabWb is a Java framework for developing provers based
on terminating sequent or tableau calculi. It provides a generic engine
which performs proof-search driven by a user-defined specification. The
user is required to define the components of a prover by implementing
suitable Java interfaces. The implemented provers can be used as stan-
dalone applications or embedded in other Java applications. The frame-
work also supports proof-trace generation, LATEX rendering of proofs and
counter-model generation.

1 Introduction

JTabWb is a Java framework for developing provers based on terminating se-
quent or tableau calculi. The project originated as a tool for experimenting and
comparing on the same ground different calculi and proof-search strategies for
intuitionistic propositional logic. Now it is an advanced general framework which
can be used to implement different logics and calculi. It can be used either to
implement provers as stand-alone Java applications or as APIs to be integrated
in other Java applications. Differently from other frameworks like [1, 4, 5], in
JTabWb the user can specify all the components of a prover including: formu-
las, proof-search nodes, rules and strategies. This allows one to easily implement
provers for different logics and different calculi (sequent-style or tableau-style
calculi). Its main limitation is that all the components are provided as Java
classes, hence the user is expected to be experienced with the language. The
object oriented nature of the target language and the compositionality of the
framework supports the reuse of the components of a prover. This allows one to
easily develop different variants of a prover, so to compare different implemen-
tations of data structures (formulas, sequents,. . .) and different strategies. The
framework also provides support for generation of proof-traces (histories of proof-
search), LATEX rendering of proofs and counter-model generation. JTabWb and
some provers for intuitionistic propositional logic implemented in it are available
at http://www.dista.uninsubria.it/~ferram.

46

Concept Interface Main methods

Formula AbstractFormula String format()

Node-set AbstractNodeSet String format()

Strategy Strategy AbstractRule nextRule(AbstractNodeSet,

IterationInfo)

Prover Prover Strategy getStrategy()

Engine Engine Engine(Prover, AbstractNodeSet)

ProofSearchResult searchProof()

Rules supertype AbstractRule String name()

Regular rule
σ R

σ1| . . . |σn

RegularRule int numberOfConclusions()

AbstractFormula mainFormula()

Iterator< AbstractNodeSet> iterator()

Clash-detection rule
A function associating with
any node-set a value in
{SUCCESS, FAILURE}

ClashDetectionRule ProofSearchResult checkStatus()

AbstractNodeSet premise()

Branch-exists rule
σ R

σ1∥ . . . ∥σn

BranchExistsRule int numberOfBranchExistsConclusions()

AbstractFormula mainFormula()

Iterator< AbstractNodeSet> iterator()

Meta-backtrack rule
A function associating with
a node-set an enumeration of
rule instances

MetaBacktrackRule AbstractNodeSet premise()

int totalNumberOfRules()

Iterator< AbstractRule> iterator()

Fig. 1. Basic concepts and their implementation

2 Basic notions and their implementation

JTabWb provides a generic engine that searches for a proof of a goal driven by
a user-defined prover. In particular the engine searches for a proof of the goal
visiting the proof-search space in a depth-first fashion; at any step of the search,
the engine asks to the strategy component of the prover the next rule to apply.
The user defines the prover by implementing the interfaces modeling the logical
components of the proof-search procedure in Fig. 1. For every component we
indicate the corresponding interface and its main methods.

Formulas are the basic elements of the formal system at hand; one can define
formulas of any kind, e.g., propositional, first-order or modal formulas, but also
“formulas with a sign” or “labelled formulas”. The data structure storing formu-
las during proof-search is modeled by a node-set. E.g., in the case of a sequent
calculus, node-sets represent sequents [Γ ⇒ ∆] where Γ and ∆ are finite sets or
multisets of formulas. Formulas and node-sets only require the implementation
of a method format(), which is invoked by the engine to print detailed information
about the proof-search process.

JTabWb models four kinds of rules: regular, clash-detection, branch-exists
and meta-backtrack. Regular and clash-detection rules directly correspond to

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

47

the rules of a calculus; branch-exists and meta-backtrack rules are meta-rules to
encode the proof-search strategy. All the rules have AbstractRule as a common
supertype.

Regular rules directly correspond to the usual formalization of rules in tableau
calculi. A regular rule has the form displayed in Fig. 1: R is the name of the rule,
σ is the premise of R and σ1, . . . , σn (n ≥ 1) its conclusions. We use a double
line to represent rules of the framework so to distinguish them from the rules of
the sequent calculus we use in the examples.

A rule Rs of a sequent calculus can be mapped to a regular rule R writing
Rs bottom-up (the conclusion of Rs becomes the premise of R). As an example,
let us consider the rule for left disjunction of G3i [6]

[A,Γ ⇒ H] [B, Γ ⇒ H]
∨L

[A ∨ B,Γ ⇒ H]

This rule is represented in our framework by the regular rule:

[A ∨ B,Γ ⇒ H]
∨L

[A,Γ ⇒ H] | [B, Γ ⇒ H]

The main formula of a regular rule is the formula put in evidence in the premise
of the rule (e.g., A∨B in the above example). An instance of a regular rule is an
object implementing the RegularRule interface. Conclusions of a regular rule are
returned as an enumeration of objects of type AbstractNodeSet. To represent an
enumeration of objects we use the Java Iterator interface: it defines the method
next() to get the next element in the enumeration and the method hasNext() to
check whether the enumeration contains more elements or not.

Clash-detection rules model rules without conclusions corresponding to the
end-points of a derivation (closure rules of tableau calculi and axiom rules of
sequent calculi). We represent such a rule by a function CD that, given a node-
set σ, returns SUCCESS if σ is an end-point of the derivation, FAILURE otherwise.
As an example, the axiom rules of G3i

[A,Γ ⇒ A]
Ax

[⊥, Γ ⇒ H]
L⊥

correspond to the following clash-detection rule:

CD([Γ ⇒ A]) =

{
SUCCESS if ⊥ ∈ Γ or A ∈ Γ

FAILURE otherwise

An instance of a clash-detection rule is an object that implements the interface
ClashDetectionRule providing the checkStatus() method encoding the correspond-
ing CD function.

The distinction between invertible and non-invertible1 rules has a crucial role
in the definition of a proof-search procedure, since non-invertible rules introduce
backtrack points in proof-search. E.g., the rules of G3i for right disjunction

1 We adopt the formalization of invertible rule of [6].

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

48

public class Rule_Right_Or implements _BranchExistsRule {

private Sequent premise;

private Formula or_formula;

public Rule_Right_Or(Sequent sequent , Formula or_formula) {

this.premise = sequent; this.or_formula = or_formula;

}

...

public Iterator <_AbstractNodeSet > iterator () {

LinkedList <Sequent > list = new LinkedList <Sequent >();

Formula [] disjuncts = or_formula.getSubformulas ();

for(int i=0 ; i < disjuncts.length; i++){

Sequent conclusion = premise.clone ();

conclusion.removeRight(or_formula);

conclusion.addRight(disjuncts[i]);

list.add(conclusion);

}

return list.iterator ();

}

}

Fig. 2. Implementation of the rule ∨Ri of G3i

[Γ ⇒ Ai] ∨Ri i ∈ {1, 2}
[Γ ⇒ A1 ∨ A2]

are not invertible. Indeed, it could be the case that [Γ ⇒ A2] is provable while
[Γ ⇒ A1] is not. Hence, searching for a proof of [Γ ⇒ A1 ∨ A2], we have to
try both the rules; if the construction of a proof for [Γ ⇒ A1] fails, we have to
reconsider the premise (backtrack) and try the other way. The two rules above
can be formalized in our framework by means of a branch-exists rule. A branch-
exists rule R with premise σ and conclusions σ1, . . . , σn (n ≥ 1) means that
σ is provable iff at least one of the σi is provable. An instance of a branch-
exists rule is an object implementing the BranchExistsRule interface. The iterator

method returns the conclusions of the rule as an enumeration of objects of type
AbstracNodeSet. As an example, in Fig. 2 we describe an implementation of the
rules ∨Ri of G3i.

A calculus C is a finite set of regular rules, clash-detection rules and branch-
exists rules. A C-tree π is a tree of node-sets such that, if σ is a node of π with
σ1, . . . , σn as children, then either there exists a regular-rule of C having σ as
premise and σ1, . . . , σn as conclusions, or n = 1 and there exists a branch-exists
rule of C having σ as premise and σ1 as one of its conclusions. A C-proof is a
C-tree π such that, for every leaf σ of π, there exists a clash-detection rule CD
of C such that CD(σ) = SUCCESS.

To define proof-search strategies we need to encode another kind of back-
tracking arising from the application of non-invertible rules. Let us consider the
non-invertible rule → L of G3i

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

49

[A → B, Γ ⇒ A] [B, Γ ⇒ H]
→ L

[A → B,Γ ⇒ H]

If we are searching for a proof of a sequent σ containing more than one impli-
cation in the left-hand side, we must try all the possible instances of the rule
→ L to assert the provability status of σ. To express this situation we use a
meta-backtrack rule, which is a function MB associating with a node-set σ an
enumeration of rule instances having σ as premise (the non-invertible rules ap-
plicable to σ). We remark that a meta-backtrack rule is not a rule of the calculus
but a meta-rule to encode the proof-search strategy in presence of non-invertible
rules.

The strategy is a function that, taken the current goal of the proof-search (a
node-set) and the current state, returns the next rule to apply in the proof-search.
The method nextRule(AbstractNodeSet goal,IterationInfo info) of the Strategy inter-
face is a callback method invoked by the engine when it needs to determine the
next rule to apply in the proof-search. The engine invokes this method providing
as arguments the current goal of the proof-search and a bunch of data describing
the last move performed by the engine. E.g., the method getAppliedRule() of Iter-

ationInfo returns the rule applied by the engine in the last move; in many cases
this is the only data needed to choose the next rule to apply to goal. For instance,
this is an high-level description of the strategy for a terminating sequent calculus
for intuitionistic propositional logic (as, e.g., the calculus LSJ described in [2]).

_AbstractRule nextRule(_AbstractNodeSet sequent ,

IterationInfo info) {

if (an invertible rule r is applicable to sequent)

return r;

_AbstractRule lastAppliedRule = info.getAppliedRule ();

if (lastAppliedRule is not a clash -detection rule)

return the clash -detection rule for sequent;

if (non invertible rules r1...rN are applicable to sequent)

return the meta -backtrack rule collecting r1...rN

return null

}

A prover is an object implementing the Prover interface which provides the
getStrategy() method and some other methods that are not essential to our dis-
cussion.

3 High-level description of the engine

We give in Fig. 3 an high-level description of the algorithm implemented by the
engine to perform proof-search. An instance of the engine is built by specifying
the prover and the goal; searchProof() searches for a proof of the goal driven by

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

50

the strategy specified by the prover. To simplify the presentation we assume
that the data passed to the strategy only consist of the rule applied in the last
step. The search space is visited in a depth-first fashion using a stack to store
the information related to branch points and backtrack points. More precisely,
the stack contains elements (rule,iterator), where rule is the rule that caused the
push action, iterator is the associated enumeration. If rule is a regular rule, the
element of the stack represents a branch point, if rule is a branch-exists or a
meta-backtrack rule, the element represents a backtrack point.

The method searchProof() essentially consists of a loop; we call iteration of
the engine an iteration of such a loop. At every iteration the state of the engine
is characterized by the current goal of the proof-search (i.e., current goal), the
rule to apply in the current iteration (i.e., current rule) and the rule selected for
the next iteration (i.e., next rule). If current rule is a regular rule or a branch-
exists rule, the engine replaces the goal with the first conclusion of the rule and
determines the next rule to apply by invoking the strategy. If the applied rule
has more than one conclusion, then an element e is pushed on the stack by the
call push(current rule,iterator): if current rule is a regular rule, e is a branch point,
otherwise e is a backtrack point.

If current rule is a meta-backtrack rule, the associated enumeration iterator

collects the rules to be applied to current goal. The first rule in the enumeration
(returned by the method next()) is applied and, if iterator contains one or more
rules, the backtrack point (current rule, iterator) is pushed on the stack.

If current rule is a clash-detection rule, then the engine invokes checkStatus() to
determine if the current goal is an end-point of the proof-search. If checkStatus()

returns FAILURE, then the strategy selects the next rule to apply. If it returns
SUCCESS, then restoreBranchPoint() searches the stack for a branch point. If such
a point exists, it provides the new goal and the strategy selects the next rule
to be applied; if the stack does not contain any branch point, the proof-search
successfully terminates. The method restoreBranchPoint() searches the stack for
a branch point, namely an element (rule,iterator), where rule is a regular rule. If
such an element does not exist, it returns null; otherwise, it returns iterator.next(),
representing the new goal to be proved. If iterator is empty, the branch point is
removed.

If current rule is null, it means that the strategy failed to select a rule for
current goal in the last iteration of the engine, hence the proof-search for cur-

rent goal has failed. In this case the engine searches the stack for a backtrack
point invoking restoreBacktrackPoint(). If a backtrack point exists, the engine ap-
propriately updates its state and starts a new iteration. Otherwise, it returns
FAILURE to signal that a proof for the input goal does not exist. The method re-

storeBacktrackPoint() searches the stack for a backtrack point, that is an element
(rule,iterator), where rule is a branch-exists rule or a meta-backtrack rule. If such
an element does not exist, null is returned; otherwise, the pair (rule,iterator.next())

is returned. In the latter case, if rule is a branch-exists rule, then iterator.next() is
a node-set (the next goal to be proved); otherwise, rule is a meta-backtrack rule
and iterator.next() is the next rule to be applied.

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

51

// goal and prover are the arguments of the engine constructor

current goal = goal
strategy = prover.getStrategy()
next rule = strategy.nextRule(current goal,null)
while true do

current rule = next rule // the only data about the last iteration

if current rule is a regular rule then
iterator = current rule.iterator()
current goal = iterator.next()
next rule = strategy.nextRule(current goal,current rule)
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is a branch-exists rule then

iterator = current rule.iterator()
current goal = iterator.next()
next rule = strategy.nextRule(current goal,current rule)
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is a clash-detection rule then

if current rule.checkStatus() == SUCCESS then
current goal = restoreBranchPoint() // restored is a goal or

null

if current goal == null then return SUCCESS

else next rule = strategy.nextRule(current goal,null)

end
else next rule = strategy.nextRule(current goal,current rule)

end
else if current rule is a meta-backtrack rule then

iterator = current rule.iterator()
next rule = iterator.next()
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is null then

r = restoreBacktrackPoint() // r is a pair

if r == null then return FAILURE

if snd(r) is a rule then //rule is a meta-backtrack rule
next rule = snd(r) // snd(r) is the next rule to try

current goal = fst(r).premise() // restore the goal from the

rule

else //rule is a branch-exists rule
current goal = snd(r) // snd(r) is the next sub-goal to try

next rule = strategy.nextRule(current goal,current rule)

end

end

end

Fig. 3. engine.searchProof()

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

52

4 Implemented provers and other features

The engine can be executed in verbose mode to get a detailed description of
the proof-search or in trace-mode to generate a trace of the proof-search. It
is possible to generate the LATEX rendering of the C-trees visited during the
proof-search (this only requires to provide the data rendering for node-sets and
rule names). The trace of a proof-search can be used to generate the counter-
model for unprovable goals. JTabWb also provides some useful support APIs
(jtabwbx.* packages): two implementations of propositional formulas, a parser for
propositional formulas and a command line launcher for a prover.

We have implemented several provers for intuitionistic propositional logic in
the JTabWb framework. g3ibu is a prover based on the sequent calculi Gbu and
Rbu [3]. lsj is a prover based on the sequent calculi LSJ and RJ [2]. Both these
provers allow one to generate counter-models for unprovable sequents. Finally,
jpintp provides the implementation of several well-known tableau and sequent
calculi for intuitionistic propositional logic.

As for future work, we are developing a language to specify the components
of a JTabWb prover and a library of formulas implementations and node-set
implementations that can be used as building blocks for provers. Finally, we
remark that the JTabWb can be used also to implement calculi for first-order
logic and, in general, non terminating calculi. What is missing for fruitfully use
these kind of calculi is a support which allows the user to directly control the
engine execution. We are developing it as an interactive version of the engine.

References

1. P. Abate and R. Goré. The tableau workbench. ENTCS, 231:55–67, 2009.
2. M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent cal-

culi for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. Journal of Automated Reasoning, 51(2):129–149, 2013.

3. M. Ferrari, C. Fiorentini, and G. Fiorino. A terminating evaluation-driven variant of
G3i. In D. Galmiche and D. Larchey-Wendling, editors, TABLEAUX 2013, volume
8123 of LNCS, pages 104–118. Springer, 2013.

4. O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux
research engineering companion. In B. Beckert, editor, TABLEAUX, volume 3702
of LNCS, pages 318–322. Springer, 2005.

5. D. Tishkovsky, R.A. Schmidt, and M. Khodadadi. The tableau prover generator
MetTeL2. In L. Fariñas del Cerro et al., editor, JELIA, volume 7519 of LNCS,
pages 492–495. Springer, 2012.

6. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

M. Ferrari, C. Fiorentini, G. Fiorino. JTabWb

53

Multi-Criteria Optimal Planning for Energy
Policies in CLP?

Marco Gavanelli1, Michela Milano2, Stefano Bragaglia3, Federico Chesani2,
Elisa Marengo4, and Paolo Cagnoli5

1 EnDiF - Università di Ferrara, Italy
2 DISI - Università di Bologna, Italy

3 Department of Computer Science, University of Bristol, UK
4 Faculty of Computer Science - Free University of Bozen-Bolzano

5 ARPA Emilia-Romagna, Italy

Abstract. The number of issues, stakeholders needs and regulations
that a policy must consider in the current world is so high that address-
ing them only with common-sense is unthinkable. Policy makers have
to consider disparate issues, as diverse as economic development, en-
vironmental aspects, as well as the social acceptance of the policy. A
single person cannot be expert in all these subjects. Thus, to obtain a
well assessed policy in the current complex world one can adopt decision
support systems featuring optimization components.
Leveraging on previous work on Strategic Environmental Assessment,
we developed a fully-fledged system that is able to provide optimal plans
with respect to a given objective, to perform multi-objective optimization
and provide sets of Pareto optimal plans, and to visually compare them.
Each plan is environmentally assessed and its environmental footprint is
provided in terms of emissions, global warming effect, human toxicity,
and acidification. The heart of the system is an application developed
in a popular Constraint Logic Programming system on the Reals sort.
It has been equipped with a web service module that can be queried
through standard interfaces. An intuitive graphic user interface has been
added to provide easy access to the web service and the CLP application.

Keywords: CLP applications, Strategic Environmental Assessment, Regional
Energy Planning

1 Introduction

Policy making, in the current connected world, has to consider such a number
of issues that a single person cannot possibly consider without introducing vast
approximations. For example European regions should provide Regional Energy
Plans to define strategic objectives and political actions for the energy sector.
These policies must take into consideration

? This paper is an extended version of [1]

54

– the current energy balance in the region: how much energy is produced/con-
sumed in the region (both electrical and thermal energy can be included)
per year, how much is imported/exported;

– forecasts for the future, such as the foreseen energy request or the cost of
energy for the following years;

– existing and new directives, one example being the EU 20-20-20 initiative
that poses three challenging targets for 2020: 20% improvement of energy
efficiency, 20% of the energy should come from renewable sources, and re-
duction of 20% of greenhouse gas emissions.

The policy contains strategic objectives on the energy share and energy ef-
ficiency, measures and activities to cope with the increased energy needs, new
regulations, etc. In the case of regional planning, the plan is typically very high-
level: it includes activities such as building new power plants for some total
output power, the share of each fuel type (nuclear, fossil fuels, biomasses, pho-
tovoltaic, windmills, etc.) and the type of produced energy (electric or thermal);
but it lacks information about, for example, the actual placement of the plants
in the region, or the size of each of the plants. More detailed plans will be done
at lower scale, like the province or municipality levels.

By EU directives, regional policies on the energy sector should also include
an environmental assessment of the plan. Being the plan so high-level, usually
the assessment is done only in a qualitative way.

In a previous work [2], we proposed and compared two alternative logic pro-
gramming formulations for the strategic environmental assessment of regional
plans; one was based on probabilistic logic programming, the other on Constraint
Logic Programming (CLP) [3]. We also developed four fuzzy-logic formulations
of the assessment problem [4]. All these programs consider a regional plan, given
in input, and provide its environmental assessment. An evaluation of the results
by an environmental expert suggested that the CLP version provided the most
reliable results.

In a following work [5], the CLP program was extended to a first prototype
of a regional planner, that generates plans together with their assessment. Al-
though the software was used during the definition of the Regional Energy Plan
2011-2013 of the Emilia-Romagna region [6], the first version had several limi-
tations. First, it had only a command-line interface, and could be used only by
an experienced logic programmer (not to mention configuring it). Second, it was
able to provide optimal solutions only for one objective function; a serious limita-
tion for a system to be used in the multi-faceted world of policy-making. Third,
it was not able to provide any quantitative information on the environmental
assessment of the plans. Fourth, it did not consider all the possible actions that
a regional plan can implement, but only those actions that amount to creating
new infrastructures, plants, or activities, while it was unable to assess the effect
of closing power plants or decommissioning obsolete infrastructures.

In this work, we show how the first prototype of the planner was extended
to a fully-fledged application. The current version of the software supports

– plans that consider decommissioning obsolete power plants;

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

55

– computation of emissions of the power plants for various types of pollutants,
in a quantitative way;

– quantitative assessment of the effect of the plan on human health, global
warming, and acidification potential;

– multi-criteria optimization considering a variety of objective functions based
on qualitative and quantitative information;

– computation of the Pareto front, for two or more objective functions;
– a web interface, that can be accessed both as a Graphical User Interface

(GUI) and as a web service.

This work is one of the components of the EU ePolicy project6. The final
application will use the optimal planner as the center of a large application,
that will include an opinion mining component, to assess the acceptance of the
policies from the public considering information coming from blogs and social
networks; a social simulator component, that will simulate how the population
will react to the policies adopted by the Region; a mechanism design component,
that will include information from game theory to provide the best allocation
schemes of regional subsidies to the stakeholders in the Region; and an integrated
visualization component.

The rest of the paper is organized as follows. We first explain the plan-
ning and environmental assessment as they are currently done by experts in the
Emilia-Romagna region of Italy, and recap the basic CLP program of the first
prototype (Section 2). In Section 3, extend it for the new features. We show the
design and features of the web service and GUI in Section 4. Finally, we show
an experimental evaluation in Section 5, and we conclude in Section 6.

2 Problem considered and CLP solution

The strategic environmental assessment, in the Emilia-Romagna region of Italy,
is currently performed by considering two matrices, called coaxial matrices [7].
They are a development of the network method [8], and they contain qualitative
relations.

The first matrix, M, considers the activities that can be undertaken in a
plan, and links them with the so-called environmental pressures. Environmental
pressures can be positive or negative, and they account for the impact on the
environment of human activities. Each element mi

j of the matrix M can take
values {high, medium, low, null}, and defines a qualitative dependency between
the activity i and the negative or positive pressure j.

The second matrix,N , relates the pressures with the environmental receptors,
that register the effect of the pressures on the environment. For example, the
activity “coal-fueled power plant” generates the pressure “emission of pollutants
in the atmosphere” on the environment; on its turn, this influences the recep-
tor “air quality” (as well as other receptors, like “human wellbeing” or “wildlife

6 http://www.epolicy-project.eu

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

56

wellbeing”). In the same way, the pressure “emission of greenhouse gases” influ-
ences receptor “global warming”; while the pressure “emission of pollutants in
the water” influences the “quality of river waters”. Again, each element nij of
the matrix can take the same qualitative values: high, medium, low or null.

Currently, the matrices relate 115 activities with 29 negative pressures, 19
positive pressures and 23 receptors. They can be used to assess a variety of
regional plans, including Agriculture plans, Forest, Fishing, Energy, Industrial,
Transport, Waste, Water, Telecommunications, Tourism, Urban plans. The en-
vironmental assessment is usually done using a spreadsheet and eliminating (by
hand) those activities that do not belong to the given type of plan; then pressures
that are not influenced by remaining activities are removed, and again receptors
that are not influenced by the remaining pressures are removed as well. Finally,
these reduced matrices are evaluated by environmental experts, that state which
parts are most important, mainly considering clusters of High values.

Clearly, this process is very slow, experts might overlook combinations of
medium or low values that might produce a significant effect, and, most impor-
tantly, it can be done only after the plan has been provided by the policy maker.
At this stage, usually only minor modifications can be backpropagated to the
plan, and it is practically impossible to compare the effect of the plan with other
alternative plans, because this would need to start again another planning phase.
As a matter of fact, although the evaluation of alternative plans is obligatory by
EU regulations, this is usually not done, because planning and environmental
assessment are done in a strictly sequential way.

To overcome the limitations and improve on current practices, we devised an
expert system able to automatically assess regional plans [2]; then we extended
it to include, in a single software component, a Decision Support System (DSS)
able to provide optimal plans together with their environmental assessment [5],
in particular for regional energy plans. We now recap the CLP model of such
DSS in Section 2.1, and then extend it with new features in Section 3.

2.1 A first CLP solution

We model the planning problem in CLP on the Reals sort (CLP(R)). In CLP,
one can define a problem through a set of variables, ranging on given domains;
the possible assignments are restricted through a set of constraints; a solution is
an assignment of values to variables such that all the constraints are satisfied. In
many cases, solutions are not all equivalent, but there is an objective function
to be maximized or minimized.

Given a number Na of activities, we consider a vector A = (a1, . . . , aNa
) in

which we associate to each activity a variable ai that defines its magnitude. The
domain of ai depends on the availability of the resource on the given Region; for
example some regions are very windy, while others can exploit better biomasses
or solar panels.

We distinguish primary from secondary activities: primary activities are of
primary importance for the given type of plan, while secondary activities are
those supporting the primary activities by providing the needed infrastructures.

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

57

E.g, in an Energy plan, the activities that produce energy (e.g., power plants)
are of primary importance; such activities require other activities (e.g., power
lines, waste stocking, streets, etc.) to be performed, and they also should be
considered in the environmental assessment. Let AP be the set of indexes of
primary activities and AS that of secondary activities. The dependencies between
primary and secondary activities are considered by the constraint:

∀j ∈ AS aj =
∑

i∈AP

dijai (1)

Each activity ai has a cost ci; given a budget BPlan available for a given plan,
we have a constraint limiting the overall plan cost:

Na∑

i=1

ai ci ≤ BPlan (2)

Moreover, given an expected outcome outPlan of the plan, we have a con-
straint ensuring to reach the outcome:

Na∑

i=1

ai outi ≥ outPlan. (3)

For example, in an energy plan the outcome can be to have more energy available
in the region, so outPlan could be the increased availability of electrical power
(e.g., in kilo-TOE, Tonnes of Oil Equivalent). In such a case, outi will be the
production in kTOE for each unit of activity ai.

Concerning the impacts of the regional plan, an environmental expert sug-
gested to convert the qualitative values in the matrices into the following numeric
coefficients: high=0.75, medium=0.5, low=0.25 and null=0. We sum up the con-
tributions of all the activities and obtain the estimate of the impact on each
environmental pressure:

∀j ∈ {1, . . . , Np} pj =

Na∑

i=1

mi
j ai. (4)

In the same way, given the vector of environmental pressures P = (p1, . . . , pNp
),

one can estimate their influence on the environmental receptor ri by means of
the matrix N , that relates pressures with receptors:

∀j ∈ {1, . . . , Nr} rj =

Np∑

i=1

nijpi. (5)

Possible objective functions include maximizing the produced energy, mini-
mizing the cost, or maximizing one of the receptors (e.g., maximizing the “air
quality”), or a linear combination of the above.

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

58

3 Extended solution

The CLP(R) program described in Section 2.1 was practically used in the de-
velopment of the 2011-13 Regional Energy plan of the Emilia-Romagna region
of Italy. The main objective of the plan was to increase significantly the share of
renewable energy in the energy mix, to fulfill the 20-20-20 directive. Indeed, dur-
ing the years from 2011 to 2013, a large number of new renewable power plants
was installed in the region, thanks to subsidies, that make them appealing from
the market viewpoint. For the next years, technicians in the region foresee that
old power plants fueled by fossil fuels will become obsolete, and they will have
to be shut down completely, or, possibly, used only when renewable energy is
unavailable or in peak hours. They asked us to extend the DSS to allow for pos-
sible closing of power plants, which means that some of the activities could have
a negative magnitude: the magnitude, in MW, of oil-based power plants could
be reduced with respect to the previous years.

First of all, one should notice that negative activities introduce nonlinearities.
For example, if building a new power plant i has a cost ci in Euros per MW,
decommissioning it will not give a profit of ci e/MW .

Our implementation is based on the ECLiPSe CLP language [9,10], using
the eplex library [11]. The eplex library uses very fast solvers based on lin-
ear programming or mixed-integer linear programming algorithms; this means
that one can impose linear constraints on variables ranging either on continu-
ous domains, or on integer domains. It is well known that linear programming
is polynomially solvable, while (mixed) integer linear programming is NP-hard;
thus the efficiency of the solution depends on whether there are integer variables
or not. To address the non-linearity, we introduced, for each activity ai that
has negative values in its domain, an integer variable IsPosi and a real variable
Posi; we wish to obtain that

IsPosi =

{
1 if ai ≥ 0
0 if ai < 0

Posi =

{
ai if ai ≥ 0
0 if ai < 0

;

this can be obtained by imposing the following linear constraints:

Posi ≥ ai
Posi ≥ 0
Posi ≤ ai + (1− IsPosi) ·M
Posi ≤ IsPosi ·M

(where M is a sufficiently large positive number), and with the further integrality
constraint IsPosi ∈ {0, 1}. The cost constraint (2) is now rewritten as

Na∑

i=1

Posi ci ≤ BPlan. (6)

Similarly, we do not want that secondary activities are decommissioned au-
tomatically when decommissioning primary activities; so we impose their rela-
tionship only with the positive part of primary activities.

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

59

Concerning the environmental assessment, as a first attempt we left the orig-
inal linear constraints of equations (4-5), but the results were not considered
satisfactory by the environmental expert. In fact, a new activity has a number
of impacts, some for the construction of the activity (e.g., land use for building
a coal power plant, pollution due to the construction site, etc.), and others due
to running the activity (e.g., air pollution for burning fuel, water for cooling
the plant, etc.). If we assume that the same coefficients in equation (4) can be
used also for negative activities, we would correctly account for the second type
of impacts, but we would wrongly assume that decommissioning a power plant
means restoring the construction site as it was before. Moreover, we would not
consider the end-life of the power plants, which can be significant (for example,
consider nuclear power plants).

To account correctly for these cases, the environmental expert added new ac-
tivities on the co-axial matrices (e.g., “Reduced use of fossil fueled power plants”),
together with their impacts on environmental pressures. All the pressures are
now computed only on positive activities, i.e., Equation (4) is substituted with

∀j ∈ {1, . . . , Np} pj =

Na∑

i=1

mi
j Posi. (7)

Then, we considered the new activities as a new type of secondary activities: the
“Reduced use of fossil fueled power plants” is a secondary activity that becomes
positive only when one of the activities “Coal-based power plant”, “oil-based
power plant”, etc., has a negative value. More precisely, we have secondary ac-
tivities that are linked to the decommissioning of other activities: e.g., activity
“Reduction of fossil fuel power plants” is a secondary activity that is positive if
one of the fossil fueled power plants has a negative value. Associated to activities
we now have two matrices of dependencies between activities. In particular we
have a Na ×Na square matrix D+ where each element d+ij represents the mag-
nitude of activity j per unit of activity i, and another Na × Na square matrix
D− where each element d−ij represents the magnitude of activity j per unit of
reduction of activity i.

The dependency primary-secondary activities in Equation (1) is now substi-
tuted with

∀j ∈ AS aj =
∑

i∈AP

Kij (8)

where

Kij =

{
d+ij · ai if ai ≥ 0

d−ij · (−ai) if ai < 0
.

3.1 Computing emissions

The base CLP program in Section 2.1 was able to provide the environmental
assessment only in terms of qualitative information. We extended it to consider

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

60

also quantitative information, in particular the emission of pollutants in the
air for each power plant type. We rely on the data provided by two databases:
INEMAR [12] and ISPRA [13]. Both databases provide the various types of
pollutants emitted per energy unit (in GJ) in input to the power plant. The
considered types of pollutants include Sulfur Oxides (SOX), Nitrogen Oxides
(NOX), methane, CO, CO2, N2O, ammonia, Hexachlorobenzene (HCB), various
metals (Arsenic, Cadmium, Chromium, Copper, Mercury, Nickel, lead, Selenium,
Zinc), particulate matter (PM10), Dioxins, and some families of compounds, like
Polycyclic Aromatic Hydrocarbon compounds (PAH), Polychlorinated biphenyls
(PCB), and Non-Methane Volatile Organic Compounds (NMVOC).

While ISPRA provides the average emission for each type of plant (biomasses,
oil, coal, etc.), INEMAR provides fine grained information, in which emissions
depend also on the type of boiler and the size of the plant (in MW).

We relate the power produced by plants with that of each boiler type. Let
NB the number of boiler types, we have a vector of constrained variables B =
(b1, . . . , bNB

) where bi is the total output power of the plants using boiler type i.
Let O be the matrix that relates power plants and the different kinds of boiler:
each element oij of the matrix is set to 1 if the boiler bj ∈ B can be used for the
power plant ai ∈ A, and zero otherwise. We impose that the output power of
each plant type is the sum of the power of its boilers:

∀i ∈ {1, . . . , Na} ai =
∑

j∈NB

oijbj (9)

Let E = (e1, . . . , eNe
) be the vector of emissions and T the matrix that

relates them with the boilers. An element tij of the matrix represents the grams
of pollutant ei ∈ E emitted when 1GJ of fuel is provided to the boiler bj ∈ B.
To calculate the emissions, we have to compute the input energy for each boiler
type j, provided the output power bj :

∀i ∈ {1, . . . , Ne} ei =
∑

j∈NB

tij

(
TU

η
bj

)
. (10)

TU is the average running time of a power plant per year (necessary to convert
energy into power, and estimated in 8000 hours by our environmental expert)
and η is the average efficiency (output power/input power) of power plants,
which is prescribed by law as 39% [14].

3.2 Indicators

With the computation of emissions (Section 3.1), the DSS provides new quanti-
tative information, and lets the user find plans that are optimal with respect to
objective functions that include emissions; for example, the user might require
the plan that minimizes the emission of NOX or that of CO2, or even a weighted
sum of the two. However, although useful, these might be too fine-grained for the
environmental expert, not to mention for a policy maker: indeed, a policy maker

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

61

could know that NOX are toxic for humans, but how does that compare with
the emission of heavy metal compounds? Instead, the policy maker knows that
CO2 is not harmful for human health, but it is responsible for the greenhouse
effect; are there other emissions that worsen global warming?

The European Commission [15] published a set of indicators quantifying the
effect of various substances on human toxicity, global warming and acidification.
For example, Annex 1 of [15] contains 100 chemical substances together with
their human toxicity factor, defined as the toxicity of the substance compared to
that of lead (Pb). The following annexes contain global warming potentials, rel-
ative to CO2, and acidification potentials, relative to SO2. By using the weights
in the tables, one can provide, e.g., the effect of the plan in terms of human
toxicity (in kg of equivalent emitted lead), global warming (in kg of equivalent
CO2) and acidification (in kg of equivalent SO2). Moreover, a policy maker may
want to optimize on these indicators, and find the plan that minimizes human
toxicity, or the greenhouse effect, or any weighted sum of the two.

However, the tables provided by the EC do not always have the same granu-
larity of the information available for emissions. For example, for each plant type
we know the emissions of NOX ; unluckily, in [15] we do not have an aggregated
value for the toxicity of all the nitrogen oxides, but we have the single toxicity
values of NO and NO2, and they are quite different (respectively, 95 and 300
times that of lead). Even more complicated is for PAH, which include many com-
pounds, e.g., Benzo-a-pyrene (toxicity 0.05 times that of Pb) and Naphthalene
(500 times Pb). Our environmental expert suggested that we provided as output,
for each indicator, three cases: best, worst, and average, considering respectively
the highest toxicity in the compound class, the lowest and an average. Instead,
when one of the indicators is in the objective function (e.g., one wants to find
the plan with minimum human toxicity), we should optimize the worst case to
be more conservative.

3.3 Computing the Pareto front

In the case of regional planning it is very hard (if not impossible) to devise
a unique function that includes all the objectives that are important for the
user. The optimization component described in Section 2 can provide optimal
solutions with respect to one objective function that can be either the total
amount of energy produced (both electrical and thermal), or the total cost, or
the values of receptors, emissions and indexes explained in the previous sections.
We decided to extend it to support also multi-objective optimization, to let the
user compute more than one solution, and compare them.

In a multi-objective optimization problem, a Pareto optimal solution is such
that it is not possible to improve the result for one objective function, with-
out worsening at least one other objective function. More precisely, in a multi-
objective problem with n functions to minimize, a solution µ∗ is Pareto-optimal
if there does not exist another solution µ such that µj ≤ µ∗j for 1 ≤ j ≤ n and
there exists at least one i, 1 ≤ i ≤ n such that µi < µ∗i . The set of Pareto points
is distributed on the so-called Pareto frontier.

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

62

�����������

�����������		

�����������

�����������

	
��������������������

��

������

(a) The Web service.

Ap
pl

ic
at

io
n

Se
rv

er

JEE Servlet
Controller

JSP Pages
View

Java Beans (BOM)
Model

Data sources
Persistence

1.�

2.�

3.�

4.�

5.�

Browser
User Interface

Web service
 Optimal planning

(b) The Web application.

Fig. 1: (a) Software stack to deploy the CLP program as a Web service and (b)
the typical MVC pattern to exploit it as a Web application.

We implemented the normalized normal constraint method [16], an algorithm
that works with any type of constraints (linear and nonlinear) and variables
(continuous and discrete), and that is able to find an evenly distributed set of
Pareto solutions. This is an important feature for a DSS, since it supplies the
policy maker with a set of solutions that are a good representation of the whole
space of Pareto solutions.

4 Graphical User Interface

A software for policy making should be usable by non-IT experts, and have an
intuitive GUI able to visualize properly the heterogeneous information inherently
present in environmental policies. We deployed the CLP planner as a stateless
Web service and access it by means of a stateful Web application. This choice
is also convenient from the perspective of a possible composition with the other
services of the ePolicy application.

The CLP program is embedded inside a Java wrapper (Fig. 1a) that encodes
the requests in CLP terms and decodes the results. This component provides
a plethora of Java classes that represent the Business Object Model (BOM)
of this domain. Any query addressed to this component and all the returned
results are expressed in terms of these objects. Then we use the Apache CXF
framework to define a Web Service’s Service Endpoint Interface (WS SEI) – an
interface containing the signature of the method to call the service – and later
to implement such a service taking advantage of the wrapper.

The Web application that stands as a GUI for the Web service is a standard
Java servlet (Fig. 1b) following the Model-View-Controller (MVC) pattern: any
request made through a browser is intercepted by the servlet which acts as a
controller. The requests are forwarded to the BOM objects inside the model ;
these objects interact with our Web service and persistence layer to produce
results. The controller then uses the JavaServer Pages (JSPs) to generate the
view that becomes the response to display in the user’s browser. Both the Web
service and the Web application are finally deployed to an application server. The

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

63

Web application can be accessed at: http://globalopt.epolicy-project.eu/
Pareto/.

After a welcome page that introduces the software, there are an input page,
and a results page. In input, the user can select the language to use (currently,
Italian or English), insert bounds (minimum and maximum bounds for each
energy source), constraints, and objective functions for the Pareto optimization,
as well as the number of Pareto points (s)he wishes to compare. Constraints and
objectives can include linear combinations of cost, produced power, receptors,
emissions, or indicators. To simplify the input, the user can load the data for the
Regional Energy Plan 2011-2013 of the Emilia-Romagna region for Electricity;
in the following section we will show the results for this instance. The user can
then compute the Pareto optimal plans, and a set of graphs is presented, as
described in the next section.

4.1 Interpreting the Results

The results page consists of two master-slave panels. The left side-panel is the
master and by clicking on any of its entries in one of its three sections, the view
in the main panel (the slave) changes accordingly. Each view hosted in the main
panel has many tabs and by selecting one of them, an appropriate graph or table
is shown.

In particular, the left panel let the user select either a Scenario comparison,
to compare all the generated scenarios, or to get detailed information on one
scenario. Scenarios are divided into boundary scenarios, that are those that op-
timize one of the objective functions, and intermediate scenarios, that try to
balance the various objectives.

Scenarios comparison. By clicking on General overview on the left panel, the
user can compare the scenarios. One comparison is through a spiderweb chart
(Fig. 2a) that has an axis for each objective function. Along each axis, the op-
timal values are far from the origin. Each scenario is represented by a polygon
where each vertex is on a different axis. Generally speaking, a bigger polygon im-
plies a better scenario (note that these solutions are Pareto optimal, so one poly-
gon cannot be completely included into another polygon). Hovering the mouse
on the axes, one can obtain the values for each plan. To improve legibility, one
can deactivate one (or more) plans by clicking on it on the legend.

The scenarios can also be compared through stacked bar chart, showing, for
each scenario, the distribution of costs per energy source (Fig. 2b), or the amount
of electric/thermal energy per source. Again, hovering with the mouse over the
graphs, more detailed information is provided.

Another scenario comparison is with respect to the values of the Objective
functions selected by the users.

Finally, by clicking on Emissions and pollutants, three tabs (Fig. 3) show, in
basic column charts, the amount of pollutants divided into the categories Heavy
metals, Greenhouse gases, and Other pollutants. With the default data, heavy

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

64

(a) Scenario comparison. (b) Costs summary.

Fig. 2: The views associated with the General overview entry for Scenarios com-
parison.

(a) Greenhouse gases. (b) Other pollutants.

Fig. 3: The Emission and pollutants views for Scenarios comparison.

metals are not present, because in the 2011-2013 plan there are no fossil fuels,
the only sources emitting metals.

Boundary and Intermediate scenarios. These sections show detailed information
for each of the computed scenarios on the Pareto front. Scenarios are divided into
boundary scenarios, that are those that optimize one of the objective functions,
and intermediate scenarios. For each scenario, the following views are available:

– Receptors. This composite view uses 7 VU-meter charts (Fig. 4a). The top
part shows the 3 receptors with the best normalised value, while the bottom
one the 3 with the worst normalised value. The main chart allows the user
to select any receptor and appraise its normalised value. This graph was
explicitly requested by an environmental expert to highlight the best and
worst receptors.

– There are then four interactive tabular views (Fig. 4b) showing respectively,
for the chosen scenario, the amount of produced energy per source, the total

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

65

(a) Receptors. (b) A tabular view.

Fig. 4: The views associated with each scenario: the Receptors chart and the
summary tables (Energy sources, Costs per action, Detailed costs and Emission
and pollutants).

cost for each energy source to be spent in primary and secondary activities,
the detailed costs for each activity, and the list of emissions.

5 Experiments

The software computes the optimal solution for one objective in a very short
time; on modern computers it is well below 1 second. The multi-objective version
has to compute a number of solutions, that depend on the number of scenar-
ios (points on the Pareto front) requested by the user, so the computing time
can grow up to some seconds, to compute around 5-10 scenarios (a number of
scenarios that can be visualized and compared visually).

In order to assess the scalability, we performed a series of tests by randomly
generating a set of data, including the co-axial matrices, the matrix relating
primary and secondary activities, the activity costs, etc. In this way, we were
able to stress-test the software with instances containing a number of activities,
pressures and receptors larger than those in the actual data provided by ARPA.

The experiments were performed on a laptop computer running Linux with
a 8x Intel Core i7-3720QM CPU at 2.60GHz; only one core was used in the
experiments. The results are plotted in Figure 5, for a single objective. The x-
axis is the size of the instance, i.e., the size of the co-axial matrices (each matrix
is N ×N). The y-axis shows the time required to find the optimal solution.

The computing time, for sizes below 100, is always less than a second. Note
that if N = 100, the matrix that relates activities and pressures has size 100 ×
100 = 10, 000, while in the real instance it is just 93× 48 = 4, 464.

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

66

Fig. 5: Run time of randomly generated problems, versus the size N of the
problem, assuming the same number N of activities, pressures and receptors.

6 Conclusions and Future Work

We presented a DSS with optimization capabilities based on CLP for the regional
planning and with particular emphasis on the environmental aspects of regional
policies. The program was practically used to produce the energy plan 2011-2013
of the Emilia-Romagna region in Italy [6], and it is foreseen to use it also for
the forthcoming plans. The CLP program is included into a web service, with
an intuitive graphical user interface (http://globalopt.epolicy-project.eu/
Pareto/), and that can be easily integrated with other components. The CLP

program will be the heart of the platform of the EU FP7 ePolicy project, that will
also include a social simulator, an opinion mining component, and a mechanism
design component (based on game theory), all governed by the described CLP

program. Preliminary work has been done on the integration of the CLP program
with the mechanism design component [17], and a social simulator [18].

Acknowledgements This work was partially supported by EU project ePolicy,
FP7-ICT-2011-7, grant agreement 288147.

References

1. Gavanelli, M., Milano, M., Bragaglia, S., Chesani, F., Marengo, E., Cagnoli, P.:
Multi-criteria optimal planning for energy policies in CLP. Theory and Practice
of Logic Programming, on-line supplement (2014)

2. Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P.: Logic-Based Decision Sup-
port for Strategic Environmental Assessment. Theory and Practice of Logic Pro-
gramming, 26th Int’l. Conference on Logic Programming (ICLP’10) Special Issue
10(4-6) (July 2010) 643–658

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

67

3. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20 (1994) 503–581

4. Gavanelli, M., Riguzzi, F., Milano, M., Sottara, D., Cangini, A., Cagnoli, P.: An
application of fuzzy logic to strategic environmental assessment. In Pirrone, R.,
Sorbello, F., eds.: Artificial Intelligence Around Man and Beyond - XIIth Interna-
tional Conference of the Italian Association for Artificial Intelligence. Volume 6934
of Lecture Notes in Computer Science., Berlin/Heidelberg, Springer (2011)

5. Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P.: Constraint and optimization
techniques for supporting policy making. In Yu, T., Chawla, N., Simoff, S., eds.:
Computational Intelligent Data Analysis for Sustainable Development. Data Min-
ing and Knowledge Discovery Series. Chapman & Hall/CRC, Boca Raton, FL,
USA (2013) 361–381

6. Pilolli, D., Raimondi, A., Scapinelli, D., Calò, C., Cancila, E.: Piano Energetico
Regionale, secondo piano attuativo 2011-2013. Regione Emilia-Romagna (2011)

7. Cagnoli, P.: VAS valutazione ambientale strategica – Fondamenti teorici e tecniche
operative. Terza edizione edn. Dario Flaccovio, Palermo, Italy (2010)

8. Sorensen, J.C., Moss, M.L.: Procedures and programs to assist in the impact
statement process. Technical report, Univ. of California, Berkely (1973)

9. Apt, K.R., Wallace, M.: Constraint logic programming using Eclipse. Cambridge
University Press (2007)

10. Schimpf, J., Shen, K.: ECLiPSe - from LP to CLP. Theory and Practice of Logic
Programming 12(1-2) (2012) 127–156

11. Shen, K., Schimpf, J.: Eplex: Harnessing mathematical programming solvers for
constraint logic programming. In van Beek, P., ed.: Principles and Practice of
Constraint Programming - CP 2005. Volume 3709 of Lecture Notes in Computer
Science., Berlin/Heidelberg, Springer-Verlag (2005) 622–636

12. Caserini, S., Fraccaroli, A., Monguzzi, A.M., Moretti, M., Giudici, A., Volpi, G.:
The INEMAR database: a tool for regional atmospheric emission inventory. In
Rizzoli, A., Jakeman, A., eds.: iEMSs 2002 International Congress: “Integrated
Assessment and Decision Support”. Proc. 1st biennial meeting of the International
Environmental Modelling and Software Society, Lugano, Switzerland (June 2002)

13. ISPRA: Inventario nazionale delle emissioni in atmosfera. Available at http:

//www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/

fattori-di-emissione-per-le-sorgenti-di-combustione-stazionarie-in-italia
14. Autorità per l’Energia Elettrica e il Gas: Aggiornamento del fattore di conversione

dei kWh in tonnellate equivalenti di petrolio connesso al meccanismo dei titoli di
efficienza energetica. Gazzetta Ufficiale n. 100 del 29.4.08 - SO n.107 (2008)

15. European Commission: Integrated pollution prevention and control reference
document on economics and cross-media effects (July 2006) Available at http:

//eippcb.jrc.ec.europa.eu/reference/.
16. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint

method for generating the Pareto frontier. Structural and Multidisciplinary Opti-
mization 25(2) (2003) 86–98

17. Milano, M., Gavanelli, M., O’Sullivan, B., Holland, A.: What-if analysis through
simulation-optimization hybrids. In: Proc. of European Conference on Modelling
and Simulation (ECMS), Dudweiler, Germany, European Council for Modelling
and Simulation (2012)

18. Borghesi, A., Milano, M., Gavanelli, M., Woods, T.: Simulation of incentive mech-
anisms for renewable energy policies. In Rekdalsbakken, W., Bye, R.T., Zhang, H.,
eds.: Proceedings of the 27th European Conference on Modeling and Simulation,
European Council for Modeling and Simulation (2013) 32–38

M. Gavanelli et al. Multi-Criteria Optimal Planning for Energy Policies in CLP

68

Query Answering in Resource-Based
answer set semantics?

Stefania Costantini1 and Andrea Formisano2

1 DISIM, Università di L’Aquila, Italy stefania.costantini@univaq.it
2 DMI, Università di Perugia, Italy formis@dmi.unipg.it

Abstract. In recent work, we defined Resource-Based answer set semantics,
which is an extension to traditional answer set semantics stemming from the
study of its relationship with linear logic. In this setting there are no inconsistent
programs, and constraints are defined “per se” in a separate layer. In this paper,
we propose a query-answering procedure reminiscent of Prolog for answer set
programs under this extended semantics.

1 Introduction

Answer set programming (ASP) is nowadays a well-established and successful pro-
gramming paradigm based upon answer set semantics [1, 2, 3], with applications in
many areas (cf., e.g., [4, 5, 6] and the references therein). Nevertheless, as noted in
[7, 8], few attempts to construct a goal-oriented proof procedure exist. Rather, an ASP-
solver is used (see [9]) to find the answer sets, if any exists. This is due to the very
nature of the answer set semantics, where a program may admit none or several answer
sets, and where the semantics enjoys no locality, or, better, no relevance in the sense of
[10]: i.e., no subset of the given program can in general be identified, from where the
decision of atom A (intended as a goal, or query) belonging or not to some answer set
can be drawn. The work of [7] suggests an incremental construction of approximations
of answer sets, so as to provide local computations and top-down query answering. A
sound and complete proof procedure for the approach is provided. The work of [8] can
be used with non-ground queries and with non-ground, and possibly infinite, programs.
Soundness and completeness results are proved for large classes of logic programs.

However, another problem related to goal-oriented answer-set-based computation
is that of repeated queries. Assume that one would be able to pose a query ?− Q1

receiving an answer “yes”, to signify that Q1 is entailed by some answer set of given
program Π . Presumably, one might intend subsequent queries to be answered in the
same context, i.e., a subsequent query ?− Q2 might reasonably ask whether some of
the answer sets entailing Q1 also entail Q2. This might go on until the user explicitly
“resets” the context. Such an issue, though reasonable in practical applications, has been
hardly addressed up to now, due to the semantic difficulties that we have mentioned.

In recent work, stemming from our research on RASP [11, 12, 13], which is a re-
cent extension of ASP, obtained by explicitly introducing the notion of resource, we
? This research will be presented at the ASPOCP14 workshop. This research is partially sup-

ported by GNCS-13 and GNCS-14 projects.

69

proposed in [14] a comparison between RASP, ASP and linear logic [15]. For estab-
lishing this correspondence, we introduced a RASP and linear-logic modeling of de-
fault negation as understood under the answer set semantics. This led to the definition
of an extension to the answer set semantics which we called Resource-Based answer
set semantics (RAS) [16]. This extension finds an alternative equivalent definition in a
variation of the auto-epistemic logic characterization of answer set semantics discussed
in [17]. In resource-based answer set semantics we have no inconsistent programs, and
constraints are defined “per se” in a separate layer.

This allows us to propose here top-down procedure for the new semantics which,
via a form of tabling, also provides contextualization. Differently from [7], this pro-
cedure does not require actual incremental answer set construction when answering a
query. Rather, it exploits the fact that resource-based answer set semantics enjoys the
property of relevance [10] (where answer set semantics does not), which guarantees
that truth value of an atom can be established on the basis of the subprogram it depends
upon, and thus allows for top-down computation starting from a query. As answer set
semantics and resource-based answer set semantics extend the well-founded semantics
[18], we take as a starting point XSB-resolution [19, 20], an efficient, fully described
and fully implemented procedure which is correct and, for the class programs consid-
ered in the answer set semantics, always complete w.r.t. the well-founded semantics of
given program. In this paper we do not provide the full detail of the proposed procedure,
which we call RAS-XSB-resolution. In fact, this would imply suitably extending and
reworking all definitions related to XSB. We rather lay the foundation, however with a
precision and formality that should be sufficient to allow such a refinement as the next
step. We also provide formal properties of the proposed procedure.

Notice that RAS-XSB resolution can be used for “traditional” answer set program-
ming under the software engineering discipline of dividing the program into a consis-
tent “base” level and a “top” level including constraints. Therefore, even to readers not
particularly interested in the new semantics, the paper proposes a full top-down query-
answering procedure for ASP, though applicable with previously mentioned (reason-
able) limitation. With respect to top-down procedure proposed [8], we do not aim at
managing function symbols (and thus programs with infinite grounding), so under this
extent our work is more limited. However, we get correctness and completeness for
every program (under the new semantics).

In the rest of the paper, after a short introduction of the answer set semantics we
summarize resource-based answer set semantics. We then proceed to present the orig-
inal contributions of this paper, that consist in introducing some useful properties of
RAS, and in the definition of RAS-XSB-resolution. Background notions which are
useful for a better understanding and proof of the main theorem are provided in the
extended version of this paper, available online [21].

2 Background on ASP

In the Answer Set Semantics (originally named “stable model semantics”), a (logic)
program Π (cf., [1]) is a collection of rules of the form H ← L1, . . . , Ln. where H is
an atom, n ≥ 0 and each literal Li is either an atom Ai or its default negation not Ai.

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

70

An answer set program can be seen as a Datalog program with negation (cf. [22, 23]
for definitions about logic programming and Datalog). In what follows, unless explic-
itly differently specified we refer to ground programs, i.e., programs not containing
variables. Below is the specification of the answer set semantics, reported from [1].

Definition 1. Given ASP program Π and set of atoms I , the Γ operator performs the
following steps: (a) Computes the reduct ΠI of Π , by:
(1) removing from Π all rules which contain a negative premise not A such that A ∈ I;
(2) removing from the remaining rules those negative premises not A such that A 6∈ I;
notice that ΠI is a positive logic program.
(b) Computes the Least Herbrand Model of ΠI , denoted as ΓΠ(I).

Definition 2. A set of atoms I is an answer set for a program Π iff ΓΠ(I) = I .

Answer sets are minimal supported models of the program interpreted in the obvious
way as a first-order theory (← stands for implication, comma for conjunction and not
for classical negation). It will be useful in what follows to consider a simple property
of ΓΠ (see [24]): if M is a minimal model of Π , then, ΓΠ(M) ⊆M .

In the answer set semantics, a rule of the form← L1, . . . , Ln. is called constraint,
and states that the Lis cannot be all true w.r.t. any answer set. It is rephrased into a
standard rule Q ← not Q,L1, . . . , Ln. with Q fresh atom, as a contradiction on Q
leads to inconsistency, i.e., non-existence of answer sets (which in fact can in general
be several, one, or none) unless one of the Lis is false.

In this paper we refer for lack of space to the basic version of the answer set se-
mantics. Therefore, we do not consider the various extensions and useful programming
constructs that have appeared in the wide existing literature about ASP.

3 Resource-Based answer set semantics

In this section we introduce a formal definition of resource-based answer set semantics,
which is needed in order to be able to define the proposed proof procedure and prove
its properties. However, some preliminary observations are in order so as to explain
why resource-based answer set semantics is reasonable, and might possibly be adopted
as a proper extension of the answer set semantics. As it is well-known, the answer set
semantics extends the well-founded semantics [18], which assigns to a logic programΠ
a unique, three-valued model, called well-founded model and denoted by WFS (Π) =
〈W+,W−〉, where W+ and W− are disjoint. In particular, W+ is the set of atoms
deemed true, W− is the set of atoms deemed false, while atoms belonging to neither
set are deemed undefined. Atoms with truth value ‘undefined’ under the well-founded
semantics are exactly the atoms which are of interest for finding the answer sets, and
are, in particular, atoms involved in negative cycles, i.e. cycles through negation (as
extensively discussed, e.g., in [24, 25, 26] and in the references therein).

In particular, the answer set semantics selects some of the (two-valued) classical
models of given program so as for each atom A which is true w.r.t. an answer set M ,
two conditions hold: (i)A is supported inM by some rule of the given program; (ii) the
support of A does not depend (directly or indirectly) upon the negation of another true

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

71

atom, including itself. For even cycles3 such as {e ← not f. f ← not e.}, two answer
sets can be found, namely {e} and {f}, respecting both conditions. This extends to
wider program including such cycles. For odd cycles (such as unary odd cycles of the
form {p ← not p.} and ternary odd cycles of the form {a ← not b. b ← not c. c ←
not a.}) it is not possible to assign truth values to their composing atoms in classical
models. Thus, under the answer set semantics a program including such cycles is in-
consistent, i.e., it has no answer sets4. In a sense, the answer set semantics is still three-
valued, as sometimes it is able to assign truth value to atoms, and sometimes (when the
program is inconsistent) leaves them all undefined.

Resource-based answer set semantics is able to cope with any kind of cycle, and
always assigns a truth value to all atoms while fulfilling conditions (i) and (ii). This
by resorting to supported subsets of classical models. For the unary odd cycle, p is
deemed to be false because were it true, it would depend upon the negation of a true
atom (itself). The ternary odd cycle has the three resource-based answer sets {a}, {b}
and {c}. Taking for instance {a}, atom b must be false to fulfill condition (i), and atom
c must be false to fulfill condition (i) for itself and (ii) for a.

Logical foundations of resource-based answer set semantics are discussed in depth
in [27]. A characterization can be obtained by elaborating the auto-epistemic-logic char-
acterization of answer set semantics discussed in [17]. Intuitively (for precise definitions
please refer to [27]), a ruleA← A1, . . . , An, notB1, . . . , notBm can be seen as stand-
ing for A1∧ . . .∧An∧L¬B1∧ . . .∧L¬Bm∧LȦ ⊃ A. Where Lϕ can be understood
as “ϕ is believed”, or also “we assume ϕ”, and Ȧ can be understood as “one intends to
prove A”. The overall reading is thatA is derived whenever the positive conditions hold,
we assume that the negative conditions hold as well, and we assume that we indeed in-
tend to prove A. Clearly, we have to state that A ∧ L¬A ⊃ ⊥ (if we have A we cannot
believe its negation) and LȦ∧L¬A ⊃ ⊥ (we cannot intend to proveA if we believe its
negation). This characterization can be transposed into plain ASP by interpreting modal
literals as fresh atoms. The answer sets (which are among the classical models) of the
transposition Π ′ of a given program Π coincide, when removing fresh atoms, with the
resource-based answer sets of Π . Every program admits at least one (possibly empty)
resource-based answer set.

The denomination of resource-based answer set semantics stems from the linear
logic formulation of ASP that we proposed in [14, 16], which constituted the original
inspiration for the new semantics. This formulation interprets negation not A of atom
A as a resource that is unlimitedly available unless A is proved. Therefore, not A can
be freely used whenever needed but: (1) not A becomes unavailable if A is proved; (2)
whenever notA has been used,A can no longer be proved. For unary odd cycles such as
{p← not p.} in the linear logic formulation upon the attempt of using not p for proving
p, by condition (2) p becomes no longer provable (and thus it is false). Similarly for
ternary odd cycles. Thus, under the resource-based answer set semantics a 3-atoms odd
cycle is interpreted as an exclusive disjunction, exactly like 2-atoms even cycles. In the
generate-and-test perspective which is the basis of the ASP programming methodology,

3 Even (resp. odd) cycles are cycles involving an even (resp. odd) number of negative dependen-
cies, cf., e.g., [24, 25, 26] for precise definitions.

4 Unless “handles” are provided from other parts of the program, see [24, 25, 26] for details.

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

72

even cycles are commonly used to generate the search space. Thus, our new semantics
provides some additional flexibility in this sense.

Resource-based answer set semantics is significantly different from other valuable
semantic approaches aimed at managing odd cycles, such as [28, 29] and [30, 31].
Such a semantics can be characterized, similarly to traditional answer set semantics,
by means of the Γ operator (cf. Definition 1 in Sect. 2). In fact, the resource-based
interpretation of negation requires that the negation of an atom (seen as a resource)
that has been proved, becomes unavailable: the effect of Γ is in fact exactly that of
eliminating rules that make such use of negation.

For providing the formal definition, some preliminary consideration is needed. As
discussed in [21], a nonempty answer set program Π (that below we call simply “pro-
gram”) can be seen as divided into a sequence of components, or layers, C1, . . . , Cn,
n≥1, where each Ci is the union of a set of cyclic or acyclic subprograms (subcompo-
nents) independent of each other (with no atoms in common); each subcomponent of
C1, which is called the bottom of Π , is standalone, i.e., the atoms occurring therein do
not depend upon other parts of the program; each subcomponent of Ci, i > 1, is on top
of some subcomponent of Ci−1, i.e., the atoms occurring therein depend upon atoms
occurring in Ci−1. For the formal definition of cyclic, acyclic on-top and standalone
subprograms, refer to [21]. Based upon such a decomposition, as first discussed in [32],
the answer sets of a program can be computed incrementally in a bottom-up fashion.

Proposition 1. Consider a nonempty ASP program Π , divided into components
C1, . . . , Cn, n ≥ 1. An answer set S ofΠ (if any exists) can be computed incrementally
by means of the following steps:

0. Set i = 1.
1. Compute an answer set Si of component Ci (for i = 1, this accounts to computing

an answer set of the bottom component).
2. Simplify program Ci+1 by: (i) deleting all rules in which have not B in their body,
B ∈ Si; (ii) deleting (from the body of the remaining rules) every literal not F
where F does not occur in the head of rules of Ci+1, F 6∈ Si, and every atom E
with E ∈ S1. Notice that, once simplified, Ci+1 becomes standalone.

3. If i < n set i = i+ 1 and go to step 1, else set S = S1 ∪ . . . ∪ Sn.

Resource-based answer sets can be computed in a similar way. We start by defining
the notion of resource-based answer sets of a given standalone program. In particular,
they are obtained from some of its minimal models, specifically from the Π-based
minimal models:

Definition 3. A Π-based minimal model I of an ASP program Π is either the empty
set (in case it is the unique minimal model), or a nonempty minimal model such that
∀A ∈ I , there is a rule inΠ with headA, whereA does not occur positively in the body.

The restriction to Π-based minimal models is due to the fact that resource-based
answer sets are supported sets of atoms. Thus, we aim at avoiding unsupported minimal
models, such as, for sample one-rule program a← not c, the minimal model {c}. Being
Π-based is only a prerequisite for supportedness which however will be guaranteed by
other conditions. Below we provide a variation of the answer set semantics that defines
resource-based answer sets.

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

73

Definition 4. Let Π be a standalone program, and let I be a Π-based minimal model.
M is a resource-based answer set of Π iff M = ΓΠ(I) (we remind the reader that, for
any model I and program Π , ΓΠ(I) ⊆ I).

We are now ready to define resource-based answer sets of a generic program Π .

Definition 5. Consider a nonempty ASP program Π , divided into components
C1, . . . , Cn, n ≥ 1. A resource-based answer set S of Π is defined as M1 ∪ . . . ∪Mn

where M1 is a resource-based answer set of C1, and each Mi, 1 < i ≤ n, is a
resource-based answer set of standalone component C ′i, obtained by simplifying Ci
w.r.t. S = M1 ∪ . . . ∪Mi−1, where the simplification consists in: (i) deleting all rules
in Ci which have not B in their body, B ∈ S; (ii) deleting (from the body of remaining
rules) every literal notD whereD does not occur in the head of rules of Ci andD 6∈ S,
and also every atom D with D ∈ S (notice in fact that, once simplified, Ci+1 becomes
standalone and therefore Definition 4 can be applied).

The above definition brings clear analogies to the procedure for answer set compu-
tation specified in [21]. Therefore, it is easy to see that, for consistent ASP programs,
answer sets are among resource-based answer sets. Proposed program decomposition
is also reminiscent of the one adopted in [7]. However, in general, resource-based an-
swer sets are not models in the classical sense: rather, they are sets of atoms which are
subsets of some minimal model, and are supported (similarly to answer sets, which are
minimal supported models): in fact, from the above definitions it can be easily seen that
for every atom A in a resource-based answer set M , there exists a rule with head A,
and body which is true w.r.t. M . Non-empty resource-based answer sets still form an
anti-chain w.r.t. set inclusion.

We now explain by means of an example why the incremental construction of
resource-based answer set is needed. Let ΠE be the following:

a← not p. p← not p. q ← e. e← not q.

Suppose to apply Definition 4 directly to the overall program. It admits a unique ΠE-
based minimal model S = {p, q}, and we have ΓΠE (S) = ∅. This is reasonable for p
and q: in fact, they depend upon their own negation, so in our perspective there is not
“enough” negation to prove them, thus they must be deemed to be false. It is reasonable
also for e, which is involved (though through negation) in a positive circularity. It is
however not reasonable for a, which depends upon negation of a false atom. However,
according to Definition 5, we divide ΠE into a standalone bottom component C1, con-
sisting of the last three rules, with M1 = ∅ as the unique resource-based answer set,
and a top component C2 consisting of the first rule a ← not p: after simplification, C ′2
is simply fact a, unique resource-based answer setM2 = {a}, which coincides with the
unique resource-based answer set of the overall program, thus meeting the intuition.

We have called the new semantics Resource-Based Answer Set semantics (RAS),
w.r.t. AS (Answer Set) semantics. Differently from answer sets, a (possibly empty)
resource-based answer set always exists. Complexity of RAS semantics is however
higher than complexity of AS semantics: in fact, [33] proves that deciding whether a set
of formulas is a minimal model of a propositional theory is co-NP-complete. Clearly,
checking whether a minimal model I is Π-based and computing ΓΠs

(I) has polyno-

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

74

mial complexity. Then, checking whether a set of atom I is a resource-based answer set
of program Π is co-NP-complete.

In resource-based answer set semantics there are no inconsistent programs. This
means that constraints cannot be modeled (as done in ASP) in terms of odd cycles.
Hence, they have to be modeled explicitly. Without loss of generality we will assume in
the rest of the paper the following simplification concerning constraints. Each constraint
← L1, . . . , Lk, k > 0, where each Li is a literal, can be rephrased as simple constraint
← H , whereH is a fresh atom, plus ruleH ← L1, . . . , Lk to be added to given program
Π . We will from now on implicitly consider the version of Π enriched by such rules.

Definition 6. Let Π be a program and {C1, . . . , Ck} be a set of constraints, each Ci
in the form← Hi. A resource-based answer set M for Π is admissible if it fulfills all
constraints, i.e., if for all i ≤ k, Hi 6∈M . M is admissible w.r.t. a single constraint Cj
if Hj 6∈M .

4 Properties of Resource-Based answer set semantics

It is relevant, also for what follows, to evaluate RAS with respect to general properties
of semantics of logic programs introduced in [10], that we recall below.

Definition 7. The sets of atoms a single atom A depends upon, directly or indirectly,
positively of negatively, is defined as dependencies of (A) = {B : A depends on B}.

The former definition is provided with some approximation, as dependencies should
be formally checked on the dependency graph of given program [22, 23].

Definition 8. Given a program Π and an atom A, rel rul(Π;A) is the set of rele-
vant rules of Π with respect to A, i.e. the set of rules that contain an atom B ∈
dependencies of (A) in their heads.

Note that the notions introduced by Definitions 7 and 8 for an atom A are plainly gen-
eralized to any set X of atoms. Notice, moreover, that given an atom (or a set of atoms)
X , rel rul(Π;X) is a subprogram of Π .

Definition 9. Given any semantics SEM and a ground program Π , Relevance states
that for all literals L it holds that SEM(Π)(L) = SEM(rel rul(Π;L))(L).

Relevance implies that the truth value of any literal under that semantics in a given
programs is determined solely by the subprogram consisting of the relevant rules. The
answer set semantics does not enjoy relevance [10]. This is one reason for the lack of
goal-oriented proof procedures. Instead, it is easy to see that

Proposition 2. Resource-based answer set semantics enjoys Relevance.

Resource-based answer set semantics, like most semantics for logic programs with
negation, enjoys Reduction, which simply assures that the atoms not occurring in the
heads of a program are always assigned truth value ‘false’. Resource-based answer set
semantics also enjoys Modularity [10] (where the reduct ΠM of program Π w.r.t. set
of atoms M is recalled in Definition 1.):

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

75

Definition 10. Given any semantics SEM , a ground program Π let Π = Π1 ∪ Π2

where for every atomA occurring inΠ2, rel rul(Π;A) ⊆ Π2. SEM enjoys Modularity
if SEM(Π) = SEM(Π

SEM(Π2)
1 ∪Π2).

We can in fact prove the following proposition:

Proposition 3. Given a ground program Π let Π = Π1 ∪Π2, where for every atom A
occurring in Π2, rel rul(Π;A) ⊆ Π2. A set M of atoms is a resource-based answer
set of Π iff there exists a resource-based answer set S of Π2 such that M is a resource-
based answer set of ΠS

1 ∪Π2.

Modularity is an important property, that also impacts on constraint checking, i.e.,
on the check of admissibility of resource-based answer sets. Considering, in fact, a
set of constraints {C1, . . . , Cn}, n > 0, each Ci in the form ← Hi, and letting for
each i ≤ n rel rul(Π;Hi) ⊆ Π2, from Prop. 3 it follows that, if a resource-based
answer set X of Π2 is admissible (in terms of Definition 6) w.r.t. {C1, . . . , Cn}, then
any resource-based answer set M of Π such that X ⊆ M is also admissible w.r.t. this
set of constraints. In particular, Π2 can be identified in relation to a certain query, i.e.:

Definition 11. Given a program Π , a constraint← H associated to Π is relevant for
query ?−A if rel rul(Π;A) ⊆ rel rul(Π;H).

5 A Proof Procedure for RAS

As said before, the answer set semantics extends the well-founded semantics. Resource-
based answer set semantics still extends the well-founded semantics, as it still deals
with assigning a truth value to atoms which are undefined under the this semantics:
however, it is able to cope with odd cycles that the answer set semantics interprets as
inconsistencies. Assuming to devise a query-answering device for ASP, query ?− A to
ASP program Π may be reasonably expected to succeed or fail if A belongs to W+ or
W− respectively, but how to find an answer if A is undefined because it is involved in
a negative circularity remains to be understood.

An additional problem with answer set semantics is that query ?− A might locally
succeed, but still, for the lack of relevance, the overall program may not have answer
sets (i.e., the program is inconsistent). In resource-based answer set semantics instead,
there are no inconsistent programs and every program has at least one (possibly empty)
resource-based answer set: each of them taken singularly is then admissible or not w.r.t.
the integrity constraints. This allows one to defer constraint checking in case the proof
of query A succeeds. In this section, we present and discuss the foundations of a proof
procedure for logic programs under resource-based answer set semantics.

We take as a starting point a well-established proof procedure for the well-founded
semantics, namely XSB-resolution. An ample literature exists for XSB-resolution, from
the seminal work in [20] to the most recent work in [19] where many useful references
can also be found. XSB resolution is fully implemented, and information and downloads
can be find on the XSB web site, xsb.sourceforge.net/index.html.

For lack of space, here we do not describe XSB-resolution in detail. We provide in
[21] some definitions and results useful for a general understanding. In the rest of this

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

76

section, we proceed to illustrate how we mean to extend XSB in order to cope with
undefined atoms.

XSB-resolution [19] adopts tabling, that will also be useful in what follows. Tabled
logic programming was first formalized in the early 1980’s, and several formalisms and
systems have been based both on tabled resolution and on magic sets, which can also
be seen as a form of tabled logic programming (c.f. [19] for references). In the Datalog
context, tabling simply means that whenever atom S is established to be true or false,
it is recorded in a table. Thus, when subsequent calls are made to S, the evaluation
ensures that the answer to S refers to the record rather than being re-derived using pro-
gram rules. Seen abstractly, the table represents the given state of a computation: in this
case, subgoals called and their answers so far derived. One powerful feature of tabling
is its ability to maintain other global elements of a computation in the “table”, such as
information about whether one subgoal depends on another, and whether the depen-
dency is through negation. By maintaining this global information, tabling is useful for
evaluating logic programs under the well-founded semantics. The essential idea is that
global information about dependencies is used to determine the truth value of literals
that do not have a derivation. If such literals are involved in a cyclic dependency through
negation, they are undefined under WFS; if not, the literals belong to an unfounded set
and are false in WFS. In fact, it can be shown that tabling allows Datalog programs
with negation to terminate with polynomial data complexity under the well-founded
semantics.

We will now define the foundations of a top-down proof procedure for resource-
based answer set semantics, which we call RAS-XSB-Resolution. The procedure has to
cope with the fact that there are atoms which are involved in negative circularities, and
must be assigned a truth value according to some resource-based answer set. We build
upon XSB-Resolution, which is by no means elementary, so we refer the reader to the
references for a proper understanding. An abridged specification is provided below for
the reader’s convenience, based upon preliminary definition reported in [21]. In order
to give an intuitive idea, we resort, in fact, to the following “naive” formulation, relying
upon general definitions reported in [22, 23].

Definition 12 (A “naive” XSB-resolution). Given a program Π , let Table(Π) be the
data structure used by the proof procedure for tabling purposes, i.e., the table associ-
ated with the program (or simply “program table”). Given a query ?− A, the list of
current subgoals is initially set to L1 = {A} and Table(Π) is initialized to be the
empty set. If in the construction of a proof-tree for ?− A, a literal Lij is selected in
the list of current subgoals Li, we have that: if Lij definitely succeeds (in case of a
negative literal Lij = notB, it definitely succeeds ifB definitely fails) then we take Lij
as proved and proceed to prove Lij+1 after the related updates to the program table.
Otherwise, we have to backtrack to previous list Li−1 of subgoals. Success and failure
determine suitable modifications to Table(Π).

On Datalog programs XSB is correct and complete, therefore, under XSB-
resolution, atom A definitely succeeds iff A ∈ W+ and definitely fails iff A ∈ W−.
Note that definite failure occurs not only when at some point there is an atom not de-
fined by any rules, but also whenever an atom depends positively in any possible (even

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

77

indirect) way upon itself. In our extension, we take the above result as a starting point
for success and failure.

In order to represent the notion of negation as a resource, we initialize the program
table prior to posing queries and we manage the table during a proof so as to state
that: the negation of any atom which is not a fact is available unless this atom has
been proved; the negation of an atom which has been proved becomes unavailable; the
negation of an atom which cannot be proved is always available.

Definition 13 (Table Initialization in RAS-XSB-Resolution). Given a program Π
and an associated table Table(Π), Initialization of Table(Π) is performed by inserting,
for each atom A occurring as the conclusion of some rule in Π , a fact yesA (where
yesA is a fresh atom).

The meaning of yesA is that the whole amount of A’s negation is still available. If
yesA is present thenA can possibly succeed. Success ofA “absorbs” yesA and prevents
not A from success. Resource-based answer set semantics in fact dictates that proving
A consumes the whole amount of A’s negation. Table(Π) will evolve during a proof
into subsequent “knowledge states”. In the following, without loss of generality we can
assume that a query is of the form ?−A, where A is an atom. A proof of query ?−A is
performed by XSB-resolution, though with the following additive modifications.

Definition 14 (Success and failure in RAS-XSB-Resolution). Given program Π and
its associated table Table(Π), notions of success and failure and of modifications to
Table(Π) are extended as follows with respect to XSB-Resolution.

(1) Atom A succeeds if one of the following is the case:
(a) A is present in Table(Π).
(b) Fact yesA is present in Table(Π), and there exists in Π either fact A or a rule of the

form A← L1, . . . , Ln, n > 0, such that every Li, i ≥ n, succeeds. Definite success of
A is a particular case.

In consequence of success of A, fact A is added to Table(Π) (if not already present), and
fact yesA is removed.

(2) Atom A fails if one of the following is the case:
(a) Fact yesA is not present in Table(Π), and therefore A is unprovable.
(b) A definitely fails.
(c) There exists no rule of the form A← L1, . . . , Ln, n > 0, such that every Li succeeds,

as one of the following is the case:
(i) Some positive literal, among L1, . . . , Ln, fails.

(ii) Some negative literal, among L1, . . . , Ln, fails.
(iii) Any possible derivation of some of the Lis, i ≤ n, incurs into not A directly, i.e.,

not through layers of negation.
(iv) Any possible derivation of some of the Lis i ≤ n, incurs into A through layers of

negation that do not involve not A.
In cases (iii) and (iv) we say that A is forced to failure. In consequence of failure of A,
fact yesA is removed from Table(Π) (if present). In case A is forced to failure, for every
positive literal B encountered in the derivation from A to, respectively, A or not A, fact
yesB is removed from Table(Π) (if present).

(3) Literal not A succeeds if one of the following is the case:
(a) Fact not A is present in Table(Π).

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

78

(b) A fails.
(c) A does not fail, rather any derivation of not A incurs through layers of negation again

into not A; In this case we say that not A is allowed to succeed.
In consequence of success of not A, fact yesA is removed from Table(Π) (if present), and
fact not A is added to Table(Π). In case however not A is allowed to succeed, in case the
parent subgoal fails yesA is restored and not A is removed.

(4) Literal not A fails if A succeeds.

From this extension of the notions of success and failure we obtain RAS-XSB-
Resolution as an extended XSB-Resolution. The “naive” definition is the following
(a precise operational definition will require a punctual modification of all definitions
related to XSB).

Definition 15 (A “naive” RAS-XSB-resolution). Given a program Π , let assume as
input the data structure Table(Π) used by the proof procedure for tabling purposes,
i.e., the table associated with the program (or simply “program table”). Given a query
?− A, the list of current subgoals is initially set to L1 = {A}. If in the construction
of a proof-tree for ?− A a literal Lij is selected in the list of current subgoals Li,
we have that: if Lij succeeds then we take Lij as proved and proceed to prove Lij+1

after the related updates to the program table. Otherwise, we have to backtrack to the
previous list Li−1 of subgoals. Conditions for success and failure are those specified in
Definition 14. Success and failure determine the modifications to Table(Π) specified for
XSB-resolution, plus those specified in Definition 14. Backtracking involves restoring
previous contents of Table(Π).

Definition 16. Given a program Π , its associated table Table(Π), a free query is a
query ?− A which is posed on Π when the table has just been initialized. A contextual
query is a query ?− B which is posed on Π leaving the associated table in the state
created by former queries.

Success of query ?− A means that there exist resource-based answer sets that con-
tain A. These sets are further characterized by the final content of Table(Π), which
encompasses a number of literals which hold in therein. Backtracking on ?−A accounts
to asking whether there are other different resource-based answer sets containing A,
and implies accordingly backtracking Table(Π) to previous contents. Instead, posing a
subsequent query ?−B without resetting the contents of Table(Π), which constitutes a
context, accounts to asking whether some of the already-computed resource-based an-
swer sets containing A also contain B. Contextual queries and sequences of contextual
queries are formally defined below.

Definition 17 (Query sequence). Given a program Π and k > 1 queries ?− A1, . . . ,
?−Ak performed one after the other, Table(Π) is initialized only before posing ?−A1.
Thus, ?− A1 is a free query where each ?−Ai, is contextual w.r.t. the previous ones.

To show the application of RAS-XSB-resolution to single queries and to a query
sequence, let us consider the following sample program Π , which includes virtually
all cases of potential success and failure. The well-founded model of this program is
〈{e}, {d}〉, since e is true as it is a fact, d is false as it has no defining rules, and

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

79

all the other atoms are undefined. In fact, they are involved in negative circularities
either directly or indirectly (through dependencies, like s and f). There is an even cycle
involving a and g, and a unary odd cycle on p, which however depends upon its own
negation indirectly, i.e., p depends upon h which in turn depends upon not p.
r1. a← not g.
r2. g ← not a.

r3. s← not p.
r4. p← h.

r5. h← not p.
r6. f ← not a, d.

r7. f ← not g, e.
r8. e.

The resource-based answer sets of such Π are M1 = {e, a, f, s} and M2 = {e, s, g}.
Below we illustrate some derivations. Initially, Table(Π) includes yesA for ev-

ery atom occurring in some rule head: Table(Π) = {yesa ,yesb,yesc,yese ,yesf ,yesg ,
yesp,yesh ,yess}. Let us go through the proof of query ?−f , assuming to adopt a Prolog-
like search strategy: applicable rules from first to last as they occur in the program,
literals in rule bodies from left to right. Each additional layer of ?− indicates nested
derivation of A whenever literal not A is encountered. In the comment, we refer to
cases of RAS-XSB-resolution as specified in Definition 14.

?− f.
?− not a, d. % via r6
?−?− a.
?−?− not g. % via r1
?−?−?− g.
?−?−?− not a. % via r2. not a succeeds by case 3.c, Table(Π) = Table(Π) ∪ {not a} \ {yesa}
?− d. % d fails by case 2b, previous Table(Π) restored, backtracking
?− not g, e. % via r7
?−?− g.
?−?− not a. % via r2
?−?−?− a.
?−?−?− not g. % via r1. not g succeeds by case 3.c, a succeeds by case 1.b,

Table(Π) = Table(Π) ∪ {a, not g} \ {yesa, yesg}
?− e. % e succeeds by case 1.b, overall query f succeeds by case 1.b

Table(Π) = Table(Π) ∪ {e, f} \ {yese, yesf }
Assuming now to go on to query the same context, i.e., without re-initializing
Table(Π), queries ?− c and ?− g quickly fail by cases 3.c and 1.a, since a ∈ Table(Π).
Query ?−e succeeds immediately by case 1.a as e ∈ Table(Π). We can see that the con-
text we are within corresponds to resource-based answer set M1, where only s remains
to be proved. This can be done as follows:

?− s.
?− not p. % via r3
?−?− p.
?−?− h. % via r4
?−?− not p. % via r5, p fails by case 2.c.iii, h fails by case 2.c.ii, Table(Π) =

Table(Π) \ {yesp, yesh}. not p succeeds by case 3.b, s succeeds by case 1.b,
Table(Π) = Table(Π) ∪ {not p, s} \ {yess}

It remains to show how the derivation of h proceeds, as it involves the tricky case
of a positive dependency through negation, where h is still undefined under the well-
founded semantics.

?− h.
?− not p. % via r5
?−?− p.

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

80

?−?− h. % h fails by case 2.c.iv. not p succeeds by case 3.b
Table(Π) = Table(Π) \ {yesp, yesh} ∪ {not p}

6 Properties of RAS-XSB-resolution

Properties of resource-based answer set semantics are strictly related to properties of
RAS-XSB-resolution. In fact, thanks to Relevance we can have soundness and correct-
ness, and Modularity allows for contextual query and locality in constraint-checking.

Theorem 1. RAS-XSB-resolution is correct and complete w.r.t. resource Answer Set
semantics, in the sense that, given program Π , query ?− A succeeds under RAS-XSB-
resolution with an initialized Table(Π) iff there exists resource-based answer set M
for Π where A ∈M .

Theorem 2. RAS-XSB-resolution is contextually correct and complete w.r.t. resource
Answer Set semantics, in the sense that, given program Π and query sequence
?− A1, . . . , ?− Ak, k > 1, we have that, for {B1, . . . , Br} ⊆ {A1, . . . , Ak} and
{D1, . . . , Ds} ⊆ {A1, . . . , Ak}, the queries ?− B1, . . . , ?− Br succeed while ?−D1,
. . . , ?−Ds fail under RAS-XSB-resolution, iff there exists resource-based answer set M
for Π where {B1, . . . , Br} ⊆M and {D1, . . . , Ds} ∩M = ∅.

In fact, keeping in Table(Π) atoms and literals proved so far accounts to perform-
ing the simplification of given program Π w.r.t. a resource-based answer set computed
for the subprogram including relevant rules of previous queries. Therefore, the result
descends from Modularity of resource-based answer set semantics. It remains to con-
sider the issue of constraint checking. Notice that, due to modularity of RAS, if Π is
admissible, then only constraints relevant to given query need to be checked.

Proposition 4. Let Π be an admissible program w.r.t. the constraints ← H1, . . . ,←
Hh (it has admissible answer sets). Let ← H1, . . . ,← Hk, k ≤ h be the relevant
constraints for a query ?−A. Then, if ?−A succeeds and each Hi, i ≤ k, considered as a
query, contextually succeeds as well, then there exists some admissible resource-based
answer set M for Π with A ∈ M .

If admissibility ofΠ is unknown, all constraints must instead be checked. Checking
constraints on the state of Table(Π) left by a query alleviates the efficiency problem.
“Smart” heuristics, such as those presently adopted by answer set solvers, for checking
constraints during the proof process might also be in order.

7 Discussion and Concluding Remarks

A relevant question about RAS-XSB-resolution concerns whether it is applicable to
non-ground queries and programs. By resorting to standard unification, non-ground
queries on ground programs are managed without substantial modifications. We claim
that the procedure can be extended to non-ground programs without requiring prelimi-
nary program grounding. Transforming this claim into evidence requires however an ac-
tual reworking of XSB-resolution definitions and proofs. This is a topic for future work.

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

81

Another relevant question is whether RAS-XSB-resolution might be extended to
plain ASP. Unfortunately, an ASP program may have a quite complicated structure: the
effort of in [7] has been in fact that of performing a layer-based computation upon some
conditions. Thus, the adoption of RAS-XSB-resolution is possible at the condition of
structuring an ASP program so that constraints are at the top layer. Many applications
are already expressed in this form, which means that the proposed procedure may have
an impact beyond resource-based answer set semantics.

In summary, we have proposed the theoretical foundations of a proof procedure re-
lated to a reasonable extension of answer set programming. The procedure has been
obtained by exploiting properties of both answer set semantics and resource-based an-
swer set semantics, which enable us to resort as a starting point to XSB-resolution. The
new procedure has drawn inspiration from the tabling feature of XSB-resolution. Fu-
ture work includes a precise definition of RAS-XSB-resolution, and an implementation,
that should then be checked and experimented on (suitable versions of) well-established
benchmarks (see, e.g., [34, 35]). We also intend to investigate an integration of RAS-
XSB-resolution with principle and techniques proposed in [8], so as to further enlarge
its applicability.

References

[1] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowal-
ski, R., Bowen, K., eds.: 5th ICSLP, MIT Press (1988) 1070–1080

[2] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

[3] Marek, V.W., Truszczyński, M. In: Stable logic programming - an alternative logic pro-
gramming paradigm. Springer (1999) 375–398

[4] Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press (2003)

[5] Truszczyński, M.: Logic programming for knowledge representation. In Dahl, V., Niemelä,
I., eds.: Logic Programming, 23rd Intl. Conference, ICLP 2007. (2007) 76–88

[6] Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation. Chapter 7. Elsevier
(2007)

[7] Gebser, M., Gharib, M., Mercer, R.E., Schaub, T.: Monotonic answer set programming. J.
Log. Comput. 19(4) (2009) 539–564

[8] Bonatti, P.A., Pontelli, E., Son, T.C.: Credulous resolution for answer set programming. In
Fox, D., Gomes, C.P., eds.: AAAI 2008, AAAI Press (2008) 418–423

[9] Web references on ASP: Clasp: potassco.sourceforge.net; Cmodels: www.cs.
utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.ac.at/proj/
dlv; Smodels: www.tcs.hut.fi/Software/smodels.

[10] Dix, J.: A classification theory of semantics of normal logic programs I-II. Fundam. Inform.
22(3) (1995) 227–255 and 257–288

[11] Costantini, S., Formisano, A.: Answer set programming with resources. Journal of Logic
and Computation 20(2) (2010) 533–571

[12] Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on re-
source consumption and production in ASP. Journal of Algorithms in Cognition, Informat-
ics and Logic 64(1) (2009) 3–15

[13] Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Funda-
menta Informaticae 105(1-2) (2010) 1–33

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

82

[14] Costantini, S., Formisano, A.: RASP and ASP as a fragment of linear logic. Journal of
Applied Non-Classical Logics (JANCL) 23(1-2) (2013) 49–74

[15] Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102
[16] Costantini, S., Formisano, A.: Negation as a resource: A novel view on answer set seman-

tics. In Cabalar, P., Son, T.C., eds.: LPNMR 2013. Vol. 8148 of LNCS., Springer (2013)
257–263 Long Version in [36].

[17] Marek, V.W., Truszczynski, M.: Reflective autoepistemic logic and logic programming. In:
LPNMR. (1993) 115–131

[18] Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. J. ACM 38(3) (1991) 620–650

[19] Swift, T., Warren, D.S.: Xsb: Extending Prolog with tabled logic programming. TPLP
12(1-2) (2012) 157–187

[20] Chen, W., Warren, D.S.: A goal-oriented approach to computing the well-founded seman-
tics. J. Log. Program. 17(2/3&4) (1993) 279–300

[21] Costantini, S., Formisano, A.: Query answering in resource-based answer set semantics.
Extended version, available at http://www.dmi.unipg.it/formis/papers/
CosForASPOCPExtended.pdf

[22] Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
[23] Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. J. Log. Program. 19/20

(1994) 9–71
[24] Costantini, S.: Contributions to the stable model semantics of logic programs with negation.

Theoretical Computer Science 149(2) (1995) 231–255
[25] Costantini, S.: On the existence of stable models of non-stratified logic programs. Theory

and Practice of Logic Programming 6(1-2) (2006)
[26] Lin, F., Zhao, X.: On odd and even cycles in normal logic programs. In McGuinness, D.L.,

Ferguson, G., eds.: Proceedings of AAAI 2004, AAAI Press / The MIT Press (2004) 80–85
[27] Costantini, S., Formisano, A.: Resource-based answer set semantics. Submitted to a jour-

nal, draft available at www.dmi.unipg.it/formis/papers/CF_NARdraft.pdf
[28] Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In

Bento, C., Cardoso, A., Dias, G., eds.: Progress in Artificial Intelligence, Proc. of EPIA
2005. Vol. 3808 of LNCS., Springer (2005)

[29] Pereira, L.M., Pinto, A.M.: Tight semantics for logic programs. In Hermenegildo, M.V.,
Schaub, T., eds.: Tech. Comm. ICLP 2010. Vol. 7 of LIPIcs. (2010) 134–143

[30] Osorio, M., López, A.: Expressing the stable semantics in terms of the pstable semantics.
In: Proc. of the LoLaCOM06 Workshop. Vol. 220 of CEUR Workshop Proc. . (2006)

[31] Osorio, M., Pérez, J.A.N., Ramı́rez, J.R.A., Macı́as, V.B.: Logics with common weak
completions. J. Log. Comput. 16(6) (2006) 867–890

[32] Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. of ICLP’94. (1994) 23–37
[33] Cadoli, M.: The complexity of model checking for circumscriptive formulae. Inf. Process.

Lett. 44(3) (1992) 113–118
[34] Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming competi-

tion. AI Magazine 33(4) (2012) 114–118
[35] Alviano, M. et al.: The fourth answer set programming competition: Preliminary report. In

Cabalar, P., Son, T.C., eds.: Proc. of LPNMR 2013. Vol. 8148 of LNCS. (2013) 42–53
[36] Costantini, S., Formisano, A.: Negation as a resource: A novel view on answer set se-

mantics. In Cantone, D., Nicolosi Asmundo, M., eds.: CILC 2013. Vol. 1068 of CEUR
Workshop Proceedings. (2013)

S. Costantini and A. Formisano. Query Answering in Resource-Based Answer Set Semantics

83

Specification and Verification of Commitment-Regulated
Data-Aware Multiagent Systems ?

Marco Montali1, Diego Calvanese1, and Giuseppe De Giacomo2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
lastname@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
lastname@dis.uniroma1.it

Abstract. In this paper we investigate multiagent systems whose agent interaction
is based on social commitments that evolve over time, in presence of (possibly
incomplete) data. In particular, we are interested in modeling and verifying how
data maintained by the agents impact on the dynamics of such systems, and on
the evolution of their commitments. This requires to lift the commitment-related
conditions studied in the literature, which are typically based on propositional
logics, to a first-order setting. To this purpose, we propose a rich framework for
modeling data-aware commitment-based multiagent systems. In this framework,
we study verification of rich temporal properties, establishing its decidability under
the condition of “state-boundedness”, i.e., data items come from an infinite domain
but, at every time point, each agent can store only a bounded number of them.

1 Introduction

In this paper we investigate multiagent systems (MASs) whose agent interaction is based
on social commitments that evolve over time, in presence of possibly incomplete data.
MASs based on social commitments have been extensively studied in the literature
[8]. Intuitively, a social commitment CC(d, c, qp, qd) models a relationship between a
debtor agent d and a creditor agent c, in which d commits towards c that, whenever
condition qp holds in the system, it will bring about condition qd in the following
course of interaction. Commitments provide a semantics for the agent interaction that
abstracts away from the internal agent implementation, and can be thus employed to
specify business protocols and contracts. The establishment of commitments is regulated
by contracts, which depend on domain-specific events and conditions. Established
commitments, in turn, have a lifecycle that is regulated by a so-called commitment
machine [12] on the basis of such contracts. While in the literature, virtually all the work
is based on propositional contents for such commitments [8], here we explicitly manage
data described through first-order formalisms, in line with [7]. In other words, we study
how data maintained by the agents impact on the dynamics of such systems, and on the
evolution of their commitments. Technically, this requires to lift to first-order the notions
related to contracts, commitments, and commitment machines.

As a result, we obtain a powerful framework of data-aware commitment-based
MASs (DACMASs), which incorporates the typical notions of commitment-based MASs

? This paper is a short version of [10], to be presented at AAMAS 2014.

84

but in a rich, data-aware context. In our framework, the commitment machine itself
becomes a special agent, called institutional, which is a agent, in charge of supporting the
evolution of the system according to the commitments. In addition, this agent manages
core information about the MAS itself, such as the list of participating agents, which
changes over time as the system unfolds. In this light, it maintains and manipulates a
common knowledge base, of interest for all the interacting agents. The data manipulated
by the agents are described in terms of a domain ontology, expressed in a lightweight
description logic (DL), tailored towards ontology-based data access. This ontology
provides a common ground for the agent interaction and commitments, establishing the
vocabulary that is shared by all of them. In particular, we rely on DLR-Lite [5], which is
the n-ary version of the DL at the base of the OWL 2 QL profile of the OWL 2 semantic
web standard. Each agent has its own data about the domain and the contracts it is
involved in, expressed in terms of such ontology. Such data are manipulated through
actions, in response to events and according to the commitments in place. At each point
in time, only a finite number of data is present in the system. However, such data change
over time: old data are removed by the agents, and new data (coming from a countably
infinite domain ∆) are inserted.

Our main result is that, when a DACMAS is state-bounded, i.e., the number of
data that are simultaneously present at each moment in time is bounded, verification
of rich temporal properties becomes decidable. More specifically, we are able to check
DACMASs against properties expressed in a sophisticated first-order variant of µ-
calculus with a controlled form of quantification across states. We do this by exploiting
recent results in [2], and reducing verification of state-bounded DACMASs to finite-state
model checking through a faithful form of abstraction, essentially obtained by replacing
real data items with a finite number of symbolic values, while correctly preserving the
relationships among the real data items themselves.

2 Preliminaries

Description Logics (DLs) [1] are logics that represent the domain of interest in terms of
objects, concepts, denoting sets of objects, and relations between objects. We consider
here the DL DLR-Lite [5], which is a DL that belongs to the DL-Lite family of lightweight
DLs and that is equipped with relations of arbitrary arity. In DLR-Lite, concepts C and
relations R are built from atomic concepts N and atomic relations P (of arity ≥ 2):

C −→ N | P [i] | C u C R −→ P | P [i1, . . . , ih]

where h ≥ 2 and for i1, . . . , ih, which denote pairwise distinct components of relation
P , we have that {i1, . . . , ih} ⊆ {1, . . . , n}, where n is the arity of P . Similarly, i ∈
{1, . . . , n}. Intuitively, u denotes concept conjunction, while P [i1, . . . , im] denotes the
projection of relation P on its components i1, . . . , im. This results in a concept if m = 1
and in a relation otherwise.

Formally, the semantics of DLs is given in terms of first-order interpretations I =
(∆I , ·I), where ∆I is a nonempty interpretation domain, and ·I is an interpretation
function, assigning to each concept C a subset CI of ∆I , and to each n-ary relation R
an n-ary relation RI over ∆I such that

(C1 u C2)I = CI1 ∩ CI2
(P [i1, . . . , im])I = {(o′1, . . . , o′m) | there is o ∈ P I s.t. o[ij] = o′j , for j ∈ {1, . . . ,m}}

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

85

(Here, o[i] denotes the i-th component of tuple o.) Also, ·I assigns to each constant a an
object aI of ∆I . We adopt the unique name assumption, i.e., a1 6= a2 implies aI1 6= aI2 .

In DLs, knowledge about the domain of interest is encoded in an ontology O =
〈T ,A〉, which is formed by a TBox T , encoding intensional knowledge, and an ABox A,
encoding extensional knowledge about individuals objects.

A DLR-Lite TBox is a finite set of assertions of the form:

E1 v E2 (concept/relation inclusion assertion),
E1 v ¬E2 (concept/relation disjointness assertion),

(key i1, . . . , i`:R) (key assertion),

where R has arity n, and 1 ≤ i1 < i2 < · · · < i` ≤ n. To ensure decidability of
inference, and good computational properties, we require that no relation P can appear
both in a key assertion and in the right hand side of a relation inclusion assertion [11,5].

A DLR-Lite ABox is a finite set of assertions of the form:

N(a1) (concept membership assertion),
P (a1, . . . , an) (relation membership assertion),

where P has arity n, and a1, . . . , an denote constants.
The semantics of an ontology is given by stating when an interpretation I satisfies

an assertion, where I satisfies: E1 v E2, if EI1 ⊆ EI2 ; E1 v ¬E2, if EI1 ∩ EI2 = ∅;
(key i1, . . . , i`:R), if there are no two distinct tuples in RI that agree on all their
components i1, . . . , i`; N(a1), if aI1 ∈ NI ; and P (a1, . . . , an), if (aI1 , . . . , a

I
n) ∈ P I .

A model of an ontology O = 〈T ,A〉 is an interpretation that satisfies all assertions in T
and A. An ontology O is satisfiable if it has at least one model, and it logically implies
an assertion α, written O |= α, if all models of O satisfy α.

Next we introduce queries, whose answers, as usual in ontologies, are formed
by constants denoting individuals explicitly mentioned in the ABox. A union of con-
junctive queries (UCQ) q over an ontology 〈T ,A〉 is a FOL formula of the form∨n
i=1 ∃yi.conj i(x,yi) with free variables x and existentially quantified variables

y1, . . . ,yn. Each conj i(x,yi) in q is a conjunction of atoms of the form N(z), P (z),
where N and P respectively denote a concept and a role name occurring in T , and z, z
are constants of A or variables in x,y1, . . . ,yn. The (certain) answers to q over 〈T ,A〉
is the set ANS(q, T ,A) of substitutions θ of the free variables of q with constants in A
such that qθ evaluates to true in every model of 〈T ,A〉, denoted 〈T ,A〉 |= qθ. DLR-Lite
enjoys nice computational properties, in particular w.r.t. query evaluation: computing the
certain answers to a UCQ can be done in polynomial time in the size of 〈T ,A〉, and in
AC0 in the size of A alone (i.e., in data complexity) [5]. Such result is based on the FOL
rewritability property of DLR-Lite [5], which states that for every UCQ q and TBox T , we
can rewrite q into a new UCQ rewT (q) such that ANS(q, T ,A) = ANS(rewT (q), ∅,A),
for every ABox A. In other words, the TBox can be “compiled away”.

We also consider ECQs, which are FOL queries whose atoms are UCQs evaluated
according to the certain answer semantics above [4]. An ECQ over T andA is a possibly
open formula of the form (where q is a UCQ):

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

The (certain) answers to Q over 〈T ,A〉, is the set of substitutions θ of the free variables
of Q with constants in A defined by composing the certain answers of the UCQs q in Q

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

86

through first-order constructs, and interpreting existential variables as ranging over the
constants inA. Hence, the first-order constructs in ECQs are interpreted under a (weaker)
epistemic semantics. ECQs over DLR-Lite ontologies enjoy the same computational
properties as UCQs, in particular FOL rewritability of query answering [4].

3 Framework

We introduce now our framework for modeling DACMASs. Formally, a DACMAS is
a tuple 〈T , E ,X , I, C,B〉, where: (i) T is a global DLR-Lite TBox; (ii) E is a set of
predicates denoting events (where the predicate name is the event type, and the arity
determines the content/payload of the event); (iii) X is a finite set of agent specifica-
tions; (iv) I is a (partial) specification for the institutional agent; (v) C is a contractual
specification; (vi) and B is a Commitment Box (CBox).

3.1 The Global TBox

The global TBox represents the key concepts, relations and constraints characterizing
the domain in which the agents operate, so as to provide a common ground for the agent
interaction. Part of this TBox is fixed for every agent system, and is used to model core
notions related to the system itself. The extension of such core notions is maintained
by a single, special institutional agent, which is also responsible for the manipulation
of commitments (cf. Section 3.6). The data maintained by such an agent are publicly
available and can be queried by the other agents, but only modified by the institutional
agent. Specifically, the institutional agent maintains data about the following relations:
– Agent denotes the set of (names of) agents that currently participate to the system.
Since the institutional agent is always part of the system, we fix its name as inst, and
enforce that inst always belongs to the extension of Agent.
– Spec, whose extension is immutable, denotes the set of agent specification names
mentioned in X (cf. Section 3.2).
– hasSpec connects agents with their current specification(s): hasSpec[1] v Agent,
hasSpec[2] v Spec.

Each agent, including the institutional agent, maintains a proprietary DLR-Lite ABox,
in which it stores its own data. Such data can be queried only by the agent itself and by
the institutional agent, which exploits the results of such queries to keep track of the
evolution of commitments. Furthermore, each agent progresses its own ABox during the
execution in such a way that it is always consistent with the global TBox T . Notice that
the overall collection of ABoxes is not assumed to be consistent with the TBox, i.e., the
TBox assertions are only required to be satisfied by each agent individually.

Since, in general, queries may involve the ABoxes of several agents, to disambiguate
to which ABox a query atom refers, we augment the vocabulary of the TBox with a
location argument that points to an agent. We use R@a(x) to denote an atomic query
returning the extension of R in the ABox of a. If a does not point to an agent currently in
the system, then R@a(x) evaluates to empty. Beside the special constant inst, we also
use self to implicitly refer to the agent that is posing the query (similarly to “this” in
object-oriented programming). When clear from the context, we omit @self and just
use relations without the location argument. We denote with UCQ` (resp., ECQ`) the
language obtained from UCQ (resp., ECQ) by extending atoms with a location argument.

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

87

3.2 Agent Specifications

In a DACMAS, agents interact by exchanging messages. A message is sent by a sender
agent to a receiver agent, and is about the occurrence of an event with a payload,
containing data to be communicated. All agents but the institutional one are only aware
of the events they send and receive. As for data, the institutional agent has instead
full visibility of all exchanged messages, so as to properly handle the evolution of
commitments. Agents determine the events they may send, and also how they react to
events, through proactive and reactive rules. Such rules are grouped into behavioural
profiles called agent specifications, and model: (i) the possible, proactive emission of an
event, directed to another agent (communicative rule); (ii) conditional internal (re)actions,
which lead to update the agent ABox when sending/receiving an event to/from another
agent (update rule). The update could result in the insertion of new data items (from the
countably infinite domain ∆), not already present in the system.

The exchange of a message represents a synchronization point among the sender,
receiver and institutional agent. Hence, the reaction of the three agents is interpreted as
a sort of transaction, such that each of them effectively enforces the update on its own
ABox only if each of the three resulting ABoxes is consistent with T . An inconsistency
could potentially arise when reacting to an event either because the same data item is
asserted to be member of two disjoint classes, or because a key assertion is violated.

Formally, an agent specification is a tuple 〈sn, Π〉, where sn is the specification
name, and Π is a set of communicative and update rules. Such rules are defined over the
vocabulary of T and B, and are applied over the ABoxes of the agent and of inst. This
allows the agent to query the status of commitments and obtain the names of the other
participants. A communicative rule has the form

Q(r,x) enables EV(x) to r

where Q is an ECQ`, and EV(x) is an event supported by the system, i.e., predicate
EV/|x| belongs to E . The semantics of a communicative rule is as follows. Whenever
Q(r,x) evaluates positively, the agent autonomously selects one of the answers θ
returned by the query, using it to determine the event receiver and its payload. This states
that the ground event EV(x)θ can be sent by the agent to rθ, provided that rθ points to
an actual agent name in the system (including the two special names inst and self).

Example 1. Consider a DACMAS where customers and sellers interact to exchange
goods. We model the behavioural rules for customers and sellers using two agent
specifications. To buy from a seller, a customer must register to that seller. A registration
request is modeled in the customer specification as:

Spec@inst(sel, seller) enables REQ REG to sel

Assuming that each seller maintains its customers and items respectively in relations
MyCust and Item, the proposal of an item to a customer is modeled in the seller specifi-
cation as: MyCust(m) ∧ Item(i) enables PROPOSE(i) to m.

Update rules are ECA-like rules of the form:
– on EV(x) to r if Q(r,x) then α(r,x) (on-send)
– on EV(x) from s if Q(s,x) then α(s,x) (on-receive)

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

88

where EV/|x| is an event type from E , Q is an ECQ`, and α is an update action with
parameters (described below). Each such rule triggers when an event is sent to/received
from another agent, and Q holds. This results in the application of α using the actual
event payload and receiver/sender. Action α queries the ABox of the agent and of inst,
using the answers to add and remove facts to the ABox.

Formally, an update action is an expression α(p) : {e1, . . . , en}, where α(p) is
the action signature (constituted by the name α and by a list p of parameters), and
{e1, . . . , en} are update effects, each of which has the form

[q+(p,x)] ∧Q−(p,x) add A,del D

– q+ is an UCQ`, and Q− is an ECQ` whose free variables occur all among those
of q+; intuitively, q+ selects a set of tuples from the agent ABox and that of inst,
while Q− filters away some of them.3 During the execution, the effect is applied with
a ground substitution d for the action parameters, and for every answer θ to the query
[q+(d,x)] ∧Q−(d,x).
– A is a set of facts (over the alphabet of T and B) which include as terms: free variables
x of q+, action parameters p and/or Skolem terms f(x,p). We use SKOLEM(A) to
denote all Skolem terms mentioned in A. At runtime, whenever a ground Skolem term is
produced by applying θ to A, the agent autonomously substitutes it with a possibly new
data item taken from ∆. This mechanism is exploited by the agent to inject new data
into the system. The ground set of facts so obtained is added by the agent to its ABox.
– D is a set of facts which include as terms free variables x of q+ and action parameters
p. At runtime, whenever a ground fact in D is obtained by applying θ, it is removed
from the agent ABox.
As in STRIPS, we assume that additions have priority over deletions (i.e., if the same
fact is asserted to be added and deleted during the same execution step, then the fact is
added). The “add A” (resp. “del D”) part can be omitted if A = ∅ (resp., if D = ∅).

Example 2. Consider three possible reaction rules for the seller. The fact that the seller
makes every agent that sends a request become one of its customers is modeled as:

on ASK REG from c if true then makeCust(c)

where makeCust(x) : {[true] add{MyCust(x)}}. Assume now that the seller
maintains the item cart for a customer, using relation InCart(i, c) to model that item i is
in the cart of c. The seller reaction to an “empty cart” request is modeled as:

on EMPTY CART REQ from c if MyCust(c) then doEmpty(c)

where doEmtpy(c) : {[InCart(i, c)] del{InCart(i, c)}}. Note that the effect is ap-
plied to each i in the cart of c. Consider now the case where the seller receives a new
item i to be sold. It reacts by adding i and deciding its price (denoted with Skolem p(i)):

on NEW ITEM(i) from a if true then addItem(i)

where addItem(i) : {[true] add{Item(i),Price(i, p(i))}}.
3 The distinction between q+ and Q− is needed for technical reasons, borrowed from [2].

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

89

3.3 Institutional Agent Specification

The institutional agent inst manages the core information of the DACMAS. Its behaviour
is (partially) captured by the institutional agent specification I, which differs from the
other agent specifications in two respects. First, since inst is aware of all messages
exchanged by the other agents and can query their ABoxes, its specification is not only
constituted by communicative rules and on-send/on-receive reactive rules, but also by
on-exchange rules of the form:

on EV(x) from s to r if Q(s, r,x) then α(s, r,x)

where Q and α can query the internal ABox of the institutional agent, and the ABoxes
of s and r. To conveniently specify reactions of inst that do not depend on a specific
event, but trigger whenever an event is exchanged, we use:

on any event from s to r if Q(s, r) then α(s, r)

Second, I is only a partial specification for inst. In fact, inst is also responsible for
the manipulation of commitments, which results in a set of additional on-exchange rules
that, starting from the contractual specification (cf. Section 3.4), encode the commitment
machines for the commitments involved in the contract. These rules are automatically
extracted from the contractual specification (cf. Section 3.6).

Example 3. Consider a portion of institutional agent specification, modeling the creation
of a new agent whenever inst receives a request (whose payload denotes the specification
to be initially followed by that agent). To handle this request, inst uses relation NewA to
store a newly created agent together with is initial specification. The axiom NewA[1] v
¬Agent is part of T , and enforces that a new agent has indeed a new name. The behaviour
is defined in two steps. In the first step, inst reacts to a creation request by choosing an
agent name (using Skolem term n()). The reaction is applied only if there is no pending
new agent to be processed.

on AG REQ(s) from a if ¬(∃x∃y.NewA(x, y)) then create(s)

create(s) : { [true] add{NewA(n(), s))} }

Note that axiom NewA[1] v ¬Agent ensures that the update is blocked if the chosen
name is already used in the system.

In the second step, inst informs itself that a new agent has to be processed; the
corresponding reaction finalizes the insertion of the new agent, moving it to the set of
participating agents:

NewA(a, s) enables INSERT AG(a, s) to self

on INSERT AG(a, s) from self if true then do ins(a, s)

do ins(a, s) : { [true] add{Agent(a),Spec(a, s)}, del{NewA(a, s)} }

3.4 Contractual Specification

The contractual specification C consists of a set of commitment rules, which are reactive
rules similar to on-exchange rules. The main difference is that, instead of actions, they

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

90

describe (first-order) conditional commitments and their creation:

on EV(x) from s to r if Qc(s, r,x) (∗)
then CCn(s, r, [q+p (s, r,x,y)] ∧Q−p (s, r,x,y), Qd(s, r,x,y))

where n is the commitment name, the ECQ` Qc is the condition for the creation of the
conditional commitment, [qp]

+ ∧Q−p (where, as in update effects, q+p is a UCQ`, and
Q−p is an ECQ` whose free variables all occur among those of q+p) is the precondition
determining the generation of a corresponding base-level commitment, and the ECQ`

Qd is the discharge condition for such base-level commitment. All the aforementioned
queries can be posed over the ABoxes of s, r, and inst. We use GET-CC(C) to extract the
set of conditional commitments contained in C.

According to the literature, commitments are manipulated either explicitly via spe-
cific events (such as a commitment cancellation or delegation), or implicitly when the
commitment precondition or discharge condition becomes true. The allowed commit-
ment manipulations, together with the resulting commitment states, are captured by
means of a commitment machine [12]. In this work, we consider a simple commitment
machine, inspired by [12,13], and show how to lift it to a first-order setting, taking into
account that in our framework the precondition and the discharge condition are specified
through queries over the data of the involved agents. More elaborated commitment
machines, in terms of events and states, can be seamlessly incorporated.

Specifically, every commitment in GET-CC(C) is associated to a specific first-order
commitment machine, which is activated using the corresponding commitment rule in
C of the form above, instantiated possibly multiple times, depending on the agent data.
The machine evolves as follows:
1. When an event of type EV is sent by agent a to agent b with payload d, if Qc(a, b,d)
is satisfied, an instance of the conditional commitment n is created. The debtor, creditor,
and payload of this instance are respectively a, b, and d.
2. Such instance is explicitly or implicitly manipulated by the involved agents. Explicit
manipulation is done via specific message exchanges; we consider in particular the case
of delegation from the debtor a to a new debtor, and the case of cancellation. Implicitly,
instead, the instance can generate one or more corresponding base-level commitment
instances: whenever [q+p (a, b,d, v)] ∧ Q−p (a, b,d, v) is satisfied with actual values v
for variables y, the conditional commitment instance creates a base-level commitment
instance with payload d and v. Such base-level instance is put into the active state. The
discharge condition for this instance is the instantiation of Qd with the involved agents
and specific payload, i.e., a is committed to bring about Qd(a, b,d, v).
3. Also a base-level commitment instance is explicitly and implicitly manipulated by the
involved agents. Explicit manipulation of an active base-level instance resembles that of
conditional commitment instances, with the difference that, when canceled, a base-level
commitment instance enters into the violated state. Implicit manipulation determines
instead the discharge of the instance as soon as Qd(a, b,d, v) holds, moving the instance
from active to satisfied.

Example 4. Consider a commitment rule establishing a conditional commitment that
the seller takes whenever it accepts the registration of a customer c. The conditional
commitment is about the delivery of items paid by c. Specifically, for each item sold by
the seller, if c has paid that item, then the seller commits to ensure that c will hold that

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

91

item. Note that the two conditions are correlated by the same item, and that a base-level
commitment is created for each paid item. This cannot be expressed in propositional logic.
Assuming that the seller stores a fact Paid(i, c) if c has paid for i, and that the customer
stores a fact Owned(i) whenever it owns i, the commitment rule can be specified as:

on ACCEPT REG from s to c if MyCust@s(c)
then CCDelivery(s, c, [Item@s(i) ∧ Paid@s(i, c)],Owns@c(i))

Note the use of location arguments, reflecting that payments are maintained by the seller,
whereas the items owned by the customer are maintained by the customer itself.

3.5 Commitment Box

The commitment box B is a set of relations used by inst to maintain the concrete
instances of conditional commitments, and the instances of their corresponding base-
level commitments (with their states). In fact, due to the presence of data, commitments
do not only require to keep track of the involved agents, but also of the payload associated
to each of their instances. Such relations are extracted from the contractual specification
as follows. Each commitment CCn(s, r, [q+p (s, r,x,y)] ∧Q−p (s, r,x,y), Qd(s, r,x,y))
in GET-CC(C) induces two relations in B, on the basis of the commitment name n and the
payloads x and y: (i) nCC/ar, where ar = 2 + |x| for debtor, creditor, and conditional
commitment payload; (ii) nC/ar, where ar = 3 + |x|+ |y| for debtor, creditor, state,
and base-level commitment payload.

Example 5. The commitment in Example 4 induces the following relations in B:
DeliveryCC(debtor, creditor) and DeliveryC(debtor, creditor, state, item).

3.6 Commitment Machine Formalization

As anticipated in Section 3.3, the specification of inst must be complemented with a set of
additional on-exchange rules, used to properly manipulate the evolution of commitments
as the interaction unfolds. Commitment instances are stored by inst using the vocabulary
of the CBoxB, and evolved through the application of these rules. Specifically, these rules
ground the (first-order) commitment machine described in Section 3.4 to each specific
commitment of GET-CC(C), according to the “templates” described in the remainder
of this section. We denote with CC-RULES(C) all the commitment manipulation rules
produced from C.

When discussing the templates, we refer to a commitment rule ρ ∈ C of the form (∗)
in Section 3.4. Notice that, when n, x and y are mentioned in the rule templates, they
are meant to be replaced with the actual commitment name and payload variables.
CC creation. For each ρ ∈ C, a corresponding creation rule is obtained, depending on
n and x. When the rule triggers, a new instance of the conditional commitment nCC is
created, with the actual agents and payload:

on EV(x) from s to r if Qc(s, r,x) then create nCC (s, r,x)

create nCC (s, r,x) : { [true] add{nCC(s, r,x)} }

CC delegation. The delegation of a conditional commitment instance for commitment
n is triggered when the old debtor do sends to the new debtor dn a DELEGATE nCC

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

92

event, specifying in the event payload the creditor and the payload of the instance to be
delegated. If such an instance exists, the debtor is updated by inst:

on DELEGATE nCC(c,x) from do to dn if nCC(do, c,x) then changedeb nCC (do, dn, c,x)

changedeb nCC (do, dn, c,x) : { [true] add{nCC(dn, c,x)},del{nCC(do, c,x)}}

CC cancelation. The cancelation of a conditional commitment instance for commitment
n is triggered when the debtor sends to the creditor a CANCEL nCC event, providing the
instance payload. If the instance exists, it is removed:

on CANCEL CC(x) from d to c if nCC(d, c,x) then delete nCC (d, c,x)

delete nCC (d, c,x) : { [true] del{nCC(d, c,x)} }

C creation. Every conditional commitment instance for relation nCC creates a base-level
commitment instance whenever the precondition (whose variables x are grounded with
the instance payload) holds with an answer substitution θ for variables y. This results in
the creation of a new tuple for relation nC with the actual, full payload. This does not
depend on the specific exchanged event, but only on the actual configuration of the data.
Hence, a single “any-event” rule can be used to manage the creation of all base-level
instances at once:

on any event from d to c if true then createC (d, c)

where, for each commitment CCn(s, r, [q+p (s, r,x,y)] ∧Q−p (s, r,x,y), Qd(s, r,x,y))
in GET-CC(C), action createC (d, c) contains the following detachment effect:

[nCC(d, c,x) ∧ q+p (d, c,x,y)] ∧Q−p (d, c,x,y) add {nC(d, c, active,x,y)}

Differently from the propositional formalization of a commitment machine, in which
the conditional commitment detaches to a base-level one, in our setting the conditional
commitment instance is maintained, and keeps waiting for other situations matching the
precondition with different data.
C delegation. It resembles the CC delegation:

on DELEGATE nC(c,x,y) from do to dn
if nC(do, c, active,x,y) then changedeb nC (do, dn, c,x)

changedeb nC (do, dn, c,x,y) :
{[true] add{nC(dn, c, active,x,y)},del{nC(do, c, active,x,y)}}

C cancelation. It determines a transition for the base-level commitment instance from
the active to the violated state:

on CANCEL C(x,y) from d to c if nC(d, c,x,y) then viol nC (d, c,x,y)

viol nC (d, c,x,y) : {[true] add{nC(d, c, viol,x,y)},del{nC(d, c, active,x,y)}}

C discharge. Similarly to the case of C creation, the discharge of base-level commitment
instances is handled by a single “any-event” rule, which checks the discharge condition

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

93

for each active commitment instance with the actual payload, evolving the instance to
the satisfied state if it holds:

on any event from d to c if true then dischargeC (d, c)

where, for each CCn(s, r, [q+p (s, r,x,y)] ∧Q−p (s, r,x,y), Qd(s, r,x,y)) in CC(C), ac-
tion dischargeC (d, c) contains:

[nC(d, c, active,x,y)] ∧Qd(d, c,x,y)
 add{nC(d, c, sat,x,y)}, del{nC(d, c, active,x,y)}

C removal. A last “any-event” reactive rule is used by inst to remove those instances of
base-level commitments that already achieved a final state (sat or viol):

on any event from a to b if true then removeFinal()

where, for each base-level commitment relation nC in B, action removeFinal() contains:

[nC(d, c, s,x,y)] ∧ (s = sat ∨ s = viol) del{nC(d, c, s,x,y)}

Example 6. Assume that the only rule in C is that of Example 4. The following CC
creation rule is produced

on ACCEPT REG from s to c if MyCust@s(c) then create DeliveryCC (s, c)

create DeliveryCC (s, c) : {[true] add{DeliveryCC(s, c)}}

Furthermore, the following C creation and C discharge update actions are produced:

createC (d, c) : {[DeliveryCC(d, c) ∧ Item@d(i) ∧ Paid@d(i, c)]
 add{DeliveryC(d, c, active, i)}}

dischargeC (d, c) : {[DeliveryC(d, c, active, i)] ∧ Owns@c(i)
 add{DeliveryC(d, c, sat, i)},del{DeliveryC(d, c, active, i)}}

4 Execution Semantics

The execution semantics of a DACMAS is defined in terms of a transition system
that, starting from a given initial state, accounts for all the possible system dynamics,
considering all the (possibly infinite) sequences of message exchanges, and all the
possible substitutions that the agents choose during the application of update actions to
provide concrete values for the Skolem terms. Given a DACMAS S = 〈T , E ,X , I, C,B〉
and an initial state σ0, the execution semantics of S over σ0 is defined by a transition
system Υσ0

S = 〈∆, T ∪ B, Σ, σ0,⇒〉, where:
– Σ is a (possibly infinite) set of states. Each state σ ∈ Σ is equipped with a function
abox that, given the name a of an agent, returns the ABox σ.abox(a) of a in σ, if and
only if a participates to the system in state σ, i.e., a belongs to the extension Agent in
σ.abox(inst). Hence, σ.abox(inst) is always defined.
– σ0 ∈ Σ is the initial state. We assume that every ABox A in σ0 is such that (T ,A) is
satisfiable, and that Spec(sn) ∈ σ0.abox(inst) if and only if 〈sn, 〉 ∈ X .
– ⇒ ⊆ Σ ×Σ is a transition relation.

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

94

Instrumental to the definition of the transition system is the extension of answering
ECQ` queries so as to take into account location arguments. Formally, given a TBox T ,
we define thatR@b(x) holds in state σ from the perspective of agent a under substitution
θ for x, written T , σ, a, θ |= R@b(x), if:4

{
σ.abox(a) is defined and (T , σ.abox(a)) |= R(x)θ, if bθ = self
σ.abox(bθ) is defined and (T , σ.abox(bθ)) |= R(x)θ, if bθ 6= self

Note that the semantics supports a sort of dynamic binding of location arguments, using
θ to substitute a variable location argument with an agent name. This relation extends
in the natural way to UCQ` and ECQ`, considering that quantification ranges over the
active domain ADOM(σ) of σ, which is defined as the union of the active domains of
the ABoxes maintained by the agents present in σ. This, in turn, allows us to define the
certain answers to Q obtained by agent a in state σ, denoted ANS`(Q, T , σ, a), as the
set of substitutions θ for the free variables in Q such that Q holds in state σ from the
perspective of a, i.e., ANS`(Q, T , σ, a) = {θ | T , σ, a, θ |= Q}..

The construction of the transition system Υσ0

S is given in Figure 1.

5 Verification of DACMAS

To specify dynamic properties over DACMASs, we use a first-order variant of µ-calculus
[14,6]. µ-calculus is virtually the most powerful temporal logic used for model checking
of finite-state transition systems, and is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL* [9]. In our variant of
µ-calculus, local properties are expressed as ECQ` queries over the current state of the
DACMAS. We allow for a controlled form of first-order quantification across states,
inspired by [2], where the quantification ranges over data items across time only as long
as such items persist in the active domain. Formally, we define the logic µLECQ`

p as:

Φ ::= Q` | ¬Φ | Φ1∧Φ2 | ∃x.LIVE(x)∧Φ | LIVE(x)∧〈−〉Φ | LIVE(x)∧[−]Φ | Z | µZ.Φ

where Q is a (possibly open) ECQ` query, in which the only constants that may appear
are those in the initial state of the system, Z is a second order predicate variable (of arity
0), and LIVE(x1, . . . , xn) abbreviates

∧
i∈{1,...,n} LIVE(xi). For µLECQ`

p , the following
assumption holds: in LIVE(x) ∧ 〈−〉Φ and LIVE(x) ∧ [−]Φ, the variables x are exactly
the free variables of Φ, once we substitute to each bounded predicate variable Z in Φ its
bounding formula µZ.Φ′. We adopt the usual abbreviations, including νZ.Φ for greatest
fixpoints. Intuitively, the use of LIVE(·) in µLECQ`

p ensures that data items are only
considered if they persist along the system evolution, while the evaluation of a formula
with data that are not present in the current state trivially leads to false or true. This is
in line with DACMASs, where the evolution of a commitment instance persists until
the commitment is discharged or canceled, and where an agent name is meaningful
only while it persists in the system: when an agent leaves the system and its name a is
canceled by inst, inst could reuse a in the future to identify another agent.

The formula µZ.Φ denotes the least fixpoint of the formula Φ. As usual in µ-calculus,
formulae of the form µZ.Φ must obey to the syntactic monotonicity of Φ w.r.t. Z, which

4 We assume that θ is the identity on data items (including the special constants self and inst).

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

95

1: procedure BUILD-TS
2: input: DACMAS S = 〈T , E ,X , I, C,B〉 and initial state σ0

3: output: Transition system 〈∆, T ∪ B, Σ, σ0,⇒〉
4: Σ := {σ0},⇒ := ∅
5: while true do
6: pick σ ∈ Σ and a ∈ {ag | Agent(ag) ∈ σ.abox(inst)}
7: Fetch all current behavioural rules for a; Calculate enabled events with receivers for a
8: if There exists at least an enabled event then
9: pick an enabled event EV(e) for a with receiver b

10: Ai := APPLY(S, σ, inst, a, b, EV(e)) . New inst ABox
11: Σ := Σ ∪ {σ′} . Tentatively add a new state σ′

12: for all x ∈ {ag | Agent(ag) ∈ Ai} do
13: σ′.abox(x) := APPLY(S, σ, x, a, b, EV(e))

14: if for every x ∈ {ag | Agent(ag) ∈ Ai}, 〈T , σ′.abox(x)〉 is satisfiable then
15: ⇒ :=⇒∪ 〈σ, σ′〉
16: else Σ := Σ \ {σ′} . Inconsistent execution step
17: function APPLY(S, σ, x, a, b, EV(e))
18: output: new ABox for x after reacting to EV(e) from a to b
19: if x 6∈ {inst, a, b} then return σ.abox(x)

20: Fetch all current behavioural rules for x
21: if x = a then . x is the sender agent
22: Fetch on-send and “self” on-receive rules and compute actions with actual params
23: if x = b then . x is the receiver agent
24: Fetch on-receive and “self” on-send rules and compute actions with actual param
25: if x = inst then . x is the institutional agent
26: Fetch matching/“any-event” on-exchange rules and compute actions with actual param
27: TOADD := ∅, TODEL := ∅
28: for all α(v) ∈ ACT do . ACT = set of fetched actions
29: TOADDSK := ∅
30: for all effect “[q+(p,x)] ∧Q−(p,x) add A, del D” in the definition of α do
31: for all θ ∈ ANS`([q

+(v,x)] ∧Q−(v,x), T , σ, x) do
32: TOADDSK := TOADDSK ∪Aθ[p/v]
33: TODEL := TODEL ∪Dθ[p/v]

34: pick a substitution θsk of the Skolem terms with data
35: TOADD := TOADD ∪ TOADDSK θsk
36: if x = inst then TOADD := TOADD ∪ {Agent(inst)}
37: return (σ.abox(x) \ TODEL) ∪ TOADD

Fig. 1. Transition system construction

states that every occurrence of the variable Z in Φ must be within the scope of an even
number of negation symbols. This ensures that the least fixpoint µZ.Φ always exists.

The semantics of µLECQ`
p formulae is defined over a possibly infinite transition

system Υ = 〈∆, T ∪ B, Σ, σ0,⇒〉 (cf. Section 4), assuming that ECQ` queries are
posed from the point of view of inst. This does not prevent the possibility to query
the ABoxes of the other agents, thanks to the dynamic binding for location arguments.
Since µLECQ`

p contains formulae with both individual and predicate free variables, we
introduce an individual variable valuation v, i.e., a mapping from individual variables x
to ∆, and a predicate variable valuation V , i.e., a mapping from the predicate variables
Z to subsets of Σ. With these three notions in place, we assign meaning to formulae by

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

96

(Q`)
Υ
v,V = {σ ∈ Σ | T , σ, inst, v |= Q`}

(¬Φ)Υv,V = Σ \ (Φ)Υv,V
(Φ1 ∧ Φ2)Υv,V = (Φ1)Υv,V ∩ (Φ2)Υv,V

(∃x.LIVE(x) ∧ Φ)Υv,V = {σ ∈ Σ | ∃d ∈ ADOM(σ).σ ∈ (Φ)Υv[x/d],V }
(LIVE(x) ∧ 〈−〉Φ)Υv,V = {σ ∈ Σ | x/d ∈ v implies d ⊆ ADOM(σ)

and ∃σ′.σ ⇒ σ′ and σ′ ∈ (Φ)Υv,V }
(LIVE(x) ∧ [−]Φ)Υv,V = {σ ∈ Σ | x/d ∈ v implies d ⊆ ADOM(σ)

and ∀σ′.σ ⇒ σ′ implies σ′ ∈ (Φ)Υv,V }
(Z)Υv,V = V (Z)

(µZ.Φ)Υv,V =
⋂{E ⊆ Σ | (Φ)Υv,V [Z/E] ⊆ E}

Fig. 2. Semantics of µLECQ`
p

associating to Υ , v, and V an extension function (·)Υv,V , which maps formulae to subsets
of Σ. Formally, the extension function (·)Υv,V is defined inductively as shown in Figure 2.
When Φ is a closed formula, (Φ)Υv,V does not depend on v or V , and we denote the
extension of Φ simply by (Φ)Υ . A closed formula Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ .
In this case, we write Υ, s |= Φ. Given DACMAS S, an initial state σ0 and a µLECQ`

p

formula Φ, we are interested in the following verification problem: Υσ0

S , σ0 |= Φ.

Example 7. Consider the contract of Example 4. Assume that T contains that gold
customers are seller customers: MyGoldCust v MyCust. The µLECQ`

p property

νZ.(∀s, c, i.DeliveryC(s, c, active, i) ∧MyGoldCust@s(c)
→ µY.(DeliveryC(s, c, sat, i)) ∨ (LIVE(s, c, i) ∧ 〈−〉Y)) ∧ [−]Z

models that, for every delivery commitment instance a seller has towards a gold customer,
there must exist a run where the instance persists in the system until it is satisfied.

The number of states of Υσ0

S is in general infinite, and verification of (even proposi-
tional) temporal properties of simple forms (e.g., reachability) turns out to be undecidable
[2,6]. This calls for identifying interesting classes of DACMASs for which verification is
decidable. Recently, the notion of state-bounded system has been proposed in the context
of both data-aware business processes [2] and MASs [3], as an interesting condition
that ensures decidability of verification for rich first-order temporal properties, while
reflecting naturally occurring working assumptions in real-world systems. Intuitively,
state-boundedness allows for encountering infinitely many different data during the
evolution of the system, provided that such data do not accumulate in a single state.

We take this general notion and adapt it to DACMASs. In particular, a DACMAS
is state-bounded if, for every agent active in the system, there exists a bound on the
number of data items simultaneously stored in its ABox. Since the ABox of inst stores
the names of the active agents, this implicitly bounds also the number of simultaneously
active agents. Observe, however, that the overall number of data items (and hence also
agents) encountered across and along the runs of the system can still be infinite. With
this notion in place, we obtain the following fundamental result:

Theorem 1 ([10]). Verifying state-bounded DACMASs against µLECQ`
p properties is

decidable and reducible to finite-state model checking.

This means that state-bounded DACMASs can be verified, in principle, using standard
model checkers for propositional µ-calculus.

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

97

6 Conclusion

DACMASs are readily implementable in standard technologies such as JADE (which
supports dynamic agent creation) and lightweight ontologies. Observe that a system
execution requires polynomial time at each step (actually logspace w.r.t. the data, as
any system based on relational databases). Only offline verification of the system is (as
usual) exponential in the representation. Our framework complements that of [7], which
employs data-aware commitments to monitor a system execution and track the state of
commitment instances, but cannot be exploited for static analysis.

We consider extending our framework with the possibility of checking epistemic
properties, in the line of [3]. Notice that, if instead of relying on the µ-calculus, we
rely on CTL, we can relax the persistence requirement in the logic, as in [3]. We also
intend to study how to derive skeletons for the local agent specifications from a global,
choreographic commitment-based protocol.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook:. Cambridge University Press (2003)

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
relational data-centric dynamic systems with external services. In: Proc. of PODS (2013)

3. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of KR (2012)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of IJCAI (2007)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. Artificial Intelligence 195, 335–360 (2013)

6. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis in descrip-
tion logic based dynamic systems. In: Proc. of RR (2013)

7. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social commit-
ments using the event calculus. AutonȦgent and Multi-Agent Syst. 27(1), 85–130 (2013)

8. Chopra, A.K., Singh, M.P.: Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, chap. Agent Communication. MIT Press (2013)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (1999)
10. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based

multiagent systems. In: Proc. of AAMAS (2014), to appear
11. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking

data to ontologies. J. on Data Semantics X, 133–173 (2008)
12. Singh, M.P.: Formalizing communication protocols for multiagent systems. In: Proc. of IJCAI

(2007)
13. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented architecture. IEEE

Computer 42(11), 72–79 (2009)
14. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)

M. Montali et al. Specification and Verification of Commitment-Regulated Data-Aware MAS

98

Toward an Improved Downward Refinement
Operator for Inductive Logic Programming

S. Ferilli1,2

1 Dipartimento di Informatica – Università di Bari
stefano.ferilli@uniba.it

2 Centro Interdipartimentale per la Logica e sue Applicazioni – Università di Bari

Abstract. In real-world supervised Machine Learning tasks, the learned
theory can be deemed as valid only until there is evidence to the con-
trary (i.e., new observations that are wrongly classified by the theory).
In such a case, incremental approaches allow to revise the existing the-
ory to account for the new evidence, instead of learning a new theory
from scratch. In many cases, positive and negative examples are pro-
vided in a mixed and unpredictable order, which requires generalization
and specialization refinement operators to be available for revising the
hypotheses in the existing theory when it is inconsistent with the new
examples. The space of Datalog Horn clauses under the OI assumption
allows the existence of refinement operators that fulfill desirable proper-
ties. However, the versions of these operators currently available in the
literature are not able to handle some refinement tasks. The objective of
this work is paving the way for an improved version of the specialization
operator, aimed at extending its applicability.

1 Introduction

Supervised Machine Learning approaches based on First-Order Logic represen-
tations are particularly indicated in real-world tasks in which the relationships
among objects play a relevant role in the definition of the concepts of interest.
Given an initial set of examples, a theory can be learned from them by providing
a learning system with the whole ‘batch’ of examples. However, being inductive
inference only falsity preserving, the learned theory can be deemed as valid only
until there is evidence to the contrary (i.e., new observations that are wrongly
classified by the theory). In such a case, either a new theory is to be learned from
scratch using the new batch made up of both the old and the new examples, or
the existing theory must be incrementally revised to account for the new evi-
dence as well. To distinguish these two stages, we may call them ‘training’ and
‘tuning’, respectively. In extreme cases, the initial batch is not available at all,
and learning must start and proceed incrementally from scratch. In many real
cases, positive and negative examples are provided in a mixed and unpredictable
order to the tuning phase, which requires two different refinement operator to be
available for revising the hypotheses in the existing theory when it is inconsistent

99

with the new examples. A generalization operator is needed to refine a hypothe-
sis that does not account for a positive example, while a specialization operator
must be applied to refine a hypothesis that erroneously accounts for a negative
example. So, the kind of modifications that are applied to the theory change
its behavior non-monotonically. The research on incremental approaches is not
very wide, due to the intrinsic complexity of learning in environments where the
available information about the concepts to be learned is not completely known
in advance, especially in a First-Order Logic (FOL) setting. Thus, the literature
published some years ago still represents the state-of-the-art for several aspects
of interest.

The focus of this paper is on supervised incremental inductive learning of
logic theories from examples, and specifically on the extension of existing spe-
cialization operators. Indeed, while these operators have a satisfactory behavior
when trying to add positive literals to a concept definition, the way they handle
the addition of negative information has some shortcomings that, if solved, would
allow a broader range of concepts to be learned. Here we point out these short-
comings, and propose both improvements of the existing operator definitions,
and extensions to them. Theoretical results on the new version of the operator
are sketched, and an algorithm for it is provided and commented. The solution
has been implemented and embedded in the multistrategy incremental learning
system InTheLEx [3]. The next section lays the logic framework in which we
cast our proposal; then, Sections 3 and 4 introduce the learning framework in
general and the state-of-the-art specialization operator for it in particular. Sec-
tion 5 describes our new proposal, and finally Section 6 concludes the paper.
Due to lack of space, proofs of theoretical results will not be provided.

2 Preliminaries

The logic framework in which we build our solution exploits Datalog [1, 4] as
a representation language. Syntactically, it can be considered as a sublanguage
of Prolog in which no function symbols are allowed. I.e., a Datalog term can
only be a variable or a constant, which avoids potentially infinite nesting in
terms and hence simplifies clause handling by the operators we will define in
the following. The missing expressiveness of function symbols can be recovered
by Flattening [9], a representational change that transforms a set of clauses
containing function symbols into another, semantically equivalent to it, made up
of function-free clauses1. In a nutshell, each n-ary function symbol is associated
to a new (n+1)-ary predicate, where the added argument represents the function
result. Functions are replaced, in the literals in which they appear, by variables
or constants representing their result.

In the following, we will denote by body(C) and head(C) the set of literals
in the body and the atom in the head of a Horn clause C, respectively. Pure

1 Flattening potentially generates an infinite function free program. This is not our
case, where we aim at learning from examples, and thus our universe is limited by
what we see in the examples.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

100

Datalog does not allow the use of negation in the body of clauses. A first way to
overcome this limitation is the Closed World Assumption (CWA): if a fact does
not logically follows from a set of Datalog clauses, then we assume its negation
to be true. This allows the deduction of negative facts, but not their use to infer
other information. Conversely, real world description often needs rules containing
negative information. Datalog¬ allows to use negated literals in clauses body, at
the cost of a further safety condition: each variable occurring in a negated literal
must occur in another positive literal of the body too.

Since there can be several minimal Herbrand models instead of a single a
least one, CWA cannot be used. In Stratified Datalog¬ this problem is solved by
partitioning a program P in n sets P i (called layers) s.t.:

1. all rules that define the same predicate in P are in the same layer;
2. P 1 contains only clauses without negated literals, or whose negated literals

correspond to predicates defined by facts in the knowledge base;
3. each layer P i, i > 1, contains only clauses whose negated literals are com-

pletely defined in lower level layers (i.e., layers P j with j < i).

Such a partition is called stratification, and P is called stratified.
A stratified program P with stratification P 1, . . . , Pn is evaluated by growing
layers, applying to each one CWA locally to the knowledge base made up by
the original knowledge base and by all literals obtained by the evaluation of the
previous layers.

There may be different stratifications for a given program, but all are equiv-
alent as regards the evaluation result. Moreover, not all programs are stratified.
The following notion allows to know if they are.

Definition 1 (Extended dependence graph) Let P be a Datalog¬ program.
The extended dependence graph of P , EDG(P), is a directed graph whose nodes
represent predicates defined by rules in P , and there is an edge ⟨p, q⟩ if q occurs
in the body of a rule defining p.
An edge ⟨p, q⟩ is labeled with ¬ if there exists at least one rule having p as its
head and ¬q in its body.

A program P is stratified if EDG(P) contains no cycles containing edges marked
with ¬. The evaluation of a stratified program produces a minimal Herbrand
model, called perfect model.

A specific kind of negation is expressed by the inequality built-in predicate
̸=. Using only this negation in Datalog yields an extension denoted by Datalog̸=.

2.1 Object Identity

We deal with Datalog under the Object identity (OI) assumption, defined as
follows:

Definition 2 (Object Identity)
Within a clause, terms denoted with different symbols must be distinct.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

101

This notion is the basis for the definition of an equational theory for Datalog
clauses that adds one rewrite rule to the set of the axioms of Clark’s Equality
Theory (CET) [6]:

t ̸= s ∈ body(C) for each clause C in L and
for all pairs t, s of distinct terms that occur in C (OI)

where L denotes the language that consists of all the possible Datalog clauses
built from a finite number of predicates. The (OI) rewrite rule can be viewed as
an extension of both Reiter’s unique-names assumption [8] and axioms (7), (8)
and (9) of CET to the variables of the language.

DatalogOI is a sublanguage of Datalog̸= resulting from the application of OI
to Datalog. Under OI, any Datalog clause C generates a new Datalog ̸= clause
COI consisting of two components, called core and constraints:

– core(COI) = C and
– constraints(COI) = {t ̸= s | t, s ∈ terms(C) ∧ t, s distinct}

are the inequalities generated by the (OI) rewrite rule.

Formally, a DatalogOI program is made up of a set of Datalog̸= clauses of
the form

l0 : − l1, . . . , ln, c1, . . . , cm

where the li’s are as in Datalog, and the cj ’s are the inequalities generated by
the (OI) rule and n ≥ 0. Nevertheless, DatalogOI has the same expressive power
as Datalog, that is, for any Datalog program we can find a DatalogOI program
equivalent to it [11].

2.2 θOI-subsumption

Applying the OI assumption to the representation language causes the classical
ordering relations among clauses to be modified, thus yielding a new structure
of the corresponding search spaces for the refinement operators.

The ordering relation defined by the notion of θ-subsumption under OI upon
Datalog clauses [2, 10] is θOI -subsumption.

Definition 3 (θOI-subsumption ordering) Let C, D be Datalog clauses. D
θ-subsumes C under OI (D θOI -subsumes C), written C ≤OI D, iff ∃σ substi-
tution s.t. DOI .σ ⊆ COI . This means that D is more general than or equivalent
to C (in a theory revision setting, D is an upward refinement of C and C is a
downward refinement of D) under OI. C <OI D stands for C ≤OI D∧D ̸≤OI C.
C and D are equivalent under OI (C ∼OI D) when C ≤OI D and D ≤OI C.

A substitution, as usual, is a mapping from variables to terms [13]. Its domain
can be extended to terms: applying a substitution σ to a term t means that σ
is applied to all variables in t. In our case, applying a substitution to a constant
leaves it unchanged.

Like θ-subsumption, θOI -subsumption induces a quasi-ordering upon the
space of Datalog clauses, as stated by the following result.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

102

Proposition 1 Let C, D, E be Datalog clauses. Then:

1. C ≤OI C (reflexivity)
2. C ≤OI D and D ≤OI E ⇒ C ≤OI E (transitivity)

Other interesting properties of θOI -subsumption are the following:

Proposition 2 Let C, D be Datalog clauses.

– C ≤OI D ⇒ C ≤θ D, where ≤θ denotes θ-subsumption
(i.e., θOI-subsumption is a weaker relation than θ-subsumption).

– C ≤OI D ⇒ |C| ≥ |D|.
– C ∼OI D iff C and D are renamings.

Non-injective substitutions would yield contradictions when applied to con-
straints (e.g., [x ̸= y].{x/a, y/a} = [a ̸= a]). So, under OI, substitutions are
required to be injective.

Requiring that terms are distinct ‘freezes’ the number of literals of the clause
(since they cannot unify among each other), hence θOI -subsumption maps each
literal of the subsuming clause onto a single, different literal in the subsumed
one. In particular, equivalent clauses under ≤OI must have the same number of
literals, hence the only way to have equivalence is through variable renaming.
Thus, a search space ordered by θOI -subsumption is made up of non-redundant
clauses, i.e. no subset of a clause can be equivalent to the clause itself under
OI. This yields smaller equivalence classes than those in a space ordered by
θ-subsumption.

Proposition 3 (Decidability of θOI-subsumption) Given two clauses C and
D, C ≤OI D is a decidable relationship.

In the worst case, i.e. when |D| ≤ |C|, all literals in D match with all literals
in |C|, and all such matchings are pairwise compatible, an upper bound to the

complexity of the θOI -subsumption test is
(|C|
|D|

)
.

3 Incremental Inductive Synthesis

ILP aims at learning logic programs from examples. In our setting, examples are
represented as clauses, whose body describes an observation, and whose head
specifies a relationship to be learned, referred to terms in the body. Negative
examples for a relationship have a negated head. A learned program is called a
theory, and is made up of hypotheses, i.e. sets of program clauses all defining the
same predicate. A hypothesis covers an example if the body of at least one of
its clauses is satisfied by the body of the example. The search space is the set of
all clauses that can be learned, ordered by a generalization relationship.

In ILP, a standard practice to restrict the search space is imposing biases
on it [7]. In the following, we are concerned with logic theories expressed as
hierarchical (i.e., non-recursive) programs, for which it is possible to find a level

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

103

mapping [6] s.t., in every program clause, the level of every predicate symbol
occurring in the body is less than the level of the predicate in the head. This has
strict connections with stratified programs, that are needed when the language
is extended to deal with negation. Another bias on the representation language
is that, whenever we write about clauses, we mean Datalog linked clauses. A
clause is linked if, for any term appearing in its body, it also appears in the head
or it is possible to find a chain of terms such that adjacent terms appear in the
same literal and at least a term in the chain appears in the head.

The canonical inductive paradigm requires the learned theory to be com-
plete and consistent. For hierarchical theories, the following definitions are given
(where E− and E+ are the sets of all the negative and positive examples, resp.):

Definition 4 (Inconsistency)

– A clause C is inconsistent wrt N ∈ E− iff ∃σ s.t.2 body(C).σ ⊆ body(N)∧
¬head(C).σ = head(N) ∧ constraints(COI).σ ⊆ constraints(NOI)

– A hypothesis H is inconsistent wrt N iff ∃C ∈ H: C is inconsistent wrt N .
– A theory T is inconsistent iff ∃H ⊆ T , ∃N ∈ E− : H is inconsistent wrt N .

Definition 5 (Incompleteness)

– A hypothesis H is incomplete wrt P iff ∀C ∈ H: not(P ≤OI C).
– A theory T is incomplete iff ∃H ⊆ T , ∃P ∈ E+: H is incomplete wrt P .

When the theory is to be learned incrementally, it becomes relevant to de-
fine operators that allow a stepwise (incremental) refinement of too weak or too
strong programs [5]. A refinement operator, applied to a clause, returns one of
its upward or downward refinements. Refinement operators are the means by
which wrong hypotheses in a logic theory are changed in order to account for
new examples with which they are incomplete or inconsistent. In the following,
we will assume that logic theories are made up of clauses that have only variables
as terms, built starting from observations described as conjunctions of ground
facts (i.e., variable-free atoms). This assumption causes no loss in expressive
power, since a reification process allows to express through predicates all the
information that may be carried out by constants. Put another way, we take to
the extreme the flattening procedure, considering even constants as 0-ary func-
tions that are replaced by 1-ary predicates having the same name and meaning.
This restriction simplifies the refinement operators for a space ordered by θOI -
subsumption defined in [2, 10], and the associated definitions and properties.

Definition 6 (Refinement operators under OI) Let C be a Datalog clause.

– D ∈ ρOI(C) (downward refinement operator) when
body(D) = body(C) ∪ {l}, where l is an atom s.t. l ̸∈ body(C).

– D ∈ δOI(C) (upward refinement operator) when
body(D) = body(C) \ {l}, where l is an atom s.t. l ∈ body(C).

2 ¬head(C).σ = head(N) because the relationship must be the same as for N .

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

104

Particularly important are locally finite, proper and complete (ideal) refine-
ment operators [10]. Such a kind of operators are not feasible when full Horn
clause logic is chosen as representation language and either θ-subsumption or im-
plication is adopted as generalization model, because of the existence of infinite
unbound strictly ascending/descending chains. On the contrary, in the space of
Datalog clauses ordered by θOI -subsumption such a kind of chains do not exist,
since equivalence among clauses coincides with alphabetic variance. This makes
possible the existence of ideal refinement operators under the ordering induced
by θOI -subsumption [2, 10].

By the definition of δOI , any possible generalization of a clause must have as
body a subset of its body, and hence there are 2|body(C)| such generalizations.

Proposition 4 [10] The refinement operators in Definition 6 are ideal for Dat-
alog clauses ordered by θOI-subsumption.

Inspired to a concept given by Shapiro [12], we have a measure for the complexity
of a clause:

Definition 7 (sizeOI) The size of a clause C under OI (sizeOI(C)) is the num-
ber of literals in the body of C:

sizeOI(C) =| body(C) |
Under θOI -subsumption it allows to predict the exact number of steps required
to perform a refinement, based only on the syntactic structure of the clauses
involved (that could be known or bounded a priori): given two clauses C and
D, if D <OI C, then C ∈ δk

OI(D), D ∈ ρk
OI(C), k = sizeOI(D) − sizeOI(C) =

|body(D)| − |body(C)|

4 Downward Refinement

When a negative example is covered, a specialization of the theory must be
performed. Starting from the current theory, the misclassified example and the
set of processed examples, the specialization algorithm outputs a revised theory.
In our framework, specializing means adding proper literals to a clause that is
inconsistent with respect to a negative example, in order to avoid its covering
that example. The possible options for choosing such a literal might be so large
that an exhaustive search is not feasible. Thus, we want the operator to focus the
search into the portion of the space of literals that contains the solution of the
diagnosed commission error, as a result of an analysis of its algebraic structure.

According to the theoretical operator in Definition 6, only positive literals
can be added. To this aim, we try to add to the clause one (or more) atom(s),
which characterize all the past positive examples and can discriminate them
from the current negative one. The search for such atoms is performed in the
space of positive literals, that contains information coming from the positive
examples used to learn the current theory, but not yet exploited by it. First
of all, the process of abstract diagnosis detects all the clauses that caused the
inconsistency. Let P = {P1, . . . , Pn} be the positive examples θOI -subsumed by

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

105

a clause C that is inconsistent wrt a negative example N . The set of all possible
most general downward refinements under OI of C against N is:

mgdrOI(C, N) = {M | M ≤OI C, M consistent wrt N, ∀D s.t. D ≤OI C, D
consistent wrt N : not(M <OI D)}

Among these, the search process aims at finding one that is compliant with
the previous positive examples in P, i.e. one of the most general downward
refinements under OI (mgdrOI) of C against N given P1, . . . , Pn:

mgdrOI(C,N | P1, . . . , Pn) = {M ∈ mgdrOI(C, N) | Pj ≤OI M, j = 1, . . . , n}
Since the downward refinements we are looking for must satisfy the property of
maximal generality, the operator tries to add as few atoms as possible. Thus, it
may happen that, even after some refinement steps, the added atoms are still
not sufficient to rule out the negative example, i.e. the specialization of C is still
overly general. This suggests to further exploit the positive examples in order
to specialize C. Specifically, if there exists a literal that, when added to the
body of C, is able to discriminate from the negative example N that caused
the inconsistency of C, then the downward refinement operator should be able
to find it. The resulting specialization should restore the consistency of C, by
refining it into a clause C ′ which still θOI -subsumes the positive examples Pi,
i = 1, 2, . . . , n.

The process of refining a clause by means of positive literals can be described
as follows. For each Pi, i = 1, 2, . . . , n, suppose that there exist ni distinct
substitutions s.t. C θOI -subsumes Pi, and consider all the possible n-tuples of
substitutions obtained by picking one of such substitutions for every positive
example. Each of these substitutions yields a distinct residual, consisting of all
the literals in the example that are not involved in the θOI -subsumption test,
after having properly turned their constants into variables. Formally:

Definition 8 (Residual) Let C be a clause, E an example, and σj a substitu-
tion s.t. body(C).σj ⊆ body(E) and constraints(COI).σj ⊆ constraints(EOI).
A residual of E wrt C under the mapping σj, denoted by ∆j(E, C), is:

∆j(E,C) = body(E).σ−1
j − body(C)

where σ−1
j is the extended antisubstitution of σj . An antisubstitution is a map-

ping from terms onto variables. When a clause C θOI -subsumes an example E
through a substitution σ, then it is possible to define a corresponding antisub-
stitution, σ−1, which is the inverse function of σ, mapping some constants in
E to variables in C. Since not all constants in E have a corresponding variable
according to σ−1, we introduce the extension of σ−1, denoted with σ−1, that is
defined on the whole set consts(E), and takes values in the set of the variables
of the language3:

σ−1(cn) =

{
σ−1(cn) if cn ∈ vars(C).σ

otherwise

3 Variables denoted by are new variables, managed as in Prolog.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

106

The residuals obtained from the positive examples Pi, i = 1, . . . , n, can be ex-
ploited to build a space of complete positive downward refinements, denoted with
P, and formally defined as follows.

P =
∪ ∩

∆jk
(Pk, C)

i=1,...,n k=1,...,n

ji=1,...,ni

where the symbol ∆jk
(Pk, C) denotes one of the nk residuals of Pk wrt C, and

∩k=1,...,n∆jk
(Pk, C), when jk ∈ {1, . . . , nk}, is the set of the literals common to

an n-tuple of residuals (one residual for each positive example Pk, k = 1, . . . , n).
Moreover, denoted with θj , j = 1, . . . , m, all the substitutions which make C
inconsistent wrt N , let us define a new space:

S =
∪

j=1,...,m ∆j(N,C)

which includes all the literals that cannot be used for refining C, because they
would still be present in N .

Proposition 5 Given a clause C that θOI-subsumes the positive examples P1, . . . , Pn

and is inconsistent wrt the negative example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ P − S} ⊆
⊆ mgdrOI(C, N | P1, . . . , Pn)

Hence, every downward refinement built by adding a literal in P − S to the
inconsistent clause C restores the properties of consistency and completeness
of the original hypothesis. Moreover, it is one of the most general downward
refinements of C against N .

It may happen that no (set of) positive literal(s) is able to characterize the
past positive examples and discriminate the negative example that causes incon-
sistency. In such a case, the above version of the operator would fail. However,
we don’t want to give up yet, since the addition of a negative literal to the
clause body might restore consistency4. To take this opportunity, we extend the
search space to Datalog¬. These literals are interpreted according to the CWA.
Of course, suitable adaptations of the notions presented in Section 2 are used
to handle these literals5. So, in case of failure on the search for positive literals,
the algorithm autonomously performs a representation change, that allows it to
extend the search to the space of negative literals, built by taking into account
the negative example that caused the commission error. The new version of the
operator tries to add the negation of a literal, that is able to discriminate the
negative example from all the past positive ones. Revisions performed by this

4 Note that a negative literal in the body corresponds to a positive literal in the
clause. However, here we are expressing the fact that a condition must not hold in
an observation in order to infer the relationship in the head.

5 E.g., given two clauses under OI, C = C+ ∪ C− and D = D+ ∪D−, where C+ and
D+ include the positive literals and the OI-constraints, and C− and D− are sets of
negative literals, C ≤OI D iff ∃σ substitution s.t. D+.σ ⊆ C+ and ∀d ∈ D− : ̸ ∃c ∈
C− s.t. d.σ = c.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

107

operator are always minimal [14], since all clauses in the theory contain only vari-
ables as arguments. Moreover, this operator is ideal in the space of constant-free
clauses. The definitions and results in the rest of this section are taken from [2].

When the space P − S does not contain any solution to the problem of
specializing an inconsistent clause, a change of representation must be performed
in order to search for literals in another space, corresponding to the quotient set
of the Datalog¬ linked clauses. In the following, a slightly different but equivalent
specification of the operator in this space will be provided with respect to [2].

First of all, we define the new target space, called the space of negative
downward refinements:

Sn = ¬S = ¬(∪j=1,...,m∆j(N, C))

where, given a set of literals φ = {l1, . . . , ln}, n ≥ 1: ¬φ = {¬l1, . . . , ¬ln}. Again,
we are interested in a specific subset of Sn, because of the properties satisfied
by its elements. Let us introduce the following notation:

S =
∩

j=1,...,m ∆j(N,C)

Note that S ⊆ S. Based on S, the space of consistent negative downward refine-
ments can be defined as:

Sc = ¬S = ¬(∩j=1,...,m∆j(N, C))

Indeed, Sc, compared to Sn, fulfills the following property:

Proposition 6 Given a clause C and an example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ Sc} ⊆ mgdrOI(C, N)

Overall, the search for a complete and consistent hypothesis can be viewed
as a two-stage process: the former stage searches into the space P−S, the latter
into Sc. It is now possible to formally define the downward refinement operator
ρcons

OI on the space L of constant-free DatalogOI linked program clauses.

Definition 9 (ρcons
OI) ρcons

OI : L → 2L∀C ∈ L : ρcons
OI (C) =

{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ (P − S) ∪ Sc}

Proposition 7 The downward refinement operator ρcons
OI is ideal.

The ideality of ρcons
OI is owed to the peculiar structure of the search space

when ordered by the relation ≤OI .

5 Discussion and Extension of the Specialization
Operator

The existing definition of ρcons
OI aims at identifying a set of literals each of which,

when added to a clause C, yields a new clause that is both consistent with the
given negative example and complete with respect to all the previous positive
examples. Now, this is true if the added literal belongs to the space of complete

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

108

positive downward refinements P−S. Conversely, the space of consistent negative
downward refinements does not ensure completeness wrt the previous positive
examples, since it is computed considering only all possible residuals of the
negative example. This can be easily shown in the following example6.

Example 1. Consider the following situation.
Two positive examples: P1 = h : −p, q, t, u. and P2 = h : −p, q, v.
produce as a least general generalization the clause C1 = h : −p, q.
Then, the negative example N1 = h : −p, q, t, u, v. arrives.
The residuals of P1 and P2 wrt C1 are {t, u} and {v}, respectively.
The residual of N1 is {t, u, v}. So, P − S = ({t, u} ∩ {v}) − {t, u, v} = ∅ −
{t, u, v} = ∅, hence no specialization by means of positive literals can be obtained
(as expected, since C was a least general generalization). Switching to the space
of negative literals, we have that Sc = ¬({t, u, v}) = {¬t, ¬u,¬v}. However, none
of these literals generates a clause that is complete with all previous positive
examples:

C ′
2 = h : −p, q, ¬t. where P1 ̸≤OI C ′

2

C ′′
2 = h : −p, q, ¬u. where P1 ̸≤OI C ′′

2

C ′′′
2 = h : −p, q, ¬v. where P2 ̸≤OI C ′′′

2

So, what we need to consider is not Sc. Intuitively, we want to select a literal
that is present in all residuals of the negative example and that is not present
in any residual of any positive example. Let us define:

P =
∪

∆ji(Pi, C)

i=1,...,n

ji=1,...,ni

Now, what we need to consider is S′
c = ¬(S − P).

Example 2. In the previous example, we would have S′
c = ({t, u, v}) − ({t, u} ∪

{v}) = {t, u, v} − {t, u, v} = ∅ which shows, as expected, that no complete
refinement can be obtained for the given case.

Consider now another set of positive examples: P1 = h : −p, q, t, u., P2 = h :
−p, q, r. and P3 = h : −p, q, s, t.
whose least general generalization is, again, the clause C1 = h : −p, q.
Then, the negative example N1 = h : −p, q, t, u, v, w. arrives.
The residuals of the positive examples are: ∆(C1, P1) = {t, u}, ∆(C1, P2) = {r}
and ∆(C1, P3) = {s, t}.
The residual of N1 is {t, u, v, w} = S. So, P − S = ({t, u} ∩ {r} ∩ {s, t}) −
{t, u, v, w} = ∅ − {t, u, v, w} = ∅, hence again no specialization by means of
positive literals can be obtained. Switching to the space of negative literals, we
have that S′

c = ¬(S−P) = ¬({t, u, v, w}−({t, u}∪{r}∪{s, t})) = ¬({t, u, v, w}−
6 For the sake of readability, in the following we will often switch to a propositional

representation. This means that the residual is unique for each example, so the
subscript in ∆i(·, ·) is no more necessary.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

109

{r, s, t, u}) = ¬({v, w}) = {¬v, ¬w} and indeed, adding any of these literals to
C generates a clause that is complete with all previous positive examples:

C ′
2 = h : −p, q, ¬v. where P1 ≤OI C ′

2, P2 ≤OI C ′
2 and P3 ≤OI C ′

2;
C ′′

2 = h : −p, q, ¬w. where P1 ≤OI C ′′
2 , P2 ≤OI C ′′

2 , P3 ≤OI C ′′
2 .

This is captured by the following result:

Proposition 8 Given a clause C = h :– body(C) that θOI-subsumes the positive
examples P1, . . . , Pn and is inconsistent wrt the negative example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ S′

c} ⊆
⊆ mgdrOI(C, N | P1, . . . , Pn)

Now, an additional problem arises. Indeed, in some cases a single negative
literal is not enough to ensure that the correctness of the theory is restored. The
situation may be clarified by the following example.

Example 3. Consider again the situation described in Example 1.
While no single (positive or negative) literal can restore completeness and

consistency of the theory, either C ′
2 = h : −p, q, ¬(t, v). or C ′′

2 = h : −p, q, ¬(u, v).
would be correct refinements of C1 wrt {P1, P2, N1}. These solutions are not per-
mitted in the representation language, since only literals may appear in the body
of clauses. However, any of the two above clauses corresponds to the conjunction
of two clauses, e.g. C ′

2 is equivalent to {h : −p, q, ¬t., h : −p, q, ¬v.}. This solution
would introduce some redundancy in the theory, since the body of the original
clause C1 would appear in both specialized clauses. This might be undesirable,
in which case we may leverage Datalog implication and solve the problem by
inventing a new predicate s as follows: {h : −p, q, ¬(s)., s : −t, v.}. The intuition
behind this choice is that the need to place together the literals in the negation
might be a hint of a more general relationship among them. This relationship
might be captured by a so far unknown concept, that is explicitly added. A
useful side effect of this setting is that when the same combination will occur
in future observations, it will be recognized and explicitly added by saturation,
this way obtaining higher level descriptions.

So, the extension comes into play when no single literal is sufficient to restore
correctness of the theory. Indeed, when a single literal is to be negated there is
no need for inventing any predicate. More formally, we are not looking anymore
for a single l ∈ S′

c to be added to C, but we need a S ⊆ S′
c s.t. ∀i : ∃l ∈ S

s.t. l ̸∈ Pi. In particular, we would like to find a minimal such set. Minimality
may be in terms of set inclusion or of number of elements: S = arg minS(|S|).
To formally express our operator, let us define:

– ∀r ∈ ∆(N, C) :
• Pr = {Pi ∈ P|r ∈ ∆(Pi, C)}
• Pr = {Pi ∈ P|r ̸∈ ∆(Pi, C)}

– ∀S ⊆ ∆(N, C) :
• PS = ∩r∈SPr

• PS = ∪r∈SPr

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

110

Pr is the set of positive examples that are no more covered when adding ¬r to C;
Pr is the set of positive examples that are still covered when adding ¬r to C. PS

is the set of positive examples that are no more covered when adding neg(S) to
C; PS is the set of positive examples that are still covered when adding neg(S)
to C. This helps us to define what we are looking for. Specifically, we need a
S ⊆ ∆(N,C) s.t. PS = ∅ ∧ PS = P, as shown by the following example:

Example 4. Consider the set of positive examples P = {P1, P2, P3} where:
P1 = h : −p, q, s, t. P2 = h : −p, q, t, u. P3 = h : −p, q, u, r.
Given their least general generalization C = h : −p, q., the corresponding resid-
uals are:
∆(P1, C) = {s, t} ∆(P2, C) = {t, u} ∆(P3, C) = {u, r}
Now, given the negative example N = h : −p, q, s, t, u, r covered by C, with
residual ∆(N,C) = {s, t, u, r}, we have:
P{s,u} = Ps∩Pu = {P1}∩{P2, P3} = ∅; P{s,u} = Ps∩Pu = {P2, P3}∪{P1} = P:
SOLUTION!
P{t,r} = Pt ∩Pr = {P1, P2}∩{P3} = ∅; P{t,r} = Pt ∩Pr = {P3}∪{P1, P2} = P:
SOLUTION!
P{t,u} = Pt ∩ Pu = {P1, P2} ∩ {P2, P3} = {P2} ̸= ∅; P{t,u} = Pt ∩ Pu =
{P3} ∪ {P1} = {P3, P1} ≠ P: NOT A SOLUTION!
. . . and so on.

Of course, a trial-and-error approach would solve the problem, but there is an
exponential number of subsets to be tried. In order to devise a more efficient
algorithm, let us analyze the sets Pr, Pr, PS and PS to better understand them
and their behavior. First of all, the Px’s and Px’s are complementary:

Proposition 9 Given a clause C and a negative example N covered by C:

1. ∀r ∈ ∆(N, C) : {Pr, Pr} is a partition of P;
2. ∀S ⊆ ∆(N, C) : {PS ,PS} is a partition of P.

This ensures, in particular, that PS = ∅ ∧ PS = P ⇔ PS = ∅ ⇔ PS = P. We
also note that positive example (un-)coverage is monotonic:

Proposition 10 ∀S′ ⊂ S′′ ⊆ ∆(N,C) : PS′′ ⊆ PS′ ∧ PS′ ⊆ PS′′

Finally, let us note that any element of the residual of the negative example,
added to C, causes some positive example to become uncovered (which will be
used in the first iteration of our algorithm):

Proposition 11 If ρcons
OI fails, then ∀r ∈ ∆(N,C) : Pr ̸= ∅.

We propose a sequential covering-like strategy to find such an S, according
to Algorithm 1. Note that, at the beginning of the algorithm, S = ∅ ⇒ PS =
∅ ⇒ |PS | = 0 and S = ∅ ⇒ PS = P ⇒ |PS | = n. However, as soon as
the loop is entered, the selection and addition of the first r makes P ̸= ∅ by
Proposition 11; so, the condition of the IF statement is true, hence S is updated
and a second round of the loop is guaranteed to take place. At each round, a new

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

111

Algorithm 1 Backtracking specialization strategy

S = ∅; R = ∆(N, C)
repeat

r ← select from R OR backtrack
R← R \ {r}; S ′ ← S ∪ {r}
if PS′ ̸= PS (⇔ PS′ ̸= PS) (⇔ PS′ ⊂ PS ⇔ PS′ ⊃ PS) then
S ← S ′

end if
until PS = ∅ (⇔ PS = P) OR no more backtracking available
if PS = ∅ (⇔ PS = P) then

return S
else

return failure
end if

r is removed from R and added to S only if the coverage improves, otherwise it
is discarded. If the last r does not satisfy the loop condition, the overall solution
is not complete and backtracking is applied. Note that, in the worst case, adding
the whole residual to C would be a solution, which ensures termination of the
algorithm (unless there is a positive example that includes the whole residual,
which can be checked before starting the algorithm). If different solutions are
requested, backtracking can be applied to non-discarded items.

6 Conclusions and Future Work

Incremental supervised Machine Learning approaches using First-Order Logic
representations are mandatory when tackling complex real-world tasks, in which
relationships among objects play a fundamental role. A noteworthy framework
for these approaches is based on the space of Datalog Horn clauses under the Ob-
ject Identity assumption, which ensures the existence of (upward and downward)
refinement operators fulfilling desirable requirements. The refinement operators
for this framework proposed in the current literature have some limitations that
this paper aims at overcoming. So, after recalling the most important elements of
the framework and of the current operators, this paper points out these deficien-
cies and proposes solutions that result in improved operators. Specifically, the
downward refinement operator is considered. A preliminary prototype of the op-
erator has been implemented, and is currently being integrated in the InTheLEx
learning system.

Future work includes a study of the possible connections of the extended
operator with related fields of the logic-based learning, such as deduction, ab-
straction and predicate invention. Experiments aimed at assessing the efficiency
and effectiveness of the operator in real-world domains are also planned.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

112

Acknowledgments

This work was partially funded by the Italian PON 2007-2013 project
PON02 00563 3489339 ‘Puglia@Service’.

References

[1] S. Ceri, G. Gottlöb, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, Heidelberg, Germany, 1990.

[2] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Locally finite, proper
and complete operators for refining datalog programs. In Z. W. Raś and
M. Michalewicz, editors, Foundations of Intelligent Systems, number 1079 in Lec-
ture Notes in Artificial Intelligence, pages 468–478. Springer, 1996.

[3] F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Re-
vision: Induction and abduction in INTHELEX. Machine Learning Journal,
38(1/2):133–156, 2000.

[4] P. C. Kanellakis. Elements of relational database theory. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B — Formal Models
and Semantics, pages 1073–1156. Elsevier Science Publishers, 1990.

[5] H. J. Komorowski and S. Trcek. Towards refinement of definite logic programs.
In Z. W. Raś and M. Zemankova, editors, Methodologies for Intelligent Systems,
number 869 in Lecture Notes in Artificial Intelligence, pages 315–325, Berlin, 1994.
Springer-Verlag.

[6] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[7] C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative
bias in ILP. In L. de Raedt, editor, Advances in Inductive Logic Programming,
pages 82–103. IOS Press, Amsterdam, NL, 1996.

[8] R. Reiter. Equality and domain closure in first order databases. Journal of the
ACM, 27:235–249, 1980.

[9] C. Rouveirol. Extensions of inversion of resolution applied to theory completion.
In Inductive Logic Programming, pages 64–90. Academic Press, 1992.

[10] G. Semeraro, F. Esposito, and D. Malerba. Ideal refinement of datalog programs.
In M. Proietti, editor, Logic Program Synthesis and Transformation, number 1048
in Lecture Notes in Computer Science, pages 120–136. Springer-Verlag, 1996.

[11] G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of datalog theories. In N. E. Fuchs, editor,
Logic Program Synthesis and Transformation, number 1463 in Lecture Notes in
Computer Science, pages 300–321. Springer-Verlag, 1998.

[12] E.Y. Shapiro. Inductive inference of theories from facts. Technical Report Re-
search Report 192, Yale University, 1981.

[13] J. H. Siekmann. An introduction to unification theory. In R. B. Banerji, edi-
tor, Formal Techniques in Artificial Intelligence - A Sourcebook, pages 460–464.
Elsevier Science Publisher, 1990.

[14] S. Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic Pub-
lishers, Dordrecht Boston London, 1994.

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

113

Program Verification using
Constraint Handling Rules and

Array Constraint Generalizations⋆

Emanuele De Angelis1,3, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy,
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy,
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy, maurizio.proietti@iasi.cnr.it

Abstract. The transformation of constraint logic programs (CLP pro-
grams) has been shown to be an effective methodology for verifying prop-
erties of imperative programs. By following this methodology, we encode
the negation of a partial correctness property of an imperative program
prog as a predicate incorrect defined by a CLP program P , and we
show that prog is correct by transforming P into the empty program
through the application of semantics preserving transformation rules.
Some of these rules perform replacements of constraints that encode
properties of the data structures manipulated by the program prog. In
this paper we show that Constraint Handling Rules (CHR) are a suit-
able formalism for representing and applying constraint replacements
during the transformation of CLP programs. In particular, we consider
programs that manipulate integer arrays and we present a CHR encod-
ing of a constraint replacement strategy based on the theory of arrays.
We also propose a novel generalization strategy for constraints on inte-
ger arrays that combines the CHR constraint replacement strategy with
various generalization operators for linear constraints, such as widening
and convex hull. Generalization is controlled by additional constraints
that relate the variable identifiers in the imperative program prog and
the CLP representation of their values. The method presented in this
paper has been implemented and we have demonstrated its effectiveness
on a set of benchmark programs taken from the literature.

1 Introduction

It has long been recognized that Constraint Logic Programming (CLP) is a for-
malism that provides very suitable inference mechanisms for the verification of
properties of imperative programs. The landmark paper [41] has shown that:
(i) the operational semantics of imperative programs can easily be formalized
as an interpreter written in CLP, and (ii) by specializing that interpreter with
⋆ This work has been partially supported by the National Group of Computing Science

(GNCS-INDAM).

114

respect to a given imperative program, say prog , one can derive a new CLP pro-
gram, say VC , representing the verification conditions for prog in purely logical
form. In particular, in the specialized CLP program VC there are no references
to the imperative constructs of prog . Relevant properties of the execution of prog
(such as its loop invariants) can then be inferred by analyzing the program VC .

Many verification methods within the CLP paradigm have been developed.
Some methods, directly following the approach presented in [41], are based on
abstract interpretation [8] and compute an overapproximation of the least model
of the CLP program under consideration by a bottom-up evaluation of an ab-
straction of the program [2, 28, 39]. Other methods use goal directed evaluation
of CLP programs combined with other symbolic techniques such as interpola-
tion [17, 20, 31, 30]. Some other methods, like the ones presented in [5, 25, 43, 45],
combine CLP (also called constrained Horn clauses in those papers) with dif-
ferent reasoning techniques developed in the areas of Software Model Checking
and Automated Theorem Proving, such as CounterExample-Guided Abstraction
Refinement (CEGAR) and Satisfiability Modulo Theory (SMT).

In this paper we follow the approach based on transformations of CLP pro-
grams presented in [12, 13]. We encode the negation of a partial correctness
property of an imperative program prog as a predicate incorrect defined by a
CLP program P . Similarly to [41], we generate a CLP program VC representing
the verification conditions for prog, by specializing P with respect to the CLP
representation of prog. However, at this point the transformation-based method
departs from the ones considered above. Indeed, it continues by applying further
equivalence preserving transformations to VC with the objective of deriving ei-
ther (i) the empty CLP program, hence proving that incorrect does not hold
and prog is correct, or (ii) a CLP program containing the fact incorrect, hence
proving that prog is incorrect. Due to the undecidability of partial correctness, it
may be the case that we derive a CLP program containing one or more clauses
of the form incorrect:- G, where G is a non-empty conjunction, and we are
able to conclude neither that prog is correct nor that prog is incorrect.

Thus, CLP program transformation provides a uniform framework for reason-
ing about the correctness of imperative programs in which, as we have explained,
one can generate the verification conditions and also check their validity. More-
over, that framework is parametric with respect to the syntax and the semantics
of the programs to be verified, and optimizing transformations considered in
the literature [42] can be applied to improve the efficiency of the verification
method. Finally, transformations can easily be composed together into a se-
quence of transformations, so as to derive very sophisticated verification meth-
ods. For instance, in [15] it is shown that the iteration of program specialization
can significantly improve the precision of our program verification method and
indeed, by implementing Iterated Specialization the VeriMAP system [14] is com-
petitive with state-of-the-art CLP-based verifiers such as ARMC [43], HSF [25],
and TRACER [30].

The main contributions of this paper are the following.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

115

(1) We consider imperative programs that manipulate integers and integer
arrays, and we generate verification conditions where read and write operations
on arrays are represented as constraints. Then we show that Constraint Handling
Rules (CHR) are a suitable formalism for manipulating constraints during the
transformation of the CLP verification conditions. In particular, we present CHR
rules based on the theory of arrays [7, 23, 37] and we show how they can be
combined with unfold/fold transformation rules for CLP programs [18] with the
objective of proving properties of the given imperative programs.

(2) We propose a powerful transformation strategy that guides the applica-
tion of both the CHR and the unfold/fold transformation rules. In particular, we
design a novel array constraint generalization strategy that automatically intro-
duces, during CLP transformation, the new predicate definitions (corresponding
to program invariants) required for the verification of the properties of interest.
Our generalization strategy combines CHR manipulation of array constraints
with the widening and convex hull operators for linear constraints considered in
the field of abstract interpretation [10]. Generalization is controlled by means of
additional constraints that relate the variable identifiers in the given imperative
programs and the CLP representations of their values.

(3) Finally, we present an implementation of the method in the VeriMAP
system [14], and we demonstrate its effectiveness on a set of benchmark programs
taken from the literature.

2 The Transformation-Based Verification Method

In this section we introduce a class of Constraint Logic Programs with constraints
on integers and integer arrays, and we show how partial correctness properties
of imperative programs can be encoded as programs of that class.

First we need the following definitions. An atomic integer constraint is either
p1=p2, or p1≥p2, or p1>p2, where p1 and p2 are linear polynomials with inte-
ger variables and coefficients (sum and multiplication are denoted by + and *,
respectively). An atomic array constraint is either dim(a, n) denoting that the
dimension of the array a is n, or read(a, i, v) denoting that the i-th element of
the array a is the integer v, or write(a, i, v, b) denoting that the array b is equal
to the array a, except that its i-th element is v. The read and write constraints
satisfy the following axioms [7, 23], where variables are universally quantified at
the front:
(A1)I=J, read(A, I, U), read(A, J, V) → U=V (array congruence)
(A2)I=J, write(A, I, U, B), read(B, J, V) → U=V (read-over-write:case =)
(A3)I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)(read-over-write:case 6=)
A constraint is either true, or an atomic (integer or array) constraint, or a
conjunction of constraints. An atom is a formula of the form p(t1,...,tm), where
p is a predicate symbol not in {=, ≥, >, dim, read, write} and t1, . . . , tm are
terms constructed out of variables, constants, and function symbols different
from + and *. A CLP program is a finite set of clauses of the form A :- c, B,
where A is an atom, c is a constraint, and B is a (possibly empty) conjunction of

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

116

atoms. Given a clause A :- c, B, the atom A is called the head, and c, B is called
the body. We assume that in every clause all integer arguments in its head are
distinct variables. A clause A :- c is called a constrained fact. If c is true, then
it is omitted and the constrained fact is called a fact. A CLP program is said to
be linear if all its clauses are of the form A :- c, B, where B consists of at most
one atom.

An A-interpretation I is a set D, together with a function f in Dn →D for
each function symbol f of arity n, and a relation p on Dn for each predicate
symbol p of arity n, such that: (i) the set D is the Herbrand universe [36] con-
structed out of the set Z of the integers, the constants, and the function symbols
different from + and (ii) I assigns to the symbols +, *, =, >, > the usual meaning
in Z, (iii) for all sequences a0 . . . an−1, for all integers d, dim(a0 . . . an−1, d) is true
in I iff d=n, (iv) for all sequences a0 . . . an−1 and b0 . . .bm−1 of integers, for all
integers i and v, read(a0 . . . an−1, i, v) is true in I iff 0≤i≤n−1 and v=ai, and
write(a0 . . .an−1, i, v, b0 . . . bm−1) is true in I iff 0≤i≤n−1, n=m, bi=v, and
for j=0, . . . , n−1, if j 6=i then aj=bj, (v) I is an Herbrand interpretation [36]
for function and predicate symbols different from +, *, =, >, >, dim, read, and
write.

We can identify an A-interpretation I with the set of all ground atoms that
are true in I, and hence A-interpretations are partially ordered by set inclusion.
A constraint c is said to be satisfiable if A |= ∃(c), where in general, for every
formula ϕ, ∃(ϕ) denotes the existential closure of ϕ. We say that I is an A-model
of ϕ if ϕ is true in I. We write A |= ϕ if every A-interpretation is an A-model of
ϕ. In particular, every A-interpretation is an A-model of Axioms (A1)–(A3). A
constraint c entails a constraint d, denoted c ⊑ d, if A |= ∀(c → d). By vars(ϕ)
we denote the free variables of ϕ. The semantics of a CLP program P is the least
A-model of P , denoted M(P) and constructed as usual for CLP programs [29].

We consider imperative programs with integer and array variables. Every
program has a single halt command whose execution causes the program to
terminate. The semantics of programs is defined in terms of a transition rela-
tion, denoted =⇒, between configurations. A configuration is a pair 〈〈c, δ〉〉 of a
labeled command c and an environment δ that maps: (i) every integer variable
identifier x to its value v , and (ii) every integer array identifier a to a finite
sequence a0 . . .an−1 of integers, where n is the dimension of the array a. The
transition relation specifies the ‘small step’ operational semantics and its defini-
tion is similar to that in [44] and is omitted. An environment δ is said to satisfy
a formula ϕ(z1, . . . , zr) iff ϕ(δ(z1), . . . , δ(zr)) holds.

Given two formulas ϕinit and ϕerror that are disjunctions of constraints with
free variables z1, . . . , zr, we say that program prog is incorrect with respect to
these formulas iff there exist two environments δinit and δh such that: (i) δinit
satisfies ϕinit , (ii) 〈〈ℓ0:c0, δinit 〉〉 =⇒∗ 〈〈ℓh:halt, δh〉〉, and (iii) δh satisfies ϕerror ,
where ℓ0 :c0 is the first labeled command of prog and ℓh : halt is the unique
halt command of prog. A program is said to be correct if it is not incorrect.
(In [11] the reader may find an extension of these definitions where ϕinit and
ϕerror are predicates defined by any CLP program.) Our notion of correctness

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

117

is equivalent to the Hoare notion of partial correctness specified by the triple
{ϕinit} prog {¬ϕerror}.

We translate the problem of checking whether or not the program prog is
incorrect into the problem of checking whether or not the atom incorrect is a
consequence of the following CLP program T :

incorrect :- errorConf(X), reach(X).

reach(Y) :- tr(X, Y), reach(X).

reach(Y) :- initConf(Y).

where initConf(X), errorConf(X), and tr(X, Y) are defined by CLP clauses so
that the following conditions hold. For all configurations X and Y, (i) initConf(X)
holds iff X is an initial configuration, that is, a configuration of the form 〈〈ℓ0 :
c0, δinit 〉〉 and δinit satisfies ϕinit , (ii) errorConf(X) holds iff X is an error config-
uration, that is, a configuration of the form 〈〈ℓh:halt, δh〉〉 and δh satisfies ϕerror ,
and (iii) tr(X, Y) holds iff X =⇒ Y holds.
reach(Y) holds iff the configuration Y can be reached from a configuration X
whose environment satisfies ϕinit . Program prog is correct with respect to ϕinit

and ϕerror iff incorrect 6∈M(T).
Our verification method applies unfold/fold rules to the initial program T and

consists of following two steps [13]. (i) VCGen: the Generation of the Verification
Conditions, and (ii) VCTransf : the Satisfiability Checking of the Verification
Conditions. The soundness of our method follows from the fact that for each
program U obtained from T by applying the unfold/fold rules, incorrect ∈
M(T) iff incorrect∈M(U).

VCGen performs a specialization of program T with respect to the given tr
(which depends on prog), initConf, and errorConf predicates, thereby deriving
a new program T 1, whose clauses are said to be the verification conditions for
prog, such that tr does not occur in T 1 (for this reason this step is also called
the removal of the interpreter). During this specialization step all occurrences
of the dim predicate are replaced by suitable constraints on the indexes of the
arrays. We say that verification conditions are satisfiable iff incorrect 6∈ M(T 1),
and thus their satisfiability guarantees that prog is correct with respect to ϕinit

and ϕerror . VCTransf , which will be described in detail in Section 3, checks the
satisfiability of the verification conditions generated at the end of VCGen.

Before starting the specialization, VCGen adds to the initial program T some
additional constraints that are needed for controlling the generalization strategy
described in Section 3.3. These constraints use the predicate val that relates
some of the variable identifiers occurring in the imperative program prog and
the CLP representation of their values. The meaning of the val constraints is
as follows: for every variable identifier i of the program prog, for every value I,
the constraint val(i, I) (where i is a constant uniquely associated with i) holds
iff there exists a configuration whose environment δ maps i to I. These val
constraints will be used by our generalization strategy to distinguish among dif-
ferent read constraints, thereby making the strategy more effective as confirmed
by the experimental results reported in Section 4. For instance, the constraint
‘val(i, I), val(j, J), read(A, I, U), read(A, J, V)’ expresses the property that the

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

118

first read gets the array element at index i and the second read gets the array
element at index j, while without the val constraints, ‘read(A, I, U), read(A, J, V)’
does not express this property.

Now, let us see our verification method in action on a simple example. Let
us consider the following program that, given the array a[0 .. (n−1)] and any
i∈{0, . . . , n−1} places in a[n−i−1] the maximum value of the leftmost portion
a[0 .. (n−i−1)] by iteratively swapping adjacent elements.
bubblesort-inner : for (j =0; j <n−i−1; j++) {

if (a[j]>a[j+1]) {tmp=a[j]; a[j]=a[j+1]; a[j+1]= tmp; } }
Let us also consider the two properties ϕinit (i, n, a) ≡ 0≤ i<n ∧∧ dim(a,n) and
ϕerror (i,j,n,a) ≡ ∃k∃x∃y0≤i<n∧∧0≤k<j∧∧j=n−i−1∧∧read(a,k,x) ∧∧ read(a,j,y)∧∧x>y.
These two properties are expressed in CLP as follows:
phiInit(I, N, A) :- 0≤I, I<N, dim(A, N).
phiError(I, J, N, A) :- 0≤I, I<N, 0≤K, K<J, J=N−I−1, X>Y, read(A,K,X), read(A,J,Y),

val(k, K), val(j, J).

Note the two val constraints that relate the index variables k and j to their
values K and J, respectively. At the end of VCGen we get the following CLP
program T 1 that expresses the verification conditions for the program bubblesort-
inner :
1. incorrect :- 0≤I, 0≤K, K≤J, J=N−I−1, X>Y,

read(A, K, X), read(A, J, Y), val(k, K), val(j, J), new1(I, J, N, A,Tmp, K).
2. new1(I,J1,N,A2,W,K) :- J1=1+J, J<N−I−1, J≥0, J<N−1, X>Y,

read(A, J, X), read(A, J1, Y), read(A, J, W), read(A, J1, Z), write(A, J, Z, A1),
write(A1, J1, W, A2), val(j, J1), val(j, J), val(k, K), new1(I, J, N, A,Tmp, K).

3. new1(I, J1, N, A, Tmp, K) :- J1=J+1, J<N−I−1, J≥0, J<N−1, X≤Y,
read(A, J, X), read(A, J1, Y), val(j, J1), val(j, J), val(k, K), new1(I, J, N, A,Tmp, K).

4. new1(I, J, N, A, Tmp, K) :- 0≤I, I<N, J=0, val(j, J), val(k, K).

where new1 is a new predicate symbol introduced during program specialization
by VCGen. The definition of the predicate new1 is associated with the for-loop
of the bubblesort-inner program and consists of clauses 2–4 that represent the
execution of the for statement. In particular, we have that (see the underlined
constraints): (i) clauses 1 and 4 represent the exit and the entry of the for-loop,
respectively, and (ii) clauses 2 and 3 represent the execution of the conditional
in the a[j]>a[j+1] case and in the a[j]≤a[j+1] case, respectively.

3 A Transformation Strategy for Verification

The VCTransf step of our verification method transforms the CLP program T 1
derived at the end of VCGen to a program T 2 such that incorrect∈ M(T 1)
iff incorrect∈M(T 2). This transformation makes use of transformation rules
that preserve the least A-model semantics of CLP programs. In particular, we
apply the following rules, that are collectively called unfold/fold rules: unfolding,
constraint replacement, clause removal, definition, and folding. These rules are an
adaptation to CLP programs of the unfold/fold rules for general CLP programs
(see, for instance, [18]).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

119

VCTransf applies the unfold/fold rules according to a strategy that performs
the propagation of the constraints of the error property phiError in a backward
way from the error configuration towards the initial configuration, so as to derive
a program T 2 where the predicate incorrect is defined by either (i) the fact
incorrect (in which case the imperative program prog is incorrect), or (ii) the
empty set of clauses (in which case prog is correct). In the case where neither (i)
nor (ii) holds, that is, in program T 2 the predicate incorrect is defined by a
non-empty set of clauses not containing the fact incorrect, we cannot conclude
anything about the correctness of prog. However, similarly to what has been
proposed in [12], in this case we can perform again VCTransf by propagating
the initial property phiInit, and continue alternating the propagation of the
error and initial properties in the hope of deriving a program where either (i)
or (ii) holds. Obviously, due to the undecidability of program correctness, it may
be the case that this process does not terminate.

3.1 The Transformation Strategy

VCTransf is performed by applying the unfold/fold transformation rules ac-
cording to the Transform strategy shown in Figure 1. Let us briefly describe the
various rules used by the Transform strategy.
• The Unfolding rule performs one step of backward propagation of the error
property phiError.
• The Constraint Replacement rule infers new constraints on the variables
of the single atom that occurs in the body of each clause obtained by Unfold-
ing. Constraint Replacement makes use of a function Repl that, given a
clause C of the form H :- c0, B, returns a set {H :-c1, B, . . . , H :-cn, B} of clauses
(with n ≥ 0), where c1, . . . , cn are constraints such that A |= ∀ ((∃X0 c0) ↔
(∃X1 c1 ∨∨ . . . ∨∨ ∃Xn cn)) holds, and for i=0, . . . , n, we have that Xi = vars(ci)−
vars(H, B). In particular, if c0 is unsatisfiable, then n=0 and clause C is removed.
The function Repl is implemented by a CHR program as described in Section 3.2.
• The rules of Removal of Useless Clauses and Removal of Subsumed
Clauses remove clauses that do not contribute to the least model of the CLP
program at hand.
• The Definition rule introduces new predicate definitions by suitable general-
izations of the constraints. Generalization is performed by using a function Gen
such that, for any given clause E of the form H :- e(V,X), p(X) and set Defs of
predicate definitions, Gen(E,Defs) is a clause of the form newq(X):- gen(X),p(X),
where: (i) newq is a new predicate symbol, and (ii) gen(X) is a constraint such
that e(V,X)⊑ gen(X).
• The Folding rule replaces the clause H:-e(V,X),p(X) by the clause H:-e(V,X),
newq(X).

Note that the input program T 1 of the Transform strategy is a linear CLP
program. Indeed, during VCGen the atoms different from reach are unfolded
and hence a linear program is generated.

The new predicates introduced by the Definition rule can be understood
as over-approximations of the sets of configurations that are backward-reachable

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

120

from the error configuration. Note, however, that the folding rule preserves
equivalence, as e(V,X),p(X) is equivalent to e(V,X), newq(X). In Section 3.3 we
present a generalization function that guarantees the termination of Transform
and, at the same time, allows us to prove the correctness of non-trivial programs.

Input : A linear CLP program T1.
Output : Program T2 such that incorrect∈M(T1) iff incorrect∈M(T2).

Initialization:
Let InDefs be the set of all clauses of T1 whose head is the atom incorrect;
T2:=∅ ; Defs := InDefs ;
while in InDefs there is a clause C of the form H :- c,A do

Unfolding: Let {Ki :- ci,Bi | i = 1, . . . , m} be the set of the (renamed apart)
clauses of T1 such that, for i=1, . . . , m, A is unifiable with Ki via the most
general unifier ϑi.
Then TransfC := {(H :- c,ci,Bi) ϑi | i = 1, . . . , m};

Constraint Replacement: TransfC := ∪D∈TransfCRepl(D);
Removal of Subsumed Clauses: Remove from TransfC every clause H :- d,B

such that there exists a distinct clause H :- e in TransfC with d ⊑ e;
Definition&Folding:
while in TransfC there is a clause E of the form H :- e(V,X), p(X), where e(V,X)
is a constraint and p is a predicate defined in T1 do
if in Defs there is a clause D of the form newp(X) :- c(X), p(X), where c(X)
is a constraint such that e(V,X) ⊑ c(X)

then TransfC := (TransfC − {E}) ∪ {H :- e(V,X), newp(X)};
else let Gen(E,Defs) be newq(X) :- gen(X), p(X);

Defs := Defs ∪ {Gen(E,Defs)};
InDefs := (InDefs − {C}) ∪ {Gen(E,Defs)};
TransfC := (TransfC − {E}) ∪ {H :- e(V,X), newq(X)}

end-while;
T2 := T2 ∪ TransfC

end-while;
Removal of Useless Clauses:
Remove from T2 all clauses with head predicate p, if in T2 there is no constrained fact
q(. . .) :- c where q is either p or a predicate on which p depends.

Fig. 1. The Transform strategy.

We assume that the set Defs is structured as a tree of clauses where, with
reference to Figure 1, clause C is said to be the parent of clause Gen(E,Defs),
and the ancestor relation is defined as the reflexive, transitive closure of the
parent relation.

3.2 Constraint Replacement via CHR

In this section we show how Constraint Handling Rules with disjunction can
be used to realize in a very natural way the constraint rewritings based on Ax-

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

121

ioms (A1)–(A3) for array operations, which allow us to apply the Constraint
Replacement rule during the Transform strategy.

CHR is a committed-choice language based on rewriting rules. It was specif-
ically designed for building custom constraint solvers [22]. A CHR program con-
sists of a set of guarded rules that rewrite multisets of constraints. Constraint
predicates are of two different kinds: (i) built-in constraints, whose entailment is
checked by using a domain-specific constraint solver, and (ii) user-defined con-
straints, which are rewritten as specified by the CHR program. We assume that
the set of built-in constraints contains the constraints true, false, and syntac-
tic equalities. Built-in constraints and user-defined constraints are closed under
conjunction. A constraint goal is either a (built-in or user-defined) constraint, or
a conjunction of constraint goals, or a disjunction of constraint goals.

CHR rules are of the form: r @ H1 \ H2 ⇔ G | B, where the @ symbol
separates the optional rule identifier r from the rest of the rule, the user-defined
constraints H1 and H2 are the kept head and the removed head, respectively, the
built-in constraint G is the guard, and B is a constraint goal. Either H1 or H2 is a
non-empty conjunction. If H2 is empty then the rule is called a propagation rule
and can be written as follows: H1 ⇒ G | B. The logical meaning of the CHR rule
H1 \ H2 ⇔ G | B is the guarded equivalence ∀(G → ((H1 ∧ H2) ↔ (H1 ∧ ∃Y B))),
where Y is the set of variables occurring in B and not in the rest of the rule.

The operational semantics of CHR is formally defined in terms of a transition
relation between CHR states as described in [1]. A CHR state is a triple 〈g, u, b〉,
where g is a constraint goal, u is a user-defined constraint and b is a built-in
constraint. An initial state is a state of the form 〈g, true, true〉. Starting from
an initial state, constraints are rewritten as long as possible by applying CHR
rules. A final state is a state from which no transition is applicable. A final
state is failed if it is of the form 〈g, u, false〉. Note that, since constraint goals
may contain disjunctions, the transition relation is nondeterministic, and thus
it generates a tree of computations whose leaves correspond to the final states.
A terminating CHR program is one for which there is no infinite sequence of
transitions, that is, the tree of computations is finite.

The CHR program Arr used for constraint replacement in the Transform
strategy consists of the following rules:
ac @ read(A1, I, X)\read(A2, J, Y) ⇔ A1 == A2, I=J | X = Y.

cac @ read(A1, I, X), read(A2, J, Y) ⇒ A1 == A2, X <> Y | I<>J.

row @ write(A1, I, X, A2)\read(A3, J, Y)⇔ A2==A3 | (I=J,X=Y); (I<>J,read(A1,J,Y)).

These rules encode the axioms (A1)–(A3) presented in Section 2. Rules ac and
cac encode the array congruence axiom (A1) and its contrapositive version,
respectively, and rule row encodes the two so-called read-over-write axioms (A2)
and (A3). The symbol ‘==’ denotes syntactic equality, while ‘=’ and ‘<>’ denote
integer equality and inequality, respectively. Note that we use the semicolon ‘;’
for denoting disjunction in the right-hand side of the rule row.

If we adopt an operational semantics that prevents trivial non-termination
cases by applying a propagation rule at most once to the same constraints [1],
then it can be shown that the CHR program Arr terminates for all constraint

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

122

goals generated during the application of our transformation strategy. Indeed,
the only rule that may lead to a non-terminating behavior is row. By using this
rule, a constraint containing

(g1) write(U,I,X,V), write(V,I,H,U), read(V,J,Y)

could be rewritten as a constraint containing

(g2) write(U,I,X,V), write(V,I,H,U), read(U,J,Y)

and then, by interchanging the roles of the two write constraints in the ap-
plication of the row rule, a constraint containing (g2) could be rewritten to a
constraint containing (g1), thereby giving rise to an infinite branch in the tree
of computation. However, it can be shown that a constraint goal of the form
(g1) cannot be generated by the Unfolding rule during the application of the
Transform strategy. Informally, in every clause, the constraints can be ordered
from left to right following the order of execution of the corresponding read and
write operations, and hence a variable V occurring in a constraint of the form
write(U, I, X, V), does not occur to the left of that constraint. This argument
is formalized by considering the transitive closure ≺+ of the following relation
between the variables of a clause: U≺V iff the constraint write(U, I, X, V) occurs
in the clause. It can be shown that in every clause derived by the Unfolding
rule during the application of the Transform strategy, ≺+ is irreflexive. Thus,
the termination of Arr follows from the fact that an application of the row rule
will replace a constraint of the form read(V,J,Y) by a constraint of the form
read(U,J,Y) with U≺V.

Given a clause D of the form H :- d, B, derived by the Unfolding rule, let
{〈g1, u1, b1〉, . . . , 〈gn, un, bn〉} be the set of all non-failed final states computed
from the initial state 〈d, true, true〉. Let di be the conjunction 〈gi, ui, bi〉. We
assume that, for i=1, . . . , n, the variables occurring in di and not in d are
fresh, and thus they occur neither in H nor in B. By the soundness of CHR
we have that A |= ∀(d ↔ (∃X1 d1 ∨∨ . . . ∨∨ ∃Xn dn)) where, for i=1, . . . , n, Xi =
vars(di)−vars(d). Thus, the applicability conditions of the Constraint Re-
placement rule are satisfied, and in the Transform strategy we define Repl(D)
to be {H :-d1, B, . . . , H :-dn, B}.

To see how the CHR program Arr works, let us consider again the bubblesort-
inner example of Section 3. By applying the unfolding rule to clause 1 the
Transform strategy derives a set of clauses including the following one:
new2(I, J1, N, A2, W, K):-J1=1+J, J<N−I−1, K≤J,Z<W, I≥0, K≥0,J≥N− I−3, X>Y,

write(A, J, Z, A1), write(A1, J1, W, A2), read(A, J, W), read(A, J1, Z),

read(A2, K, X), read(A2, J1, Y), val(j, J1), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

The CHR program Arr rewrites the constraint occurring in the above clauses
and the Constraint Replacement rule derives the following clause:
new2(I, J1, N, A2, W, K):-J1=1+J, J<N− I−1, K≤J, Z<W,I≥0, K≥0, J≥N−I−3, X>Y,

write(A, J, Z, A1), write(A1, J1, W, A2), read(A, J, Y), read(A, J1, Z),

read(A, K, X), Y=W, J>K,J1>K, val(j, J1), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

123

where (i) by row, the constraint read(A2, J1, Y) has been replaced by the equality
constraint Y=W (ii) by row, in the constraint read(A2, K, X), the variable A2,
denoting the array a after the write operation, has been replaced by the variable
A, denoting the array a before the write operation, and (iii) the constraint
‘J>K, J1>K’ has been added by the built-in solver on linear constraints.

3.3 Generalization Strategy

The most critical step of the Transform strategy is the introduction of new pred-
icates during Definition&Folding. Indeed, it should guaranteed that a finite
number of new predicates is introduced, to avoid the non-termination of Trans-
form. For this reason, as usual in many program transformation techniques [19],
we collect in the set Defs all predicate definitions introduced by the strategy,
and before introducing a new predicate definition D, we match it against the
ones already in Defs. If D is ‘similar’ to a definition A in Defs (formalized via
the embedding relation defined below), then the function Gen introduces a new
definition which is a generalization of A and D, instead of D. The function Gen
defined in this section, makes use of operators for generalizing array constraints
that ensure that no infinite number of distinct generalizations can be obtained,
and hence a finite number of new predicates is introduced during the Transform
strategy. The embedding relation and the generalization strategy take into con-
sideration the val constraints between the integer CLP variables occurring in
read constraints and the identifiers of the imperative program with which they
are associated. By doing so we will be able to identify similarities between defi-
nitions that go beyond syntactic variance, hence improving the level of precision
of the verification technique.

In the following we will denote constraints as conjunctions of the form i, r, w, v,
where i is an integer constraint, and r, w, and v are conjunctions of read, write,
and val constraints, respectively. We assume that all integer variables in read

constraints are distinct and do not occur in any (non constraint) atom of the
clause at hand (this condition can always be satisfied by adding some integer
equalities).

Given a clause D of the form H :- i, r, w, v, B, for every integer variable I

occurring in a read atom in r we compute the set ids(I) of identifiers id such
that an atom val(id, J) occurs in v and the constraint I = J is entailed by i.
We define the clause identifier set of D, denoted ids(D), as the set of pairs
(ids(I), ids(U)) such that a constraint of the form read(A, I, U) occurs in r. For
example, if the constraint occurring in the body of clause D is

M=0, N>M, V=0, read(A, M, U), read(A, N, V), val(m, M), val(n, N), val(v, V)
then we have that ids(D) = {({m, v}, {}), ({n}, {m, v})}.

Given two clause identifier sets R1 and R2, we say that R1 is embedded into R2

via the set relation rel iff for each pair (I1, U1) in R1 there exists a pair (I2, U2)
in R2 such that (i) rel(I1, I2) and rel(U1, U2) hold and (ii) R1 − {(I1, U1)} is
embedded into R2 − {(I2, U2)} via rel . In our experiments we have considered
two embedding relations based on the following definitions of rel(s1, s2): (1)
s1 ⊆ s2 (subset relation), and (2) s1⋓s2 defined as (s1 = s2 = ∅) ∨ (s1∩s2 6= ∅).

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

124

We say that a clause D1 is embedded into a clause D2 via the relation rel iff
ids(D1) is embedded in ids(D2) via rel .

Given a clause E of the form H :- e(V,X),p(X) and a set Defs of definitions,
the generalization function Gen computes a definition newq(X):- gen(X),p(X),
where newq is a new predicate symbol and gen(X) is a constraint such that
e(V,X) ⊑ gen(X), which is constructed as follows. Let e(V, X) be of the form
i, r, w, v and let newq(X) :-iX, rX, vX, p(X) be the candidate definition clause for
E, where: (i) rX is the conjunction of the read(A, I, V) constraints in r such
that A occurs in X and, for some val(j, J) in v we have that J occurs in X and
either I = J or V = J is entailed by i, (ii) iX is the constraint obtained from
i by projecting away the variables not occurring in X or rX, and (iii) vX is the
conjunction of the val(j, J) constraints in v such that J occurs in X.

Suppose that clause E has been derived from clause C at the end of the
Removal of Subsumed Clauses step. Gen(E,Defs) is defined as follows.
If in Defs there is an ancestor A of C of the form H0 :- i0, r0, v0, p(X), such that

r0 is a subconjunction of rX, and A is embedded into newq(X) :-iX, rX, vX, p(X),
Then let i1 be the constraint obtained from iX by projecting away the variables

not occurring in X or r0; compute a generalization g of the constraints
i1 and i0 such that i1 ⊑ g, by using a generalization operator for linear
constraints. Define the constraint gen(X) as g, r0, v0;

Else define the constraint gen(X) as iX, rX, vX.
For the projection and generalization operations we apply the usual operators
for linear constraints on the reals (and in particular the widening and convex
hull generalization operators defined in [10, 19, 40]). These operators are correct
because they guarantee that i ⊑ g.

To see an example of application of the generalization strategy let us con-
sider the clause that was derived in Section 3.2 by applying the Constraint
Replacement rule. The candidate definition for that clause is:
new4(I, J, N, A, Tmp, K) :- J<N−I−1, I≥0, K≥0, J≥N−I−3, X>W, J>K,

read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

and Defs contains the following ancestor definition:
new2(I, J, N, A, Tmp, K) :- J<N−I−1, I≥0, K≥0, J≥N−I−2, X>W, J>K,

read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

Since the ancestor definition is embedded into the candidate definition via ⊆ or ⋓
(indeed, the two clauses have the same clause identifier set {({j}, {}), ({k}, {})}),
we obtain a generalization of the candidate definition by applying the widening
operator between the linear constraints, hence dropping the constraint J≥N−I−2

of the ancestor definition, and we introduce the following generalized definition:

new4(I, J, N, A, Tmp, K):- J<N−I−1, I≥0, K≥0, X>W, J>K,

read(A, J, W), read(A, K, X), val(k, K), val(j, J), new1(I, J, N, A, Tmp, K).

The correctness of the Transform strategy with respect to the least A-model
semantics follows from the correctness results for the unfold/fold rules proved
in [18].

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

125

The termination of the Transform strategy is based on the following facts:
(i) Constraint satisfiability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform).
(ii) The CHR program Arr implementing Constraint Replacement termi-
nates. (iii) The set of new clauses that, during the execution of the Transform
strategy, can be introduced by Definition&Folding steps is finite. Indeed, by
construction, they are all of the form H :- i, r, v, p(X), where: (1) X is a tuple of
variables, (2) i is an integer constraint, (3) r is a conjunction of array constraints
of the form read(A, I, V), where A is a variable in X and the variables I and V

occur in i only, (4) the set of identifiers of the imperative program is finite, and
hence the embedding relation is a thin well-quasi ordering [19] (this property
guarantees that generalization is eventually triggered, and that a definition can
be generalized a finite number of times only), (5) the cardinality of r is bounded,
because if in Defs there exists a clause A of the form H0 :- i0, r0, vX, p(X), then
generalization does not introduce a descendant definition clause D of the form
newp(X) :- iX, r0, r1, vX, p(X) such that A is embedded into D, (6) we assume
that the generalization operator on linear constraints has the following finite-
ness property: only finite chains of generalizations of any given constraint can
be generated by applying the operator. The already mentioned generalization
operators presented in [10, 19, 40] satisfy this finiteness property. Thus, we have
the following result.

Theorem 1. (i) The Transform strategy terminates. (ii) Let program T 2 be the
output of Transform applied to the input program T 1. Then, incorrect∈M(T 1)
iff incorrect∈M(T 2).

Let us now conclude our bubblesort-inner example. After a few iterations,
the outermost while-loop of the Transform strategy terminates and produces
the following set T 2 of clauses (which we list as they have been automatically
generated):
incorrect :- A =−1+B−C, D =−1+B−C, E−F ≤−1, G ≥ 0, C ≥ 0, B−G−C ≥ 2,

read(H, D, E), read(H, G, F), val(j, A), val(k, G), new1(C, A, B, H, I, G).
new1(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, A =−2+C−G, B = 1+G, I = 1+G, H = 1+G,

J = 1+G, K = 1+G, F−G ≤ 0, L−E ≤−1, F ≥ 0, C−G ≥ 2, M−E ≥ 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(j, G), val(k, F), val(j, B), new2(A, G, C, N, P, F).

new1(A, B, C, D, E, F) :- G ≥ F+1, A =−2+C−G, B = 1+G, H = 1+G, I = 1+G, F−G ≤ 0,
F ≥ 0, C−G ≥ 2, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J), read(D, H, K),
val(j, G), val(k, F), val(j, B), new2(A, G, C, D, E, F).

new2(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A−C+G ≤−2, F−G ≤ 0, L−E ≤−1, A ≥ 0, F ≥ 0, A−C+G ≥−3, M−E ≥ 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(j, G), val(k, F), val(j, B), new4(A, G, C, N, P, F).

new2(A, B, C, D, E, F) :- G ≥ F+1, B = 1+G, H = 1+G, I = 1+G, A−C+G ≤−2, F−G ≤ 0,
A ≥ 0, F ≥ 0, A−C+G ≥−3, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J),
read(D, H, K), val(j, G), val(k, F), val(j, B), new4(A, G, C, D, E, F).

new4(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A−C+G ≤−2, F−G ≤ 0, L−E ≤−1, A ≥ 0, F ≥ 0, M−E ≥ 1, read(N, F, M),
read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

126

val(j, G), val(k, F), val(j, B), new4(A, G, C, N, P, F).
new4(A, B, C, D, E, F) :-G ≥ F+1, B = 1+G, H = 1+G, I = 1+G, A−C+G ≤−2, F−G ≤ 0,

A ≥ 0, F ≥ 0, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J), read(D, H, K),

val(j, G), val(k, F), val(j, B), new4(A, G, C, D, E, F).

Since this set contains no constrained facts, by Removal of Useless Clauses
we remove all clauses from T 2 and the Transform strategy outputs the empty
program. Thus, incorrect 6∈ M(T 2) and we conclude that the program bubblesort-
inner is correct with respect to the given ϕinit and ϕerror properties.

4 Experimental Evaluation
We have implemented our verification method as a module of the VeriMAP soft-
ware model checker [14] (available at http://map.uniroma2.it/VeriMAP) and
we have performed an experimental evaluation of our method on a benchmark
set of programs taken from the literature [6, 9, 16, 27, 35] (the source code is
available at http://map.uniroma2.it/smc/array-chr).

We have applied the Transform strategy presented in Section 3 using different
generalization strategies that combine the widening and convex hull operators
together with various embedding relations. Different embedding relations are
obtained: (i) by selecting different sets of variable identifiers for the introduction
of the val constraints, and (ii) by using different relations to compare sets of
identifiers (see Section 3.3). In particular, we have considered the following gen-
eralization strategies: GenW,I,⋓, GenH,V,⊆, GenH,V,⋓, GenH,I,⊆, and GenH,I,⋓,
where the subscripts should be interpreted as follows. The first subscript denotes
the generalization operator: W stands for the widening operator, and H stands
for the widening-and-convex-hull operator. The second subscript denotes the se-
lected set of identifiers: I stands for the set of variable identifiers associated with
the second argument (that is, the index) of the read constraints, and V stands
for the set of identifiers associated with the third argument (that is, the value)
of the read constraints. The third subscript denotes the relation rel ∈ {⊆,⋓}
that is used for comparing the sets of identifiers.

The results of our experiments are summarized in Table 1. The experiments
have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of
memory under GNU/Linux OS. We have that the strategies based on GenH,I,rel

are more precise than those based on GenH,V,rel , for any rel ∈ {⊆,⋓}. Simi-
larly, the strategies based on GenH,S ,⋓ are more precise than those based on
GenH,S ,⊆, for any S ∈ {I, V}. Note that by generalizing the constraints, the
Transform strategy may get an empty set of identifiers associated with a given
variable, thereby making the generalizations based on the operator ⊆ less useful
that those based on the operator ⋓. The best trade-off between precision and
performance is obtained by GenH,I,⋓ that allowed us to prove all programs we
have considered. Note also that the bubblesort-inner program can be proved only
by generalizations based on GenW,I,⋓ or GenH,I,⋓.

5 Related Work and Conclusions
The technique presented in this paper is an extension of the one presented in [13].
The novel contributions of this paper are the following. (1) We have formalized

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

127

Program GenW,I,⋓ GenH,V,⊆ GenH,V,⋓ GenH,I,⊆ GenH,I,⋓

bubblesort-inner 0.9 unknown unknown unknown 1.52
copy-partial unknown unknown 3.52 3.51 3.54
copy-reverse unknown unknown 5.25 unknown 5.23
copy unknown unknown 5.00 4.88 4.90
find-first-non-null 0.14 0.66 0.64 0.28 0.27
find 1.04 6.53 2.35 2.33 2.29
first-not-null 0.11 0.22 0.22 0.22 0.22
init-backward unknown 1.04 1.04 1.03 1.04
init-non-constant unknown 2.51 2.51 2.47 2.47
init-partial unknown 0.9 0.89 0.9 0.89
init-sequence unknown 4.38 4.33 4.41 4.29
init unknown 1.00 0.97 0.98 0.98
insertionsort-inner 0.58 2.41 2.4 2.38 2.37
max unknown unknown 0.8 0.81 0.82
partition 0.84 1.77 1.78 1.76 1.76
rearrange-in-situ unknown unknown 3.06 3.01 3.03
selectionsort-inner unknown time-out unknown 2.84 2.83
precision 6 10 15 15 17
total time 3.61 21.42 34.76 31.81 38.45
average time 0.60 2.14 2.31 2.12 2.26

Table 1. Verification results using VeriMAP. Time is in seconds. By ‘unknown’ we
indicate that VeriMAP terminates without being able to prove correctness or incor-
rectness. By ‘time-out ’ we indicate that VeriMAP is unable to provide an answer within
5 minutes.

constraint replacement as a CHR program representing the Theory of Arrays,
whereas in [13] constraint replacement was implemented directly in CLP. We
have shown that the approach based on CHR allows a very elegant combina-
tion of constraint manipulation with transformations based on unfold/fold rules.
(2) We have presented a novel strategy that controls the generalization of array
constraints during CLP transformation by taking into account the information
relating the variable identifiers in the imperative program and the CLP rep-
resentation of their values. We have shown that our generalization strategy is
effective on several examples taken from the literature.

In the Introduction we mentioned some CLP-based program verification
methods. Here we briefly recall other methods, not based on CLP, for the veri-
fication of array programs.

Some of these methods use abstract interpretation. In [27], which builds
upon [24], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach is
followed in [9] where a scalable framework for the automatic analysis of array
programs is introduced. In [21, 34] a predicate abstraction for inferring univer-
sally quantified properties of array elements is presented, and in [26] the authors
present a similar technique which uses template-based quantified abstract do-
mains. In [46] a backward reachability analysis based on predicate abstraction
and abstraction refinement is used for verifying assertions which are universally
quantified over array indexes.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

128

The methods based on abstract interpretation construct over-approximations,
that is, invariants implied by the program executions. These methods have the
advantage of being quite efficient because they fix in advance a finite set of ba-
sic assertions from which the invariants can be constructed. However, for the
same reason, these methods may lack flexibility as the abstraction should be
re-designed when verification fails.

Also theorem provers have been applied for discovering invariants and prov-
ing verification conditions generated from the programs. In particular, in [7] a
satisfiability decision procedure for a decidable fragment of a theory of arrays
is presented. That fragment is expressive enough to prove properties such as
sortedness of arrays. In [32, 33, 38] the authors present some techniques that use
theorem proving for generating array invariants. Some theorem proving tech-
niques for program verification are based on Satisfiability Modulo Theory (SMT)
(see, for instance, [3, 4, 35]). The approaches based on theorem proving and SMT
are more flexible with respect to those based on abstract interpretation because
no finite set of assertions is fixed in advance and, instead, the suitable assertions
needed for the proofs can be generated on demand.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it offers a higher degree of flexibility and parametricity.
Indeed, the transformation-based method for the generation of the verification
conditions and their proof, is to a large extent independent of the imperative
program and the property to be verified.

The use of CHR further enhances the flexibility of our transformation-based
approach because CHR manipulate the constraints that represent operations on
the data structures (such as the read and write operations in the case of arrays),
while the unfold/fold rules manipulate the non-constraint atoms of the CLP
programs. The experimental results we have reported in this paper demonstrate
that the combination of the two kind of rules, those for constraints and those for
non-constraint atoms, is a promising, powerful technique for proving program
properties.

As future work we plan to extend our transformation-based method to the
verification of programs which manipulate dynamic data structures such as lists
or heaps. To this aim we may combine the CHR axiomatization of heaps proposed
by [17] with the generalization strategies based on widening and convex-hull
considered in this paper.

References

1. S. Abdennadher and H. Schütz. CHR∨: A flexible query language. Proc. FQAS ’98,
LNCS 1495, pages 1–14. Springer, 1998.

2. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
bytecode using analysis and transformation of logic programs. Proc. PADL ’07,
LNCS 4354, pages 124–139. Springer, 2007.

3. F. Alberti, S. Ghilardi, and N. Sharygina. SAFARI: SMT-based abstraction for
arrays with interpolants. Proc. CAV ’12, LNCS 7358, pages 679–685. Springer,
2012.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

129

4. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. Proc. TACAS ’14, LNCS 8413, pages 15–30. Springer, 2014.

5. N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability
modulo theories. Proc. SMT-COMP ’12, pages 3–11, 2012.

6. N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. Proc. SAS ’13, LNCS 7935, pages 105–125. Springer, 2013.

7. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? Proc.
VMCAI ’06, volume LNCS 3855, pages 427–442. Springer, 2006.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixpoints.
Proc. POPL ’77, pages 238–252. ACM, 1977.

9. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. Proc. POPL ’11, pages 105–118.
ACM, 2011.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. Proc. POPL ’78, pages 84–96. ACM, 1978.

11. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification of im-
perative programs by constraint logic program transformation. Proc. SAIRP ’13,
EPTCS 129, pages 186–210, 2013.

12. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying programs
via iterated specialization. Proc. PEPM ’13, pages 43–52. ACM, 2013.

13. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying array pro-
grams by transforming verification conditions. Proc. VMCAI ’14, LNCS 8318,
pages 182–202. Springer, 2014.

14. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A tool for
verifying programs through transformations. Proc. TACAS ’14, LNCS 8413, pages
568–574. Springer, 2014.

15. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Program verification
via iterated specialization. Science of Computer Programming, 2014 (to appear).

16. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
Proc. ESOP ’10, LNCS 6012, pages 246–266. Springer, 2010.

17. G. J. Duck, J. Jaffar, and N. C. H. Koh. Constraint-based program reasoning with
heaps and separation. Proc. CP ’13, LNCS 8124, pages 282–298. Springer, 2013.

18. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

19. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies
for the verification of infinite state systems. Theory and Practice of Logic Pro-
gramming, 13(2):175–199, 2013.

20. C. Flanagan. Automatic software model checking via constraint logic. Science of
Computer Programming, 50(1–3):253–270, 2004.

21. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. Proc.
POPL ’02, pages 191–202. ACM, 2002. ACM.

22. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, pages 95–138, Oc-
tober 1998.

23. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for ex-
tensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

24. D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array
operations. Proc. POPL ’05, pages 338–350. ACM, 2005.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

130

25. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A software verifier based on Horn clauses. Proc. TACAS ’12, LNCS
7214, pages 549–551. Springer, 2012.

26. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. Proc. TACAS ’08, LNCS 4963, pages 443–458.
Springer, 2008.

27. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. Proc. PLDI ’08, pages 339–348. ACM, 2008.

28. K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs
through logic programming. Proc. SCAM ’06, pages 103–179, 2006.

29. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programming. Journal of Logic Programming, 37:1–46, 1998.

30. J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool
for verification. http://paella.d1.comp.nus.edu.sg/tracer/, 2012.

31. J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal.
Proc. CP ’09, LNCS 5732, pages 454–469. Springer, 2009.

32. R. Jhala and K. L. McMillan. Array abstractions from proofs. Proc. CAV ’07,
LNCS 4590, pages 193–206. Springer, 2007.

33. L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using
a theorem prover. Proc. FASE ’09, LNCS 5503, pages 470–485. Springer, 2009.

34. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log., 9(1), 2007.

35. D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant
generation. Proc. VMCAI ’13, LNCS 7737, pages 169–188. Springer, 2013.

36. J. W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987.
Second edition.

37. J. McCarthy. Towards a mathematical science of computation. Proc. IFIP 1962,
pages 21–28. North Holland, 1963.

38. K. L. McMillan. Quantified invariant generation using an interpolating saturation
prover. Proc. TACAS ’08, LNCS 4963, pages 413–427. Springer, 2008.

39. M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based
approach to the analysis of object-oriented programs. Proc. LOPSTR ’07, LNCS
4915, pages 154–168. Springer, 2008.

40. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of
CLP programs. Proc. LOPSTR ’02, LNCS 2664, pages 90–108. Springer, 2003.

41. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs
through analysis of constraint logic programs. Proc. SAS ’98, LNCS 1503, pages
246–261. Springer, 1998.

42. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19,20:261–320, 1994.

43. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. Proc. PADL ’07, LNCS 4354, pages 245–259.
Springer, 2007.

44. C. J. Reynolds. Theories of programming languages. Cambridge University Press,
1998.

45. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for Horn-clause
verification. Proc. CAV ’13, LNCS 8044, pages 347–363. Springer, 2013.

46. M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified
array assertions. Proc. SAS ’09, LNCS 5673, pages 3–18. Springer, 2009.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

131

Defeasibility in contextual reasoning with CKR?

Loris Bozzato1, Thomas Eiter2, and Luciano Serafini1

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
2 Institut für Informationssysteme, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria

{bozzato,serafini}@fbk.eu, eiter@kr.tuwien.ac.at

Abstract. Recently, representation of context dependent knowledge in the Se-
mantic Web has been recognized as a relevant issue and a number of logic based
solutions have been proposed in this regard: among them, in our previous works
we presented the Contextualized Knowledge Repository (CKR) framework.
A CKR knowledge base has a two layered structure, modelled by a global context
and a set of local contexts: the global context not only contains the metaknowl-
edge defining the properties of local contexts, but also holds the global (context
independent) object knowledge that is shared by all of the local contexts. In many
practical cases, however, it is desirable to leave the possibility to “override” the
global object knowledge at the local level, by recognizing the axioms that can
allow exceptional instances in the local contexts. This clearly requires to add a
notion of non monotonicity across the global and the local parts of a CKR.
In this paper we present an extension to the semantics of CKR to introduce such
notion of defeasible axioms. By extending a previously proposed datalog trans-
lation, we obtain a representation for CKR as a datalog program with negation
under answer set semantics. This representation can be exploited as the basis for
implementation of query answering for the proposed extension of CKR.

1 Introduction

Representation of context dependent knowledge in the Semantic Web has been recently
recognized as a relevant issue that lead to a number of logic based proposals, e.g. [7–9,
13–15, 12]; in particular, the Contextualized Knowledge Repository (CKR) framework
[12, 3, 2], with its latest formulation in [4], has been developed at the FBK in Trento.

A CKR knowledge base has a two layered structure: basically, it consists of a global
context and a set of local contexts. The global context contains metaknowledge defin-
ing the properties of local contexts, as well as the global (context independent) object
knowledge that is shared by all of the local contexts. Local contexts, on the other hand,
contain knowledge that holds under specific circumstances (e.g. an event) and thus rep-
resent different independent views of the domain. The global object knowledge is prop-
agated from the global to the local contexts and used as a common part of the system
knowledge. In many practical cases, however, it is desirable to leave the possibility to
“override” the global object knowledge at the local level, by recognizing those axioms
that can allow exceptional instances in their local instantiations.
? This paper has been previously presented at the 5th International Workshop on Acquisition,

Representation and Reasoning with Contextualized Knowledge (ARCOE-LogIC 2013).

132

For example, in the scenario of an event recommendation system, we might want
to assert at the global level that “by default, all of the cheap events are interesting”,
but then override this inclusion for particular kind of events in the context of a partic-
ipant. We might also want to express defeasibility on the propagation of information:
for instance, in a CKR representing an organization, we might want to express that “by
default, all the employees working the previous year also work in the current year”
and override the axiom in the context of a specific year for employees that finished
their working contract at that time. In other words, we want to specify that certain ax-
ioms at the global level are defeasible, thus they can allow exceptional instances in
local contexts, while holding in the general case: this clearly requires to add a notion of
non-monotonicity across the global and the local parts of a CKR.

In this work, we present an extension to the CKR semantics of [4] to support such
defeasibility for global object knowledge. We desire to enrich previous work and to
have a datalog representation of the extended CKR semantics that extends the one for
the CKR semantics in [4]: we introduced defeasible axioms guided by the approach of
inheritance logic programs in [5]. There the idea is that special rules recognize excep-
tional facts at the local level and others propagate global facts only if they are not proved
to be overridden at the local level, which happens if the opposite is derived; in the same
vein, we consider instances of axioms that might be overridden at the local level. The
semantics for CKR we define is (as desired) representable by a datalog program with
negation under answer sets semantics; furthermore, a respective translation can be used
as the basis to implement query answering over defeasible CKR knowledge bases.

We can thus summarize the contributions of our work as follows. After a brief in-
troduction of preliminary definitions in Section 2, we present in Section 3 syntax and
semantics of an extension of CKR with defeasible axioms in the global context. No-
tably, this allow us to introduce for the first time a notion of non-monotonicity across
contexts in our contextual framework. We then extend in Section 4 the datalog trans-
lation for OWL RL based CKR from [4] with rules for the translation of defeasible
axioms and for considering local exceptions in the propagation of such knowledge. We
express non-monotonicity using answer set semantics, such that instance checking over
an CKR with defeasible axioms reduces to cautious inference from all answer set of the
translation. The work reported here is in progress, and an implementation of a prototype
reasoner, based on the results of [4] and this paper, is underway.

2 Preliminaries: SROIQ-RL

This work basically builds on the materialization calculus for CKR on OWL RL re-
cently proposed in [4]. The extension of the calculus that we present here is again for-
mulated over the language SROIQ-RL, which represents the restriction of SROIQ
to the OWL RL constructs [11]. The language is obtained by restricting the form of Gen-
eral Concept Inclusion axioms (GCIs) and concept equivalence of SROIQ to C v D
where C and D are concept expressions, called left-side concept and right-side concept
respectively, and defined by the following grammar:

C := A | {a} |C1 u C2 |C1 t C2 | ∃R.C1 | ∃R.{a} | ∃R.>
D := A | ¬C1 |D1 uD2 | ∃R.{a} | ∀R.D1 | 6 nR.C1 | 6 nR.>

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

133

where A is a concept name, R is role name and n ∈ {0, 1}. A both-side concept E,F
is a concept expression which is both a left- and right-side concept. TBox axioms can
only take the form C v D or E ≡ F . The RBox for SROIQ-RL can contain every
role axiom of SROIQ except for Ref(R). ABox concept assertions can be only stated
in the form D(a), where D is a right-side concept.

3 CKR with defeasible axioms

We now introduce CKRs and extend them with primitives to express defeasible axioms.
We first present the syntax and then define a model-based semantics for the interpreta-
tion of defeasible inheritance from the upper contexts.

A Contextualized Knowledge Repository (CKR) is a two layered structure. The up-
per layer consists of a knowledge base G, which describes two types of knowledge: (i)
the structure and the properties of contexts of the CKR (called meta-knowledge), and
(ii) the knowledge that is context independent, i.e., that holds in every context (called
global knowledge). The lower layer is constituted by a set of (local) contexts; each
contains (locally valid) facts and can also refer to what holds in other contexts.
Meta-Language. The meta-knowledge of a CKR is expressed by a DL language de-
fined on a meta-vocabulary, containing the elements that define the contextual structure.

Definition 1 (Meta-vocabulary). A meta-vocabulary is a DL vocabulary Γ composed
of a set NCΓ of atomic concepts, a set NRΓ of atomic roles, and a set NIΓ of individual
constants that are mutually disjoint and contain the following sets of symbols

1. N ⊆ NIΓ of context names.
2. M ⊆ NIΓ of module names.
3. C ⊆ NCΓ of context classes,

including the class Ctx.

4. R ⊆ NRΓ of contextual relations.
5. A ⊆ NRΓ of contextual attributes.
6. For every attribute A ∈ A, a set

DA ⊆ NIΓ of attribute values of A.

We use the role mod ∈ NRΓ defined on N×M to express associations between contexts
and modules. The meta-language LΓ of a CKR is a DL language over Γ with the
following syntactic conditions on the application of role restrictions: for every • ∈
{∀,∃,6 n,> n}, (i) for a concept •A.B, then B is in the form B = {a} with a ∈ DA;
(ii) for a concept •mod.B, then B is in the form B = {m} with m ∈M.
Object Language. The context (in)dependent knowledge of a CKR is expressed via
a DL language called object-language LΣ over an object-vocabulary Σ = NCΣ]
NRΣ] NIΣ . Expression in LΣ will be evaluated locally to each context, i.e., each
context can interpret each symbol independently. However, sometimes one wants to
constrain the meaning of a symbol in a context with the meaning of a symbol in some
other context. For such external references, we extend the object language LΣ to LeΣ
with eval expressions of the form eval(X,C), where X is a concept or role expression
of LΣ and C is a concept expression of LΓ (with C v Ctx).
Defeasible Axioms. Compared to [4], we extend the types of axioms that can appear
in the global object knowledge G with defeasible axioms. Given an axiom α ∈ LΣ , the
assertion D(α) in G states that α is a defeasible axiom of G. Intuitively, this statement
means that α, at the level of instantiations for individuals, propagates to a local context
unless it is contradicted there, and thus an exception to α for individuals is tolerated.

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

134

Example 1. A defeasible fact D(Expensive(concert)) might express that a concert is
expensive and propagate this to local contexts. At such a context, this might be con-
tradicted by an assertion ¬Expensive(concert), which then overrides the global asser-
tion. Likewise, such overriding should take place if we have a global axiom Cheap v
¬Expensive and a local assertion Cheap(concert), such that ¬Expensive(concert)
can be derived at the local context. 3

Example 2. Beyond facts, from a defeasible GCI axiom D(Cheap v Interesting)
(“cheap events are interesting”) and the global assertion Cheap(fbmatch) (“football
matches are cheap”), we may conclude Interesting(fbmatch) at a local context; how-
ever, an assertion ¬Interesting(fbmatch) there would contradict this and should over-
ride the instance of the defeasible axiom for fbmatch: that is, the fact ¬Cheap t
Interesting(fbmatch) may be violated. 3

The DL language LD
Σ extends LΣ with the set of defeasible axioms in LΣ .

CKR Syntax. We are now ready to give our formal definition of Contextualized
Knowledge Repository.

Definition 2 (Contextualized Knowledge Repository, CKR). A Contextualized Knowl-
edge Repository (CKR) over a meta-vocabulary Γ and an object vocabulary Σ is a
structure K = 〈G, {Km}m∈M〉 where:
– G is a DL knowledge base over LΓ ∪ LD

Σ , and
– every Km is a DL knowledge base over LeΣ , for each module name m ∈M.

In particular, K is a SROIQ-RL CKR, if G and all Km are knowledge bases over
the extended language of SROIQ-RL where eval-expressions can only occur in left-
concepts and contain left-concepts or roles. In the following, we tacitly focus on such
CKR. We show how the examples in the introduction can be formalized as CKRs.

Example 3. In the first example (inspired by a real application of CKR3) we want to
define an event recommendation system: we thus represent touristic events and prefer-
ences of tourists in order to be able to derive appropriate suggestions. In particular, we
want to assert that, in general, all of the Cheap events are Interesting ; we do so by
expressing this as a defeasible axiom in the global context. Furthermore, we propose
local markets (market) and football matches (fbmatch) as examples of cheap events.
On the other hand, we want to reflect that tourists interested in cultural events are not
interested in a sportive event like a football match4; we express this by negating the
interest in fbmatch. Thus, our example CKR Ktour = 〈G, {Kctourist m}〉 has:

G : {D(Cheap v Interesting), Cheap(fbmatch), Cheap(market),
mod(cultural tourist, ctourist m) },

Kctourist m : {¬Interesting(fbmatch) }.

Note that the negative assertion in the local context represents, as discussed in Exam-
ple 2, an exception to the defeasible axiom: we want to recognize this “overriding” for
the fbmatch instance, but still apply the defeasible inclusion for market . 3

3 http://www.investintrentino.it/News/Trentour-Trentino-
platform-for-smart-tourism

4 To keep things simple, we omit modeling sportive events by a separate concept.

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

135

Example 4. Our next example shows how we can represent a form of defeasible prop-
agation of information across local contexts using eval expressions. We want to rep-
resent the information about an organization in a CKR, using contexts to represent its
situation in different years. We express the rule that every employee working the years
before (WorkingBefore) also works in the current year (WorkingNow) by a defeasible
inclusion. In the module associated to 2012, we say that alice, bob and charlie were
working last year. In the module for 2013, we say (using an eval expression) that all of
the employees working in 2012 have to be considered in the set of employees working
in the past years; moreover, we say that charlie no longer works for the organization.
This can be encoded in the CKR Korg = 〈G, {Kem2012 m,Kem2013 m}〉, where

G :

{
D(WorkingBefore vWorkingNow),
mod(employees2012, em2012 m), mod(employees2013, em2013 m)

}

Kem2012 m : {WorkingNow(alice),WorkingNow(bob),WorkingNow(charlie) }

Kem2013 m :

{
eval(WorkingNow , {employees2012}) vWorkingBefore,
¬WorkingNow(charlie)

}

Intuitively, at the local context employees2013, where WorkingBefore(charlie) can be
derived, the negative assertion ¬WorkingNow(charlie) should override the instance of
the inclusion axiom in the global context for charlie , as it would lead to the opposite,
i.e., WorkingNow(charlie); on the other hand, for alice and bob no overriding should
happen and we can derive that they still work for the organization. 3

Semantics. We now define a model-based semantics for CKRs. The idea is to model
exceptions of axiom instances by so called clashing assumptions, which are pairs 〈α, e〉
of an axiom and a set of individuals, to the effect that in the evaluation at the local
context, the instance of α for e is disregarded. However, such a clashing assumption
must be justified, in the sense that the instance of α for e must be unsatisfiable at the
local context. This is ensured if there are assertions that can be derived which prove this
unsatisfiability: we call such assertions clashing sets. Models of a CKR will be then
CKR interpretations in [4] extended with clashing assumptions that are all justified.

Definition 3 (CKR interpretation). A CKR interpretation for 〈Γ,Σ〉 is a structure
I = 〈M, I〉 s.t.

– M is a DL interpretation of Γ ∪Σ s.t., for every c ∈ N, cM ∈ CtxM and, for every
C ∈ C, CM ⊆ CtxM;

– for every x ∈ CtxM, I(x) is a DL interpretation over Σ s.t. ∆I(x) = ∆M and, for
a ∈ NIΣ , aI(x) = aM.

The interpretation of ordinary DL expressions on M and I(x) in I = 〈M, I〉 is as
usual; eval expressions are interpreted as follows: for every x ∈ CtxM,

eval(X,C)I(x) =
⋃

e∈CM XI(e)

According to the previous definition, a CKR interpretation consists of an interpretation
for the “upper-layer” (which includes the global knowledge and the meta-knowledge)
and an interpretation of the object language for each instance of type context (i.e., for
all x ∈ CtxM), providing a semantics of the object-vocabulary in x.

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

136

An instantiation of an axiom α ∈ LΣ with a tuple e of individuals in NIΣ , written
α(e), is the specialization of α, viewed as its first order translation in an universal
sentence ∀x.φα(x), to e (i.e., φα(e)); accordingly, e.g., e is void for assertions, a single
element e for GCIs, and a pair e1, e2 of elements for role axioms.

A clashing assumption is pair 〈α, e〉 such that α(e) is an axiom instantiation; intu-
itively, it represents the assumption that α(e) is not (DL-)satisfiable. A clashing set for
a 〈α, e〉 is a satisfiable set S of ABox assertions such that S ∪ {α(e)} is unsatisfiable.
That is, S provides an assertional “justification” for the assumption of local overriding
of α on e.

Given a CKR interpretation I = 〈M, I〉, we call the structure ICAS = 〈M, I,CAS 〉
a CAS -interpretation, where CAS is a map such that, for every x ∈ ∆M, CAS (x) is
a set of clashing assumptions for x.

Definition 4 (CAS -model). Given a CKR K = 〈G, {Km}m∈M〉 and a CAS -interpretation
ICAS = 〈M, I,CAS 〉, we say that ICAS is a CAS -model for K (ICAS |= K) if

– for every α ∈ LΣ ∪ LΓ in G,M |= α;
– for every D(α) ∈ G with α ∈ LΣ ,M |= α;
– if 〈x, y〉 ∈ modM and y = mM, then I(x) |= Km;
– for every α ∈ G ∩ LΣ and x ∈ CtxM, I(x) |= α, and
– for every D(α) ∈ G with α ∈ LΣ , x ∈ CtxM, and domain elements d ⊆ ∆I(x), if
d 6= eM for every 〈α, e〉 ∈ CAS (x), then I(x) |= α(d).

For α ∈ LeΣ and c ∈ N, we write K |=CAS c : α if for every CAS -interpretation ICAS

it holds that ICAS |= K implies I(cM) |= α; for α ∈ LΓ , we write K |=CAS α if for
every CAS -interpretation ICAS it holds that ICAS |= K impliesM |= α.

We say that a CAS -model ICAS = 〈M, I,CAS 〉 of K is justified if, for every x ∈
CtxM and 〈α, e〉 ∈ CAS (x), some clashing set Sx,〈α,e〉 exists such that for every CAS -
model I′CAS = 〈M′, I ′,CAS 〉 of K with ∆M = ∆M

′
, it holds I ′(x) |= Sx,〈α,e〉.

Informally, justification requires that we have factual evidence that an instantiation of
an axiom can not be satisfied, and this evidence is provable. Based on this, we now give
the definition of CKR model:

Definition 5 (CKR model). A CKR interpretation I = 〈M, I〉 is a CKR model of K
(in symbols, I |= K), if some ICAS = 〈M, I,CAS 〉 is a justified CAS -model for K.

For α ∈ LeΣ and c ∈ N, we write K |= c : α if I(cM) |= α for every CKR model I of
K; similarly for α ∈ LΓ , we write K |= α ifM |= α for every CKR model I of K.

We can show the following properties:

Proposition 1. Suppose that I = 〈M, I〉 and I′ = 〈M′, I ′〉 are CKR models of K
such that ICAS = 〈M, I,CAS 〉 and I′CAS ′ = 〈M′, I ′,CAS ′〉 are justified CAS -
models of K. Then CtxM = CtxM

′
and CAS ′(x) ⊆ CAS (x) for every x ∈ CtxM

implies CAS = CAS ′.

The previous result shows that, given the justification of the CKR model, there is a
notion of minimality on the sets of clashing assumptions related to each context.

Given a CAS -interpretation ICAS = 〈M, I,CAS 〉, we denote with INCAS =

〈M′, I ′,CAS ′〉 the interpretation in which: (i) ∆M
′

= {aM | a ∈ NIΓ ∪ NIΣ};
(ii)M′, I ′ and CAS ′ are the restrictions ofM, I and CAS to ∆M

′
, respectively.

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

137

Proposition 2. Let ICAS be a justified CAS -model of K. Then, also the CAS -interpre-
tation INCAS is a justified CAS -model of K.

Basically, the result shows that justification for a CKR only depends on the “named
contexts” part of the considered CAS -model: intuitively, this allow us to consider such
restricted models in the correctness result of the datalog translation presented in the
following section.

Example 5. We can now show an example of CKR models satisfying the example
CKRs presented in Example 3.

In the case of Ktour , we can consider a model ICAS tour = 〈M, I,CAS tour 〉 such
that CAS tour (cultural touristM) = {〈Cheap v Interesting, {fbmatch}〉}. Note
that the interpretation is justified as it is easy to check that Ktour |= cultural tourist :
{Cheap(fbmatch),¬Interesting(fbmatch)}, that represents a clashing set for the de-
feasible axiom. Moreover, for the definition of satisfiability under the assumptions in
CAS tour , we obtain that I(cultural touristM) |= Interesting(market).

Similarly, for Korg, we have that the model ICASorg = 〈M, I,CAS org〉 with
CAS org(employees2013M) = {〈WorkingBefore v WorkingNow , {charlie}〉} is a
CKR model for the example CKR. For the interpretation of eval expressions, in every in-
terpretation of Korg we have that {aliceI(x), bobI(x), charlieI(x)} vWorkingBeforeI(x),
where x = employees2013. Thus the justification of the model can be easily seen as
Korg |= employees2013 : S for S = {WorkingBefore(charlie),¬WorkingNow(charlie)},
which represents a clashing set for the defeasible axiom on charlie . On the other hand,
for the satisfiability under the assumptions in CAS org, we obtain that I(employeesM) |=
WorkingNow(alice) and I(employeesM) |= WorkingNow(bob). 3

As clashing assumptions in CAS maps are ground instances of axioms, they refer
merely to named individuals. We remark that using standard names for the domain
elements, one could permit clashing assumptions for all elements; the results in Propo-
sitions 1 and 2 carry over to this setting.

4 CKR translation to general programs

We revise the datalog translation for SROIQ-RL CKR from [4] with rules for the
detection of axiom overriding and defeasible propagation of global knowledge. To sim-
plify the presentation of rules, we introduce a normal form for the considered axioms.
We say that a CKR K = 〈G, {Km}m∈M〉 is in normal form if:

– G contains axioms in LΓ of the form of Table 1 or in the form C v ∃mod.{m},
C v ∃A.{dA} for A,B,C∈C, R,S, T ∈ R, a, b ∈ N, m ∈M, A ∈ A and dA ∈ DA.

– G and every Km contain axioms in LΣ of the form of Table 1 and every Km contain
axioms in LeΣ of the form eval(A,C) v B, eval(R,C) v T for A,B,C ∈ NCΣ ,
a, b ∈ NIΣ , R,S, T ∈ NRΣ and C ∈ C.

– G contains defeasible axioms D(α) ∈ LD
Σ with α of the form of Table 1.

It can be seen that for named interpretations, i.e., of the form INCAS , every CKR can be
rewritten into an equivalent one in normal form (using new symbols).

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

138

A(a) R(a, b) ¬A(b) ¬R(a, b) a = b a 6= b

A v B {a} v B A v ¬B A uB v C
∃R.A v B A v ∃R.{a} A v ∀R.B A v 61R.B

R v T R ◦ S v T Dis(R,S) Inv(R,S) Irr(R)

Table 1. Normal form axioms

In this version of the translation, the definition of program has now to be adapted to
the new form of the rules (admitting negative literals) and to the answer set semantics
of the resulting logic program.
Syntax. A signature is a tuple 〈C,P〉 of a finite set C of constants and a finite set P of
predicates. We assume a set V of variables; the elements of C∪V are terms. An atom
is of the form p(t1, . . . , tn) where p ∈ P and t1, . . . , tn, are terms. A literal l is either
a positive literal p or a negative literal ¬p with p an atom and ¬ the symbol of strong
negation. Literals of the form p, ¬p are complementary.

A rule r is an expression of the form

a← b1, . . . , bk, not bk+1, . . . , not bm.

where a, b1, . . . , bm are literals and not is the negation as failure symbol (NAF). We
denote with Head(r) the head a of rule r and with Body+(r) and Body−(r) the pos-
itive (b1, . . . , bk) and NAF (bk+1, . . . , bm) part of the body of the rule5. A fact H is a
ground rule with empty body (we then omit←). A program P is a finite set of rules. A
ground substitution σ for 〈C,P〉 is a function σ : V → C; (ground) substitutions on
atoms and ground instances of atoms are as usual.
Semantics. Given a program P , we define the universe UP of P as the set of all con-
stants occurring in P and the base BP of P as the set of all the ground literals con-
structible from the predicates in P and the constants in UP . An interpretation I ⊆ BP
is a consistent subset of BP (i.e., not containing complementary literals). We say that a
literal l is true in I iff l ∈ I and false otherwise.

Given a rule r ∈ ground(P), the body of r is true in I if: (1) every literal in
Body+(r) is true w.r.t. I , and (2) every literal in Body−(r) is false w.r.t. I . A rule r is
satisfied in I if either the head of r is true in I or the body of r is not true in I .

An interpretation I for P is a model for P (I |= P), if every rule in ground(P) is
satisfied in I; it is a minimal model for P , if no proper subset I ′ ⊂ I is a model for P .

Given an interpretation I for P , the (Gelfond-Lifschitz) reduct of P w.r.t. I , denoted
by GI(P), is the set of rules obtained from ground(P) by (i) removing every rule
r such that Body−(r) ∩ I 6= ∅. (ii) removing the NAF part from the bodies of the
remaining rules. Then I is an answer set of P , if I is a minimal model of the positive
version pos(GI(P)) of GI(P) (i.e. the positive program obtained by considering each
negative literal ¬p(t1, . . . , tn) as a positive one with predicate symbol ¬p).

The following property is well-known.

Lemma 1. If M is an answer set for P , then M is a minimal model of P .

5 In the rules, we might write (¬)p to denote that the rule holds both for the positive and negative
literal associated to p. This will be used only as a shortcut to simplify the presentation of rules.

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

139

Using this interpretation for our programs, we say that a literal H ∈ BP is a con-
sequence of P and we write P |= H iff for every answer set M of P we have that
M |= H .
Translation. We now are ready to present our translation. As in [4], we basically in-
stantiate and adapt the materialization calculus in [10] to meet the structure of CKR.

The translation is composed by the following sets: the input translations Iglob, Iloc,
ID, Irl, the deduction rules Ploc, PD, Prl, and output translation O, such that:

– every input translation I and output translation O are partial functions (defined over
axioms in normal form) while deduction rules P are sets of datalog rules;

– given an axiom or signature symbol α (and c ∈ N), each I(α) (or I(α, c)) is either
undefined or a set of datalog facts or rules;

– given an axiom α and c ∈ N, O(α, c) is either undefined or a single datalog fact;

We extend the definition of input translations to knowledge bases (set of axioms) S with
their signature Σ, with I(S) =

⋃
α∈S I(α)∪⋃s∈Σ,I(s) defined I(s) (similarly I(S, c) =⋃

α∈S I(α, c) ∪⋃s∈Σ,I(s) defined I(s, c)).
We briefly present the form of the different sets of translation and deduction rules

involved in the translation process: the tables containing the complete set of rules can
be found in the Appendix.

The set of rules in Irl(S, c) define the rules to translate SROIQ-RL axioms and
signature: for example, we have the following rule for concept inclusions: A v B 7→
{subClass(A,B, c)}. The set of rules Prl are the corresponding deduction rules for
axioms in SROIQ-RL: for example, for atomic concept inclusions we have the rule:

instd(x, z, c)← subClass(y, z, c), instd(x, y, c).

Global input rules of Iglob(G), basically encode the interpretation of Ctx in the global
context. Similarly, local input rules Iloc(Km, c) and local deduction rules Ploc provide
the translation and rules for elements of the local object language, in particular for eval
expression: e.g., for inclusion of concepts with a left eval expression we have the input
rule eval(A,C) v B 7→ {subEval(A,C, B, c)} and the corresponding deduction rule

instd(x, b, c)← subEval(a, c1, b, c), instd(c′, c1, gm), instd(x, a, c′).

The input rules in ID provide the translation of defeasible axioms in the global context:
given a defeasible axiom D(α), Irl(α, gk) is applied and a rule defining when the axiom
is locally overridden is added to the program. For example, if D(A v B) ∈ G, the fact
subClass(A,B, gk). is added to the program for the global context together with the
corresponding overriding rule:

ovr(subClass, x, A,B, c)← ¬instd(x,B, c), instd(x,A, c), prec(c, g).

The deduction rules in PD, on the other hand, provide the definition of the defeasible
propagation of axioms from the global context to the local contexts. For example, the
following rule propagates an atomic concept inclusion axiom: if the inclusion axiom is
in the program of the global context and can be applied to a local instance, it is applied
only if the instance is not recognized as an exception:

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

140

instd(x, z, c)← subClass(y, z, g), instd(x, y, c),
prec(c, g), not ovr(subClass, x, y, z, c).

Finally, the set of output rules O(α, c) provides the translation of ABox assertions that
can be verified by applying the rules of the final program. For example, the case for
atomic concept assertions in a given context c is given as A(a) 7→ {instd(a,A, c)}.

Given a CKR K = 〈G, {Km}m∈M〉, the translation to its datalog program follows
these steps:

1. the global program for G is translated to (where gm, gk are new context names):

PG(G) = Iglob(GΓ) ∪ ID(GΓ) ∪ Irl(GΓ , gm) ∪ Irl(GΣ , gk) ∪ Prl

where GΓ = {α ∈ G |α ∈ LΓ } and GΣ = {α ∈ G |α ∈ LD
Σ}.

2. We define the set of contexts:

NG = {c ∈ N | PG(G) |= instd(c,Ctx, gm)}

For every c ∈ NG, we define its associated knowledge base as:

Kc =
⋃
{Km ∈ K | PG(G) |= tripled(c,mod,m, gm)}

3. We define each local program for c ∈ NG as:

PC(c) := Ploc ∪ PD ∪ Iloc(Kc, c) ∪ Irl(Kc, c) ∪ {prec(c, gk).}

4. The CKR program is then defined as:

PK(K) = PG(G) ∪⋃c∈NG
PC(c)

We say that G entails an axiom α ∈ LΓ (denoted G |=
P
α) if PG(G) and O(α, gm)

are defined and PG(G) |= O(α, gm). Similarly, G entails an axiom α ∈ LΣ (denoted
G |=

P
α) if PG(G) and O(α, gk) are defined and PG(G) |= O(α, gk). We say that K

entails an axiom α ∈ LeΣ in a context c ∈ N (denoted K |=
P

c : α), if the elements of
PK(K) and O(α, c) are defined and PK(K) |= O(α, c).

Correctness of the translation. In the following we show the correctness of the trans-
lation with respect to the problem of instance checking in the presented semantics for
CKR. Let CASN be a map associating every c ∈ N to a set CASN(c) of clashing
assumptions. We define the set of the corresponding overriding assumptions:

OVR(CASN) = {ovr(p(e)) | 〈α, e〉 ∈ CASN(c), Irl(α, c) = p}

Given a CKR K and its associated CKR program PK(K), the OVR-reduct of PK(K)
(denoted by GOVR(PK(K))) is the set of rules obtained from ground(PK(K)) by: (i)
removing every rule r such that B−(r) ∩ OVR(CASN) 6= ∅; (ii) removing the NAF
part (which involves only instances of ovr) from the bodies of the remaining rules.

Consider a CKR interpretation I = 〈M, I〉 and CASMN such that CASMN (cM) =
CASN(c), for all c ∈ N. We can show that the following property holds:

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

141

Lemma 2. GOVR(PK(K)) |= O(α, c) iff K |=CASM
N

c : α (if O(α, c) is defined).

We can prove the lemma by establishing the following propositions

Proposition 3 (cf. [4]). For every α, ground(PG(G)) |= O(α, g) iff G |= α.

Proposition 4. For every α (s.t. O(α, c) is defined),

1. (CAS -soundness) If GOVR(PK(K)) |= O(α, c), then K |=CASM
N

c : α.

2. (CAS -completeness) If K |=CASM
N

c : α, then GOVR(PK(K)) |= O(α, c).

The completeness of the translation procedure with respect to CKR semantics can be
proved using the following results. Let S|p be the restriction of an answer set S to the
set of facts for predicate p.

Lemma 3. For every justified CAS -model ICASM
N

= 〈M, I, CASMN 〉 of K, some an-
swer set S of PK(K) exists such that S|ovr = OVR(CASN).

Lemma 4. For every answer set S of PK(K), some justified CAS -model ICASM
S

=

〈M, I, CASMS 〉 of K exists such that CASS(c) = {〈α, e〉 | Irl(α, c) = p, ovr(p(e)) ∈
S} for every c ∈ N.

The correctness result directly follows from previous results.

Theorem 1. For a normal form CKR K, K |= c : α iff PK(K) |= O(α, c) (provided
O(α, c) is not void).

5 Conclusion

We presented an extension to the Contextualized Knowledge Repository (CKR) frame-
work introducing a notion of defeasibility of axioms across contexts. We then presented
a datalog translation for the extended semantics, based on the materialization calculus
for instance checking in [4]. In the translation, non-monotonicity is expressed using an-
swer set semantics, such that instance checking over OWL RL based CKR reduces to
cautious inference from all answer sets of the translation.

An implementation of the presented translation in a prototype is ongoing. It basi-
cally builds on the DReW DL datalog rewriter [16], and extends the basic translation of
OWL RL ontologies to the two layered structure of CKR. Given as input an ontology
representing the global context and ontologies representing the knowledge modules, the
translation produces a datalog program (compliant to DLV syntax) representing the in-
put CKR. More specifically, it encodes the rules and the two layered translation process
presented in Section 4: after the translation of the global context, the set of contexts and
their associations to modules are derived from the global program through interaction
with the DLV solver; with the local knowledge bases defined, the programs for the lo-
cal contexts are then computed. We aim at extending the current prototype to access
external data sources; moreover, we want to compare the query performance with the
available implementation of CKR based on SPARQL forward rules [4].

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

142

An interesting direction for future investigation is the comparison of the proposed
approach to the known approaches to integrate notions of defeasibility and defaults
in description logics. Notable examples of such approaches include representations of
typicality in DLs concepts [6] and works employing circumscription in description log-
ics [1]. It is interesting to see whether such notions of defeasibility can be reduced to
our representation, thus leading to an implementation of such approaches.

Another natural continuation to the presented work is to allow defeasible axioms
across local contexts, possibly along an explicit order relation between contexts (as the
coverage relation [12]), or across knowledge modules, allowing overriding in specific
instances of context classes associated to such modules.

Acknowledgments. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no.257641 (PlanetData NoE).

References

1. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: KR. pp. 400–
410 (2006)

2. Bozzato, L., Ghidini, C., Serafini, L.: Comparing contextual and flat representations of
knowledge: a concrete case about football data. In: K-CAP 2013. pp. 9–16. ACM (2013)

3. Bozzato, L., Homola, M., Serafini, L.: Towards More Effective Tableaux Reasoning for CKR.
In: DL2012. CEUR-WP, vol. 824, pp. 114–124. CEUR-WS.org (2012)

4. Bozzato, L., Serafini, L.: Materialization Calculus for Contexts in the Semantic Web. In:
DL2013. CEUR-WP, vol. 1014. CEUR-WS.org (2013)

5. Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. In: ICLP.
pp. 79–93 (1999)

6. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description logic for
reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

7. Khriyenko, O., Terziyan, V.: A framework for context sensitive metadata description. IJSMO
1(2), 154–164 (2006)

8. Klarman, S., Gutiérrez-Basulto, V.: ALCALC : a context description logic. In: JELIA (2010)
9. Klarman, S.: Reasoning with Contexts in Description Logics. Ph.D. thesis, Free University

of Amsterdam (2013)
10. Krötzsch, M.: Efficient Inferencing for OWL EL. In: JELIA 2010. Lecture Notes in Com-

puter Science, vol. 6341, pp. 234–246. Springer (2010)
11. Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Grau, B.C.: OWL 2 Web Ontology Lan-

guage Profiles. W3C recommendation, W3C (Oct 2009), http://www.w3.org/TR/2009/REC-
owl2-profiles-20091027/

12. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. of
Web Semantics 12 (2012)

13. Straccia, U., Lopes, N., Lukácsy, G., Polleres, A.: A general framework for representing and
reasoning with annotated semantic web data. In: AAAI 2010. AAAI Press (2010)

14. Tanca, L.: Context-Based Data Tailoring for Mobile Users. In: BTW 2007 Workshops. pp.
282–295 (2007)

15. Udrea, O., Recupero, D., Subrahmanian, V.S.: Annotated RDF. ACM Trans. Comput. Log.
11(2), 1–41 (2010)

16. Xiao, G., Heymans, S., Eiter, T.: DReW: a reasoner for datalog-rewritable description logics
and dl-programs. In: BuRO 2010 (2010)

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

143

A Appendix: rules tables

Global input rules Iglob(G)

(igl-subctx1) C ∈ C 7→ {subClass(C,Ctx, gm)}
(igl-subctx2) c ∈ N 7→ {insta(c,Ctx, gm)}
Local input rules Iloc(Km, c)

(ilc-subevalat) eval(A,C) v B 7→ {subEval(A,C, B, c)}
(ilc-subevalr) eval(R,C) v T 7→ {subEvalR(R,C, T, c)}
Local deduction rules Ploc

(plc-subevalat) instd(x, b, c)← subEval(a, c1, b, c), instd(c′, c1, gm), instd(x, a, c′).
(plc-subevalr) tripled(x, t, y, c)← subEvalR(r, c1, t, c), instd(c′, c1, gm), tripled(x, r, y, c′).
(plc-eq) eq(x, y, c)← nom(x, c), eq(x, y, c′).

Output translation O(α, c)

(o-concept) A(a) 7→ {instd(a,A, c)}
(o-role) R(a, b) 7→ {tripled(a,R, b, c)}
(o-nconcept) ¬A(a) 7→ {¬instd(a,A, c)}
(o-nrole) ¬R(a, b) 7→ {¬tripled(a,R, b, c)}

Table 2. Global, local and output rules

For D(α) ∈ S, apply Irl(α) and the corresponding rule in the following:
(ovr-inst1) D(A(a)) 7→ { ovr(insta, a, A, c)← ¬instd(a,A, c), prec(c, g). }
(ovr-inst2) D(¬A(a)) 7→ { ovr(¬insta, a, A, c)← instd(a,A, c), prec(c, g). }
(ovr-triple1) D(R(a, b)) 7→ { ovr(triplea, a, R, b, c)← ¬tripled(a,R, b, c), prec(c, g). }
(ovr-triple2) D(¬R(a, b)) 7→ { ovr(¬triplea, a, R, b, c)← tripled(a,R, b, c), prec(c, g). }
(ovr-inst3) D({a} v B) 7→ { ovr(insta, a, B, c)← ¬instd(a,B, c), prec(c, g). }
(ovr-subc) D(A v B) 7→ { ovr(subClass, x, A,B, c)← ¬instd(x,B, c), instd(x,A, c), prec(c, g). }
(ovr-not) D(A v ¬B) 7→ { ovr(supNot, x, A,B, c)← instd(x,B, c), instd(x,A, c), prec(c, g). }
(ovr-cnj) D(A1 uA2 v B) 7→ { ovr(subConj, x, A1, A2, B, c)←

¬instd(x,B, c), instd(x,A1, c), instd(x,A2, c), prec(c, g). }
(ovr-subex) D(∃R.A v B) 7→ { ovr(subEx, x, R,A,B, c)←

¬instd(x,B, c), tripled(x,R, y, c), instd(y,A, c), prec(c, g). }
(ovr-supex) D(A v ∃R.{a}) 7→ { ovr(supEx, x, A,R, a, c)←

¬tripled(x,R, a, c), instd(x,A, c), prec(c, g). }
(ovr-forall) D(A v ∀R.B) 7→ { ovr(supForall, x, y, A,R,B, c)←

¬instd(y,B, c), instd(x,A, c), tripled(x,R, y, c), prec(c, g). }
(ovr-leqone) D(A v6 1R.B) 7→ { ovr(supLeqOne, x, y, z, A,R,B, c)←

¬eq(z, y, c), instd(x,A, c), tripled(x,R, y, c), tripled(x,R, z, c),
instd(y,B, c), instd(z,B, c), prec(c, g). }

(ovr-subr) D(R v S) 7→ { ovr(subRole, x, y, R, S, c)←
¬tripled(x, S, y, c), tripled(x,R, y, c), prec(c, g). }

(ovr-subrc) D(R ◦ S v T) 7→ { ovr(subRChain, x, y, z, R, S, T, c)←
¬tripled(x, T, z, c), tripled(x,R, y, c), tripled(y, S, z, c), prec(c, g). }

(ovr-dis) D(Dis(R,S)) 7→ { ovr(dis, x, y, R, S, c)←
tripled(x, S, y, c), tripled(x,R, y, c), prec(c, g). }

(ovr-inv) D(Inv(R,S)) 7→ { ovr(inv, x, y, R, S, c)←
¬tripled(x, S, y, c), tripled(x,R, y, c), prec(c, g).
ovr(inv, x, y, R, S, c)←
¬tripled(x,R, y, c), tripled(x, S, y, c), prec(c, g). }

(ovr-irr) D(Irr(R)) 7→ { ovr(irr, x, R, c)← tripled(x,R, x, c), prec(c, g). }

Table 3. Input rules ID(S) for defeasible axioms

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

144

(prop-inst) (¬)instd(x, z, c) ← (¬)insta(x, z, g), prec(c, g), not ovr((¬)insta, x, z, c).
(prop-triple) (¬)tripled(x, r, y, c)← (¬)triplea(x, r, y, g), prec(c, g), not ovr((¬)triplea, x, r, y, c).
(prop-subc) instd(x, z, c) ← subClass(y, z, g), instd(x, y, c), prec(c, g), not ovr(subClass, x, y, z, c).
(prop-not) ¬instd(x, z, c) ← supNot(y, z, g), instd(x, y, c), prec(c, g), not ovr(supNot, x, y, z, c).
(prop-cnj) instd(x, z, c) ← subConj(y1, y2, z, g), instd(x, y1, c), instd(x, y2, c),

prec(c, g), not ovr(subConj, x, y1, y2, z, c).
(prop-subex) instd(x, z, c) ← subEx(v, y, z, g), tripled(x, v, x′, c), instd(x′, y, c),

prec(c, g), not ovr(subEx, x, v, y, z, c).
(prop-supex) tripled(x, r, x′, c) ← supEx(y, r, x′, g), instd(x, y, c),

prec(c, g), not ovr(supEx, x, y, r, x′, c).
(prop-forall) instd(y, z′, c) ← supForall(z, r, z′, g), instd(x, z, c), tripled(x, r, y, c),

prec(c, g), not ovr(supForall, x, y, z, r, z′, c).
(prop-leqone) eq(x1, x2, c) ← supLeqOne(z, r, z′, g), instd(x, z, c), tripled(x, r, x1, c),

instd(x1, z
′, c), tripled(x, r, x2, c), instd(x2, z

′, c),
prec(c, g), not ovr(supLeqOne, x, x1, x2, z, r, z

′, c).

(prop-subr) tripled(x,w, x′, c) ← subRole(v, w, g), tripled(x, v, x′, c),
prec(c, g), not ovr(subRole, x, y, v, w, c).

(prop-subrc) tripled(x,w, z, c) ← subRChain(u, v, w, g), tripled(x, u, y, c), tripled(y, v, z, c),
prec(c, g), not ovr(subRChain, x, y, z, u, v, w, c).

(prop-dis1) ¬tripled(x, v, y, c) ← dis(u, v, g), tripled(x, u, y, c),
prec(c, g), not ovr(dis, x, y, u, v, c).

(prop-dis2) ¬tripled(x, u, y, c) ← dis(u, v, g), tripled(x, v, y, c),
prec(c, g), not ovr(dis, x, y, u, v, c).

(prop-inv1) tripled(y, v, x, c) ← inv(u, v, g), tripled(x, u, y, c),
prec(c, g), not ovr(inv, x, y, u, v, c).

(prop-inv2) tripled(y, u, x, c) ← inv(u, v, g), tripled(x, v, y, c),
prec(c, g), not ovr(inv, x, y, u, v, c).

(prop-irr) ¬tripled(x, u, x, c) ← irr(u, g), nom(x, c),
prec(c, g), not ovr(irr, x, u, c).

Table 4. Deduction rules PD for defeasible axioms

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

145

RL input translation Irl(S, c)
(irl-nom) a ∈ NI 7→ {nom(a, c)}
(irl-cls) A ∈ NC 7→ {cls(A, c)}
(irl-rol) R ∈ NR 7→ {rol(R, c)}
(irl-inst1) A(a) 7→ {insta(a,A, c)}
(irl-inst2) ¬A(a) 7→ {¬insta(a,A, c)}
(irl-triple) R(a, b) 7→ {triplea(a,R, b, c)}
(irl-ntriple) ¬R(a, b) 7→ {¬triplea(a,R, b, c)}
(irl-eq) a = b 7→ {eq(a, b, c)}
(irl-neq) a 6= b 7→ {¬eq(a, b, c)}
(irl-inst3) {a} v B 7→ {insta(a,B, c)}
(irl-subc) A v B 7→ {subClass(A,B, c)}
(irl-top) >(a) 7→ {insta(a, top, c)}
(irl-bot) ⊥(a) 7→ {insta(a, bot, c)}

(irl-not) A v ¬B 7→ {supNot(A,B, c)}
(irl-subcnj) A1 uA2 v B 7→ {subConj(A1, A2, B, c)}
(irl-subex) ∃R.A v B 7→ {subEx(R,A,B, c)}
(irl-supex) A v ∃R.{a} 7→ {supEx(A,R, a, c)}
(irl-forall) A v ∀R.B 7→ {supForall(A,R,B, c)}
(irl-leqone) A v 61R.B 7→ {supLeqOne(A,R,B, c)}
(irl-subr) R v S 7→ {subRole(R,S, c)}
(irl-subrc) R◦S v T 7→ {subRChain(R,S, T, c)}
(irl-dis) Dis(R,S) 7→ {dis(R,S, c)}
(irl-inv) Inv(R,S) 7→ {inv(R,S, c)}
(irl-irr) Irr(R) 7→ {irr(R, c)}

RL deduction rules Prl

(prl-instd) (¬)instd(x, z, c) ← (¬)insta(x, z, c).
(prl-tripled) (¬)tripled(x, r, y, c) ← (¬)tripled(x, r, y, c).

(prl-eq1) eq(x, x, c) ← nom(x, c).
(prl-eq2) (¬)eq(y, x, c) ← (¬)eq(x, y, c).
(prl-eq3) (¬)instd(y, z, c) ← eq(x, y, c), (¬)instd(x, z, c).
(prl-eq4) (¬)tripled(y, u, z, c)← eq(x, y, c), (¬)tripled(x, u, z, c).
(prl-eq5) (¬)tripled(z, u, y, c)← eq(x, y, c), (¬)tripled(z, u, x, c).
(prl-eq6) (¬)eq(x, z, c) ← (¬)eq(x, y, c), (¬)eq(y, z, c).

(prl-top) instd(x, top, c) ← instd(x, z, c).
(prl-subc) instd(x, z, c) ← subClass(y, z, c), instd(x, y, c).
(prl-not) ¬instd(x, z, c) ← supNot(y, z, c), instd(x, y, c).
(prl-subcnj) instd(x, z, c) ← subConj(y1, y2, z, c), instd(x, y1, c), instd(x, y2, c).
(prl-subex) instd(x, z, c) ← subEx(v, y, z, c), tripled(x, v, x′, c), instd(x′, y, c).
(prl-supex) tripled(x, r, x′, c) ← supEx(y, r, x′, c), instd(x, y, c).
(prl-supforall) instd(y, z′, c) ← supForall(z, r, z′, c), instd(x, z, c), tripled(x, r, y, c).
(prl-leqone) eq(x1, x2, c) ← supLeqOne(z, r, z′, c), instd(x, z, c), tripled(x, r, x1, c),

instd(x1, z
′, c), tripled(x, r, x2, c), instd(x2, z

′, c).

(prl-subr) tripled(x,w, x′, c) ← subRole(v, w, c), tripled(x, v, x′, c).
(prl-subrc) tripled(x,w, z, c) ← subRChain(u, v, w, c), tripled(x, u, y, c), tripled(y, v, z, c).

(prl-dis1) ¬tripled(x, v, y, c) ← dis(u, v, c), tripled(x, u, y, c).
(prl-dis2) ¬tripled(x, u, y, c) ← dis(u, v, c), tripled(x, v, y, c).
(prl-inv1) tripled(y, v, x, c) ← inv(u, v, c), tripled(x, u, y, c).
(prl-inv2) tripled(y, u, x, c) ← inv(u, v, c), tripled(x, v, y, c).
(prl-irr) ¬tripled(x, u, x, c) ← irr(u, c), nom(x, c).

Table 5. RL input and deduction rules

L. Bozzato, T. Eiter, L. Serafini. Defeasibility in contextual reasoning with CKR

146

A mechanism for ontology confidentiality
P. A. Bonatti, I. M. Petrova and L. Sauro

Dept. of Electrical Engineering and Information Technologies
Università di Napoli “Federico II”

Abstract. We illustrate several novel attacks to the confidentiality of knowledge
bases (KB). Then we introduce a new confidentiality model, sensitive enough to
detect those attacks, and a method for constructing secure KB views.We identify
safe approximations of the background knowledge exploited in the attacks; they
can be used to reduce the complexity of constructing secure KB views. Finally
we describe a prototype implementation of the new approach that suggests its
applicability in practice.

1 Introduction

Ontology languages and Linked Open Data are increasingly being used to encode the
private knowledge of companies and public organizations. Semantic Web techniques
make possible to merge different sources of knowledge and extract implicit information,
putting on risk security and privacy of individuals. Even the authors of public ontolo-
gies may want to hide some axioms to capitalize on their formalization efforts. Several
approaches have been proposed in order to tackle the confidentiality requirements that
arise form these scenarios. The most popular security criterion is that the published view
of the knowledge base should not entail a secret sentence. However, there exist attacks
that cannot be prevented this way. The user may exploit various sources of background
knowledge and metaknowledge to reconstruct the hidden part of the knowledge base.
This paper contributes to the area of knowledge base confidentiality in several ways:

(i) It highlights some vulnerabilities of the approaches that can be found in the
literature, (Sec. 3).

(ii) It introduces a stronger confidentiality model that takes both object-level and
meta-level background knowledge into account (Sec. 4), and it defines a method for
computing secure knowledge views (Sec. 5) that generalizes some previous approaches.

(iii) It proposes a safe approximation of background metaknowledge (Sec. 6 and 7).
(iv) It investigates the computational complexity of constructing secure knowledge

base views with our methodology (Sec. 7).
(v) It describes a prototypical implementation of the new framework (Sec. 9)
The paper is closed by a discussion of related work (Sec. 10), and conclusions.

Proofs are omitted due to space limitations.

2 Preliminaries on Description Logics

We assume the reader to be familiar with description logics, and refer to [1] for all def-
initions and results. We assume a fixed, denumerable signature Σ specifying the names
of concepts, roles, and individuals. Our framework is compatible with any description

147

logic DL that enjoys compactness (needed by Theorem 6) and has decidable reasoning
problems (e.g., ALC, EL, SHIQ, etc.). We simply assume that our reference logical
language L is generated from Σ by the grammar of the selected logic DL. By axioms,
we mean members ofL, unless stated otherwise. A knowledge base is any subset ofL.1

Recall that axioms are expressions of the form C v D, R v S , C(a), and R(a, b)
where C,D are concept expressions, R, S are role expressions, and a, b are individual
constants. In some DL, an individual constant a may occur also in a nominal, that is,
a concept expression {a} denoting the singleton containing a. The axioms involving v
are called inclusions (or subsumptions), while C(a) and R(a, b) are called assertions. In
the simplest case, C and R are first order predicates and assertions are actually standard
first-order atomic formulae. Inclusions are syntactic variants of logical implications.

The notion of logical consequence is the classical one; for all K ⊆ L, the logical
consequences of K will be denoted by Cn(K) (K ⊆ Cn(K) ⊆ L).

3 A simple confidentiality model

The most natural way of preserving confidentiality in a knowledge base KB is checking
that its answers to user queries do not entail any secret. Conceptually, the queries of a
user u are answered using u’s view KBu of the knowledge base, where KBu is a maximal
subset of KB that entails no secret. In order to illustrate some possible attacks to this
mechanism, let us formalize the above simple confidentiality model (SCM).2 It consists
of: the knowledge base KB (KB ⊆ L); a set of users U; a view KBu ⊆ KB for each
u ∈ U; a set of secrecies S u ⊆ L for each u ∈ U. Secrecies are axioms that may or may
not be entailed by KB; if they do, then they are called secrets and must not be disclosed
to u. Revealing that a secrecy is not entailed by KB is harmless, cf. [4].

A view KBu is secure iff Cn(KBu) ∩ S u = ∅. A view KBu is maximal secure if it is
secure and there exists no K such that KBu ⊂ K ⊆ KB and Cn(K) ∩ S u = ∅.
Attacks using object-level background knowledge. Frequently, part of the domain
knowledge is not axiomatized in KB, therefore checking that Cn(KBu)∩S u = ∅ does not
suffice in practice to protect confidentiality. For example, suppose that there is one secret
S u = {OncologyPatient(John)} and KBu = {SSN(John, 12345), SSN(user123, 12345),
OncologyPatient(user123)}. KBu does not entail OncologyPatient(John), so according
to the SCM model KBu is secure. However, it is common knowledge that a SSN uniquely
identifies a person, then the user can infer that John = user123, and hence the secret.

In other examples, the additional knowledge used to infer secrets may be stored in
a public ontology or RDF repository, and confidentiality violations may be automated.
Attacks to complete knowledge. Suppose the attacker knows that KB has complete
knowledge about a certain set of axioms. Then the attacker may be able to reconstruct
some secrets from the “I don’t know” answers of a maximal secure view KBu.

Example 1. Consider a company’s knowledge base that defines a concept Employee and
a role works for that describes which employees belong to which of the n departments

1 Real knowledge bases are finite, but this restriction is not technically needed until Sec. 7.
2 This usage of term “model” is common in Security & Privacy.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

148

of the company, d1, . . . , dn. The KB consists of assertions like:

Employee(e) (1) works for(e, di) (2)

where we assume that each employee e belongs to exactly one department di. A user
u is authorized to see all assertions but the instances of (2) with i = n, because dn is a
special department, devoted to controlling the other ones. So S u (the set of secrecies for
u) is the set of all assertions works for(e, dn).

Note that there is one maximal secure view KBu. It consists of all instances of (1),
plus all instances of (2) such that i , n. Clearly, KBu is secure according to SCM
(because Cn(KBu) ∩ S u = ∅). However, observe that works for(e, dn) ∈ Cn(KB) iff
Employee(e) ∈ Cn(KBu) and for all i = 1, . . . , n, works for(e, di) < Cn(KBu) (that is, the
members of dn are all the employees that apparently work for no department). Using this
property (based on the knowledge that for each employee e, KB contains exactly one
assertion works for(e, di)) and the knowledge of the protection mechanism (i.e. maxi-
mal secure views), that we assume to be known by attackers by Kerchoff’s principle, a
smart user can easily identify all the members of dn. ut

In practice, it is not hard to identify complete knowledge. A hospital’s KB is ex-
pected to have complete knowledge about which patients are in which ward; a com-
pany’s KB is likely to encode complete information about its employees, etc.

Some approaches filter query answers rather than publishing a subset of KB [8,
13, 15]. We call our abstraction of this method simple answer confidentiality model
(SACM). It is obtained from the SCM by replacing the views KBu ⊆ KB with answer
views KBa

u ⊆ Cn(KB). The difference is that KBa
u is not required to be a subset of KB

and—conceptually—KBa
u may be infinite. KBa

u is secure iff Cn(KBa
u) ∩ S u = ∅.

The reader may easily verify that the SACM is vulnerable to the two kinds of attacks
illustrated for the SCM. It is also vulnerable to a third kind of attacks, illustrated below.

Attacks to the signature. Suppose the user knows the signature of KB well enough to
identify a symbol σ that does not occur in KB. First assume that σ is a concept name.
It can be proved that:

Proposition 1. If KBa
u is a maximal secure answer view and σ is a concept name not

occurring in KB, then for all secrecies C v D ∈ S u, KBa
u |= C uσ v D iff KB |= C v D.

The problem is that although C u σ v D does not entail the secret inclusion C v D,
still a smart user knows that the former inclusion cannot be proved unless KB entails
also the latter (then maximal secure answer views generally fail to protect secrets). This
attack can be easily adapted to the case where σ is a role name. In practice, it is not
necessary to be sure that σ does not occur in KB. The attacker may make a sequence of
educated guesses (say, by trying meaningless long strings, or any word that is clearly
unrelated to the domain of the KB); after a sufficient number of trials, the majority of
answers should agree with the “real” answer with high probability. Rejecting queries
whose signature is not contained in KB’s signature mitigates this kind of attacks but it
leaks KB’s signature and it does not provide a complete solution. The attacker may still
guess a σ which is logically unrelated to C and D and carry out a similar attack.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

149

4 A meta-safe confidentiality model

In this section we introduce a confidentiality model that makes the vulnerabilities illus-
trated above visible, by taking into account object- and meta-level background knowl-
edge. A bk-model M = 〈KB,U, f , 〈S u,PKBu,BKu〉u∈U〉 consists of a knowledge base
KB ⊆ L, a set of users U, plus:

– a filtering function f : ℘(L) × U → ℘(L), mapping each knowledge base K and
each user u on a view f (K, u) ⊆ Cn(K);

– for all u ∈ U:
• a finite set of secrecies S u ⊆ L;
• a set of axioms BKu ⊆ L, encoding the users’ object-level knowledge;
• a set of possible knowledge bases PKBu ⊆ ℘(L) (users’ metaknowledge).3

The view of KB released to a user u is f (KB, u). We adopt PKB because at this stage
we do not want to tie our framework to any specific metalanguage. PKB represents the
knowledge bases that are compatible with the user’s metaknowledge.

Definition 1. A filtering function f is secure (w.r.t.M) iff for all u ∈ U and all s ∈ S u,
there exists K ∈ PKBu such that:
1. f (K, u) = f (KB, u);
2. s < Cn(K ∪ BKu).

Intuitively, if f is safe according to Def. 1, then no user u can conclude that any secret
s is entailed by the KB she is interacting with—enhanced with the object-level back-
ground knowledge BKu—for the following reasons: By point 1, KB and K have the
same observable behavior, and K is a possible knowledge base for u since K ∈ PKBu;
therefore, as far as u knows, the knowledge base might be K. Moreover, by point 2, K
and the object-level background knowledge BKu do not suffice to entail the secret s.

In the rest of the paper we tacitly assume that no secret is violated a priori, that is,
for all secrets s ∈ S u there exists K ∈ PKBu such that s < Cn(K ∪ BKu).4 Moreover,
in order to improve readability, we shall omit the user u from subscripts and argument
lists whenever u is irrelevant to the context.

The attacks discussed in Section 3 can be easily formalized in this setting; so, in
general, the maximal secure views of SCM are not secure according to Def. 1.

Example 2. Example 1 can be formalized in our model as follows: The set of secrecies
S is the set of all assertions works for(e, dn); BK = ∅ and PKB is the set of all the
knowledge bases K that consist of assertions like (1) and (2), and such that for each
axiom Employee(e), K contains exactly one corresponding axiom works for(e, di) and
viceversa. The filtering function f maps each K ∈ PKB on the maximal subset of K that
entails none of S ’s members, that is, f (K) = K \ S (by definition of PKB).

Note that f is injective over PKB, so condition 1 of Def. 1 is satisfied only if K =

KB. So, if KB contains at least one secret, then the conditions of Def. 1 cannot be satis-
fied, that is, maximal secure SCM views are not secure in our model. Indeed, KB can be

3 In practice, bk-models are finite, and filterings computable, but no such assumption will be
technically needed until Sec. 7.

4 Conversely, no filtering function can conceal a secret that is already known by the user.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

150

reconstructed from the secure view by observing that KB = f (KB) ∪ {works for(e, dn) |
Employee(e) ∈ f (KB) ∧ ∀i = 1, . . . , n,works for(e, di) < f (KB)}. ut

Similarly, the formalizations of the other attacks yield injective filtering functions (the
details are left to the reader).

5 A meta-secure query answering mechanism
In this section we introduce a secure filtering function. It is formulated as an itera-
tive process based on a censor, that is a boolean function that decides for each axiom
whether it should be obfuscated to protect confidentiality. The iterative construction
manipulates pairs 〈X+, X−〉 ∈ ℘(L) × ℘(L) that represent a meta constraint on possible
knowledge bases: we say that a knowledge base K satisfies 〈X+, X−〉 iff K entails all the
sentences in X+ and none of those in X− (formally, Cn(K) ⊇ X+ and Cn(K) ∩ X− = ∅).

Let PAX (the set of possible axioms) be the set of axioms that may occur in the
knowledge base according to the user’s knowledge, i.e. PAX =

⋃
K′∈PKB K′. Let ν =

|PAX|+ 1 if PAX is finite and ν = ω otherwise; let α1, α2, . . . , αi, . . . be any enumeration
of PAX (i < ν).5 The secure view construction for a knowledge base K in a bk-model
M consists of the following, inductively defined sequence of pairs 〈K+

i ,K
−
i 〉i≥0 :

– 〈K+
0 ,K

−
0 〉 = 〈∅, ∅〉 , and for all 1 ≤ i < ν , 〈K+

i+1,K
−
i+1〉 is defined as follows:

• if censorM(K+
i ,K

−
i , αi+1) = true then let 〈K+

i+1,K
−
i+1〉 = 〈K+

i ,K
−
i 〉 ;

• if censorM(K+
i ,K

−
i , αi+1) = f alse and K |= αi+1 then

〈K+
i+1,K

−
i+1〉 = 〈K+

i ∪ {αi+1},K−i 〉;
• otherwise let 〈K+

i+1,K
−
i+1〉 = 〈K+

i ,K
−
i ∪ {αi+1}〉 .

Finally, let K+ =
⋃

i<ν K+
i , K− =

⋃
i<ν K−i , and fM(K, u) = K+ .

Note that the inductive construction aims at finding maximal sets K+ and K− that
(i) partly describe what does / does not follow from K (as K satisfies 〈K+,K−〉 by
construction), and (ii) do not trigger the censor (the sentences αi+1 that trigger the censor
are included neither in K+ nor in K−, cf. the induction step).

In order to define the censor we need an auxiliary definition that captures all the sen-
tences that can be entailed with the background knowledge BK and the meta-knowledge
PKB enriched by a given constraint 〈X+, X−〉 analogous to those adopted in the iterative
construction: Let CnM(X+, X−) be the set of all axioms α ∈ L such that

for all K′ ∈ PKB such that K′ satisfies 〈X+, X−〉, α ∈ Cn(K′ ∪ BK) . (3)

Now the censor is defined as follows: For all X+, X− ⊆ L and α ∈ L,

censorM(X+, X−, α) =

true if there exists s ∈ S s.t. either s ∈ CnM(X+ ∪ {α}, X−)
or s ∈ CnM(X+, X− ∪ {α});

false otherwise.
(4)

In other words, the censor checks whether telling either that α is derivable or that α is
not derivable to a user aware that the knowledge base satisfies 〈X+, X−〉, restricts the

5 We will show later how to restrict the construction to finite sequences, by approximating PAX.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

151

set of possible knowledge bases enough to conclude that a secret s is entailed by the
knowledge base and the background knowledge BK.

Note that the censor obfuscates αi+1 if any of its possible answers entail a secret,
independently of the actual contents of K (the two possible answers “yes” and “no”
correspond to conditions s ∈ CnM(X+ ∪ {α}, X−) and s ∈ CnM(X+, X− ∪ {α}), respec-
tively). In this way, roughly speaking, the knowledge bases that entail s are given the
same observable behavior as those that don’t. Under a suitable continuity assumption
on CnM, this enforces confidentiality:

Theorem 1. If CnM(KB+,KB−) ⊆ ⋃i<ν CnM(KB+
i ,KB−i), then fM is secure w.r.t.M.

Examples of the behavior of fM are deferred until Sec.7.

6 Approximating background knowledge

Of course, the actual confidentiality of a filtering f (KB, u) depends on a careful defini-
tion of the user’s background knowledge, that is, PKBu and BKu. If background knowl-
edge is not exactly known, as it typically happens, then it can be safely approximated by
overestimating it. More background knowledge means larger BKu and smaller PKBu,
which leads to the following comparison relation ≤k over bk-models:

Definition 2. Given two bk-models M = 〈KB,U, f , 〈S u,PKBu,BKu〉u∈U〉 and M′ =

〈KB′,U′, f ′, 〈S ′u,PKB′u,BK′u〉u∈U′〉, we writeM ≤k M′ iff

1. KB = KB′, U = U′, f = f ′, and S u = S ′u (for all u ∈ U);
2. for all u ∈ U, PKBu ⊇ PKB′u and BKu ⊆ BK′u.

The next proposition proves that a bk-modelM can be safely approximated by anyM′
such thatM ≤k M′:
Proposition 2. If f is secure w.r.t.M′ andM ≤k M′, then f is secure w.r.t.M.

Consequently, a generic advice for estimating BK consists in including as many pieces
of relevant knowledge as possible, for example:

(i) modelling as completely as possible the integrity constraints satisfied by the data,
as well as role domain and range restrictions and disjointness constraints;

(ii) including in BK all the relevant public sources of formalized relevant knowledge
(such as ontologies and triple stores).

While object-level background knowledge is dealt with in the literature, the general
metaknowledge encoded by PKB is novel. Therefore, the next section is focussed on
some concrete approximations of PKB and their properties.

7 Approximating and reasoning about possible knowledge bases

In this section, we investigate the real world situations where the knowledge base KB is
finite and so are all the components of bk-models (U, S u, BKu, PKBu); then we focus
on PKBu that contain only finite knowledge bases. Consequently, fM will turn out to be
decidable and we will study its complexity under different assumptions.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

152

A language for defining PKB is a necessary prerequisite for the practical imple-
mentation of our framework and a detailed complexity analysis of fM. Here we express
PKB as the set of all theories that are contained in a given set of possible axioms PAX 6

and satisfy a given, finite set MR of metarules like:

α1, . . . , αn ⇒ β1 | . . . | βm (n ≥ 0,m ≥ 0) , (5)

where all αi and β j are in L (1 ≤ i ≤ n, 1 ≤ j ≤ m). Informally, (5) means that if
KB entails α1, . . . , αn then KB entails also some of β1, . . . , βm. Sets of similar metarules
can be succintly specified using metavariables; they can be placed wherever individual
constants may occur, that is, as arguments of assertions, and in nominals. A metarule
with such variables abbreviates the set of its ground instantiations: Given a K ⊆ L,
let groundK(MR) be the ground (variable-free) instantiation of MR where metavariables
are uniformly replaced by the individual constants occurring in K in all possible ways.

Example 3. Let MR =
{
∃R.{X} ⇒ A(X)

}
, where X is a metavariable, and let K ={

R(a, b)
}
. Then groundK(MR) =

{
(∃R.{a} ⇒ A(a)), (∃R.{b} ⇒ A(b))

}
. ut

If r denotes rule (5), then let body(r) = {α1, . . . , αn} and head(r) = {β1, . . . , βm}. We say
r is Horn if |head(r)| ≤ 1. A set of axioms K ⊆ L satisfies a ground metarule r if either
body(r) * Cn(K) or head(r) ∩ Cn(K) , ∅. In this case we write K |=m r.

Example 4. Let A, B, C be concept names and R be a role name. The axiom set K =

{A v ∃R.B, A v C} satisfies A v ∃R⇒ A v B | A v C but not A v ∃R⇒ A v B. ut

Moreover, if K satisfies all the metarules in groundK(MR) then we write K |=m MR.
Therefore the formal definition of PKB now becomes:

PKB = {K | K ⊆ PAX ∧ K |=m MR} . (6)

In accordance with Prop. 2, we approximate PAX in a conservative way. We will
analyze two possible definitions:

1. PAX0 = KB (i.e., as a minimalistic choice we only assume that the axioms of KB
are possible axioms; of course, by Prop. 2, this choice is safe also w.r.t. any larger
PAX where at least the axioms of KB are regarded as possible axioms);

2. PAX1 = KB ∪⋃r∈groundKB(MR) head(r).

Remark 1. The latter definition is most natural when metarules are automatically ex-
tracted from KB with rule mining techniques, that typically construct rules using mate-
rial from the given KB (then rule heads occur in KB).

Example 5. Consider again Example 1. The user’s metaknowledge about KB’s com-
pleteness can be encoded with:

Employee(X)⇒ works for(X, d1) | . . . | works for(X, dn) , (7)

6 Differently from Sec. 5, here PKB is defined in terms of PAX.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

153

where X is a metavariable. First let PAX = PAX1 . The secure view fM(KB) depends on
the enumeration order of PAX. If the role assertions works for(e, di) precede the con-
cept assertions Employee(e), then, in a first stage, the sets KB+

j are progressively filled
with the role assertions with di , dn that belong to KB, while the sets KB−j accumulate
all the role assertions that do not belong to KB. In a second stage, the sets KB+

j are
further extended with the concept assertions Employee(e) such that e does not work for
dn. The role assertions works for(e, dn) of KB and the corresponding concept assertions
Employee(e) are neither in KB+ nor in KB−. Note that the final effect is equivalent to
removing from KB all the axioms referring to the individuals that work for dn. Analo-
gously, in [8] the individuals belonging to a specified set are removed from all answers.

Next suppose that the role assertions works for(e, di) follow the concept assertions
Employee(e), and that each works for(e, di) follows all works for(e, dk) such that k < i.
Now all the assertions Employee(e) of KB enter KB+, and all axioms works for(e, di)
with i < n − 1 enter either KB+ or KB−, depending on whether they are members of KB
or not. Finally, the assertions works for(e, di) ∈ Cn(KB) with i ∈ {n − 1, n} are inserted
neither in KB+ nor in KB−, because the corresponding instance of (7) with X = e has the
body in KB+ and the first n − 2 alternatives in the head in KB−, therefore a negative an-
swer to works for(e, dn−1) would entail the secret works for(e, dn) by (7). This triggers
the censor for all assertions works for(e, dn−1). Summarizing, with this enumeration or-
dering it is possible to return the complete list of employees; the members of dn are
protected by hiding also which employees belong to dn−1.

Finally, let PAX = PAX0 . Note that in this case all possible knowledge bases are sub-
sets of KB, that contains exactly one assertion works for(e, di(e)) for each employee e. To
satisfy (7), every K ∈ PKB containing Employee(e) must contain also works for(e, di(e)).
It follows that fM must remove all references to the individuals that work for dn, as it
happens with the first enumeration of PAX1. ut
Definition 3. A bk-model M is canonical if for all users u ∈ U, PAXu is either PAX0
or PAX1 and PKBu is defined by (6) for a given MRu. Moreover,M is in a description
logic DL if for all u ∈ U, all the axioms in KB, PKBu, BKu, and S u belong to DL.

The size of PAX0 and PAX1 is polynomial in the size of KB ∪MR, therefore PKB is
finite and exponential in the size of KB∪MR. Finiteness implies the continuity hypoth-
esis on CnM of Theorem 1, and hence (using Theorem 1 and Prop. 2):

Theorem 2. IfM is canonical, then fM is secure with respect to allM′ ≤k M.

First we analyze the complexity of constructing the secure view fM(KB) when the
underlying description logic is tractable, like EL and DL-lite for example.

Lemma 1. If the axioms occurring in MR and K are in a DL with tractable subsump-
tion and instance checking, then checking K |=m MR is:

1. in P if either MR is ground or there exists a fixed bound on the number of distinct
variables in MR;

2. coNP-complete otherwise.

With Lemma 1, one can prove the following two lemmas.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

154

Lemma 2. Let M range over canonical bk-models. If M, s, X+, and X− are in a DL
with tractable subsumption/instance checking, and the number of distinct variables in
MR is bounded by a constant, then checking whether s ∈ CnM(X+, X−) is:

1. in P if MR is Horn and PAX = PAX1;
2. coNP-complete if either MR is not Horn or PAX = PAX0.

Lemma 3. Let M be a canonical bk-model. If M, s, X+, and X− are in a DL with
tractable entailment problems, and there is no bound on the number of variables in the
metarules of MR, then checking s ∈ CnM(X+, X−) is:

1. in PNP if MR is Horn and PAX = PAX1;
2. in Π p

2 if either MR is not Horn or PAX = PAX0.

The value of censor(X+, X−, α) can be computed straightforwardly by iterating the tests
s ∈ CnM(X+∪{α}, X−) and s ∈ CnM(X+, X−∪{α}) for all secrets s ∈ S . Since the set of
secrets is part of the parameterM of the filtering function, the number of iterations is
polynomial in the input and the complexity of the censor is dominated by the complexity
of CnM(). The latter is determined by Lemma 2 and Lemma 3, so we immediately get:

Corollary 1. LetM be a canonical bk-model and suppose thatM, X+, X−, and α are
in a DL with tractable entailment problems. If the number of distinct variables in MR is
bounded by a constant, then computing censor(X+, X−, α) is:

– in P if MR is Horn and PAX = PAX1;
– coNP-complete if either MR is not Horn or PAX = PAX0.

If there is no bound on the number of variables in the metarules of MR, then computing
censor(X+, X−, α) is:

– in PNP if MR is Horn and PAX = PAX1;
– in Π p

2 if either MR is not Horn or PAX = PAX0.

We are now ready to analyze the complexity of filtering functions:

Theorem 3. IfM is a canonical bk-models in a DL with tractable entailment problems,
then computing fM(KB) is:

1. P-complete if the number of distinct variables in the rules of MR is bounded, MR is
Horn, and PAX = PAX1;

2. PNP-complete if the number of distinct variables in MR is bounded, and either MR
is not Horn or PAX = PAX0;

3. in PNP if the variables in MR are unbounded, MR is Horn, and PAX = PAX1;
4. in ∆p

3 if MR is not restricted and PAX ∈ {PAX0,PAX1}.
Theorem 4. Computing fM(KB) over canonicalM in a DL with ExpTime entailment
(e.g.ALCQO,ALCIO,ALCQI, SHOQ, SHIO, SHIQ), is still in ExpTime.

Theorem 5. Computing fM(KB) over canonicalM inSROIQ(D) is in coNPN2ExpTime.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

155

8 Relationships with the SCM

Here we show that the meta-secure framework is a natural generalization of the SCM.
The main result—roughly speaking—demonstrates that the SCM model can be essen-
tially regarded as a special case of our framework where PKB ⊇ ℘(KB) and BK = ∅. In
this case fM is secure even ifM is not assumed to be canonical.

Theorem 6. LetM = 〈KB,U, fM, 〈S u,PKBu,BKu〉u∈U〉. If PKB = ℘(KB), BK = ∅, and
KB is finite, then

1. CnM(KB+,KB−) =
⋃

i<ν CnM(KB+
i ,KB−i).

2. For all enumerations of PAX, the corresponding fM(KB, u) is logically equivalent
to a maximal secure view KBu of KB according to the SCM; conversely, for all
maximal secure view KBu of KB (according to the SCM) there exists an enumeration
of PAX such that the resulting fM(KB, u) is logically equivalent to KBu.

3. fM is secure w.r.t. M and w.r.t. any M′ = 〈KB,U, fM, 〈S u,PKB′u,BK′u〉u∈U〉 such
that PKB′ ⊇ ℘(KB) and BK′ = ∅.
Theorem 6 applies to every canonicalM such that MR = BK = ∅, because MR = ∅

implies that PAX0 = PAX1 = KB and hence PKB = ℘(KB). This shows that the SCM
can be regarded as a special case of our framework where the user has no background
knowledge. Moreover, by this correspondence, one immediately obtains complexity
bounds for the SCM from those for PAX1 and Horn, bounded-variable MR.

9 Framework Implementation

In this section we introduce a prototypical implementation of the framework based on
PAX1 and Horn metarules. Nowadays ontologies are managed with the help of the OWL
API7 and DL reasoners which allow us to take full advantage of their rich underly-
ing semantics. Unfortunately, the OWL reasoners publicly available do not offer native
support for conjunctive query answering required to process users’ metaknowledge. A
partial exception of this rule is the Pellet reasoner discussed later. Straightforward eval-
uation of metarules in the presence of metavariables with an OWL reasoner would need
to consider all possible ways of uniformly replacing metavariables by individual con-
stants occurring in the ontology. On the other hand, the evaluation of a ground rule r
with an OWL reasoner in the worst case would require checking that all the axioms
α1, . . . , αn ∈ body(r) and β1, . . . , βm ∈ head(r) are entailed by KB. Summing up, with
this method, as the ontology ABox grow, metarule evaluation can easily become un-
manageable in terms of execution time. Consequently, the presence of technologies that
permit native conjunctive query evaluation reveals fundamental to achieve efficient im-
plementation of the framework. SPARQL8, the W3C standard that provide languages
and protocols to query and manipulate RDF content (and so ontologies encoded in the
XML/RDF Syntax), constitute a de facto standard when it comes to conjunctive query
answering. It has recently been extended with the so-called entailment regimes, which

7 http://owlapi.sourceforge.net/
8 http://www.w3.org/TR/sparql11-overview/

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

156

define how queries are evaluated under more expressive semantics, such as OWL se-
mantics, than the SPARQL standard simple entailment, based essentially on pattern
matching on graphs. Unfortunately, most of the available engines do not provide sup-
port for OWL reasoning. To the best of our knowledge only Apache Jena Semantic
Web Toolkit and Pellet support OWL inference over the queried ontologies. Moreover,
Pellet query engine seems not to have been reengineered for the last few years. It was
therefore an obvious option to prefer the Jena query engine for our system. The Jena
inference subsystem is designed to allow usage of a number of predefined Jena OWL
reasoners, as well as external reasoners9. However, the usage of the internal reasoners
is recommended for efficiency reasons. Note, that OWL, OWL Mini, OWL Micro Jena
Reasoners are a set of useful but not a full-fledged rule-based implementations of the
OWL/Lite subset of the OWL/Full language. Critical not supported constructs which go
beyond OWL/Lite are complementOf and oneOf, while the support for unionOf is par-
tial. We consider our choice to use a Jena OWL reasoner a good compromise between
expressivity and efficiency. According to the theoretical framework the system consists
of two modules. The first one actuates the parsing of the user’s metaknowledge repre-
sented by means of a set of metarules. The second module is in charge of the secure
ontology view construction.

Algorithm 1 provides an abstract view on the implementation of our framework. It
takes as input an ontology KB, a set of secrets S , a set of metarules MR and the user’s
background knowledge BK. The output is the set of axioms that constitute a secure
ontology view for the user. The set MM and MG form a partition of MR according to
rule types (ground or containing metavariables).

Remark 2. By standard logic programming techniques, a minimal PKB ⊆ PAX1 sat-
isfying the set of metarules and the constraints K+ can be obtained with the following
PTIME construction:

PKB0 = K+ , PKBi+1 = PKBi ∪
⋃
{ head(r) | r ∈ groundPKBi

(MR) ∧ body(r) ⊆ Cn(PKBi) }

The sequence’s limit PKB|PAX1 | satisfy 〈K+,K−〉 as well if Cn(PKB|PAX1 |) ∩ K− , ∅.
Then, for all s ∈ S , s ∈ CnM(K+,K−) holds iff s ∈ Cn(PKB|PAX1 | ∪ BK). For more
details refer to [7].

By iterating over the axioms α ∈ PAX1 (line 6-25), PKB collects at each step all
parts of PAX1 that can be revealed to the user. The repeat-until loop (lines 9-17) com-
putes the deductive closure PKB

′
of PKB under MR10. In particular, for every ground

metarule (lines 10-13) we execute a SPARQL ASK query (hidden in line 11) to verify
if its body is entailed by the current PKB

′
. For every metarule containing metavariables

(lines 14-16) we execute a SPARQL SELECT query (encoded in line 15) in order to
obtain all possible bindings of the metavariables that satisfy the metarule’s body. The
pair of steps described above is iterated until a fixpoint is reached (no elements are
added to PKB

′
(line 17)). At this point the condition Cn(PKB

′
) ∩ K−i , ∅ is checked

(line 18). We are now ready to determine the value of the censor function for α. We
verify that no secret is entailed from the minimal PKB (line 19) taking in consideration

9 To be plugged into Jena a reasoner must expose Jena API.
10 The result of Proposition 2 guarantees that considering only the minimal PKB is sound.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

157

Algorithm 1:
Data: KB, S ,MR,BK.
K+

i ,K
−
i ← ∅;1

MM ← {ri|ri ∈ MR and ri metarule containing metavariables};2
MG ← {ri|ri ∈ MR and ri ground metarule};3
PAX1 ← {α ∈ KB ∪⋃r∈groundKB(MR) head(r)};4

PKB← ∅;5
forall α ∈ PAX1 do6

PKB′ ← PKB ∪ {α};7
M′

G ← MG;8
repeat9

forall m ∈ M′
G do10

if PKB′ |= body(m) then11
PKB′ ← PKB′ ∪ {head(m)};12
M′

G ← M′
G \ {m};13

forall m ∈ MM do14
forall (a0, . . . , an) | PKB′ |= body(m, [X0/a0, . . . , Xn/an]) do15

PKB′ ← PKB′ ∪ {head(m, [X0/a0, . . . , Xn/an])};16

until No element is added to PKB′;17
if {β ∈ K−i | PKB′ |= β} = ∅ then18

if {s ∈ S | PKB′ ∪ BK |= s} = ∅ then19
if KB |= α then20

K+
i ← K+

i ∪ {α};21
PKB← PKB′;22
MG ← M′

G;23

else24
K−i ← K−i ∪ {α};25

return K+
i26

the background knowledge11. In case α is entailed by KB, it is safe to include it in the
view (line 21). Otherwise, the set K−i is updated (line 25). Note that we need an OWL
reasoner in order to perform the entailment checks in lines 18-20. We make use of the
incremental reasoner Pellet, that for each αi in the enumeration of PAX1, is expected to
restrict reasoning to the new inferences triggered by α without repeating the inferences
that involve only K+

i−1.
A first optimization regards the evaluation of the set of ground rules MG. During

the construction of PKB, due to the monotonicity of reasoning, at each iteration we can
safely remove from MG all the ground rules already satisfied at the previous iterations
(line 13,23). Another optimization concerns the evaluation order of PAX1. Checking
Cn(PKB|PAX1 |)∩K− , ∅ (line 18) is time consuming, so we adopt an approach that main-

11 This corresponds to check whether s ∈ CnM(K+ ∪ {α},K−) only. The condition s ∈
CnM(K+,K− ∪ {α}) is in fact embedded in line 18.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

158

tain the set K−i as small as possible. This is achieved processing all {α ∈ PAX1 | α ∈ KB}
in line 6 first. Provided that the condition in line 19 is vacuously satisfied we are sure
that the K−i remains empty.

Experimental analysis show that the generation of secure views for medium sized
ontologies may take several minutes. We plan to investigate module extraction tech-
niques that are expected to improve drastically the execution time by restricting the part
of the knowledge base on which metarules apply.

10 Related work

Baader et al. [2], Eldora et al. [11], and Knechtel and Stuckenschmidt [13] attach se-
curity labels to axioms and users to determine which subset of the KB can be used by
each subject. These works are instances of the SCM so they are potentially vulnerable
to the attacks based on background knowledge; this holds in particular for [13] that pur-
sues the construction of maximal secure views. Moreover, in [2, 11] axiom labels are
not derived from the set of secrets; knowledge engineers are responsible for checking
ex post that no confidential knowledge is entailed; in case of leakage, the view can be
modified with a revision tool based on pinpointing. On the contrary, our mechanism
automatically selects which axioms shall be hidden in order to produce a secure view.

Chen and Stuckenschmidt [8] adopt an instance of the SACM based on removing
some individuals entirely. In general, this may be secure against metaknowledge attacks
(cf. Ex. 5). However, no methodology is provided for selecting the individuals to be re-
moved given a target set of secrets. In [3], KB is partitioned into a visible part KBv and
a hidden part KBh. Conceptually, this is analogous to axiom labelling, cf. the above ap-
proaches. Their confidentiality methodology seems to work only under the assumption
that the signatures of KBv and KBh are disjoint, because in strong safety they do not
consider the formulae that are implied by a combination of KBv and KBh. Surely the
axioms of KBh whose signature is included in the signature of KBv cannot be protected,
in general. A partition-based approach is taken in [10], too. It is not discussed how to
select the hidden part KBh given a set of target secrets (which includes the issue of
deciding secondary protection).

Similarly, in [14] only ex-post confidentiality verification methods are provided. In
their model the equivalent of PKB is the set of all knowledge bases that include a given
set of publicly known axioms S ⊆ KB; consequently, in some cases their verification
method is vulnerable to the attacks to complete knowledge, that are based on more
complex (conditional) metaknowledge (cf. Example 2 and Example 5) that cannot be
encoded in their framework.

Cuenca Grau and Horrocks [9] investigate knowledge confidentiality from a prob-
abilistic perspective: enlarging the public view should not change the probability dis-
tribution over the possible answers to a “sensitive query” Q that represents the set of
secrets. In [9] users can query the knowledge base only through a pre-defined set of
views (we place no such restriction, instead). A probability distribution P over the set
of knowledge bases plays a role similar to metaknowledge. However, their confiden-
tiality condition allows P to be replaced with a different P′ after enlarging the public

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

159

view, so at a closer look P does not really model the user’s a priori knowledge about the
knowledge base (that should remain constant), differently from our PKB.

Our method is inspired by the literature on controlled query evaluation (CQE) based
on lies and/or refusals ([4, 5, 6] etc). Technically we use lies, because rejected queries
are not explicitly marked (the cited papers use the special answer “mum”). However, our
censor resembles the classical refusal censor, so the properties of fM are not subsumed
by any of the classical CQE methods. For example (unlike the CQE approaches that use
lies), fM(KB, u) encodes only correct knowledge (i.e. entailed by KB), and it is secure
whenever users do not initially know any secret (while lies-based CQE further require
that no disjunction of secrets should be known a priori). Unlike the refusal method, fM
can handle cover stories because users are not told that some queries are obfuscated;
as an additional advantage, our method needs not to adapt existing engines to handle
nonstandard answers like mum. Finally, the CQE approaches do not deal specifically
with DL knowledge bases, metaknowledge, and related complexity analysis.

11 Conclusions

The confidentiality preservation methods that do not consider background knowledge
are vulnerable to several attacks. We identified two vulnerabilities (attacks to complete
knowledge and to the signature) and introduced a knowledge base confidentiality model
that can detect these vulnerabilities, based on a fully generic formalization of object-
and meta-level background knowledge. Confidentiality is enforced through a generic
mechanism for constructing secure views (the filtering fM) that is provably secure w.r.t.
the meta-confidentiality model under a continuity assumption, and generalizes a few
previous approaches (cf. Thm. 6 and Ex. 5). In order to compute secure views in prac-
tice we introduced a safe, generic method for approximating background knowledge,
together with a specific rule-based language for expressing metaknowledge. Based on
this instantiation of the general framework, where fM is always secure, we analyzed the
computational complexity of computing secure views. If the underlying DL is tractable,
then in the simplest case fM can be computed in polynomial time. The number of
variables in metarules and the adoption of a more secure approximation (PAX0) may
increase complexity up to PNP = ∆

p
2 and perhaps ∆p

3 . The complexity of non-Horn
metarules, however, can be avoided by replacing each non-Horn r with one of its Horn
strengthenings: body(r) ⇒ α such that α ∈ head(r). This approximation is safe (be-
cause it restricts PKB), and opens the way to a systematic use of the low-complexity
bk-models based on PAX1 and Horn metarules. For the many ExpTime-complete DL,
secure view computation does not increase asymptotic complexity. So far, the best up-
per complexity bound for computing secure views in the description logic underlying
OWL DL (i.e. SROIQ(D)) is coNPN2ExpTime.

Finally, we have provided a prototype implementation of the low-complexity frame-
works based on PAX1 and Horn metarules using incremental engine versions available
for Pellet and ELK to avoid repeated classifications in the iterative construction of fM.
Metarule bodies are evaluated with SPARQL. Secure views are constructed off-line, so
no overhead is placed on user queries, and this approach is expected to be applicable in
practice.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

160

Bibliography

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[2] F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale ontological
reasoning in the presence of access restrictions to the ontology’s axioms. In International
Semantic Web Conference, pages 49–64, 2009.

[3] J. Bao, G. Slutzki, and V. Honavar. Privacy-preserving reasoning on the semantic web. In
Web Intelligence, pages 791–797. IEEE Computer Society, 2007.

[4] J. Biskup and P. A. Bonatti. Lying versus refusal for known potential secrets. Data Knowl.
Eng., 38(2):199–222, 2001.

[5] J. Biskup and P. A. Bonatti. Controlled query evaluation for enforcing confidentiality in
complete information systems. Int. J. Inf. Sec., 3(1):14–27, 2004.

[6] J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by combining
lying and refusal. Ann. Math. Artif. Intell., 40(1-2):37–62, 2004.

[7] P. A. Bonatti and L. Sauro. A confidentiality model for ontologies. In International Seman-
tic Web Conference (1), pages 17–32, 2013.

[8] W. Chen and H. Stuckenschmidt. A model-driven approach to enable access control for on-
tologies. In H. R. Hansen et al., editor, Wirtschaftsinformatik, volume 246 of books@ocg.at,
pages 663–672. Österreichische Computer Gesellschaft, 2009.

[9] B. Cuenca Grau and I. Horrocks. Privacy-preserving query answering in logic-based in-
formation systems. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. M. Avouris,
editors, ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications, pages
40–44. IOS Press, 2008.

[10] B. Cuenca Grau and B. Motik. Importing ontologies with hidden content. In B. Cuenca Grau
et al., editor, Description Logics, volume 477 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009.

[11] Eldora, M. Knechtel, and R. Peñaloza. Correcting access restrictions to a consequence
more flexibly. In R. Rosati, S. Rudolph, and M. Zakharyaschev, editors, Description Logics,
volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[12] P. Hitzler and T. Lukasiewicz, editors. Web Reasoning and Rule Systems - 4th Int. Confer-
ence, RR 2010., volume 6333 of Lecture Notes in Computer Science. Springer, 2010.

[13] M. Knechtel and H. Stuckenschmidt. Query-based access control for ontologies. In Hitzler
and Lukasiewicz [12], pages 73–87.

[14] P. Stouppa and T. Studer. Data privacy for knowledge bases. In S. N. Artëmov and
A. Nerode, editors, LFCS, volume 5407 of LNCS, pages 409–421. Springer, 2009.

[15] J. Tao, G. Slutzki, and V. Honavar. Secrecy-preserving query answering for instance check-
ing in EL. In Hitzler and Lukasiewicz [12], pages 195–203.

P. A. Bonatti, I. Petrova, L. Sauro. A mechanism for ontology confidentiality

161

Herbrand-satisfiability of a Quantified
Set-theoretical Fragment?

Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

Dipartimento di Matematica e Informatica, Università di Catania, Italy
{cantone, longo, nicolosi}@dmi.unict.it

Abstract. In the last decades, several fragments of set theory have been
studied in the context of the so-called Computable Set Theory. In gen-
eral, the semantics of set-theoretical languages differs from the canonical
first-order semantics in that the interpretation domain of set-theoretical
terms is fixed to a given universe of sets, as for instance the von Neu-
mann standard cumulative hierarchy of sets, i.e., the class consisting of
all the pure sets. Because of this, theoretical results and various machin-
ery developed in the context of first-order logic cannot be easily adapted
to work in the set-theoretical realm. Recently, quantified fragments of
set-theory which allow one to explicitly handle ordered pairs have been
studied for decidability purposes, in view of applications in the field of
knowledge representation. Among other results, a NexpTime decision
procedure for satisfiability of formulae in one of these fragments, ∀π0 , has
been provided. In this paper we exploit the main features of such a de-
cision procedure to reduce the satisfiability problem for the fragment ∀π0
to the problem of Herbrand satisfiability for a first-order language ex-
tending it. In addition, it turns out that such reduction maps formulae of
the Disjunctive Datalog subset of ∀π0 into Disjunctive Datalog programs.

1 Introduction

The quantified fragment of set-theory ∀π0 (see [3]) allows the explicit manipu-
lation of ordered pairs. It is expressive enough to include a relevant amount of
set-theoretic constructs, in particular map-related ones: in fact, it is character-
ized by the presence of terms of the form [·, ·] (ordered pair) and π̄(·) (collection
of the non-pair members of its argument). This language has applications in the
field of knowledge representation. In fact, a large amount of description logic con-
structs are expressible in it. In particular, the very expressive description logic
DL〈∀π0〉 can be expressed in a sublanguage of ∀π0 which has an NP-complete
decision problem, in contrast with the description logic SROIQ (cf. [9]), which
underpins the current standard language for Semantic Web OWL21 and whose
decision problem is N2ExpTime-complete (see [10]). Despite of these desirable

? This work has been supported by the project PON04a2 A “PRISMA - PiattafoRme
cloud Interoperabili per SMArt-government.”

1 http://www.w3.org/TR/owl2-primer/

162

properties of the language ∀π0 , no decision procedure for it has been implemented
yet.

In general, the semantics of set-theoretical languages (see [11] for an in-
troduction to set theory, and [5, 12] for an overview on decidable fragments of
set-theory) differs from the canonical first-order semantics (see [7]) in that the
interpretation domain of set-theoretical terms is based on the von Neumann
standard cumulative hierarchy of sets V. This is the class consisting of all the
pure sets, and is recursively defined by

V0 = ∅
Vγ+1 = P(Vγ) , for each ordinal γ
Vλ =

⋃
µ<λ Vµ , for each limit ordinal λ

V =
⋃
γ∈On Vγ ,

where P(·) is the powerset operator and On denotes the class of all ordinals.
Because of such peculiarity of set-theoretical languages, reusing of theoreti-
cal results and machinery developed in the context of first-order logic for set-
theoretical matters is not straightforward.

In this paper we show that these difficulties can be circumvented for the
fragment ∀π0 by encoding some axioms of set theory (namely regularity and a
weak form of extensionality) as ∀π0-formulae. More specifically, we will prove that,
for every ∀π0-formula ϕ, one can construct in polynomial time a corresponding
∀π0-formula χϕ such that ϕ admits a set-theoretical model if and only if χϕ ∧ ϕ
admits a Herbrand model (cf. [8]), when set-theoretic predicates in χϕ ∧ ϕ are
regarded as uninterpreted predicates.

It turns out that these formulae χϕ can be considered as DATALOG∨,¬ pro-
grams. As a consequence, the reduction we are going to discuss can be seen as
a reduction from ∀π0,D∨ to DATALOG∨,¬, where ∀π0,D∨ consists of the formulae
in ∀π0 which satisfy the syntactic constraints required to be regarded also as
DATALOG∨,¬ programs.

We recall that DATALOG∨,¬ (read Disjunctive Datalog, see [6]) extends Dat-
alog by allowing disjunctions in the head of program rules. Decidability and
complexity of Datalog extensions with various combinations of disjunction and
negation has been studied. Also, optimization strategies have been provided for
algorithms devised in this context, and a considerable amount of academic and
commercial software implementing these algorithms is available (see for exam-
ple [1]). Thus, the reduction we present in this paper allows one to reuse the
machinery available for DATALOG∨,¬ in the implementation of an optimized
reasoning engine for the language ∀π0,D∨ and, consequently, for the description
logic DL〈∀π0〉 mentioned before, as all the constructs in DL〈∀π0〉 are expressible
in ∀π0,D∨.

The link between set-theoretical languages and logic programming we start
to investigate here is of a certain interest to projects related with the production
and usage of open data such as PRISMA∗: on one hand, it provides a way to
implement with small efforts a solid and efficient reasoning and query engine for
the very expressive representation language DL〈∀π0〉; on the other hand, it allows

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

163

one to implement typical logic-programming tasks for DL〈∀π0〉 knowledge bases
such as, for example, answer-set programming and non-monotonic reasoning,
which may be of some interest for public utility applications.

The rest of the paper is organized as follows. In Section 2 we review some
notions and definitions from first-order logic, including the definition of the Dis-
junctive Datalog fragment of first-order logic. Then, in Section 3, after recalling
the syntax and semantics of the fragment of set-theory ∀π0 , we briefly review a
decision procedure for ∀π0-formulae, together with some lemmas useful to our
needs. A polynomial-time reduction of the satisfiability problem for ∀π0-formulae
to the Herbrand satisfiability problem for first-order formulae is described in
Section 4. Finally, we draw our conclusions and provide some hints for future
research in Section 5.

2 Preliminaries

We briefly review some notations and definitions from first-order logic which will
be used throughout the paper.

We shall denote with Vars = {x, y, z, . . .} and Consts = {a, b, c . . .} two denu-
merably infinite collections of variables and constants, respectively.2 In addition,
we denote with Preds = {P,Q,R, . . .} a denumerably infinite set of predicate
symbols, and with ar : Preds −→ N the related arity function.

Atomic formulae are expressions of the following form

P (ν1, . . . , νn),

where P ∈ Preds, ar(P) = n, and {ν1, . . . νn} ∈ Vars ∪ Consts. Literals are
atomic formulae or their negations. Quantifier-free formulae are propositional
combinations of atomic formulae; thus, in particular, literals are quantifier-free
formulae. Universally quantified prenex-formulae are expressions of the following
form

(∀x1) . . . (∀xn)ψ,

where n ∈ N, {x1, . . . xn} ⊆ Vars and ψ is a quantifier-free formula. In the rest
of the paper we will sometime abbreviate quantifier prefixes as (∀x1) . . . (∀xn)
by (∀x1, . . . , xn). Here we do not mention existential quantifiers because they do
not serve our purposes. However, notice that constants and free variables3 may
be regarded as existentially quantified variables when dealing with satisfiability.
In addition, quantifier-free formulae can be considered as universally quantified
prenex formulae with an empty quantifier prefix.

We consider also restricted universal quantifiers, i.e., quantifiers of the form

(∀x1, . . . , xn|P (x1, . . . , xm)) ,

2 We do not mention function symbols here as we are going to consider function-free
languages only.

3 An occurrence of a variable x is free in a formula if it does not fall within the scope
of the quantifier (∀x).

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

164

where 1 ≤ m ≤ n, x1, . . . , xn are variables, and P is a predicate of arity m, whose
intended meaning is that (universal) quantification is restricted to all x1, . . . , xn
such that P (x1, . . . , xm) holds. Notice, however, that restricted universal quan-
tifiers can easily be expressed by universally quantified prenex formulae, by way
of the following equivalence:

(∀x1, . . . , xn|P (x1, . . . , xm))ψ ≡ (∀x1, . . . , xn)(P (x1, . . . , xm)→ ψ).

Given any formula ϕ, we denote with Preds(ϕ), Consts(ϕ), and Vars(ϕ) the
sets of the predicate symbols, constant symbols, and variables occurring in ϕ,
respectively. Analogously, for a set Σ of formulae, we denote with Preds(Σ),
Consts(Σ), and Vars(Σ) the sets of all the predicate symbols, constant symbols,
and variables occurring in any formula ϕ ∈ Σ, respectively.

We denote with ϕ[x → y] the formula obtained from ϕ by replacing every
free occurrence of x with y.

A formula is said to be ground if no variable occurs in it. It is said to be closed
(or to be a sentence) if no free variable occurs in it, i.e., if every variable x in it
occurs ony within the scope of the quantifier (∀x). Plainly, ground formulae are
closed.

Finally, given any set Σ of atomic formulae and any atomic formula γ, with
a slight abuse of notation we write Σ |= γ to express that γ is a member of Σ,
i.e., γ ∈ Σ. Likewise, we write Σ 6|= γ when γ 6∈ Σ.

First-order interpretations, whose universe is Consts and such that each con-
stant is interpreted by itself,4 are called Herbrand interpretations. Plainly, a
Herbrand interpretation is characterized by the set of ground atomic formulae
which are evaluated to true by it. A Herbrand interpretation H is said to be a
Herbrand model for a formula ϕ if it evaluates ϕ to true, in which case we write
H |= ϕ.

A formula is said to be Herbrand-satisfiable if and only if it admits a Her-
brand model. It is a fundamental result of first-order logic that, for satisfiability
purposes, it is not restrictive to limit oneself to Herbrand satisfiability, since a
formula is satisfiable if and only if it is Herbrand-satisfiable. Additionally, when
considering a (function-free) universally quantified prenex sentence ϕ, the search
space for Herbrand models of ϕ can be limited to Herbrand interpretations over
the constants occurring in it. This result can easily be generalized to finite con-
junctions of universally quantified prenex sentences, as stated in the following
theorem.

Theorem 1. Let ϕ be a finite conjunction of universally quantified prenex sen-
tences. Then ϕ is satisfiable if and only if it admits a Herbrand model H whose
universe coincides with the set Consts(H), if Consts(H) 6= ∅, otherwise is any
singleton. ut

We conclude this section by recalling the DATALOG∨,¬ first-order fragment.
Notice that DATALOG∨,¬-formulae are often referred to also as programs, so that

4 We recall that we are assuming that there are no function symbols.

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

165

the expressions “DATALOG∨,¬-formulae” and “DATALOG∨,¬-programs” must be
regarded as synonyms. A DATALOG∨,¬ -formula is a finite conjunction of rules,
i.e., closed formulae of the following form

(∀x1) . . . (∀xn)(ϕ→ ψ) ,

where ϕ (the rule body) is a conjunction of literals, ψ (the rule head) is a dis-
junction of literals, and Vars(ψ) ⊆ Vars(ϕ) (safety condition). Facts are special
ground rules whose body is always true. For this kind of rules, one may omit
to indicate the rule body. Thus facts can just be regarded as disjunctions of
ground literals. They are used to express facts about real world items, such as
for example childOf(Alice,Bob), isMale(Bob), etc.

Finally, we observe that restricted universal quantifiers can easily be embed-
ded in DATALOG∨,¬ rules and formulae. Indeed, let us consider a closed formula
of the form

(∀x1, . . . , xn|P (x1, . . . , xm))(ϕ→ ψ) , (1)

where ϕ is a conjunction of literals, ψ is a disjunction of literals, Vars(ψ) ⊆
Vars(ϕ) ∪ {x1, . . . , xm}, and P is a predicate symbol of arity m. Then, as re-
marked above, (1) is equivalent to the closed formula

(∀x1, . . . , xn)(P (x1, . . . , xm)→ (ϕ→ ψ)),

which, in its turn, is equivalent to the closed formula

(∀x1, . . . , xn)((P (x1, . . . , xm) ∧ ϕ)→ ψ). (2)

Plainly, (2) is a (standard) DATALOG∨,¬-rule, with body (P (x1, . . . , xm) ∧ ϕ).

3 The language ∀π
0

We recall the syntax and semantics of the set-theoretic language ∀π0 , whose
decision problem has been studied in [3]. Atomic ∀π0-formulae are of the following
types

ν ∈ π̄(µ), [ν, ν′] ∈ µ, ν = µ (3)

with ν, ν′, µ ∈ Vars ∪ Consts. Intuitively. a formula of type ν ∈ π̄(µ) expresses
that ν is a non-pair member of µ, whereas a formula of type [ν, ν′] ∈ µ ex-
presses that the pair [ν, ν′] belongs to µ. Atomic ∀π0-formulae and their negations
are called ∀π0-literals. Quantifier-free ∀π0-formulae are Boolean combinations of
atomic ∀π0-formulae. Simple-prenex ∀π0-formulae have the following form:

(∀x1 ∈ π̄(a1)) . . . (∀xn ∈ π̄(an))(∀ [y1, z1] ∈ b1) . . . (∀ [ym, zm] ∈ bm)ψ,

where n,m ≥ 0, xi ∈ Vars and ai ∈ Consts, for 1 ≤ i ≤ n, yj , zj ∈ Vars
and bj ∈ Consts, for 1 ≤ j ≤ m, and ψ is a quantifier-free ∀π0-formula. The
constants a1, . . . , an, b1, . . . bm are the domain constants of the simple-prenex
∀π0-formula under consideration. Finally, ∀π0-formulae are finite conjunctions of

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

166

closed simple-prenex ∀π0-formulae. The collection of the domain constants of a ∀π0-
formula ϕ, which we denote with ConstsD(ϕ), consists of the domain constants
of all of its conjuncts.

Semantics of the language ∀π0 is based on the von Neumann standard cumu-
lative hierarchy of sets, briefly reviewed in Section 1. Other set-theoretic notions
particularly useful to our purposes are those of Cartesian product and of ordered
pairs. Let π be a binary operation which associates to each pair of sets u, v ∈ V
another set in V (i.e., π(u, v) ∈ V). Then the Cartesian product of u, v ∈ V with
respect to π, denoted by u×(π) v, is defined by

u×(π) v =Def {π(u′, v′) |u′ ∈ u ∧ v′ ∈ v}.
The binary operation π is said to be a pairing function if and only if the following
two conditions hold for any u, v, u′, v′ ∈ V:

1. π(u, v) = π(u′, v′) ⇐⇒ u = u′ ∧ v = v′,
2. u×(π) v is a set in V.

Let π be a pairing function, and let u be a set in the von Neumann cumulative
hierarchy. We denote with π̄(u) the collection of the members of u which are not
pairs, with respect to the pairing function π.

The semantics for ∀π0-formulae is given in terms of pair-aware set-theoretical
interpretations. These are first-order interpretations I whose domain is V (so
that pure sets are assigned to constants and variables) and such that:

– the membership predicate ∈ is interpreted as the membership relation among
sets in V;

– the pairing symbol [·, ·] is interpreted by a pairing function, in the sense
described above;

– Iπ̄(x) = {u ∈ Ix | (∀v1, v2)(I[v1, v2] 6= u)}, for all x ∈ Vars ∪ Consts.

Then, a ∀π0-formula ϕ is said to be satisfiable if and only if it admits a
pair-aware set-theoretical interpretation which satisfies it (i.e., a pair-aware set-
theoretical model). We use the notation I |=s ϕ to indicate that I is a pair-aware
set-theoretical model for the ∀π0-formula ϕ.

The satisfiability test for ∀π0-formulae reported in [3] relies on the existence
of finite structures of bounded size, called skeletal representations, which witness
the existence of certain particular models called realizations (see Definitions 1
and 2).

The definition of skeletal representation adopted in this paper differs slightly
from the one presented in [3]. In particular, here we extend the notion of skeletal
representation so as to also encapsulate the notion of V-extensionality and the
technical condition (i) of Theorem 3 in [3]. It turns out that all the lemmas and
theorems in [3] can be adapted to cope with this extended definition of skeletal
representation. A reformulation of Theorem 3 in [3], which is central for the
satisfiability problem for ∀π0-formulae, is reported in Theorem 2 below.

In the following definition, we shall make use of the membership closure
relation ∈+

S of a set S of atomic ∀π0-formulae. This is the minimal transitive
relation on Consts(S) such that, for a, b, c ∈ Consts(S), we have

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

167

– if S |= a ∈ π̄(b) then a ∈+
S b, and

– if S |= [a, b] ∈ c then a ∈+
S c and b ∈+

S c.

Definition 1 (Skeletal Representation). Let ϕ be a ∀π0-formula and let V ,
T be two disjoint sets of constants. A skeletal representation S relative to (V, T)
is a finite set of ground atomic ∀π0-formulae such that the following conditions
hold:

(S1) the membership relation induced by S is acyclic, i.e., a 6∈+
S a, for all a ∈

V ∪ T ;
(S2) if S |= a = b, for some a and b, then, for every γ in S, γ[a → b] and

γ[b→ a] are both in S;
(S3) if S 6|= a = b, for some a, b ∈ V , then a and b must be distinguished in S

by some constant c, in the sense that S |= c ∈ π̄(a) iff S 6|= c ∈ π̄(b), or by
some pair [c, d], in the sense that S |= [c, d] ∈ a iff S 6|= [c, d] ∈ b;

(S4) statements in S of the form a = b can involve only constants occurring in
V ;

(S5) Consts(S) ⊆ V ∪ T . ut

Condition (S1), which is closely related to the regularity axiom of set theory,
guarantees that a skeletal representation S can be turned into a corresponding
pair-aware set-theoretic interpretation (its realization; see below). Conditions
(S2) and (S3) concern the extensionality axiom of set theory, which states that
any two sets are equals if and only if they have the same members. Finally, (S4)
and (S5) are technical conditions which, together with (S1)–(S3) in Definition
1, guarantee some properties of realizations, as reported in Lemma 1 below.

In the following definition of realization of a skeletal representation, taken
from from [3] (Definition 1), we shall make use of the family {πn}n∈N of pairing
functions, recursively defined by

π0(u, v) =Def {u, {u, v}}
πn+1(u, v) =Def {πn(u, v)} ,

for u, v ∈ V.

Definition 2 (Realization [3]). Let V and T = {t1, t2, . . . , tn}, with n ∈ N,
be two finite, nonempty, and disjoint sets of constants, and let S be a skeletal
representation relative to (V, T). Then the realization of S relative to (V, T) is
the pair-aware set-theoretical model R defined as follows:

R [u, v] = Def πh(u, v) for all u, v ∈ V
Rx = Def {R y | S |= y ∈ π̄(x)} ∪ {R [y, z] | S |= [y, z] ∈ x} for x ∈ V
R ti = Def {R y | S |= y ∈ π̄(ti)} ∪ {R [y, z] | S |= [y, z] ∈ ti}∪ for ti ∈ T

{{k + 1, k, i}} ,

where h = |V |+ |T | and k = |V | · (|V |+ |T |+ 3).5 ut
5 We are assuming that integers are represented à la von Neumann, namely 0 =Def ∅

and, recursively, n+ 1 =Def n ∪ {n}.

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

168

The following lemma is a direct consequence of Definition 2 and of Lemma 2 in
[3].

Lemma 1. Let V , T be two finite, nonempty, and disjoint sets of constants, S
a skeletal representation relative to (V, T), and R the realization of S relative
to (V, T). Then

R a ⊆ {R b | S |= b ∈ π̄(a)} ∪ {R [b, c] | S |= [b, c] ∈ a} ,

for all a ∈ V . In addition, the following conditions hold, for all a, b, c ∈ V ∪ T :

– R a = R b iff S |= a = b;
– R a ∈ R π̄(b) iff S |= a ∈ π̄(b);
– R [a, b] ∈ R c iff S |= [a, b] ∈ c. ut

We observe that, in view of Definition 2, the names of the variables in the
set T do not affect the realization of a skeletal representation relative to (V, T).
In other words, if S is a skeletal representation relative to (V, T), t is a constant
in T , and t′ is another constant not occurring in V ∪ T , then the realization
of S relative to (V, T) and the realization of S[t → t′] (i.e., the set of atomic
∀π0-formulae obtained from S by replacing each occurrence of t by t′) relative to
(V, T \ {t} ∪ {t′}) coincide. In addition, if V , T are two disjoint set of constants,
and T ′ is a set of constants disjoint from V and such that T ⊆ T ′, then

– every skeletal representation S relative to (V, T) is a skeletal representation
relative to (V, T ′) as well, and

– the realization of S relative to (V, T) coincides with the realization of S
relative to (V, T ′).

We conclude this section by restating Theorem 3 of [3], in view of the above
observations and of Definition 1.

Theorem 2. Let ϕ be a ∀π0-formula, let V = Consts(ϕ), and let T be a set of
constants disjoint from V and such that |T | = 2 · |V |. Then ϕ is satisfiable if
and only if there exists a skeletal representation S relative to (V, T) such that
the realization R of S relative to (V, T) is a pair-aware set-theoretical model for
ϕ. ut

The decidability of the satisfiability problem for ∀π0-formulae easily follows
from Theorem 2, as the number of possible skeletal representations for any given
∀π0-formula is finitely bounded, and it is effectively verifiable whether the real-
ization of a skeletal representation is a pair-aware set-theoretical model for a
∀π0-formula.

Next we define the Disjunctive Datalog subset ∀π0,D∨ of ∀π0 as the collection
of the closed ∀π0-formulae whose conjuncts are closed simple-prenex ∀π0-formulae
of the form

(∀x1 ∈ π̄(a1)) . . . (∀xn ∈ π̄(an))(∀ [y1, z1] ∈ b1) . . . (∀ [ym, zm] ∈ bm)ψ, (4)

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

169

such that ψ has the form

(γ1 ∧ . . . ∧ γl)→ (σ1 ∨ . . . ∨ σh) ,

where l, h ≥ 0 and γ1, . . . , γl, σ1, . . .σh are ∀π0-literals. Since (4) is closed, each
variable x which may occur in the head of the rule ψ must be bound, so that x
occurs in at least one atom of the rule body, as required for Disjunctive Datalog
rules, when restricted quantifiers in (4) are expanded as indicated in (2).

In the next section we present a reduction of the set-theoretic satisfiability
for ∀π0-formulae to Herbrand satisfiability.

4 Herbrand Satisfiability of ∀π
0 -formulae

In this section we show how to reduce the satisfiability problem for the fragment
∀π0 to the problem of first-order Herbrand satisfiability.

For this purpose, we introduce the function-free first-order language Lπ0 which
involves, besides constants, also the following predicate symbols:

binary ternary 4-ary

∈̂, P=, P π̄, dist, distπ P [,], distBy distByπ

Next, we define a polynomial-time reduction ϕ 7→ ψϕ from ∀π0-formulae into
Lπ0 -formulae such that any ∀π0-formula ϕ is set-theoretically satisfiable if and
only if its image ψϕ in Lπ0 is Herbrand-satisfiable.

In our reduction, the predicate ∈̂ will be used to model the transitive clo-
sure of the membership relation among sets, whereas the predicates dist, distπ,
distBy, and distByπ will be used to model the fact that two sets are distinct. In
particular, the predicates dist and distBy will take care of the case in which two
sets x, y are distinguished by a set z that is not a pair, whereas the predicates
distπ and distByπ will take care of the case in which two sets x, y are distin-
guished by a [ν1, ν2]. Finally, the predicate P=(ν1, ν2) will be used to model
equality between ν1 and ν2, the predicate P π̄(ν1, ν2) will stand for the set-
theoretic formula ν1 ∈ π̄(ν2), and P [,](ν1, ν2, ν3) will stand for [ν1, ν2] ∈ ν3,
where ν1, ν2, ν3 ∈ Vars ∪ Consts.

For the sake of clarity, with a slight abuse of notation, we shall write ν1 = ν2,
ν1 ∈ π̄(ν2), and [ν1, ν2] ∈ ν3 in place of P=(ν1, ν2), P π̄(ν1, ν2) and P [,](ν1, ν2, ν3),
respectively, for all ν1, ν2, ν3 ∈ Vars ∪ Consts. With such an understanding, ∀π0
can be regarded as a sublanguage of Lπ0 , and skeletal representations as Herbrand
interpretations (over Lπ0) subject to the conditions reported in Definition 1.

In the rest of the paper, we shall refer to the subset of a Herbrand interpre-
tation H consisting of the atomic ∀π0-formulae in H as the ∀π0-subset of H.

As a first step in our reduction, we provide a polynomial-time procedure to
construct an Lπ0 -formula χ(V,T) from two disjoint sets of constants V and T ,
which enforces the conditions of Definition 1 on its models, in such a way that

– the ∀π0-subset of every Herbrand model H for χ(V,T) is a skeletal representa-
tion relative to (V, T), and

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

170

– every skeletal representation relative to (V, T) can easily be extended to a
Herbrand model for χ(V,T).

Then, to complete the reduction of ∀π0-satisfiability to Herbrand satisfiability,
we shall prove that

S |= χ(V,T) ∧ ϕ ⇐⇒ R |=s ϕ,

where V , T are two disjoint sets of constants, ϕ is a ∀π0-formula such that
Consts(ϕ) = V , S is a skeletal representation relative to (V, T), and R is the
realization of S relative to (V, T).

Thus, let V , T be two disjoint sets of constants. The formula χ(V,T) is defined
as follows:

χ(V,T) =Def χ1 ∧ χ2 ∧ χ(V,T)
3 ∧ χ(V,T)

4 ,

where

χ1 =Def (∀x, y)(x ∈ π̄(y)→ x∈̂y)
∧ (∀x, y)([x, y] ∈ z → x∈̂z)
∧ (∀x, y)([x, y] ∈ z → y∈̂z)
∧ (∀x, y, z)(x∈̂y ∧ y∈̂z → x∈̂z)
∧ (∀x)¬(x∈̂x)

χ2 =Def (∀x, y)(x = y → y = x)
∧ (∀x, y, z)(x = y ∧ y = z → x = z)
∧ (∀x, y, z)(x ∈ π̄(y) ∧ x = z → z ∈ π̄(y))
∧ (∀x, y, z)(x ∈ π̄(y) ∧ y = z → x ∈ π̄(z))
∧ (∀x, y, z, v)([x, y] ∈ z ∧ x = v → [v, y] ∈ z)
∧ (∀x, y, z, v)([x, y] ∈ z ∧ y = v → [x, v] ∈ z)
∧ (∀x, y, z, v)([x, y] ∈ z ∧ z = v → [x, y] ∈ v)

χ
(V,T)
3 =Def

∧
x,y∈V

(
¬(x = y)→ dist(x, y) ∨ distπ(x, y)

)

∧ (∀x, y)

(
dist(x, y)→ ∨

z∈V ∪T

(
distBy(x, y, z) ∨ distBy(y, x, z)

))

∧ (∀x, y)

(
distπ(x, y)→ ∨

z,v∈V ∪T

(
distByπ(x, y, z, v) ∨ distByπ(y, x, z, v)

)
)

∧ (∀x, y, z)
(
distBy(x, y, z)→ (z ∈ π̄(x) ∧ ¬(z ∈ π̄(y)))

)

∧ (∀x, y, z, v)
(
distByπ(x, y, z, v)→ ([z, v] ∈ x ∧ ¬([z, v] ∈ y))

)

χ
(V,T)
4 =Def

∧
x∈V ∪T,t∈T,x 6=t

¬(x = t).

It can be easily verified that χ(V,T) is a DATALOG∨,¬-formula. The subformulae

χ1, χ2, χ
(V,T)
3 , and χ

(V,T)
4 formalize the conditions (S1), (S2), (S3), and (S4)

of Definition 1, as clarified by the following lemma.

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

171

Lemma 2. Let V ,T be two disjoint sets of constants. Let H be a model for
χ(V,T) such that Consts(H) ⊆ V ∪ T , and let S be the ∀π0-subset of H. Then S
is a skeletal representation relative to (V, T).

Proof. Plainly, S is a set of atomic ∀π0-formulae, since it is the ∀π0-subset of H.
We must prove that S satisfies all the conditions reported in Definition 1.

We first observe that the relation ∈̂H = {[a, b] |H |= a∈̂b} is acyclic, as H
models correctly the conjunct χ1 of χ(V,T). Hence, ∈+

S must be acyclic as well,
as required by Condition (S1), since ∈+

S⊆ ∈̂H.6 Thus, we can conclude that S
satisfies (S1), since S ⊆ H.

Next, suppose that S |= x = y, for some constants x, y ∈ V ∪ T . Plainly,
H |= x = y. Let us consider any ∀π0-formula γ in S ⊆ H involving either x or
y, say x ∈ π̄(z). The definition of S yields that z ∈ V ∪ T , as we are assuming
that S |= x ∈ π̄(z). Then, H |= γ[x→ y], where γ[x→ y] is the literal y ∈ π̄(z),
easily follows, since H models correctly the conjunct (∀x, y, z)(x ∈ π̄(y) ∧ x =
z → z ∈ π̄(y)) of χ2. In addition, S |= y ∈ π̄(z) holds as well, as y ∈ π̄(z) is a
∀π0-formula with y, z ∈ V ∪ T . Property (S2) for S can be proved by reasoning
in similar way, for all the ∀π0-formulae occurring in S.

Conversely, let x, y ∈ V be such that S 6|= x = y and, consequently, H 6|= x =
y. Thus, H |= ¬(x = y), so that H |= dist(x, y)∨distπ(x, y), as we are supposing

that H is a model for χ
(V,T)
3 . It can easily be verified that if H |= dist(x, y),

then x and y are distinguished in S by a constant (in the sense of Definition 1),
whereas, if H |= distπ(x, y), then x and y are distinguished in S by a pair term.
Let us assume that H |= dist(x, y). Thus H |= distBy(x, y, z) ∨ distBy(y, x, z),
for some constant z ∈ V ∪ T , so that either H |= z ∈ π̄(x) and H 6|= z ∈ π̄(y),
or H |= z ∈ π̄(y) and H 6|= z ∈ π̄(x). Then x and y are distinguished in H by
z, and, consequently, they are distinguished in S by z too, since z ∈ π̄(x) and
z ∈ π̄(y) are ∀π0-formulae and x, y, z ∈ V ∪ T . By reasoning as above, it can be
proved that if H |= distπ(x, y) then x and y are distinguished in S by the pair
[z, v] if H |= distπ(x, y), thus concluding the proof that H satisfies (S3).

Concerning (S4), by way of contradiction we prove that S |= x = y implies
that x and y are constants in V . Thus, let us assume that y /∈ V . Then y must
be in T , as T and V are disjoint, and Consts(S) ⊆ Consts(H) ⊆ V ∪ T . But H
must model the conjunct ¬(x = y) of χ

(V,T)
4 . Hence, we have H 6|= x = y and,

a fortiori, S 6|= x = y, since S ⊆ H, contradicting our initial assumption. Thus,
y ∈ V . In addition, S |= x = y yields that S |= y = x, as H models the conjunct
(∀x)(x = y → y = x) of χ2, x and y are in V ∪ T , and y = x is a ∀π0-formula.
Thus, x ∈ V can be proved analogously.

Finally, (S5) holds as well, since, by assumption, Consts(S) ⊆ Consts(H) ⊆
V ∪ T . ut

In addition, every skeletal interpretation can be extended to comply with the
constraints imposed by χ(V,T).

6 The relation ∈+
H does not necessarily coincide with ∈̂H, as the minimality of ∈̂H is

not enforced in χ1.

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

172

Lemma 3. Given two disjoint sets of constants V ,T and a skeletal represen-
tation S relative to (V, T), there always exists a Herbrand model H (over Lπ0)
having S as ∀π0-subset.

Proof. Let S be a skeletal representation relative to (V, T), where V and T are
disjoint sets of constants. We can extend S to a Herbrand model H for χ(V,T).

Initially, we put H =Def S and then we enrich H with new atomic formulae
according to the following rules. If x ∈ π̄(y) is in S, we add x∈̂y to H. Likewise, if
[x, y] ∈ z is in S, we add the atoms x∈̂z and y∈̂z to H. Then we close transitively
H with respect to the ∈̂-atoms, i.e., for each sequence of atoms in H of the form

x1∈̂x2, x2∈̂x3, . . . , xn−1∈̂xn ,

we add the atom x1∈̂xn to H.
Next, for every x, y ∈ V , if S 6|= x = y and x and y are distinguished in S by a

z ∈ V ∪T , we add to H the atoms dist(x, y) and distBy(x, y, z) (resp., dist(y, x)
and distBy(y, x, z)), provided that z ∈ π̄(x) is in S and z ∈ π̄(y) is not in S
(resp., z ∈ π̄(y) is in S and z ∈ π̄(x) is not in S). Otherwise, if x and y are distin-
guished in S by a pair [z, v], with z, v ∈ V ∪T , we add to H the atoms distπ(x, y)
and distByπ(x, y, z, v) (resp., distπ(y, x) and distByπ(y, x, z, v)), provided that
[z, v] ∈ x is in S and [z, v] ∈ y is not in S (resp., [z, v] ∈ y is in S and [z, v] ∈ x
is not in S).

In order to show that the set H so obtained is a Herbrand model for χ(V,T),

we have to prove that H is a Herbrand model for the formulae χ1, χ2, χ
(V,T)
3 ,

and χ
(V,T)
4 .

By the very construction process, H satisfies the first four conjuncts of χ1.
In addition, H satisfies also the last conjunct (∀x)¬(x∈̂x) of χ1. Indeed, if this
were not the case, H would contain an atom of the form z∈̂z, for some z ∈ V ∪T .
But this would be possible only if one of the following situations occurs:

(a) S contains an atom of one of the following three forms

z ∈ π̄(z), [z, y] ∈ z, [x, z] ∈ z ,

for some x, y ∈ V ∪ T ;
(b) H contains a sequence of atoms of the form

z∈̂x1, x1∈̂x2, . . . , xn−1∈̂xn, xn∈̂z ,

with xi ∈ V ∪ T for 1 ≤ i ≤ n.

However, case (a) cannot occur, since, by condition (S1), the membership rela-
tion induced by S is acyclic. We show that also case (b) cannot occur, thereby
proving that H cannot contain any atom of the form z∈̂z. Indeed, if (b) were
true, then H would contain a maximal sequence of atoms of the form

x0∈̂x1, x1∈̂x2, . . . , xn−1∈̂xn, xn∈̂xn+1 ,

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

173

where x0 and xn+1 coincide. But then, for each i = 0, 1, . . . , n, S would contain
at least an atom of one of the following types

xi ∈ π̄(xi+1), [xi, w] ∈ xi+1, [w, xi] ∈ xi+1 ,

with w ∈ V ∪ T , and therefore the membership relation ∈+
S induced by S would

contain a cycle, contradicting condition (S1).
Summing up, H satisfies also the last conjunct of χ1, and hence it satisfies

the whole formula χ1.

To show that H satisfies χ2 and χ
(V,T)
3 , it is enough to observe that S ⊆ H

and that S satisfies conditions (S2) and (S3), respectively.

Finally, since (again) S ⊆ H and S satisfies condition (S4), it follows that H
satisfies also the formula χ

(V,T)
4 , as no new atom of the form x = y can possibly

be introduced into H during its construction.

Hence, in conclusion, H is a Herbrand model for the formula χ(V,T). ut

As already remarked, the following lemma exploits a semantical correspon-
dence between pair-aware set-theoretical models and Herbrand models of ∀π0-
formulae.

Lemma 4. Let V , T be two disjoint sets of constants and let H be a Herbrand
interpretation such that H |= χ(V,T) and Consts(H) ⊆ V ∪ T . Let S be the
∀π0-subset of H, and let R be the realization of S relative to V , T . Then

H |= ϕ ⇐⇒ R |=s ϕ ,

for every ∀π0-formula ϕ such that Consts(ϕ) ⊆ V ∪ T and ConstsD(ϕ) ⊆ V .

Proof. It will be enough to prove the lemma in the case of simple-prenex ∀π0-
formulae, as general ∀π0-formulae are just finite conjunctions of simple-prenex
∀π0-formulae. Accordingly, in the rest of this proof we will assume that ϕ is a
simple-prenex ∀π0-formula.

We proceed by induction on the quantifier prefix length of ϕ. Preliminarily,
we observe that

H |= γ ⇐⇒ R |=s γ,

for each atomic ∀π0-formula γ such that Consts(γ) ⊆ V ∪ T (see Lemma 1), so
that the lemma follows easily from propositional logic when ϕ is quantifier-free.

For the inductive case, let us first assume that ϕ = (∀x ∈ π̄(a))ψ, for some x ∈
Vars and a ∈ Consts, where ψ is a simple-prenex ∀π0-formula with one less quan-
tifier than ϕ. Since R is a realization, we plainly have R π̄(a) = {R b |H |= b ∈
π̄(a)}, so that R models correctly (∀x ∈ π̄(a))ψ if and only if it correctly models
all the formulae ψ[x→ b] such that H |= b ∈ π̄(a). Observe that, for all the con-
stants b such that H |= b ∈ π̄(a), we have ConstsD(ψ[x → b]) = ConstsD(ψ) =
ConstsD(ϕ) \ {a} ⊆ V , and Consts(ψ[x→ b]) ⊆ Consts(ψ)∪ {b} ⊆ Consts(ϕ)∪
{b} ⊆ V ∪ T , as we have assumed that Consts(ϕ) ∪ Consts(H) ⊆ V ∪ T . Thus

R |=s ψ[x→ b] ⇐⇒ H |= ψ[x→ b],

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

174

for each b such that H |= b ∈ π̄(a), and, consequently,

R |=s (∀x ∈ π̄(a))ψ ⇐⇒ H |= (∀x ∈ π̄(a))ψ

follows by applying the inductive hypothesis to the formulae ψ[x→ b], for all b
such that H |= b ∈ π̄(a).

Next, let us consider the case in which ϕ has the form (∀[x, y] ∈ a)ψ, with
x, y ∈ Vars, a ∈ Consts, and ψ a simple-prenex ∀π0-formula with one less quan-
tifier than ϕ. In this case we must consider the set R a \ R π̄(a) of the pair
members of R a. But, R a \ R π̄(a) = {R [b, c] |H |= [b, c] ∈ a}, by Lemma 1,
and thus R models (∀[x, y] ∈ a)ψ if and only if it correctly models the formula
ψ[x→ b][y → c], for all a, b such that H |= [b, c] ∈ a. Thus, the thesis follows by
reasoning much as in the previous case, by applying the inductive hypothesis to
the formulae ψ[x→ b][y → c], for all a, b such that H |= [b, c] ∈ a ut

Finally, the next theorem states that the satisfiability of every ∀π0-formula
ϕ can be decided by checking the Herbrand satisfiability of the corresponding
Lπ0 -formula χ(V,T) ∧ϕ, thus concluding the verification of the correctness of our
reduction.

Theorem 3. Let ϕ be a ∀π0-formula, let V = Consts(ϕ), and let T be any set of
constants disjoint from V such that such that |T | = 2 · |V |. Then ϕ is satisfiable
if and only if χ(V,T) ∧ ϕ is Herbrand-satisfiable.

Proof. To begin with, let us assume that ϕ is satisfiable. Then, by Theorem 2,
there exists a skeletal representation S (relative to (V, T)) such that its realiza-
tion R relative to (V, T) is a pair-aware set-theoretical model for ϕ. In addition,
by Lemma 2, there exists a Herbrand interpretation H with S as its ∀π0-subset,
which correctly models χ(V,T), and such that Consts(H) = Consts(S). Thus,
H |= ϕ directly follows from Lemma 4.

Conversely, let H be a Herbrand model for χ(V,T) ∧ ϕ, and let S be the ∀π0-
subset of H. We have Consts(H) ⊆ V ∪ T , as Consts

(
χ(V,T)

)
= V ∪ T and

Consts(ϕ) = V . In addition, from Lemma 2 and from H |= χ(V,T), S is a skeletal
representation. Thus, by Lemma 4, the realization of S relative to (V, T) must
be a model for ϕ. ut

We conclude this section by observing that, if ϕ is a ∀π0,D∨-formula, then

χ(V,T) ∧ϕ is a DATALOG∨,¬-formula, as χ(V,T) is a DATALOG∨,¬-formula. Thus
the satisfiability problem for ∀π0,D∨-formulae can be reduced in polynomial time

to the Herbrand satisfiability problem for DATALOG∨,¬-formulae.

Corollary 1. Let ϕ be a ∀π0,D∨-formula. Let V = Consts(ϕ) and let T be any
set of constants disjoint from V and such that |T | = 2 · |V |. Then ϕ is set-
theoretically satisfiable if and only if the corresponding DATALOG∨,¬-formula
χ(V,T) ∧ ϕ is satisfiable, in the sense of Disjunctive Datalog. ut

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

175

5 Conclusions and Future Works

In this paper we have identified a correspondence between the fragment of set-
theory ∀π0 and first-order logic (in particular Herbrand logic) by providing a
polynomial-time reduction of ∀π0-formulae to formulae in a first-order language,
called Lπ0 , suitable for this purpose. In addition, we have shown that if we limit
ourselves to the Disjunctive Datalog restriction of ∀π0 called ∀π0,D∨, then our

reduction maps formulae in this subfragment to DATALOG∨,¬-formulae.
Such correspondence, and its consequences, has to be further investigated.

For instance, applications of techniques and results devised in the context of logic
programming, such as, for example, answer-set programming and negation-as-
failure, to the ∀π0,D∨ subfragment need to be studied. In view of our reduction,
a satisfiability checker for ∀π0,D∨-formulae can be implemented by reusing some
machinery from logic programming, for example the Disjunctive Datalog system
DLV described in [1].7

We intend to develop analogous correspondences for other decidable frag-
ments of set-theory, such as, for instance, the quantified fragment ∀π0,2, whose
decision procedure presented in [2] is based on a reduction to ∀π0 , and the un-
quantified fragment MLSS×2,m (see [4]), whose satisfiability problem can be in
turn reduced to the satisfiability problem for ∀π0,2.

References

1. Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and
Giorgio Terracina. The Disjunctive Datalog System DLV. In Oege de Moor, Georg
Gottlob, Tim Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - First
International Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised
Selected Papers, volume 6702 of Lecture Notes in Computer Science, pages 282–301.
Springer, 2011.

2. Domenico Cantone and Cristiano Longo. A decidable quantified fragment of set
theory with ordered pairs and some undecidable extensions. In Marco Faella and
Aniello Murano, editors, Proceedings of Third International Symposium on Games,
Automata, Logics and Formal Verification, volume 96 of EPTCS, pages 224–237,
2012.

3. Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo. A Decid-
able Quantified Fragment of Set Theory Involving Ordered Pairs with Applications
to Description Logics. In Marc Bezem, editor, CSL 2011, volume 12 of LIPIcs,
pages 129–143. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

4. Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo. A Decision
Procedure for a Two-sorted Extension of Multi-Level Syllogistic with the Cartesian
Product and Some Map Constructs. In Wolfgang Faber and Nicola Leone, editors,
CILC2010 : 25th Italian Conference on Computational Logic, 2010.

5. Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set theory for comput-
ing: From decision procedures to declarative programming with sets. Monographs
in Computer Science. Springer-Verlag, New York, NY, USA, 2001.

7 http://www.dlvsystem.com/

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

176

6. Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM
Trans. Database Syst., 22(3):364–418, 1997.

7. Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

8. Jacques Herbrand. Investigations in proof theory: The properties of true propo-
sitions. In Jean van Heijenoort, editor, From Frege to Gödel: A Source Book in
Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, pages
525–581. Harvard University Press, 1967.

9. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible SROIQ.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR2006), pages 56–67. AAAI Press, 2006.

10. Yevgeny Kazakov. SRIQ and SROIQ are Harder than SHOIQ. In Franz Baader,
Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st International Work-
shop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008, vol-
ume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

11. Yiannis Moschovakis. Notes on Set Theory. Springer, second edition, 2005.
12. Jacob T. Schwartz, Domenico Cantone, and Eugenio G. Omodeo. Computational

logic and set theory: Applying formalized logic to analysis. Springer-Verlag, 2011.
Foreword by M. Davis.

D. Cantone et al. Herbrand-satisfiability of a Quantified Set-theoretical Fragment

177

Semantic Web Services for
Integrated Tourism in the Apulia Region

Francesca A. Lisi and Floriana Esposito

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
{francesca.lisi,floriana.esposito}@uniba.it

Abstract. In this paper we report our ongoing work on Puglia@Service,
a PON Research & Competitivity project aimed at creating an innova-
tive service infrastructure for the Apulia Region, Italy. A sector of inter-
est to the project for the application of the infrastructure is Integrated
Tourism. In this sector, we have defined Semantic Web Services following
the OWL-S approach. The services have been based on OWL ontologies in
the domain of travel and tourism, which have been populated with data
of Apulia. This will enable users and software agents to automatically
discover, invoke, compose, and monitor Web resources offering services,
under specified constraints, for Integrated Tourism in Apulia.

1 Introduction

Tourism activity is becoming more competitive, more extensive, more compli-
cated, and more demanding of host communities and their culture and environ-
ment. Tourism planning has been beset by a number of new challenges such as the
ones posed by the principles of sustainable development. In order for the tourism
enterprise in any destination area to respond positively to these challenges, it is
necessary for tourism planning to be practised in a fashion commensurate with
the needs of the destination area and the nation. Many reasons are offered for
tourism planning, not least the advocacy that planning is the best way of ex-
tending the vital life-cycle of a destination by providing a means of anticipating
changes, adjusting to the demands of change, and exploring new opportunities.
However, integrating tourism planning into official planning - whether economic,
social, welfare, environmental, infrastructure, or cultural - has been slow, and
remains unusual. The ideal model would be a national/regional/local compre-
hensive planning system in which tourism is an integral component. This model
is rare, which is not surprising, as the various component strategies within tourism
are seldom integrated. The goal of Integrated Tourism is twofold. For the various
interests, requirements and needs the aim is to be fused together into a com-
posite, integrated strategic tourism plan. For tourism the aim is to be planned
with the intention of being fused into the social and economic life of a region and
its communities. Although there is evidence that some tourism destinations have
developed without conscious strategic and integrated planning, many of them
have experienced unforeseen consequences (either physical, or human, or market-
ing or organizational impacts) which have led to their deterioration. Integrated

178

Tourism has turned out be crucial in the sustainable development of rural areas
(so-called Integrated Rural Tourism) [14]. However, the integrated approach can
be beneficial also to urban areas as testified by recent progress in Urban Tourism
research [1]. Indeed, tourism is being seen as a cornerstone of a policy of urban
development that combines a competitive supply able to meet visitors’ expecta-
tions with a positive contribution to the development of towns and cities and the
well-being of their residents. Urban Tourism is complex, difficult to pin down and
define, and depends on many factors such as the size of the town, its history and
heritage, its morphology and its environment, its location, its image, etc.

Contribution of the paper. The application of Information and Communication
Technology (ICT) to the tourism industry has been considered challenging since
the very beginning due to the technical issues raised by interoperability. However,
most research on so-called eTourism has been conducted by specializing technolo-
gies originally conceived for eCommerce (see [3] for a comprehensive yet not very
recent review). We claim that ICTs for Integrated Tourism should go beyond the
mere technological support for tourism marketing. For instance, identifying the
most appropriate institutional structures and strategies to integrate the views
and coordinate the actions of diverse tourism stakeholders is a key stage in the
development of Integrated Tourism in rural and lagging areas. Bousset et al. [2]
present a Decision Support System (DSS) which combines tools to assist in the
analysis of the views, concerns and planned strategies of a wide range of tourism
stakeholders in the face of given trends in tourists’ expectations. In this paper, we
report our experience in supporting Integrated Tourism services with semantic
technologies. The work has been conducted within Puglia@Service1, an Italian
PON Research & Competitivity project aimed at creating an innovative service
infrastructure for the Apulia Region, Italy2. As for the application to Integrated
Tourism, the project addresses some of the issues analyzed in a report enti-
tled “Sustainable Tourism and Local Development in Apulia Region” (2010)3

and prepared by the Local Economic and Employment Development (LEED)
Programme and the Tourism Committee of the Organisation for Economic Co-
operation and Development (OECD) in collaboration with Apulia Region. The
region as a touristic destination needs a better management in spite of the recent
growth of visitors and the high potential. In particular, the report emphasizes
the lack of an adequate ICT infrastructure and little use of new technologies.

Semantic Web Services are among the semantic technologies which are going
to be applied in Puglia@Service. Just like conventional web services, Semantic
Web Services are the server end of a client-server system for machine-to-machine
interaction via the World Wide Web (or simply, the Web) [7]. As a component
of the Semantic Web, they are defined with mark-up languages which make data
machine-readable in a detailed and sophisticated way. In particular, OWL-S 4 is
an ontology which provides a standard vocabulary that can be used together

1 http://www.ponrec.it/open-data/progetti/scheda-progetto?ProgettoID=5807
2 http://en.wikipedia.org/wiki/Apulia
3 http://www.oecd.org/cfe/leed/46160531.pdf
4 http://www.w3.org/Submission/OWL-S/

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

179

with the other aspects of the Ontology Web Language (OWL)5 to create service
descriptions. The use of OWL-S makes it easy for programmers to combine data
from different sources and services without losing meaning. Web services can be
activated ”behind the scenes” when a web browser makes a request to a web
server, which then uses various web services to construct a more sophisticated
reply than it would have been able to do on its own. Semantic Web Services can
also be used by automatic programs that run without any connection to a web
browser. Overall, the interchange of semantic data allows to overcome some of
the limits of conventional web services. Indeed, the mainstream XML standards
for interoperation of web services specify only syntactic interoperability, not the
semantic meaning of messages. For example, Web Services Description Language
(WSDL)6 can specify the operations available through a web service and the
structure of data sent and received but cannot specify semantic meaning of the
data or semantic constraints on the data. This requires programmers to reach
specific agreements on the interaction of web services and makes automatic web
service composition difficult.

Structure of the paper. The paper is structured as follows. Section 2 summa-
rizes the goals of the Puglia@Service project as for the application to Inte-
grated Tourism. Section 3 shortly describes a domain ontology for Integrated
Tourism, named OnTourism, which has been modeled for being used within
Puglia@Service. Section 4 briefly presents a Web Information Extraction tool,
named WIE-OnTour, which has been developed for populating OnTourism
with data automatically retrieved from the Web. Section 5 illustrates some of
the Semantic Web Services which have been defined on top of OnTourism for
supporting Integrated Tourism in Apulia. Section 6 provides an overview of re-
lated work. Section 7 concludes the paper with final remarks and directions of
future work. Appendix A provides further details of the OWL-S approach.

2 Integrated Tourism Services in Apulia

The research conducted in the Puglia@Service project falls within the area of
Internet-based Service Engineering, i.e. it investigates methodologies for the de-
sign, development and deployment of innovative services. Concerning this area,
the project will have an impact on the Apulia regional system at a strategic, or-
ganizational and technological level, with actions oriented to service innovation
for the “sustainable knowledge society”. The reference market of Puglia@Service
is represented by the so-called Knowledge Intensive Services (KIS), an emerging
category of the advanced tertiary sector, and transversal to the other economic
sectors, that is supposed to play a prominent role within the restructuring process
which will follow the world economic crisis.

Objective of the project is to promote a new service culture over the Apulia
region, marking a discontinuity point in the local development model, and guiding
the transition of the region towards the “smart territory” paradigm where the

5 http://www.w3.org/TR/owl2-overview/
6 http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

180

territory is intended to be a multiplayer system able to improve, by means of an
adequate technological and digital infrastructure, its attitude to innovation as
well as its skills in managing the knowledge assets of the regional stakeholders.

The project will pursue this goal through process and product innovations. In
particular, it proposes to radically innovate the processes of service conceptual-
ization, design, development and deployment, by assigning to the user a central
role that anticipates his involvement. This will be obtained by applying a user-
driven open innovation methodology, created at the US MIT Laboratories and
adopted by the European countries, known as “Living-Lab”. The project also
defines a set of methodologies and technologies for Internet-based Service Engi-
neering starting from a next generation service model conceived to satisfy the
needs for inclusion, participation and personalization. Finally, it is expected to
produce not only a pervasive technological infrastructure (like a nervous system
for the “smart territory”) but also:

– a qualified personnel, educated according to the Innovator and Entrepreneur
Engineer profile, i.e. able to catch the opportunities offered by the new tech-
nologies and to transfer them into new business models in order to create
economic and social value (Technological Entrepreneurship);

– a start-up company operating in the Service Engineering area and addressing
the European Commission request for “service innovation leaders”.

The arrangement of the new service model into the regional context will regard
the new generation services of the Public Administration and the Integrated
Tourism. In particular, the application of Puglia@Service to Integrated Tourism
(Puglia@Service.Tourism) encompasses an intervention on the Apulia tourism
system, based on the definition of an Internet-based service model which increases
the capability of KIS to create value for the region and for the tourist. Here, the
tourist is not only “service user” but also “information supplier”. In particular,
the application will require the development of methods and technologies enabling
an interaction model between the tourist and the territory with the ultimate goal
of local development along three directions: Culture, Environment and Economy.
For the purposes of this paper, we shall focus only on the Environment dimension.

Puglia@Service.Tourism aims at promoting forms of tourism with a low en-
vironmental impact centered around the notion of eco-compatible mobility. This
will contribute to the achievement of a twofold goal. On one side, the tourist will
benefit from decision support facilities during his/her tours, e.g. he/she will re-
ceive suggestions about sites of interest and public transportation means suitable
to reach a certain destination. On the other side, the territory will benefit from
the environmental sustainability of local tourism. The reduced environmental
impact of eco-mobility together with the need for a more efficent transporta-
tion system in touristic places can be obtained by combining sensoring tools
and applications with rewarding mechanisms that encourage tourists and cit-
izens to make eco-compatible choices. A possible scenario is described in the
following. Once arrived in a touristic destination, the tourist could use his/her
smartphone/PDA in order to obtain a suggestion about specific itineraries com-
pliant with his/her profile and the information about the context. The tourist
will be informed about the availabiliy of alternative transportation means and

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

181

will be offered some credits for the green options (biking, trekking, car pooling,
car sharing, etc.). In order to support this scenario, the Puglia@Service.Tourism
infrastructure should deal with multi-dimensional information useful to suggest
a touristic strategy which should meet users’ expectations and preferences (in
culture, enogastronomy, shopping, relax, etc.); environmental conditions, both
meteorological and natural; multi-modal transportation means; availability of
car pooling and car sharing services; transfer time between sites of interest. The
“fingerprint” of tourists visiting an area in a given time span can be anonymized
and employed to improve continuously the user profiling with the choices made
by tourists with the same profile. To this aim it is necessary to track the trajecto-
ries of citizens and tourists by means of localization and wireless communication
technologies (traces from mobile phones, PDA, vehicles with GPS, etc.).

It is straightforward to notice that Internet-based Service Engineering for
KIS in Integrated Tourism should strongly rely on Web technologies - such as
Semantic Web Services - enabling an automated service composition. As shown
in the rest of the paper, Web services in Puglia@Service.Tourism are enriched
with semantic annotations starting from domain ontologies.

3 A Domain Ontology for Integrated Tourism

Domain ontologies for tourism are already available, e.g. the travel7 ontology is
centered around the concept of Destination. However, it is not fully satisfactory
from the viewpoint of Integrated Tourism. For instance, it lacks concepts mod-
eling the reachability of places. In Puglia@Service.Tourism, we have decided to
build a domain ontology, named OnTourism,8 more suitable for the project ob-
jectives and compliant with the OWL2 standard.It consists of 359 axioms, 196
logical axioms, 113 classes, 9 object properties, and 14 data properties, and has
the expressivity of the DL ALCHOIF(D).

The main concepts forming the terminology of OnTourism model the sites
(class Site), the places (class Place), and the distances between sites (class Dis-
tance). Sites of interest include accommodations (class Accommodation), attrac-
tions (class Attraction), stations (class Station), and civic facilities (class Civic)
as shown in Figure 1. The terminology encompasses the amenities (class Amenity
with subclasses reported in Figure 2) and the services (class Service with sub-
classes reported in Figure 3) offered by hotels. Also, it models the official 5-star
classification system for hotel ranking (class Rank with instances 1 star, 2 stars,
and so on) as well as a user classification system for accommodation rating (class
Rate with instances Excellent, Very Good, Average, Poor, Terrible). Finally, the
terminology includes landscape varieties (class Landscape with instances City,
Country, Lake, Mountain, River, and Sea) and transportation means (class Trans-
portation Mean with instances Bike, Car, Foot, and Public transit). Distances
are further classified into Distance by car and Distance on foot according to the
transportation means used.

7 http://www.protege.cim3.net/file/pub/ontologies/travel/travel.owl
8 It significantly extends the Hotel ontology described in [10].

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

182

The object properties in OnTourism model the relationship between a site and
a distance (hasDistance), the relationship between a distance and the two sites
(isDistanceFor), and the relationship between a site and the place where the site
is located at (isLocatedAt). Also, for each accommodation, it is possible to spec-
ify the amenities available (hasAmenity) and the services provided (provides).
The user rating allows to classify accommodations into five categories (from Ex-
cellent Accommodation to Terrible Accommodation). In the case of hotels, the
ranking (hasRank) is the starting point for the definition of five categories (from
Hotel 1 Star to Hotel 5 Stars).

The data properties in OnTourism allow to refer to sites by name and to
places by address, zipcode, city, and country. Details about accommodations
are the number of rooms (numberOfRooms) and the average price of a room
(hasPrice). Distances between sites have a numerical value in either length or time
units (hasLengthValue/hasTimeValue). Note that each of these numerical values
would be better modeled as attribute of a ternary relation. However, only binary
relations can be represented in OWL. The concept Distance and the properties
hasDistance, isDistanceFor and hasLengthValue/hasTimeValue are necessary to
simulate a ternary relation by means of binary relations.

4 Extraction of Touristic Information from the Web

Information extraction (IE) is the task of automatically extracting structured
information from unstructured and/or semi-structured machine-readable docu-
ments. In most of the cases this activity concerns processing human language
texts by means of natural language processing (NLP). The proliferation of the
Web has intensified the need for developing IE systems that help people to cope
with the enormous amount of data that is available online, thus giving raise to
Web Information Extraction (WIE) [4]. WIE tools typically exploit the HTM-
L/XML tags and layout format that are available in online text. As a result, less
linguistically intensive approaches have been developed for IE on the Web using
wrappers, which are sets of highly accurate rules that extract a particular page’s
content. Wrappers typically handle highly structured collections of web pages,
such as product catalogues and telephone directories. They fail, however, when
the text type is less structured, which is also common on the Web.

WIE-OnTour is a wrapper-based WIE tool implemented in Java and con-
ceived for the population of OnTourism with data concerning accommodations
(in particular, those in the categories “hotel” and “bed&breakfast”) available in
the web site of TripAdvisor9. The tool is also able to compute distances of the
extracted accommodations from sites of interest (e.g., touristic attractions) by
means of Google Maps10 API. Finally, the tool supports the user in the specifi-
cation of sites of interest.

WIE-OnTour has been tested on several cities in the world. However, the
main destinations of Urban Tourism in the Apulia Region are of interest to

9 http://www.tripadvisor.com/
10 http://maps.google.com/

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

183

the project. Therefore, as case studies, we have restricted our attention to capi-
tal towns of Apulia provinces (Andria, Bari, Barletta, Brindisi, Lecce, Taranto,
Trani). A snapshot of WIE-OnTour performing the information extraction pro-
cess for Bari, the capital city of Apulia Region, is shown in Figure 4. In this session
(performed on May 13, 2014), the tool has extracted 46 hotels (instances of Ho-
tel), 151 bed&breakfast (instances of Bed and Breakfast), 205 places (instances
of Place), 1996 distances (instances of Distance) for a total of 2406 individuals.
The distances have been computed with respect to the following sites of inter-
est: Basilica di San Nicola11 and Cattedrale di San Sabino12 (both instances of
Church), Museo Nicolaiano (instance of Museum), Porto di Bari (instance of
Port), Aeroporto Karol Wojtyla (instance of Airport), and FS Bari Centrale (in-
stance of Train Station). The computation for this session has been completed
in about 33 minutes.

5 Adding Semantics to Integrated Tourism Services

In Puglia@Service.Tourism, we have defined several services on top of two domain
ontologies: travel and OnTourism. For example, destination attractions service is
a service that returns the attractions located in a given destination. The seman-
tic description of this service in OWL-S (shown in Figure 5) specifies that it is
an atomic service with only one input and only one output where the param-
eter types for the input and the output are the classes Destination (belonging
to travel) and Attraction (occurring in OnTourism) respectively. Several spe-
cializations of destination attractions service have been considered, one for each
subclass of the parameter types. For example, city churches service is a service
that returns the churches (output parameter of type Church) located in a given
city (input parameter of type City). When executed for the city of, e.g., Bari, the
service will query the underlying domain ontologies (more precisely, their instance
level) to retrieve each Church that isLocatedAt some Place in Bari, e.g. Basilica
di San Nicola and Cattedrale di San Sabino. Note that these instances will be
returned also by destination attractions service because they are inferred to be
instances of Attraction. As a further case, near attraction accomodations service
is a service that returns all the accommodations (output parameter of type Ac-
commodation) near a given attraction (input parameter of type Attraction). Note
that closeness can be defined on the basis of the distance between sites (class Dis-
tance) either in a crisp way (i.e., when the distance value is under a fixed thresh-
old) or in a fuzzy way (i.e., through grades of closeness). In both ways, however,
the computation should consider the transportation means used (Distance by car
vs. Distance on foot) as well as the measure units adopted (hasLengthValue vs.
hasTimeValue).

In Puglia@Service.Tourism, we have chosen to define only OWL-S atomic ser-
vices in order to exploit the aforementioned advantages of the WSDL grounding.
As an illustration, the WSDL grounding of destination attractions service is re-
ported in Figure 6. Composite services can be automatically obtained by applying

11 Basilica of St. Nicholas: http://en.wikipedia.org/wiki/Basilica_di_San_Nicola
12 Cathedral of St. Sabinus: http://en.wikipedia.org/wiki/Bari_Cathedral

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

184

service composition methods such as the one described in [15]. The simplest form
of composite service is based on the control construct of Sequence. For example,
the services city churches service and near attraction accomodations service can
be executed in sequence by having the output of the former as input to the lat-
ter. Note that the type mismatch is only apparent since Church is a subclass of
Attraction. One such service composition satisfies, e.g., the user request of know-
ing the accommodations around Basilica di San Nicola and Cattedrale di San
Sabino in Bari. Considering that Bari is a major destination of religious tourism
in Apulia, this composite service effectively supports the demand from pilgrims
who prefer to find an accommodation in the neighborhood of places of worship so
that they can practise their own religions at any hour of the day. Also, if the sug-
gested accommodations are easy to reach (i.e., at foot distance) from the site of
interest, the service will bring benefit also to the city, by reducing the car traffic.
In a more complex scenario, the pilgrim might need an accommodation accessible
to disabled visitors. The service composition mechanism should then consider a
further specialized service, say disabledfacilities hotels service, which returns the
hotels (output parameter of type Hotel) with disabled facilities (input param-
eter of type Disabled Facilities). Indeed, the resulting composite service can be
considered compatible with the special needs of this user profile.

6 Related Work

The application of ICT to the tourism industry has been considered challeng-
ing since the very beginning due to the technical issues raised by interoperability.
Werthner and Klein [18] defined interoperability as the provision of a well-defined
and end-to-end service which is in a consistent and predictable way. This generally
covers not merely technical features but also in the case of electronic market en-
vironments, contractual features and a set of institutional rules. Interoperability
enables partners to interact electronically with each other by the most convenient
method and to deliver the right information at the right time to the right user
at the right cost. Using a domain ontology a mediator software system (such
as Harmonise [13,5]) effectively ”‘translates”’ partners’ data and allows them
to communicate electronically. Maedche and Staab [11,12] showed that semantic
web technologies can be used for tourism applications to provide useful informa-
tion on text and graphics, as well as generating a semantic description that is
interpretable by machines. Dogac et al. [6] describe how to deploy semantically
enriched travel Web services and how to exploit semantics through Web service
registries. We also address the need to use the semantics in discovering both Web
services and Web service registries through peer-to-peer technology. Hepp et al.
[8] investigate the use of ontological annotations in tourism applications. They
show, based on a quantitative analysis of Web content about Austrian accommo-
dations, that even a perfect annotation of existing Web content would not allow
the vision of the Semantic Web to become a short-term reality for tourism-related
eCommerce. Also, they discuss the implications of these findings for various types
of eCommerce applications that rely on the extraction of information from exist-
ing Web resource, and stress the importance of Semantic Web Services technology

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

185

for the Semantic Web. Within the scope of the OnTour13 project, Siorpaes and
Bachlechner [17] develop a system based on a fast and flexible Semantic Web
backbone with a focus on e-tourism. The major benefits of the OnTour approach
are its simplicity, modularity, and extensibility. In [9], Jakkilinki et al. describe
the underlying structure and operation of a Semantic Web based intelligent tour
planning tool. The proposed tour planner has inbuilt intelligence which allows it
to generate travel plans by matching the traveller requirements and vendor of-
ferings stored in conjunction with the travel ontology. Ricca et al. [16] present a
successful application of logic programming for e-tourism: the iTravel system. The
system exploits two technologies that are based on the state-of-the-art computa-
tional logic system DLV: (i) a system for ontology representation and reasoning,
called OntoDLV; and, (ii) a semantic information-extraction tool. The core of
iTravel is an ontology which models the domain of tourism offers. The ontology
is automatically populated by extracting the information contained in the tourism
leaflets produced by tour operators. A set of specifically devised logic programs
is used to reason on the information contained in the ontology for selecting the
holiday packages that best fit the customer needs. An intuitive web-based user
interface eases the task of interacting with the system for both the customers
and the operators of a travel agency.

7 Conclusions and Future Work

In this paper we have reported our ongoing work on the use of semantic technolo-
gies for supporting Integrated Tourism services in the Apulia region within the
Puglia@Service project. More precisely, we have shortly described OnTourism, a
domain ontology for Integrated Tourism. Also, we have briefly presented WIE-
OnTour, a Web Information Extraction tool which has been developed for pop-
ulating OnTourism with data automatically retrieved from the Web sites of Tri-
pAdvisor and Google Maps. Moreover, we have illustrated the semantic descrip-
tions in OWL-S of some Integrated Tourism services built on top of OnTourism.

Though developed for the purposes of the project, the technical solutions here
described are nevertheless general enough to be reusable for similar applications
in other geographical contexts. Notably, they show the added value of having on-
tologies and ontology reasoning behind an Interned-based service infrastructure.

For the future we intend to apply Machine Learning tools such as Foil-
DL [10] to enhance the automated composition of OWL-S services. Notably, we
shall consider the problem of learning from the feedback provided by specific user
profiles. The idea is to use the ontology axioms induced by Foil-DL in order to
discard those compositions that do not reflect the preferences/expectations/needs
of a certain user profile. Therefore, the axioms will act as composition rules to
be integrated with other existing approaches to automated service composition.

Acknowledgements This work was partially funded by the Italian PON R&C
2007-2013 project PON02 00563 3489339 “Puglia@Service: Internet-based Ser-
vice Engineering enabling Smart Territory structural development”.

13 The OnTour project should not be confused with our ontology OnTourism. The
names are only accidentally very similar.

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

186

A The OWL-S approach

Besides being a service mark-up language, OWL-S is an upper ontology for ser-
vices whose structuring is motivated by the need to provide three essential types
of knowledge about a service (class Service): The service profile (class Service-
Profile), the service model (class ServiceModel), and the service grounding (class
ServiceGrounding). Generally speaking, the service profile provides the informa-
tion needed for an agent to discover a service, while the service model and the
service grounding, taken together, provide enough information for an agent to
make use of a service, once found. More specifically, the three components satisfy
the following informative needs.

The service profile tells ”what the service does”, in a way that is suitable
for a service-seeking agent (or matchmaking agent acting on behalf of a service-
seeking agent) to determine whether the service meets its needs. This form of
representation includes a description of what is accomplished by the service,
limitations on service applicability and quality of service, and requirements that
the service requester must satisfy to use the service successfully.

The service model tells a client how to use the service, by detailing the se-
mantic content of requests, the conditions under which particular outcomes will
occur, and, where necessary, the step by step processes leading to those out-
comes. For services based on composite processes, this description may be used
by a service-seeking agent in at least four different ways: (1) to perform a more
in-depth analysis of whether the service meets its needs; (2) to compose ser-
vice descriptions from multiple services to perform a specific task; (3) during
the course of the service enactment, to coordinate the activities of the different
participants; and (4) to monitor the execution of the service.

A service grounding specifies the details of how an agent can access a service.
Typically a grounding will specify a communication protocol, message formats,
and other service-specific details such as port numbers used in contacting the
service. In addition, the grounding must specify, for each semantic type of input
or output specified in the service model, the serialization techniques employed for
exchanging data elements of that type with the service. The most commonly used
grounding is WSDL due to the following reasons: (1) An OWL-S atomic process
corresponds to a WSDL operation; (2) The inputs and outputs of an OWL-S
atomic process correspond to WSDL messages; (3) The types of the inputs and
outputs of an OWL-S atomic process correspond to WSDL abstract types.

References

1. Ashworth, G., Page, S.J.: Urban tourism research: Recent progress and current
paradoxes. Tourism Management 32, 1–15 (2011)

2. Bousset, J.P., Skuras, D., Titel, J., Marsat, J.B., Petrou, A., Fiallo-Pantziou, E.,
Kuov, D., Barto, M.: A decision support system for integrated tourism development:
Rethinking tourism policies and management strategies. Tourism Geographies 9(4),
387–404 (2007), http://dx.doi.org/10.1080/14616680701647576

3. Buhalis, D., Law, R.: Progress in information technology and tourism management:
20 years on and 10 years after the internet - the state of eTourism research. Tourism
Management 29(4), 609–623 (2008)

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

187

4. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Transactions on Knowledge and Data Engineering 18(10),
1411–1428 (2006)

5. Dell’Erba, M., Fodor, O., Höpken, W., Werthner, H.: Exploiting semantic web tech-
nologies for harmonizing e-markets. J. of IT & Tourism 7(3-4), 201–219 (2005)

6. Dogac, A., Kabak, Y., Laleci, G., Sinir, S.S., Yildiz, A., Kirbas, S., Gurcan, Y.:
Semantically enriched web services for the travel industry. SIGMOD Record 33(3),
21–27 (2004)

7. Fensel, D., Facca, F.M., Simperl, E., Toma, I.: Semantic Web Services. Springer
(2011)

8. Hepp, M., Siorpaes, K., Bachlechner, D.: Towards the semantic web in e-tourism:
can annotation do the trick? In: Ljungberg, J., Andersson, M. (eds.) Proceed-
ings of the Fourteenth European Conference on Information Systems, ECIS 2006,
Göteborg, Sweden, 2006. pp. 2362–2373 (2006)

9. Jakkilinki, R., Georgievski, M., Sharda, N.: Connecting destinations with an
ontology-based e-tourism planner. In: Sigala, M., Mich, L., Murphy, J. (eds.) Infor-
mation and Communication Technologies in Tourism, ENTER 2007, Proceedings
of the International Conference in Ljubljana, Slovenia, 2007. pp. 21–32. Springer
(2007)

10. Lisi, F.A., Straccia, U.: A System for Learning GCI Axioms in Fuzzy Description
Logics. In: Eiter, T., Glimm, B., Kazakov, Y., Kroetzsch, M. (eds.) Informal Pro-
ceedings of the 26th International Workshop on Description Logics, Ulm, Germany,
July 23-26, 2013. CEUR Workshop Proceedings, vol. 1014. CEUR-WS.org (2013)

11. Mädche, A., Staab, S.: Applying semantic web technologies for tourism information
systems. In: Wöber, K., Frew, A., Hitz, M. (eds.) Information and Communication
Technologies in Tourism 2002, pp. 311–319. Springer Vienna (2002), http://dx.
doi.org/10.1007/978-3-7091-6132-6_32

12. Mädche, A., Staab, S.: Services on the move - towards P2P-enabled semantic web
services. In: Frew, A., Hitz, M., O’Connor, P. (eds.) Information and Communica-
tion Technologies in Tourism 2003. Springer (2003)

13. Missikoff, M., Werthner, H., Hoepken, W., Dell’Erba, M., Fodor, O., Formica, A.,
Taglino, F.: Harmonise - towards interoperability in the tourism domain. In: Frew,
A., Hitz, M., O’Connor, P. (eds.) Information and Communication Technologies in
Tourism 2003, pp. 58–66. Springer Vienna (2003), http://dx.doi.org/10.1007/
978-3-7091-6027-5_7

14. Oliver, T., Jenkins, T.: Sustaining rural landscapes: The role of integrated
tourism. Landscape Research 28(3), 293–307 (2003), http://dx.doi.org/10.1080/
01426390306516

15. Redavid, D., Iannone, L., Payne, T.R., Semeraro, G.: OWL-S atomic services com-
position with SWRL rules. In: An, A., Matwin, S., Ras, Z.W., Slezak, D. (eds.)
Foundations of Intelligent Systems, 17th International Symposium, ISMIS 2008,
Toronto, Canada, May 20-23, 2008, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4994, pp. 605–611. Springer (2008)

16. Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone, N.: A
logic-based system for e-tourism. Fundamenta Informaticae 105(1-2), 35–55 (2010)

17. Siorpaes, K., Bachlechner, D.: Ontour: Tourism information retrieval based on
YARS. In: Demos and Posters of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th 14th June, 2006 (2006)

18. Werthner, H., Klein, S.: Information Technology and Tourism - A Challenging Re-
lationship. Springer Verlag, Wien (1999)

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

188

Fig. 1. Taxonomy of sites in the OnTourism ontology.

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

189

Fig. 2. Taxonomy of amenities in the OnTourism ontology.

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

190

Fig. 3. Taxonomy of services in the OnTourism ontology.

Fig. 4. Web Information Extraction for the city of Bari, Italy, with WIE-OnTour.

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

191

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
xml:base="http://127.0.0.1/services/1.1/destination_attractions_service.owls">

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://127.0.0.1/ontology/Service.owl"/>
<owl:imports rdf:resource="http://127.0.0.1/ontology/Process.owl"/>
<owl:imports rdf:resource="http://127.0.0.1/ontology/Profile.owl"/>
<owl:imports rdf:resource="http://127.0.0.1/ontology/Grounding.owl"/>
<owl:imports rdf:resource="http://127.0.0.1/ontology/travel.owl"/>
<owl:imports rdf:resource="http://127.0.0.1/ontology/OnTourism.owl"/>

</owl:Ontology>

<service:Service rdf:ID="DESTINATION_ATTRACTIONS_SERVICE">
<service:presents rdf:resource="#DESTINATION_ATTRACTIONS_PROFILE"/>
<service:describedBy rdf:resource="#DESTINATION_ATTRACTIONS_PROCESS"/>
<service:supports rdf:resource="#DESTINATION_ATTRACTIONS_GROUNDING"/>

</service:Service>

<profile:Profile rdf:ID="DESTINATION_ATTRACTIONS_PROFILE">
<service:isPresentedBy rdf:resource="#DESTINATION_ATTRACTIONS_SERVICE"/>
<profile:serviceName xml:lang="en">Destination Attractions Service</profile:serviceName>
<profile:textDescription xml:lang="en">

Service that returns attractions located in a given destination.
</profile:textDescription>
<profile:hasInput rdf:resource="#_DESTINATION"/>
<profile:hasOutput rdf:resource="#_ATTRACTIONS"/>
<profile:has_process rdf:resource="DESTINATION_ATTRACTIONS_PROCESS"/>

</profile:Profile>

<process:AtomicProcess rdf:ID="DESTINATION_ATTRACTIONS_PROCESS">
<service:describes rdf:resource="#DESTINATION_ATTRACTIONS_SERVICE"/>
<process:hasInput rdf:resource="#_DESTINATION"/>
<process:hasOutput rdf:resource="#_ATTRACTIONS"/>

</process:AtomicProcess>
<process:Input rdf:ID="_DESTINATION">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/ontology/travel.owl#Destination

</process:parameterType>
<rdfs:label/>

</process:Input>
<process:Output rdf:ID="_ATTRACTIONS">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/ontology/OnTourism.owl#Attraction

</process:parameterType>
<rdfs:label/>

</process:Output>

<grounding:WsdlGrounding rdf:ID="DESTINATION_ATTRACTIONS_GROUNDING">...</grounding:WsdlGrounding>
<grounding:WsdlAtomicProcessGrounding rdf:about="#DESTINATION_ATTRACTIONS_AtomicProcessGrounding">

...
</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

Fig. 5. Semantic description of destination attractions service with OWL-S.

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

192

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
xml:base="http://127.0.0.1/services/1.1/destination_attractions_service.owls">

<owl:Ontology rdf:about="">...</owl:Ontology>

<service:Service rdf:ID="DESTINATION_ATTRACTIONS_SERVICE">...</service:Service>

<profile:Profile rdf:ID="DESTINATION_ATTRACTIONS_PROFILE">...</profile:Profile>

<process:AtomicProcess rdf:ID="DESTINATION_ATTRACTIONS_PROCESS">...</process:AtomicProcess>
<process:Input rdf:ID="_DESTINATION">...</process:Input>
<process:Output rdf:ID="_ATTRACTIONS">...</process:Output>

<grounding:WsdlGrounding rdf:ID="DESTINATION_ATTRACTIONS_GROUNDING">
<service:supportedBy rdf:resource="#DESTINATION_ATTRACTIONS_SERVICE"/>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="DESTINATION_ATTRACTIONS_AtomicProcessGrounding"/>
</grounding:hasAtomicProcessGrounding>

</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:about="#DESTINATION_ATTRACTIONS_AtomicProcessGrounding">
<grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions.wsdl
</grounding:wsdlDocument>
<grounding:owlsProcess rdf:resource="#DESTINATION_ATTRACTIONS_PROCESS"/>
<grounding:wsdlOperation>

<grounding:WsdlOperationRef>
<grounding:operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#get_ATTRACTIONS
</grounding:operation>
<grounding:portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#DestinationAttractionsSoap
</grounding:portType>

</grounding:WsdlOperationRef>
</grounding:wsdlOperation>
<grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#get_ATTRACTIONSRequest
</grounding:wsdlInputMessage>
<grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#get_ATTRACTIONSResponse
</grounding:wsdlOutputMessage>
<grounding:wsdlInput>

<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#_DESTINATION"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#_DESTINATION
</grounding:wsdlMessagePart>
<grounding:xsltTransformationString>None (XSL)</grounding:xsltTransformationString>

</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>

<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="#_ATTRACTIONS"/>
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://127.0.0.1/wsdl/DestinationAttractions#_ATTRACTIONS
</grounding:wsdlMessagePart>
<grounding:xsltTransformationString>None (XSL)</grounding:xsltTransformationString>

</grounding:WsdlOutputMessageMap>
</grounding:wsdlOutput>

</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

Fig. 6. Semantic description of destination attractions service with OWL-S (cont.).

F.A. Lisi and F. Esposito. Semantic Web Services for Integrated Tourism in the Apulia region

193

A Dual Tableau-based Decision Procedure for a
Relational Logic with the Universal Relation

Domenico Cantone1, Marianna Nicolosi-Asmundo1, and
Ewa Or lowska2

1 Università di Catania, Dipartimento di Matematica e Informatica
email: cantone@dmi.unict.it, nicolosi@dmi.unict.it

2 National Institute of Telecommunications, Warsaw, Poland
email: orlowska@itl.waw.pl

Abstract. We present a first result towards the use of entailment inside
relational dual tableau-based decision procedures. To this end, we intro-
duce a fragment of RL(1), called ({1, ∪, ∩} ;), which admits a restricted
form of composition. We prove the decidability of the ({1, ∪, ∩} ;)-
fragment by defining a dual tableau-based decision procedure with a
suitable blocking mechanism and where the decomposition rules for com-
positional formulae are modified so as to deal with the constant 1 while
preserving termination.
The ({1, ∪, ∩} ;)-fragment properly includes the logics presented in pre-
vious work and, therefore, it allows one to express, among others, the
multi-modal logic K with union and intersection of accessibility relations
and the description logic ALC with union and intersection of roles.

1 Introduction

The relational representation of various non-classical propositional logics has
been systematically analyzed in the last decades [16]. A uniform relational frame-
work based on the logic of binary relations RL(1), presented in [15] and called
relational dual tableau, showed to be an effective logical means to represent in a
modular way three fundamental components of a formal system: its syntax, se-
mantics, and deduction system. Relational systems have been defined for modal
and intuitionistic logics, for relevant and many-valued logics, for reasoning in
logics of information and data analysis, for reasoning about time and space, etc.

The formalization of non-classical logics in RL(1) is based on the fact that
once the Kripke-style semantics of the logic under consideration is known, for-
mulae can be treated as relations. In particular, since in Kripke-style semantics
formulae are interpreted as collections of objects, in their relational representa-
tion they are seen as right ideal relations. In the case of binary relations this
means that (R ; 1) = R is satisfied, where ‘;’ is the composition operation on
binary relations and ‘1’ is the universal relation.

One of the most useful features of the relational methodology is that, given a
logic with a relational formalization, we can construct its relational dual tableau
in a systematic and modular way.

194

Though the relational logic RL(1) is undecidable, it contains several decidable
fragments. In many cases, however, dual tableau proof systems are not decision
procedures for decidable fragments of RL(1). This is mainly due to the way
decomposition and specific rules are defined and also to the strategy of proof
construction.

Over the years, great efforts have been spent to construct dual tableau proof
systems for various logics known to be decidable; little care has been taken,
however, to design dual tableau-based decision procedures for them. On the other
hand, it is well known that when a proof system is designed and implemented, it
is important to have decision procedures for decidable logics. In [10], for example,
an optimized relational dual tableau for RL(1), based on Binary Decision Graphs,
has been implemented. However, such an implementation turns out not to be
effective for decidable fragments.

As far as we know, relational dual tableau-based decision procedures can be
found in [16] for fragments of RL(1) corresponding to the class of first-order
formulae in prenex normal form with universal quantifiers only; in [12, 13] for
the relational logic corresponding to the modal logic K; in [4, 5] for fragments of
RL characterized by some restrictions in terms of type (R ; S); in [11] for a class
of relational logics admitting a single relational constant with the properties of
reflexivity, transitivity, and heredity; and in [3] for a class of relational fragments
extending the ones introduced in [11] by allowing a countable infinity of relational
constants with the properties of reflexivity, transitivity, and heredity.

Throughout the paper terms of type (R ; S) will be referred to as composi-
tional terms. Similarly, formulae with compositional terms will be referred to as
compositional formulae.

In some cases, like in [11] and in [3], fragments with relational constants
satisfying some fixed properties are considered. Therefore, dual tableau-based
decision procedures are endowed with specific rules to treat relational constants
and their properties. The design of specific rules often needs much care in order
to guarantee termination of the related proof procedure. This task is delicate
especially when the proof system provides several specific rules for different re-
lational constants, and when the relational constants are related to one another.

An alternative way to treat properties of relational constants and variables,
and of relations between them, is to use relational entailment. Relational entail-
ment can be formalized in the logic RL(1) as follows. Given relations R, R1, . . . , Rn,
with n ≥ 1, one has that R1=1, . . . , Rn=1 imply R=1 in a model if and only if
(1;(–(R1 ∩ . . .∩Rn)) ;1)∪R=1 holds. It means that entailment is expressible as
a term of the language of logic RL(1) and, as a consequence, any validity checker
for RL(1) can also be applied to entailment verification.

Introduction of entailment inside relational proof systems allows one to elim-
inate specific rules and, consequently, to keep the set of decomposition rules
small. This approach can be convenient in implementations of automated theo-
rem provers provided that decomposition rules and their application strategy are
designed in a suitable way. In its relational formalization, however, entailment
involves the universal constant 1 on the left hand side and on the right hand side

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

195

of compositional terms. Thus, the design of a relational dual tableau-based deci-
sion procedure where entailment is admitted is a challenging task that requires
special care.

In this paper we present a first result towards the use of entailment inside
relational dual tableau-based decision procedures. To this purpose, we introduce
a fragment of RL(1), called ({1, ∪, ∩} ;), admitting a restricted form of compo-
sition where the left subterm R of any term of type (R ;S) is allowed to be either
the constant 1 or any term constructed from the relational variables by applying
only the operators of relational intersection and union. Similarly, terms of type
(R ; 1) are admitted only if R is a Boolean term involving relational variables
and the operators of intersection and union.

We prove that the ({1, ∪, ∩} ;)-fragment is decidable by defining a dual
tableau-based decision procedure where a suitable blocking mechanism has been
introduced and rules for compositional and complemented compositional formu-
lae have been appropriately modified to deal with the constant 1 while preserving
termination.

Such fragment properly includes the logics presented in [4] and, therefore, it
can express the multi-modal logic K with union and intersection of accessibility
relations and the description logic ALC with union and intersection of roles.
Furthemore it can also express, via entailment, properties of the form ‘r ⊆ –(s1 ∪
s2)’ and ‘(s1 ∪ s2) ⊆ – r’, where r, s1, and s2 are relational variables.

The rest of the paper is organized as follows. In Sect. 2 we briefly review the
syntax and semantics of the relational logic RL(1) together with its dual tableau
and in Sect. 3 we introduce some useful notions which will be used throughout
the paper. Then in Sect. 4 we present the ({1, ∪, ∩} ;)-fragment and its dual
tableau-based decision procedure. Finally, in Sect. 5, we draw our conclusions
and give some hints for future work.

2 The Relational Logic RL(1) and its Dual Tableau

In this section we review the logic RL(1) and its dual tableau in full extent (see
also [5] and [16]).

Let RV be a countably infinite set of relational variables p, q, r, s, . . . and let
1 be a relational constant. Then, the set RT of relational terms of RL(1) is the
smallest set of terms (with respect to inclusion) built from relational variables
and the relational constant 1 with the relational operators ‘∩’, ‘∪’, ‘;’ (binary)
and ‘–’, ‘ `’ (unary).

Let OV be a countably infinite set of object (individual) variables x, y, z, w,
Then, RL(1)-formulae have the form xRy, where x, y ∈ OV and R ∈ RT. RL(1)-
formulae of type x1y and xry, with r ∈ RV, are called atomic RL(1)-formulae.
A literal is either an atomic formula or its complementation (namely a formula
of type x(– 1)y or x(– r)y). For a relational operator ‘♯’ other than ‘–’, by a (♯)-
term we mean a relational term whose lead operator is ‘♯’, and by a (– ♯)-term
we denote a complemented (♯)-term. For example, the term (r1 ∪ s) ∩ (– r2 ; s)
is a (∩)-term and has ‘∩’ as its lead operator, whereas –((r1 ∪ s) ∩ (– r2 ; s)) is

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

196

a (– ∩)-term. A (♯)-formula (resp., (– ♯)-formula) is a formula whose relational
term is a (♯)-term (resp., (– ♯)-term). A Boolean term is a relational term built
from relational variables with the Boolean operators ‘–’, ‘∪’, and ‘∩’. A positive
Boolean term is a Boolean term in which the operator – does not occur.

RL(1)-formulae are interpreted in RL(1)-models. An RL(1)-model is a struc-
ture M = (U, m), where U is a nonempty universe and m : RV → ℘(U × U) is
a given map which is homomorphically extended to the whole collection RT of
relational terms as follows:

– m(1) = U × U ; m(– R) = (U × U) \ m(R);
– m(R ∪ S) = m(R) ∪ m(S); m(R ∩ S) = m(R) ∩ m(S);
– m(R ; S) = m(R) ; m(S)

= {(a, b)∈U×U : (a, c)∈m(R) and (c, b)∈m(S), for some c ∈ U};
– m(R`) = (m(R))` = {(b, a) ∈ U × U : (a, b)∈m(R)}.

Let M = (U, m) be an RL(1)-model. A valuation in M is any function v :
OV → U . An RL(1)-formula xRy is satisfied by an RL(1)-model M = (U, m)
and by a valuation v in M (in which case we write M, v |= xRy) provided that
(v(x), v(y)) ∈ m(R). An RL(1)-formula xRy is (a) true in a model M = (U, m),
if M, v |= xRy, for every valuation v in M; (b) valid, if it is true in all RL(1)-
models; (c) falsified by a model M = (U, m) and by a valuation v in M, if
M, v 6|= xRy; (d) falsifiable, if there exist a model M and a valuation v in
M such that M, v 6|= xRy. An RL(1)-set is a finite set {ϕ1, . . . , ϕn} of RL(1)-
formulae such that, for every RL(1)-model M and for every valuation v in M,
we have M, v |= ϕi, for some i ∈ {1, . . . , n}. Clearly, the first-order disjunction
of the formulae in an RL(1)-set is valid in first-order logic.

Proof development in dual tableaux proceeds by systematically decomposing
the (disjunction of the) formula(e) to be proved till a validity condition is de-
tected, expressed in terms of axiomatic sets (see below). The method originated
in [17] (see also [18]). Such an analytic approach is similar to Beth’s tableau
method [1], with the difference that the two systems work in a dual manner.
Duality between tableaux and dual tableaux has been analyzed in depth in [14].

RL(1)-dual tableaux consist of decomposition rules, which allow one to an-
alyze the structure of the formula to be proved valid, and of axiomatic sets,
which specify closure conditions. The decomposition rules for RL(1) are listed in
Table 1. In these rules, ‘,’ and ‘|’ are interpreted respectively as disjunction and
conjunction. A rule is RL(1)-correct provided that its premise is an RL(1)-set if
and only if each of its consequents is an RL(1)-set. The rules presented in Table
1 have been proved RL(1)-correct in [16].

An RL(1)-axiomatic set is any set of RL(1)-formulae containing a subset of
one of the following two forms: (Ax 1){xRy, x(– R)y}, (Ax 2) {x1y}.

Clearly, an RL(1)-axiomatic set is also an RL(1)-set.
An RL(1)-proof tree for an RL(1)-formula xPy is an ordered tree whose nodes

are labelled by disjunctive sets of formulae such that the following properties are
satisfied:

– the root is labelled with {xPy};

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

197

Table 1. RL(1) decomposition rules.

(∪)
x(R ∪ S)y
xRy, xSy

(– ∪)
x(–(R ∪ S))y

x(– R)y | x(– S)y

(∩)
x(R ∩ S)y
xRy|xSy

(– ∩)
x(–(R ∩ S))y

x(– R)y, x(– S)y

(– –)
x(– – R)y

xRy

(`)
x(R`)y

yRx
(– `)

x(–(R`))y
y(– R)x

(;)
x(R ; S)y

xRz, x(R ; S)y | zSy, x(R ; S)y
(– ;)

x(–(R ; S))y
x(– R)z, z(–S)y

(z is any object variable) (z is a new object variable)

– each node, except the root, is obtained from its predecessor node by applying
a decomposition rule in Table 1 to one of the formulae labelling it;

– a node does not have successors (i.e., it is a leaf node) whenever its set of
formulae is an axiomatic set or none of the rules of Table 1 can be applied
to its set of formulae.

A branch θ of a proof tree is any of its maximal paths; we denote with
⋃

θ the set
of all the formulae contained in the nodes of θ, and with Wθ the collection of the
object variables occurring in the formulae contained in the nodes of θ. A node
of an RL(1)-proof tree is closed if its associated set of formulae is an axiomatic
set. A branch is closed if one of its nodes is closed. A proof tree is closed if all of
its branches are closed. An RL(1)-formula is RL(1)-provable if there is a closed
RL(1)-proof tree for it, referred to as an RL(1)-proof.

A node of an RL(1)-proof tree is falsified by a model M = (U, m) and a
valuation v in M if every formula xRy in its set of formulae is falsified by M
and v. A node is falsifiable if there exist a model M and a valuation v in M
which falsify it.

Correctness and completeness of the RL(1)-dual tableau are proved in [16].
However, the logic RL(1) is undecidable. This follows from the undecidability of
the equational theory of representable relation algebras discussed in [19].

3 Useful Notions and Properties

We introduce some useful notions and properties which are needed for the pre-
sentation of the results of the paper.
Let P be any relational term in RL(1). The following identities hold:

(1 ∪ P) ≡ (P ∪ 1) ≡ 1 ((– 1) ∪ P) ≡ (P ∪ (– 1)) ≡ P
(1 ∩ P) ≡ (P ∩ 1) ≡ P ((– 1) ∩ P) ≡ (P ∩ (– 1)) ≡ (– 1)
(–(– 1)) ≡ 1

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

198

Let H be a relational term in RL(1) and let H ′ be obtained from H by system-
atically simplifying H by means of the above identities. If the simplification is
carried out in an inside-out way, the computational complexity of the transfor-
mation of H into H ′ is linear in the length of H . Moreover, the following lemma
holds (proof of Lemma 1 can be found in [6]).

Lemma 1. Let H be a relational term and let H ′ be constructed as outlined
above. Then every Boolean subterm P of H ′ either is equal to 1, or is equal to
–1, or it does not contain 1.

It is easy to check that m(H) = m(H ′) holds for every RL(1)-model M = (U, m)
and for every H ∈ RL(1). Therefore we can restrict ourselves to relational terms
simplified as described above.

Parsing trees. It is possible to associate a parsing tree SP to each relational
term P of RL(1), as with formulae of standard first-order logic (see [9] and [8]
for details on the construction of parsing trees in first-order logic). Let SP be
the parsing tree for P , and let ν be a node of SP . We say that a relational term
Q occurs within P at position ν if the subtree of SP rooted at ν is identical to
SQ. In this case we refer to ν as an occurrence of Q in P and to the path from
the root of SP to ν as its occurrence path.

An occurrence of a relational term Q within a relational term P is positive if
its occurrence path deprived of its last node contains an even number of nodes
labelled with {–}. Otherwise, the occurrence is said to be negative.

Normal forms and term components. Next we introduce the notion of
complement normal form for Boolean relational terms, the notions of BoolN -
formula, of Bool-construction from N , where N is a set of formulae, and of set
of components of a relational term.

The complement normal form of a term R is a term nf–(R) obtained by
successive applications of the De Morgan laws and of the law of double negation
to R.

A term is said to be in complement normal form whenever each occurrence
of the complement operator in it acts only on relational variables or constants.

Clearly, for every Boolean relational term R, the formulae xR y and x nf–(R) y
are logically equivalent, that is M, v |= xRy if and only if M, v |= x nf–(R)y, for
every model M = (U, m) and every valuation v in M.

Let N be a set of formulae, and let R, S be two Boolean relational terms.
We define the notion of BoolN -formulae as follows:

– every literal xRy in N is a BoolN -formula;
– every formula of the form x(R∩S)y is a BoolN -formula, provided that either

xRy is a BoolN -formula and S is in complement normal form, or xSy is a
BoolN -formula and R is in complement normal form;

– every formula of the form x(R ∪ S)y is a BoolN -formula if both xRy and
xSy are BoolN -formulae.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

199

Clearly, if xSy is a BoolN -formula, then xSy is syntactically equal to x nf–(S) y
and we write xSy = x nf–(S) y. We say that a formula xRy has a Bool-
construction from N if x nf–(R) y is a BoolN -formula.

For example, given the set of formulae N = {x(– r)z, xsz, x(– p)y, z(p ∪ s)y},
we have that the formula x(((– r)∪s)∩q)z is a BoolN -formula because x((– r)∪s)z
is a BoolN -formula and xqz is in complement normal form. On the other hand
the formula x(s ∩ (–(q ∪ p)))z is not a BoolN -formula because although xsz is a
BoolN -formula, x(–(q ∩ p))z is not in complement normal form. Both formulae,
however, have a Bool-construction from N because x(((– r)∪ s)∩q)z is a BoolN -
formula and x nf–(s ∩ (–(q ∪ p)))z = x(s ∩ ((– q) ∩ (– p)))z is a BoolN -formula.
In this latter case, specifically, xsz is a BoolN -formula and x((– q) ∩ (– p))z is in
complement normal form, although it is not a BoolN -formula.

Given a term R in RT, an object variable x, and a set N of formulae, we define
V (R, x, N) as the set of object variables z such that xRz has a Bool-construction
from N .

Let P be a term in RT. We define recursively the set cp(P) of the components
of the term P as follows:

– if P is the relational constant 1, or a relational variable, or their comple-
ments, then cp(P) = {P};

– if P = – – B, then cp(P) = {P} ∪ cp(B);
– if P = B`, then cp(P) = {P} ∪ cp(B);
– if P = B ♯C (resp., P = –(B ♯C)), then cp(P) = {P}∪cp(B)∪cp(C) (resp.,

cp(P) = {P} ∪ cp(– B) ∪ cp(– C)), for every binary relational operator ♯.

Clearly cp(P) is finite, for any relational term P .

4 The Fragment ({1,∪,∩} ;) and its Decision Procedure

4.1 The Fragment ({1,∪,∩} ;)

Formulae of the fragment ({1, ∪, ∩} ;) of RL(1) are characterized by the fact
that the left subterm R of any term of type (R ; S) in them is only allowed to
be either the constant 1 or a term constructed from the relational variables of
RV by applying only the ‘∪’ and ‘∩’ operators, whereas the right subterm S of
(R ;S) can involve all the relational operators of RL(1) but the converse operator
‘ `’.

Formally, the set RT({1,∪,∩};) of the terms allowed in ({1, ∪, ∩} ;)-formulae
is the smallest set of terms containing the constant 1 and the variables in RV,
and such that if P, Q, B, H ∈ RT({1,∪,∩};) and S ∈ {H,1}, with

– B a Boolean term containing neither 1 nor the complement operator, and
– H containing the constant 1 only inside terms of type (B ; 1),

then (– P), (P ∪ Q), (P ∩ Q), (B ; S), (1 ; S) ∈ RT({1,∪,∩};).
Examples of formulae of the ({1, ∪, ∩} ;)-fragment are: x(–((r1 ∪ s) ; (p ; 1)))y,
x(1 ; ((r1 ∪ s) ; –(((q ∪ p) ∩ r1) ; 1)))y, and x(1 ; (((r1 ∪ s) ∩ r2) ; 1))y. The latter
formula can be rewritten as x(1 ; (–(–(r1 ∪ s) ∪ – r2) ; 1))y, where (–(r1 ∪ s) ∪ – r2)
is a relational term formalizing the property ‘(r1 ∪ s) ⊆ – r2’.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

200

Table 2. Decomposition rules proper of the ({1, ∪, ∩} ;)-fragment.

(;)a
x(B ; S)y

zSy, x(B ; S)y,
(;)b

x(1 ; S)y
zSy, x(1 ; S)y

(z is an object variable in V (– B, x,N)) (z is any object variable)

(– ;)a
x –(B ; 1)y

x(– B)z
(– ;)b

x –(1 ; S)y
z(– S)y

(z is a new object variable) (z is a new object variable)

4.2 A Dual Tableau Calculus for ({1,∪,∩} ;)

The decomposition rules for Boolean formulae of our dual tableau-based calculus
are just the ones in Table 1. Concerning the decomposition rule for (;)-formulae,
it is convenient to distinguish between (;)-formulae of type x(B ;S)y and of type
x(1 ; S)y. The rule for (;)-formulae of type x(B ; S)y is the (;)a -rule of Table 2.
There, z is an object variable belonging to V (– B, x, N), where N stands for the
current node. Notice that if S = 1, the node resulting from the decomposition
step is axiomatic. In case of (;)-formulae of type x(1 ; S)y, we apply the rule
(;)b in Table 2. The variable z used in rule (;)b is any variable on the current
node, provided that the current branch does not already contain the formula
zSy. Otherwise, x(1 ; S)y cannot be decomposed with z. If S = 1, the same
remark made for rule (;)a , for the node resulting from the decomposition step,
holds here as well.

Concerning (– ;)-formulae, we consider first the case of formulae of type
x –(B ; S)y. If S 6= 1, such formulae are decomposed by means of the (– ;)-
rule in Table 1. Otherwise, when S = 1, we use the rule (– ;)a of Table 2. In
the case of formulae of type x –(1 ; S)y, with S 6= 1, we use instead the rule
(– ;)b of Table 2, with z an object variable new to the current node. The rule
can be applied provided that the current branch does not contain any formula
of the form z′(– S)y, for any ‘new’ variable z′ (otherwise, the formula x –(1 ;S)y
cannot be decomposed). The formula x(–(1 ; 1))y is not decomposed.

Some remarks on the rules (;)a , (;)b , (– ;)a , and (– ;)b in Table 2 are in
order. The idea behind the definition of the side condition of the rule (;)a takes
inspiration from the side condition of expansion rules for universally quantified
formulae present in various well known tableau-based proof systems (see for
instance [2]). The introduction of the set V (– B, x, N) is motivated by the fact
that our relational fragment admits compositional terms (B ; S), where B may
be a compound term. Observe that for every RL(1)-model M = (U, m), m(1) =
U × U so that, M, v |= x1z and M, v 6|= x(– 1)z hold, for every valuation v
and object variables x and z. Thus, we shall assume without loss of generality
that each node of any dual tableau for formulae of the ({1, ∪, ∩} ;)-fragment
contains implicitly all literals of type x(– 1)z. This accounts for the fact that
the decomposition rules (– ;)a and (– ;)b do not introduce z(–1)y and x′(– 1)z,
respectively, on the new node, and rule (;)b restricts z to be any variable on the

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

201

current node, rather than any possible variable. At any rate, we shall prove that
such a restriction preserves the completeness of the procedure.

It is convenient to introduce the notion of deduction tree for RL(1)-formulae
to give a step-by-step description of the proof tree construction process.

As proof trees, deduction trees are ordered trees whose nodes are labelled
with disjunctive sets. However, deduction trees may have some leaf nodes that
do not contain any axiomatic set and such that decomposition rules can still
be applied to them. As will be clarified below, deduction trees can be seen as
“approximations” of proof trees with the property that they can be completed
to proof trees.

Definition 1. Let xPy be a ({1, ∪, ∩} ;)-formula. A deduction tree T for xPy
is recursively defined as follows:

(a) the tree with only one node labelled with {xPy} is a deduction tree for xPy
(initial deduction tree);

(b) let T be a deduction tree for xPy and let θ be a branch of T whose leaf
node N does not contain an axiomatic set.3 The tree obtained from T by
applying to N either one of the decomposition rules in Table 1 (for Boolean
formulae and for (– ;)-formulae of type x′ –(B ; S)y, with S 6= 1), or one of
the decomposition rules in Table 2 (for (;)-formulae and for (– ;)-formulae
of type x′ –(B ; 1)y and of type x –(1 ;S)y) is a deduction tree for xPy. More
precisely, rules applications are described as follows:

• if a formula x′Qy occurs in N and a rule with a single conclusion set of
formulae Γ (resp., a branching rule with the conclusion sets Γ1 and Γ2)
is applicable to x′Qy, then we append the node N ′ = (N \ {x′Qy}) ∪ Γ
as the successor of N in θ (resp., the node N ′

1 = (N \ {x′Qy}) ∪ Γ1 as
the left successor of N and the node N ′

2 = (N \ {x′Qy})∪Γ2 as the right
successor of N in θ).

Given a branch θ of a deduction tree, each object variable in Wθ \ {x, y} is
generated by an application of a (– ;)-decomposition rule. We say that a variable
w is an ancestor of degree n of a variable z ∈ Wθ \ {x, y} if there is a sequence
z1, . . . , zn of variables in Wθ \ {x, y}, with zn = z and n ≥ 1, such that z1 is
generated by a (– ;)-formula w(–(B0 ; S0))y, z2 is generated by a (– ;)-formula
z1(–(B1;S1))y,..., zn is generated by a (– ;)-formula zn−1(–(Bn−1;Sn−1))y, where
w(–(B0 ; S0))y, z1(–(B1 ; S1))y,..., zn−1(–(Bn−1 ; Sn−1))y are formulae of θ. In
such a case, we say that z1 is a descendant of degree 1 of w and that zn = z is
a descendant of degree n of w.

It is useful to define a total order <θ among variables in Wθ such that:

– x <θ w, for every w ∈ Wθ \ {x},
– x1 <θ x2, for every x1, x2 ∈ Wθ \ {x, y}, with x1 introduced in θ before x2,
– y <θ z, for every z descendant of y,
– w <θ y, for every w that is not a descendant of y.

3 From now on, we identify nodes with the (disjunctive) sets labelling them.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

202

Remark 1. Notice that the relationship ancestor/descendant is based on the lit-
erals of type x′(– r)z that are generated by applying either the (– ;)-rule of Table
1 or the (– ;)a -rule of Table 2, and, possibly, the Boolean decomposition rules.

Remark 2. By the construction of RT({1,∪,∩};), a deduction tree for a formula
xPy may contain formulae of type x(1;S1)y and of type x(–(1;S2))y only if their
left variable is x. This is motivated by the fact that each of these formulae can
be obtained only by the Boolean decomposition of xPy. Any variable z resulting
from the decomposition of a (– ;)-formula of type x(–(1;S))y is not a descendant
of x. However, according to the definition of the order <θ, x <θ z holds.

The following notions will be used in the next section to turn our tableau calculus
for ({1, ∪, ∩} ;) into a terminating proof tree construction procedure.

Let θ be a branch of a deduction tree, and let z(–(B ; S))y and z′(–(B ; S))y
be two (– ;)-formulae occurring in θ. We say that z′(–(B ;S))y blocks z(–(B ;S))y
(and that z(–(B ; S))y is blocked by z′(–(B ; S))y), if the following conditions
are satisfied:

– z(–(B ; S))y and z′(–(B ; S))y are identical with the exception of the left
object variable,

– z′(–(B ; S))y has been already decomposed in θ using the variable w,
– for every (;)-formula z(B1 ;Q)y occurring in θ such that z(– B1)w has a Bool-

construction from the set of literals resulting from the Boolean decomposition
of z(– B)w, the (;)-formula z′(B1 ; Q)y occurs in θ as well.

4.3 A Proof Tree Construction Procedure for ({1,∪,∩} ;)

Starting with an initial deduction tree T0 for a given formula xPy, the following
procedure constructs a proof tree for xPy.

1. For every non-axiomatic branch θ of the current deduction tree,
2. while θ is non-axiomatic and is further expandable, let z be the smallest

variable w.r.t. <θ such that formulae on θ with left variable z have not
been decomposed in θ. Apply to the formulae on θ having left variable z
the decomposition rules in the following order: Boolean rules, (– ;)-rules,
rule (;)a , and then apply rule (;)b to decompose the (;)-formulae of type
x(1 ; S)y in θ with the variable z in a systematic way under the following
restrictions:

a. all the rules can be applied at most once with the same premise;
b. every formula of type (– ;), z(–(B ;S))y is not decomposed provided that

it is blocked by a (– ;)-formula z′(–(B ; S))y occurring in θ.
If z′(–(B ; S))y was decomposed in θ with the variable w, then for ev-
ery literal z′(– r)w ∈ ⋃

θ (obtained from the application of the Boolean
rules to z′(– B)w) we store the literal z(– r)w in Lit (– ;), a set (empty at
the beginning of the execution of the procedure) collecting literals not
explicitly occurring in θ that are needed to construct Mθ (see step 4).

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

203

3. If the branch θ is axiomatic and all the other branches on the current deduc-
tion tree are axiomatic, then the current deduction tree is a proof tree for
xPy and we terminate. Otherwise, if the branch θ is axiomatic and there are
still non-axiomatic branches on the current deduction tree, return to step 1.

4. Otherwise, if θ is non-axiomatic, namely it is a non-axiomatic not further
expandable branch, we construct from θ the model Mθ = (Uθ, mθ) defined
as follows. We put Uθ = Wθ. Next, let Litθ be the set of all literals occurring
in θ, and let Lit (– ;) be defined as in step 2. We define the interpretation
Mθ by putting (x′, y′) /∈ mθ(R) if and only if x′Ry′ ∈ (Litθ ∪ Lit (– ;)). Let
vθ : OV → Uθ be a valuation such that vθ(x) =Def x, for every x ∈ Uθ. We
terminate returning θ, Mθ, and vθ.

The next lemma states two useful properties of the formulae occurring on
the deduction trees constructed by the proof procedure above. Its proof can be
carried out by induction on proof construction and by case distinction on the
structure of x′Rx′′.

Lemma 2. Let T be a deduction tree for xPy constructed by an execution of
the procedure described above. If x′Rx′′ is a formula of a branch θ of T , then (i)
R ∈ cp(P), and (ii) if R contains the composition operator, then x′′ = y.

Termination of the procedure. Let T be a proof tree for a formula xPy of
the ({1, ∪, ∩} ;)-fragment constructed according to our proof-tree construction
procedure. To prove that our procedure always terminates, we show that any
branch of T can be constructed in a finite number of steps. We mainly focus on
non-axiomatic not further expandable branches, since in the case of axiomatic
branches the proof is straightforward. To begin with, we characterize a non-
axiomatic not further expandable branch θ of T as a non-axiomatic branch such
that all the rules applicable to the formulas occurring on its nodes have been
applied following the steps of the given decision procedure.

Next we state some preliminary lemmas and remarks useful to show that
θ contains a finite number of formulae. Lemma 3 is a technical lemma used to
prove Lemmas 4 and 5 which, in their turn, are used in Lemma 6 to show that
(;)-formulae, the only formulae that can be decomposed more than once, are
decomposed a finite number of times. Lemma 4 is proved by showing that the
set V (– B, w, N) is finite, where N is the leaf node of θ. The proof of Lemma 5
uses the fact that cp(P) is finite (Lemma 2), the fact that for every x′ ∈ Wθ,

⋃
θ

contains a finite number of formulae of type x′Rx′′ (Lemma 3), and the blocking
mechanism introduced in Sect. 4.2. The interested reader may find the proofs of
Lemmas 3, 4, and 5 in [6].

Lemma 3. Let θ be a non-axiomatic not further expandable branch of a proof
tree T for a formula xPy. Then, for every x′ ∈ Wθ,

⋃
θ contains a finite number

of formulae of type x′Rx′′.

Remark 3. Variables generated by (– ;)-formulae with left variable y are finitely
many because (– ;)-formulae of type y(–(B ;S))y are finitely many too. Moreover

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

204

these variables are distinct from all the variables generated by the other (– ;)-
formulae because each application of the (– ;)-rule introduces a new variable.

Remark 4. If a variable w is generated by a (– ;)-formula x′(–(B ; S))y with
x′ 6= y, then no literal of the form y(– r)w is in θ. In fact, by Lemma 3 we
know that literals of type y(– r)z, with z 6= y, are introduced in θ only after the
decomposition of a (– ;)-formula with left variable y. But then z cannot be the
same variable introduced by a (– ;)-formula x′(–(B ; S))y with x′ 6= y.

Remark 5. Every (;)-formula w(B ;S)y is decomposed only with the variables in-
troduced by the decomposition of (– ;)-formulae with left variable w and possibly
with the variable y.

Lemma 4. Every formula w(B ;S)y in θ is decomposed a finite number of times.

Lemma 5. Wθ is finite.

Next, we define recursively the weight of a term by putting:

– weight(r) = weight(– r) = weight(1) = weight(–1) = 0;
– weight(A ♯ P) = weight(A) + weight(P) + 1, for ♯ ∈ {∪, ∩, ;};
– weight(–(A ♯ P)) = weight(– A) + weight(– P) + 1, for ♯ ∈ {∪, ∩, ;};
– weight(– – P) = weight(P) + 1.

Then the weight of a formula xPy is defined as the weight of its term P and the
weight of a node N is defined as the sum of the weights of the formulae in N . In
particular, the weight of every (;)-formula and the weight of every (– ;)-formula
that cannot be decomposed in N , according to the decomposition rules and, in
particular, to the conditions on rules application stated in step 2, is set to 0. It
can be checked that the weight of a node N is 0 if and only if it contains only
literals and formulae of types (;) and (– ;) that cannot be further decomposed,
according to the definition of the decomposition rules and of the requirements
on rules application in step 2 of our proof-tree construction procedure. Thus, a
branch with leaf node of weight 0 is not further expandable.

Lemma 6. After a finite number of decomposition steps, a branch θ of a de-
duction tree for xPy is prolonged to a branch which can be either axiomatic or
non-axiomatic and whose leaf node has weight equal to 0.

Proof. Let θ = θ1, θ2, . . . be such that θi+1 is obtained from θi by an application
of a decomposition rule to the leaf node Ni of θi, for i = 1, If θi happens
to be an axiomatic branch, then the thesis immediately follows. Otherwise, we
reason as shown next. For every (;)-formula ϕ of Ni, of both types x′(B ; S)y
and x(1 ; S)y, let dec(ϕ, Ni) be the number of times ϕ has been decomposed on
the branch to which Ni belongs. If ϕ = x(1 ; S)y, then dec(ϕ, Ni) ≤ |Wθ|. By
Lemma 5, |Wθ| is finite and once dec(x(1 ; S)y, Ni) reaches it, weight(x(1 ; S)y)
is set to 0. If ϕ = x′(B ; S)y, then dec(ϕ, Ni) is bounded as stated in Lemma 4.
It turns out that, at each decomposition step, we have either

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

205

1. weight(Ni) > weight(Ni+1), or
2. Σϕ∈Nidec(ϕ, Ni) < Σϕ∈Ni+1dec(ϕ, Ni+1).

The first condition holds when the decomposition rule applied to θi to produce
θi+1 is different from the (;)-rule. In fact the decomposed formula is not intro-
duced in the new node and the components have smaller weights. Moreover,
each (– ;)-formula that is blocked gets weight 0. The second condition, on the
other hand, holds when the (;)-rule is used. In this case, since the decomposed
(;)-formula ϕ is introduced in the new node, the weight of the new node does
not decrease (it could increase), but dec(ϕ, Ni) increases and since it is bounded,
after a finite number of steps ϕ is not decomposed anymore getting weight 0.

Since each node contains a finite number of formulae, after a finite number of
steps we obtain a branch θn whose leaf node has weight 0. This means that θn is
not further expandable. Moreover, if θn is not closed, then it is a non-axiomatic
not further expandable branch. In fact, all the Boolean formulae in θn have
been decomposed, and, in view of the conditions of step 2 all the (– ;)-formulae
either have been decomposed into formulae of smaller weight or have not been
decomposed and their weight has been set to 0. Finally, all the (;)-formulae in
θn have been decomposed, each finitely many times according to condition (a)
of step 2. ⊓⊔

Considering that our proof-tree construction procedure constructs any axiomatic
branch and any non-axiomatic not further expandable branch of a proof tree for
xPy in a finite number of decomposition steps and that each decomposition rule
is finitely branching, we can state the following theorem.

Theorem 1 (Termination). The dual tableau procedure for the ({1, ∪, ∩} ;)-
fragment always terminates.

Soundness and completeness. Correctness of our proof-tree construction
procedure is proved by showing that when the input formula xPy is valid, the
procedure yields a closed (axiomatic) dual tableau for xPy, whereas if xPy is
not valid, the procedure yields a non-axiomatic not further expandable branch
θ of a dual tableau for xPy and a model Mθ that falsifies every formula on θ
(thus, in particular, xPy itself).

Lemma 7, stated below, is used in the proof of Theorem 2 to establish the
first half of the correctness proof, and also later, in the proof of Theorem 3.

Lemma 7. Let T be a deduction tree for a formula xPy of the ({1, ∪, ∩} ;)-
fragment, constructed as described in our proof-tree construction procedure. If the
procedure terminates at step 4 yielding a non-axiomatic not further expandable
branch θ, a model Mθ = (Uθ, mθ), and a valuation vθ, then Mθ and vθ falsify
θ.

Theorem 2. If xPy is a valid formula of the ({1, ∪, ∩} ;)-fragment of RL(1),
then our proof-tree construction procedure yields a closed proof tree for xPy.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

206

Lemma 8, presented next, states that each decomposition step performed
by our proof-tree construction procedure preserves falsifiability. This result is
needed later in the proof of Theorem 3, to establish the second half of the
correctness proof. Proofs of Lemmas 7 and 8 and of Theorems 2 and 3 can be
found in [6].

Lemma 8. Let θ be a branch of a deduction tree for a formula xPy of the
({1, ∪, ∩} ;)-fragment that is being constructed by our proof-tree construction
procedure, and let θ′ be obtained from θ by a decomposition step performed by
the decision procedure. If θ is a falsifiable branch, then θ′ is falsifiable too.

Theorem 3. Let xPy be a non valid relational formula of the ({1, ∪, ∩} ;)-
fragment. Then our proof-tree construction procedure yields a non-axiomatic not
further expandable branch θ of a dual tableau for xPy and a model Mθ that
falsifies every formula on θ and, therefore, xPy itself.

Summing up, Theorems 2 and 3 yield the following result.

Theorem 4. The ({1, ∪, ∩} ;)-fragment has a decidable validity problem.

5 Conclusions and Future Work

Relational entailment allows one to deal with properties of relational constants
and of relational variables in dual tableau proofs without adding any specific rule
to the basic set of decomposition rules. Using entailment in dual tableau-based
decision procedures, however, can be tricky because the constant 1 occurs both
on the left-hand side and on the right-hand side of composition.

We have presented a dual tableau-based decision procedure for a fragment of
the logic RL(1) which can express simple forms of inclusion between relations.
Specifically, we admit inside entailment only positive occurrences of Boolean
terms and thus we can express inclusion properties of the form ‘(r1 ∪ s) ⊆ – r2’.

We plan to extend the expressibility of our relational fragment in order to
make entailment widely applicable in dual tableau-based decision procedures. As
a first step, we intend to include negative occurrences of Boolean terms inside
entailment. In this way we will be able to formulate terms of type 1 ; (–(–(r1 ∪
s) ∪ r2) ; 1) expressing the (positive) inclusion property ‘(r1 ∪ s) ⊆ r2’.

Our further aim is to add, inside entailment, some restricted forms of com-
position so as to be able to express terms of type 1;(–(–(s ; s)∪ s) ; 1) and of type
1;(–(–(r;r;r)∪r);1), stating, respectively, that the relational variables s and r are
transitive (i.e., ‘(s ; s) ⊆ s’) and three-transitive (i.e., ‘(r ; r ; r) ⊆ r’), respectively.
Expressing these properties is important if one wants to use our dual tableau
decision procedure with various non-classical logics such as, for instance, modal
logics to reason with incomplete information [7].

We also intend to introduce the converse relation ‘`’ and the identity relation
‘1′’ inside entailment for the purpose of dealing with properties such as symmetry
and reflexivity.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

207

Acknowledgments. Thanks are due to three anonymous referees for their help-
ful suggestions. This work was supported by Indam-GNCS, Progetto di ricerca
“Automi Reattivi e loro Simulazione nell’Ambito del Non-Standard Secure Text
Processing”.

References

1. W. E. Beth. Semantic entailment and formal derivability. Mededelingen van de
Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde,
N.R. Vol 18, no 13, 1955, pp 30942. Reprinted in Jaakko Hintikka (ed.) The Phi-
losophy of Mathematics, Oxford University Press, 1969.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. Patel-Schneider. The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

3. D. Cantone, J. Golińska-Pilarek, M. Nicolosi-Asmundo. A Relational Dual Tableau
Decision Procedure for Multimodal and Description Logics. To appear in: Proceed-
ings of the 9th International Conference on Hybrid Artificial Intelligence Systems,
Salamanca, Spain, 11th - 13th June 2014.

4. D. Cantone, M. Nicolosi Asmundo, E. Or lowska. Dual tableau-based decision
procedures for some relational logics. In: Proceedings of the 25th Italian Conference
on Computational Logic, Rende, Italy, July 7-9, 2010, pp. 1–16. CEUR Workshop
Proceedings vol. 598.

5. D. Cantone, M. Nicolosi Asmundo, E. Or lowska. Dual tableau-based decision
procedures for relational logics with restricted composition operator. Journal of
Applied Non-classical Logics 21, No 2, 2011, 177-200.

6. D. Cantone, M. Nicolosi-Asmundo, E. Or lowska. A Dual Tableau-based Decision
Procedure for a Relational Logic with the Universal Relation (extended version).
Available at http://www.dmi.unict.it/∼nicolosi/CNOCILC14ext.pdf, 2014.

7. S. Demri, E. Orlowska, D. Vakarelov. Indiscernibility and complementarity rela-
tions in information systems. In: J. Gerbrandy, M. Marx, M. de Rijke and Y.
Venema (eds) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of
his 50th Birthday, Amsterdam University Press, 1999.

8. N. Dershowitz, J.-P. Jouannaud. Rewrite Systems. Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics (B). Elsevier. pp. 243-320,
1990.

9. M.C. Fitting. First-Order Logic and Automated Theorem Proving. Second edition.
Graduate Texts in Computer Science. Springer-Verlag. New York, 1996.

10. A. Formisano and M. Nicolosi Asmundo. An efficient relational deductive system
for propositional non-classical logics. Journal of Applied Non-Classical Logics, vol.
16(3-4), pp. 367-408 (2006).

11. J. Golińska-Pilarek, T. Huuskonen, E. Munoz-Velasco, Relational dual tableau de-
cision procedures and their applications to modal and intuitionistic logics. Annals
of Pure and Applied Logics vol. 165 (2), pp. 409-427 (2014).

12. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. Implementing a relational
theorem prover for modal logic K. International Journal of Computer Mathematics,
88(9):1869–1884, 2011.

13. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. A new deduction system for
deciding validity in modal logic K. Logic Journal of IGPL 19(2):425–434, 2011.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

208

14. J. Golińska-Pilarek, E. Or lowska. Tableaux and dual tableaux: Transformation of
proofs. Studia Logica, 85(3):283-302, 2007.

15. E. Or lowska. Relational interpretation of modal logics. In: H. Andreka, D.
Monk, and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos
Bolyai, vol. 54, pp. 443–471, North Holland, 1988.

16. E. Or lowska, J. Golińska-Pilarek. Dual Tableaux: Foundations, Methodology, Case
Studies. Trends in Logic vol. 36, Springer, 2011.

17. H. Rasiowa, R. Sikorski. On Gentzen theorem. Fundamenta mathematicae 48, 57-
69, 1960.

18. H. Rasiowa, R. Sikorski. Mathematics of Metamathematics, Polish Scientific Pub-
lishers PWN, Warsaw 1963.

19. A. Tarski, S. Givant. A Formalization of Set Theory without Variables. American
Mathematical Society Colloquium Publications, Providence, Rhode Island, 1987.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

209

Query Answering over Contextualized RDF Knowledge
with Forall-Existential Bridge Rules: Attaining

Decidability using Acyclicity

Mathew Joseph1,2, Gabriel Kuper2, and Luciano Serafini1

1 DKM, FBK-IRST, Trento, Italy
2 DISI, University Of Trento, Trento, Italy

{mathew,serafini}@fbk.eu, kuper@disi.unitn.it

Abstract. The recent outburst of context-dependent knowledge on the Seman-
tic Web (SW) has led to the realization of the importance of the quads in the
SW community. Quads, which extend a standard RDF triple, by adding a new
parameter of the ‘context’ of an RDF triple, thus informs a reasoner to distin-
guish between the knowledge in various contexts. Although this distinction sep-
arates the triples in an RDF graph into various contexts, and allows the reasoning
to be decoupled across various contexts, bridge rules need to be provided for
inter-operating the knowledge across these contexts. We call a set of quads to-
gether with the bridge rules, a quad-system. In this paper, we discuss the problem
of query answering over quad-systems with expressive forall-existential bridge
rules. It turns out the query answering over quad-systems is undecidable, in gen-
eral. We derive a decidable class of quad-systems, namely context-acyclic quad-
systems, for which query answering can be done using forward chaining. Tight
bounds for data and combined complexity of query entailment has been estab-
lished for the derived class.

Keywords: Contextualized RDF/OWL knowledge, Contextualized Query Answering,
Quads, Forall-Existential Rules, Semantic Web, Knowledge Representation.

1 Introduction

One of the major recent changes in the SW community is the transformation from a
triple to a quad as its primary knowledge carrier. As a consequence, more and more
triple stores are becoming quad stores. Some of the popular quad-stores are 4store1,
Openlink Virtuoso2, and some of the current popular triple stores like Sesame3 inter-
nally keep track of the context by storing arrays of four names (c, s, p, o) (further de-
noted as c : (s, p, o)), where c is an identifier that stands for the context of the triple
(s, p, o). Some of the recent initiatives in this direction have also extended existing
formats like N-Triples to N-Quads. The latest Billion triples challenge datasets (BTC
2012) have all been released in the N-Quads format.

1 http://4store.org
2 http://virtuoso.openlinksw.com/rdf-quad-store/
3 http://www.openrdf.org/

210

One of the main benefits of quads over triples are that they allow users to specify
various attributes of meta-knowledge that further qualify knowledge [8], and also al-
low users to query for this meta knowledge [30]. Examples of these attributes, which
are also called context dimensions [12], are provenance, creator, intended user, creation
time, validity time, geo-location, and topic. Having defined various contexts in which
triples are dispersed, one can declare in another meta-context mc, statements such as
mc : (c1, creator, John), mc : (c1, expiryTime, “jun-2013”) that talk about the knowl-
edge in context c1, in this case its creator and expiry time. Another benefit of such a
contextualized approach is that it opens possibilities of interesting ways for querying
a contextualized knowledge base. For instance, if context c1 contains knowledge about
Football World Cup 2014 and context c2 about Football Euro Cup 2012. Then the query
“who beat Italy in both Euro Cup 2012 and World Cup 2014” can be formalized as the
conjunctive query:

c1: (x, beat, Italy) ∧ c2: (x, beat, Italy),where x is a variable.

As the knowledge can be separated context wise and simultaneously be fed to separate
reasoning engines, this approach increases both efficiency and scalability. Besides the
above flexibility, bridge rules [4] can be provided for inter-interoperating the knowledge
in different contexts. Such rules are primarily of the form:

c : φ(x)→ c′ : φ′(x)

where φ, φ′ are both atomic concept (role) symbols, c, c′ are contexts. The semantics of
such a rule is that if, for any a, φ(a) holds in context c, then φ′(a) should hold in con-
text c′, where a is a unary/binary vector dependending on whether φ, φ′ are concept/role
symbols. Although such bridge rules serve the purpose of specifying knowledge inter-
operability from a source context c to a target context c′, in many practical situations
there is the need of interoperating multiple source contexts with multiple target targets,
for which the bridge rules of the form (1) is inadequate. Besides, one would also want
the ability of creating new values in target contexts for the bridge rules.

In this work, we consider forall-existential bridge rules that allows conjunctions
and existential quantifiers in them, and hence is more expressive than those, in DDL [4]
and McCarthy et al. [28]. A set of quads together with such bridge rules is called a
quad-system. The main contributions of this work can be summarized as:

1. We provide a basic semantics for contextual reasoning over quad-systems, and
study contextualized conjunctive query answering over them. For query answer-
ing, we use the notion of a distributed chase, which is an extension of a standard
chase [22, 1] that is widely used in databases and KR for the same.

2. We show that conjunctive query answering over quad-systems, in general, is unde-
cidable. We derive a class of quad-systems called context acyclic quad-systems, for
which query answering is decidable and can be done by forward chaining. We give
both data and combined complexity of conjunctive query entailment for the same.

The paper is structured as follows: In section 2, we formalize the idea of contextual-
ized quad-systems, giving various definitions and notations for setting the background.

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

211

In section 3, we formalize the query answering on quad-systems, define notions such
as distributed chase that is further used for query answering, and give the undecidabil-
ity results of query entailment for unrestricted quad-systems. In section 4, we present
context acyclic quad-systems and its properties. We give an account of relevant related
works in section 5, and conclude in section 6. A version of this paper with detailed
proofs is available at [23].

2 Contextualized Quad-Systems

In this section, we formalize the notion of a quad-system and its semantics. For any
vector or sequence x, we denote by ‖x‖ the number of symbols in x, and by {x} the
set of symbols in x. For any sets A and B, A → B denotes the set of all functions
from set A to set B. Given the set of URIs U, the set of blank nodes B, and the set
of literals L, the set C = U] B] L are called the set of (RDF) constants. Any
(s, p, o) ∈ C × C × C is called a generalized RDF triple (from now on, just triple).
A graph is defined as a set of triples. A Quad is a tuple of the form c : (s, p, o), where
(s, p, o) is a triple and c is a URI4, called the context identifier that denotes the context
of the RDF triple. A quad-graph is defined as a set of quads. For any quad-graph Q and
any context identifier c, we denote by graphQ(c) the set {(s, p, o)|c : (s, p, o) ∈ Q}. We
denote by QC the quad-graph whose set of context identifiers is C. Let V be the set of
variables, any element of the set CV = V∪C is a term. Any (s, p, o) ∈ CV×CV×CV

is called a triple pattern, and an expression of the form c : (s, p, o), where (s, p, o) is a
triple pattern, c a context identifier, is called a quad pattern. A triple pattern t, whose
variables are elements of the vector x or elements of the vector y is written as t(x,y).
For any function f : A → B, the restriction of f to a set A′, is the mapping f |A′ from
A′∩A toB s.t. f |A′(a) = f(a), for each a ∈ A∩A′. For any triple pattern t = (s, p, o)
and a function µ from V to a set A, t[µ] denotes (µ′(s), µ′(p), µ′(o)), where µ′ is an
extension of µ to C s.t. µ′|C is the identity function. For any set of triple patterns G,
G[µ] denotes

⋃
t∈G t[µ]. For any vector of constants a = 〈a1, . . . , a‖a‖〉, and vector of

variables x of the same length, x/a is the function µ s.t. µ(xi) = ai, for 1 ≤ i ≤ ‖a‖.
We use the notation t(a,y) to denote t(x,y)[x/a].
Bridge rules (BRs) Bridge rules (BR) enables knowledge propagation across contexts.
Formally, a BR is an expression of the form:

∀x∀z [c1: t1(x, z) ∧ ... ∧ cn: tn(x, z)→ ∃y c′1: t′1(x,y) ∧ ... ∧ c′m: t′m(x,y)] (1)

where c1, ..., cn, c′1, ..., c
′
m are context identifiers, x,y, z are vectors of variables s.t.

{x}, {y}, and {z} are pairwise disjoint. t1(x, z), ..., tn(x, z) are triple patterns which
do not contain blank-nodes, and whose set of variables are from x or z. t′1(x, y),
...,t′m(x,y) are triple patterns, whose set of variables are from x or y, and also does not
contain blank-nodes. For any BR, r, of the form (1), body(r) is the set of quad patterns
{c1: t1(x, z),...,cn: tn(x, z)}, and head(r) is the set of quad patterns {c′1: t′1(x,y), ...
c′m: t′m(x, y)}.

4 Although, in general a context identifier can be a constant, for the ease of notation, we restrict
them to be a URI

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

212

Definition 1 (Quad-System). A quad-system QSC is defined as a pair 〈QC , R〉, where
QC is a quad-graph, whose set of context identifiers is C, and R is a set of BRs.
For any quad-graph QC (BR r), its symbols size ‖QC‖ (‖r‖) is the number of symbols
required to printQC (r). Hence, ‖QC‖ ≈ 4∗|QC |, where |QC | denotes the cardinality of
the set QC . Note that |QC | equals the number of quads in QC . For a BR r, ‖r‖ ≈ 4 ∗ k,
where k is the number of quad-patterns in r. For a set of BRs R, its size ‖R‖ is given
as Σr∈R‖r‖. For any quad-system QSC = 〈QC , R〉, its size ‖QSC‖ = ‖QC‖+ ‖R‖.

Semantics In order to provide a semantics for enabling reasoning over a quad-system,
we need to use a local semantics for each context to interpret the knowledge pertaining
to it. Since the primary goal of this paper is a decision procedure for query answering
over quad-systems based on forward chaining, we consider the following desiderata for
the choice of the local semantics:

– there exists a set of inference rules and an operation lclosure() that computes the
deductive closure of a graph w.r.t to the local semantics using the inference rules.

– given a finite graph as input, the lclosure() operation, terminates with a finite graph
as output in polynomial time whose size is polynomial w.r.t. to the input set.

Some of the alternatives for the local semantics satisfying the above mentioned criterion
are Simple, RDF, RDFS [19], OWL-Horst [20] etc. Assuming that a local semantics has
been fixed, for any context c, we denote by Ic = 〈∆c, ·c〉 an interpretation structure for
the local semantics, where ∆c is the interpretation domain, ·c the corresponding in-
terpretation function. Also |=local denotes the local satisfaction relation between a local
interpretation structure and a graph. Given a quad graphQC , a distributed interpretation
structure is an indexed set IC = {Ic}c∈C , where Ic is a local interpretation structure,
for each c ∈ C. We define the satisfaction relation |= between a distributed interpretation
structure IC and a quad-system QSC as:

Definition 2 (Model of a Quad-System). A distributed interpretation structure IC =
{Ic}c∈C satisfies a quad-system QSC = 〈QC , R〉, in symbols IC |= QSC , iff all the
following conditions are satisfied:
1. Ic |=local graphQC (c), for each c ∈ C;
2. aci = acj , for any a ∈ C, ci, cj ∈ C;
3. for each BR r ∈ R of the form (1) and for each σ ∈ V → ∆C , where ∆C =⋃

c∈C ∆
c, if

Ic1 |=local t1(x, z)[σ], ..., Icn |=local tn(x, z)[σ],

then there exists function σ′ ⊇ σ, s.t.

Ic
′
1 |=local t

′
1(x,y)[σ′], ..., Ic

′
m |=local t

′
m(x,y)[σ′].

Condition 1 in the above definition ensures that for any model IC of a quad-graph, each
Ic ∈ IC is a local model of the set of triples in context c. Condition 2 ensures that any
constant c is rigid, i.e. represents the same resource across a quad-graph, irrespective
of the context in which it occurs. Condition 3 ensure that any model of a quad-system
satisfies each BR in it. Any IC s.t. IC |= QSC is said to be a model of QSC . A quad-
system QSC is said to be consistent if there exists a model IC , s.t. IC |= QSC , and
otherwise said to be inconsistent. For any quad-system QSC = 〈QC , R〉, it can be

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

213

the case that graphQC (c) is locally consistent, for each c ∈ C, whereas QSC is not
consistent. This is because the set of BRs R adds more knowledge to the quad-system,
and restricts the set of models that satisfy the quad-system.

Definition 3 (Quad-system entailment). (a) A quad-system QSC entails a quad c : (s,
p, o), in symbols QSC |= c : (s, p, o), iff for any distributed interpretation structure IC ,
if IC |= QSC then IC |= 〈{c : (s, p, o)}, ∅〉. (b) A quad-system QSC entails a quad-
graph Q′C′ , in symbols QSC |= Q′C′ iff QSC |= c : (s, p, o) for any c : (s, p, o) ∈ Q′C′ .
(c) A quad-system QSC entails a BR r iff for any IC , if IC |= QSC then IC |= 〈∅, {r}〉.
(d) For a set of BRs R, QSC |= R iff QSC |= r, for every r ∈ R. (e) Finally, a quad-
system QSC entails another quad-system QS′C′ = 〈Q′C′ , R′〉, in symbols QSC |= QS′C′
iff QSC |= Q′C′ and QSC |= R′.
We call the decision problems (DPs) corresponding to the entailment problems (EPs) in
(a), (b), (c), (d), and (e) as quad EP, quad-graph EP, BR EP, BRs EP, and quad-system
EP, respectively.

3 Query Answering on Quad-Systems

In the realm of quad-systems, the classical conjunctive queries or select-project-join
queries are slightly extended to what we call Contextualized Conjunctive Queries (CCQs).
A CCQ CQ(x) is an expression of the form:

∃y q1(x,y) ∧ ... ∧ qp(x,y) (2)

where qi, for i = 1, ..., p are quad patterns over vectors of free variables x and quanti-
fied variables y. A CCQ is called a boolean CCQ if it does not have any free variables.
For any CCQ CQ(x) and a vector a of constants s.t. ‖x‖ = ‖a‖, CQ(a) is boolean. A
vector a is an answer for a CCQ CQ(x) w.r.t. structure IC , in symbols IC |= CQ(a),
iff there exists assignment µ : {y} → B s.t. IC |=

⋃
i=1,...,p qi(a,y)[µ]. A vector a

is a certain answer for a CCQ CQ(x) over a quad-system QSC , iff IC |= CQ(a), for
every model IC ofQSC . Given a quad-systemQSC , a CCQ CQ(x), and a vector a, DP
of determining whether QSC |= CQ(a) is called the CCQ EP. It can be noted that the
other DPs over quad-systems that we have seen are reducible to CCQ EP. Hence, in this
paper, we primarily focus on the CCQ EP.

dChase of a Quad-System In order to do query answering over a quad-system, we em-
ploy what has been called in the literature, a chase [22, 1], specifically, we adopt notion
of the skolem chase given in Marnette [27] and Cuenca Grau et al [9]. In order to fit
the framework of quad-systems, we extend the standard notion of chase to a distributed
chase, abbreviated dChase. In the following, we show how the dChase of a quad-system
can be constructed.

For any BR r of the form (1), the skolemization sk(r) is the result of replacing each
yi ∈ {y}with a globally unique Skolem function fri , s.t. fri : C‖x‖→Bsk, where Bsk

is a fresh set of blank nodes called skolem blank nodes. Intuitively, for every distinct
vector a of constants, with ‖a‖ = ‖x‖, fri (a) is a fresh blank node, whose node id is a
hash of a. Let fr = 〈fr1 , ..., fr‖y‖〉 be a vector of distinct Skolem functions; for any BR

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

214

r the form (1), with slight abuse (Datalog notation) we write its skolemization sk(r) as
follows:

c1 : t1(x, z), ..., cn : tn(x, z)→ c′1 : t′1(x,fr), ..., c′m : t′m(x,fr) (3)

Moreover, a skolemized BR r of the form (3) can be replaced by the following se-
mantically equivalent set of formulas, whose symbol size is worst case quadratic w.r.t
‖r‖:

{c1 : t1(x, z), ..., cn : tn(x, z)→ c′1 : t′1(x,fr), (4)
...,

c1 : t1(x, z), ..., cn : tn(x, z)→ c′m : t′m(x,fr)}

Note that each BR in the above set has exactly one quad pattern with optional function
symbols in its head part. Also note that a BR with out function symbols can be replaced
with a set of BRs with single quad-pattern heads. Hence, w.l.o.g, we assume that any
BR in a skolemized set sk(R) of BRs is of the form (4). For any quad-graph QC and a
skolemized BR r of the form (4), application of r on QC , denoted by r(QC), is given
as:

r(QC) =
⋃

µ∈V→C

{
c′1 : t′1(x,fr)[µ] | c1 : t1(x, z)[µ] ∈ QC , ..., cn : tn(x, z)[µ] ∈ QC

}

For any set of skolemized BRs R, application of R on QC is given by: R(QC) =⋃
r∈R r(QC). For any quad-graph QC , we define:

lclosure(QC) =
⋃

c∈C
{c : (s, p, o) |(s, p, o) ∈ lclosure(graphQC (c))}

For any quad-system QSC = 〈QC , R〉, generating BRs RF is the set of BRs in sk(R)
with function symbols, and the non-generating BRs is the set RI = sk(R) \RF .
Let dChase0(QSC) = lclosure(QC); for i ∈ N, dChasei+1(QSC) =

lclosure(dChasei(QSC) ∪RI(dChasei(QSC))), if RI(dChasei(QSC)) 6⊆
dChasei(QSC);

lclosure(dChasei(QSC) ∪RF (dChasei(QSC))), otherwise;

The dChase of QSC , denoted dChase(QSC), is given as:

dChase(QSC) =
⋃

i∈N
dChasei(QSC)

Intuitively, dChasei(QSC) can be thought of as the state of dChase(QSC) at the end of
iteration i. It can be noted that, if there exists i s.t. dChasei(QSC) = dChasei+1(QSC),
then dChase(QSC) = dChasei(QSC). An iteration i, s.t. dChasei(QSC) is com-
puted by the application of the set of (resp. non-)generating BRs RF (resp. RI), on
dChasei−1(QSC) is called a (resp. non-)generating iteration. The dChase dChase(QSC)
of a consistent quad-system QSC is a universal model [10] of the quad-system, i.e. it
is a model of QSC , and for any model IC of QSC , there is a homomorphism from

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

215

dChase(QSC) to IC . Hence, for any boolean CCQ CQ(), QSC |= CQ() iff there
exists a map µ : V(CQ) → C s.t. {CQ()}[µ] ⊆ dChase(QSC). We call the se-
quence dChase0(QSC), dChase1(QSC), ..., the dChase sequence of QSC . The fol-
lowing lemma shows that in a dChase sequence of a quad-system, the result of a single
generating iteration and a subsequent number of non-generating iterations causes only
an exponential blow up in size.

Lemma 1. For a quad-system QSC = 〈QC , R〉, the following holds: (i) if i ∈ N is a
generating iteration, then ‖dChasei(QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖), (ii) sup-
pose i ∈ N is a generating iteration, and for any j ≥ 1, i+1, ..., i+j are non-generating
iterations, then ‖dChasei+j(QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖), (iii) for any iter-
ation k, dChasek(QSC) can be computed in time O(‖dChasek−1(QSC)‖‖R‖).

Proof (sketch). (i) R can be applied on dChasei−1(QSC) by grounding R to the set
of constants in dChasei−1(QSC), the number of such groundings is of the order O(
‖dChasei−1(QSC)‖‖R‖), ‖R(dChasei−1(QSC))‖=O(‖R‖∗‖dChasei−1(QSC)‖‖R‖).
Since lclosure only increases the size polynomially, ‖dChasei(QSC)‖=O(‖dChasei−1(
QSC)‖‖R‖).

(ii) From (i) we know that ‖R(dChasei−1(QSC))‖=O(‖dChasei−1(QSC)‖‖R‖).
Since, no new constant is introduced in any subsequent non-generating iterations, and
since any quad contains only four constants, the set of constants in any subsequent
dChase iteration is O(4 ∗ ‖dChasei−1(QSC)‖‖R‖). Since only these many constants
can appear in positions c, s, p, o of any quad generated in the subsequent iterations, the
size of dChasei+j(QSC) can only increase polynomially, which means that ‖dChasei+j(
QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖).

(iii) Since any dChase iteration k involves the following two operations: (a) lclosure(),
and (b) computing R(dChasek−1(QSC)). (a) can be done in PTIME w.r.t to its in-
put. (b) can be done in the following manner: ground R to the set of constants in
dChasei−1(QSC); then for each grounding g, if body(g) ⊆ dChasei−1(QSC), then
add head(g) to R(dChasek−1(QSC)). Since, the number of such groundings is of
the order O(‖dChasek−1(QSC)‖‖R‖), and checking if each grounding is contained in
dChasek−1(QSC), can be done in time polynomial in ‖dChasek−1(QSC)‖, the time
taken for (b) isO(‖dChasek−1(QSC)‖‖R‖). Hence, any iteration k can be done in time
O(‖dChasek−1(QSC)‖‖R‖). ut

Although, we now know how to compute the dChase of a quad-system, which can be
used for deciding CCQ EP, it turns out that for the class of quad-systems whose BRs
are of the form (1), which we call unrestricted quad-systems, the dChase can be infi-
nite. This raises the question if there are other approaches that can be used, for instance
similar problem arises in DLs with value creation, due to the presence of existential
quantifiers, whereas the approaches like the one in Glim et al. [16] provides an algo-
rithm for CQ entailment based on query rewriting.

Theorem 1. The CCQ EP over unrestricted quad-systems is undecidable.

Proof (sketch). We show that the well known undecidable problem of non-emptiness
of intersection of context-free grammars (CFGs) is reducible to the CCQ entailment

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

216

problem. Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, where
V1, V2 are the set of variables, T s.t. T ∩ (V1 ∪ V2) = ∅ is the set of terminals. S1 ∈ V1
is the start symbol of G1, and P1 are the set of PRs of the form v → w, where v ∈ V ,
w is a sequence of the form w1...wn, where wi ∈ V1 ∪ T . Similarly s2, P2 is defined.
Deciding whether the language generated by the grammars L(G1) and L(G2) have
non-empty intersection is known to be undecidable [18].

Given two CFGs G1 = 〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, we encode gram-
mars G1, G2 into a quad-system QSc = 〈Qc, R〉, with only a single context identifier
c. Each PR r = v → w ∈ P1 ∪ P2, with w = w1w2w3..wn, is encoded as a BR of
the form: c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1) → c : (x1, v, xn+1),
where x1, .., xn+1 are variables. For each terminal symbol ti ∈ T , R contains a BR of
the form: c : (x,rdf:type, C) → ∃y c : (x, ti, y), c : (y,rdf:type, C) and Qc is
the singleton: {c : (a,rdf:type, C)}. It can be observed that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)⇔ L(G1) ∩ L(G2) 6= ∅

We refer the reader to [23] for the complete proof. ut

4 Context Acyclic Quad-Systems: A decidable class

In the previous section, we saw that query answering on unrestricted quad-systems is
undecidable, in general. We in the following define a class of quad-systems for which
query entailment is decidable. The class has the property that algorithms based on for-
ward chaining, for deciding query entailment, can straightforwardly be implemented
(by minor extensions) on existing quad stores. It should be noted that the technique we
propose is reminiscent of the Weak acyclicity [13, 11] technique used in the realm of
Datalog+-.

Consider a BR r of the form: c1 : t1(x, z), c2 : t2(x, z)→ ∃y c3 : t3(x,y), c4 : t4(x,
y). Since such a rule triggers propagation of knowledge in a quad-system, specifically
triples from the source contexts c1, c2 to the target contexts c3, c4 in a quad-system.

c1: t1(x, z), c2: t2(x, z)→ ∃y c3: t3(x,y), c4: t4(x,y)

c1

c2

c3

c4

Fig. 1

As shown in Fig. 1, we can
view a BR as a propagation
rule across distinct com-
partments of knowledge,
divided as contexts. For
any BR of the form (1),
each context in the set
{c′1, ..., c′m} is said to de-
pend on the set of con-
texts {c1, ..., cn}. In a quad-
system QSC = 〈QC , R〉,
for any r ∈ R, of
the form (1), any context
whose identifier is in the set
{c | c : (s, p, o) ∈ head(r), s or p or o is an existentially quantified variable}, is called a
triple generating context (TGC). One can analyze the set of BRs in a quad-system QSC

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

217

using a context dependency graph, which is a directed graph, whose nodes are context
identifiers in C, s.t. the nodes corresponding to TGCs are marked with a ∗, and whose
edges are constructed as follows: for each BR of the form (1), there exists an edge from
each ci to c′j , for i = 1, ..., n, j = 1, ...,m. A quad-system is said to be context acyclic,
iff its context dependency graph does not contain cycles involving TGCs.

Example 1. Consider a quad-system, whose set of BRs R are:

c1 : (x1, x2,U1)→ ∃y1 c2 : (x1, x2, y1), c3 : (x2,rdf:type,rdf:Property) (5)
c2 : (x1, x2, z1)→ c1 : (x1, x2,U1) (6)
c3 : (x1, x2, x3)→ c1 : (x1, x2, x3)

where U1 be a URI, whose corresponding dependency graph is shown in Fig. 2. Note
that the node corresponding to the triple generating context c2 is marked with a ‘∗’
symbol. Since the cycle (c1, c2, c1) in the quad-system contains c2 which is a TGC, the
quad-system is not context acyclic.
In a context acyclic quad-system QSC , since there exists no cyclic path through any
TGC node in the context dependency graph, there exists a set of TGCs C′ ⊆ C s.t.
for any c ∈ C′, there exists no incoming path5 from a TGC to c. We call such TGCs,
level-1 TGCs. In other words, a TGC c is a level-1 TGC, if for any c′ ∈ C, there exists
an incoming path from c′ to c, implies c′ is not a TGC. For l ≥ 1, a level-l+1 TGC
c is a TGC that has an incoming path from a level-l TGC, and for any incoming path
from a level-l′ TGC to c, is s.t. l′ ≤ l. Extending the notion of level also to the non-
TGCs, we say that any non-TGC that does not have any incoming paths from a TGC

c1

c2

∗
c3

Fig. 2: Context
Dependency graph

is at level-0; we say that any non-TGC c ∈ C is
at level-l, if there exists an incoming path from a
level-l TGC to c, and for any incoming path from
a level-l′ TGC to c, is s.t. l′ ≤ l. Hence, the set of
contexts in a context acyclic quad-system can be
partitioned using the above notion of levels.

Definition 4. For a quad-system QSC , a con-
text c ∈ C is said to be saturated in
an iteration i, iff for any quad of the form
c : (s, p, o), c : (s, p, o) ∈ dChase(QSC) implies
c : (s, p, o) ∈ dChasei(QSC).

Intuitively, context c is saturated in the dChase
iteration i, if no new quad of the form c : (s, p, o) will be generated in any
dChasek(QSC), for any k > i. The following lemma gives the relation between the sat-
uration of a context and the required number of dChase iterations, for a context acyclic
quad-system.

Lemma 2. For any context acyclic quad-system, the following holds: (i) any level-0
context is saturated before the first generating iteration, (ii) any level-1 TGC is satu-
rated after the first generating iteration, (iii) any level-k context is saturated before the
k + 1th generating iteration.

5 assume that paths have at least one edge

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

218

Proof. Let QSC = 〈QC , R〉 be the quad-system, whose first generating iteration is i.
(i) for any level-0 context c, any BR r ∈ R, and any quad-pattern of the form

c : (s, p, o), if c : (s, p, o) ∈ head(r), then for any c′ s.t. c′ : (s′, p′, o′) occurs in body(r)
implies that c′ is a level-0 context and r is a non-generating BR. Also, since c′ is a level-
0 context, the same applies to c′. Hence, it turns out that only non-generating BRs can
bring triples to any level-0 context. Since at the end of iteration i−1, dChasei−1(QSC)
is closed w.r.t. the set of non-generating BRs (otherwise, by construction of dChase, i
would not be a generating iteration). This implies that c is saturated before the first
generating iteration i.

(ii) for any level-1 TGC c, any BR r ∈ R, and any quad-pattern c : (s, p, o), if
c : (s, p, o) ∈ head(r), then for any c′ s.t. c′ : (s′, p′, o′) occurs in body(r) implies that
c′ is a level-0 context (Otherwise level of c would be greater than 1). This means that
only contexts from which triples get propagated to c are level-0 contexts. From (i) we
know that all the level-0 contexts are saturated before ith iteration, and since during
the ith iteration RF is applied followed by the lclosure() operation (RI need not be
applied, since dChasei−1(QSC) is closed w.r.t. RI), c is saturated after iteration i, the
1st generating iteration.

(iii) can be obtained from generalization of (i) and (ii), and from the fact that any
level-k context can only have incoming paths from contexts whose levels are less than
or equal to k. ut

c1

∗

c4

c2

c3

∗

..

..

..

(a)

c1

∗

c4

c2

c3

∗

..

..

..

(b)

Fig. 3

Example 2. Consider the dependency graph in Fig. 3a, where .. indicates part of the
graph that is not under the scope of our discussion. The TGCs nodes c1 and c3 are
marked with a ∗. It can be seen that both c2 and c4 are level-0 contexts, since they do
not have any incoming paths from TGCs. Since the only incoming paths to context c1
are from c2 and c4, which are not TGCs, c1 is a level-1 TGC. Context c3 is a level-2
TGC, since it has an incoming path from the level-1 TGC c1, and has no incoming path

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

219

from a TGC whose level is greater than 1. Since the level-0 contexts only have incoming
paths from level-0 contexts and only appear on the head part of non-generating BRs,
before first generating iteration, all the level-0 TGCs becomes saturated, as the set of
non-generating BRs RI has been exhaustively applied. This situation is reflected in
Fig. 3b, where the saturated nodes are shaded with gray. Note that after the first and
second generating iterations c1 and c3 also become saturated, respectively.

The following lemma shows that for context acyclic quad-systems, there exists a finite
bound on the size and computation time of its dChase.

Lemma 3. For any context acyclic quad-system QSC = 〈QC , R〉, the following holds:
(i) the number of dChase iterations is finite, (ii) size of the dChase ‖dChase(QSC)‖
= O(22

‖QSC‖
), (iii) computing dChase(QSC) is in 2EXPTIME, (iv) if R and the set

of schema triples in QC is fixed, then ‖dChase(QSC)‖ is a polynomial in ‖QSC‖, and
computing dChase(QSC) is in PTIME.

Proof. (i) Since QSC is context-acyclic, all the contexts can be partitioned according
to their levels. Also, the number of levels k is s.t. k ≤ |C|. Hence, applying lemma 1,
before the k + 1th generating iteration all the contexts becomes saturated, and k + 1th
generating iteration do not produce any new quads, terminating the dChase computation
process.

(ii) In the dChase computation process, since by lemma 1, any generating itera-
tion and a sequence of non-generating iterations can only increase the dChase size
exponentially in ‖R‖, the size of the dChase before k + 1 th generating iteration is
O(‖dChase0(QSC)‖‖R‖

k

), which can be written asO(‖QSC‖‖R‖
k

) (†). As seen in (i),
there can only be |C| generating iterations, and a sequence of non-generating iterations.
Hence, applying k = |C| to (†), and taking into account the fact that |C| ≤ ‖QSC‖, the
size of the dChase ‖dChase(QSC)‖ = O(22

‖QSC‖
).

(iii) Since in any dChase iteration except the final one, atleast one new quad should
be produced and the final dChase can have at most O(22

‖QSC‖
) quads (by ii), the total

number of iterations are bounded by O(22
‖QSC‖

) (†). Since from lemma 1, we know
that for any iteration i, computing dChasei(QSC) is of the orderO(‖dChasei−1(QSC
)‖‖R‖). Since, ‖dChasei−1(QSC)‖ can at most be O(22

‖QSC‖
), computing dChasei(

QSC) is of the orderO(2‖R‖∗2
‖QSC‖

)). Also since ‖R‖ ≤ ‖QSC‖, any iteration requires
O(22

‖QSC‖
) time (‡). From (†) and (‡), we can conclude that the time required for

computing dChase is in 2EXPTIME.
(iv) In (ii) we saw that the size of the dChase before k + 1th generating iteration

is given by O(‖QSC‖‖R‖
k

) (�). Since by hypothesis ‖R‖ is a constant and also the
size of the dependency graph and the levels in it. Hence, the expression ‖R‖k in (�)
amounts to a constant z. Hence, ‖dChase(QSC)‖ = O(‖QSC‖z). Hence, the size of
dChase(QSC) is a polynomial in ‖QSC‖.

Also, since in any dChase iteration except the final one, atleast one quad should be
produced and the final dChase can have at most O(‖QSC‖z) quads, the total num-
ber of iterations are bounded by O(‖QSC‖z) (†). Also from lemma 1, we know
that any dChase iteration i, computing dChasei(QSC) involves two steps: (a) com-
puting R(dChasei−1(QSC)), and (b) computing lclosure(), which can be done in

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

220

PTIME in the size of its input. Since computing R(dChasei−1(QSC)) is of the or-
der O(‖dChasei−1(QSC)‖‖R‖), where |R| is a constant and ‖dChasei−1(QSC)‖ is
a polynomial is ‖QSC‖, each iteration can be done in time polynomial in ‖QSC‖ (‡).
From (†) and (‡), it can be concluded that dChase can be computed in PTIME. ut

Lemma 4. For any context acyclic quad-system, the following holds: (i) data complex-
ity of CCQ entailment is in PTIME (ii) combined complexity of CCQ entailment is in
2EXPTIME.

Proof. For a context acyclic quad-system QSC = 〈QC , R〉, since dChase(QSC) is fi-
nite, a boolean CCQ CQ() can naively be evaluated by grounding the set of constants
in the chase to the variables in the CQ(), and then checking if any of these ground-
ings are contained in dChase(QSC). The number of such groundings can at most be
‖dChase(QSC)‖‖CQ()‖ (†).

(i) Since for data complexity, the size of the BRs ‖R‖, the set of schema triples,
and ‖CQ()‖ is fixed to constant. From lemma 3 (iv), we know that under the above
mentioned settings the dChase can be computed in PTIME and is polynomial in the
size of QSC . Since ‖CQ()‖ is fixed to a constant, and from (†), binding the set of
constants in dChase(QSC) on CQ() still gives a number of bindings that is worst case
polynomial in the size of QSC . Since membership of these bindings can checked in
the polynomially sized dChase in PTIME, the time required for CCQ evaluation is in
PTIME.

(ii) Since in this case ‖dChase(QSC)‖ = O(22
‖QSC‖

) (‡), from (†) and (‡), binding
the set of constants in ‖dChase(QSC‖ to variables inCQ() amounts toO(2‖CQ()‖∗2‖QSC‖

)
bindings. Since the size of dChase is double exponential in ‖QSC‖, checking the mem-
bership of each of these bindings can be done in 2EXPTIME. Hence, the combined
complexity is in 2EXPTIME. ut

Theorem 2. For any context acyclic quad-system, the following holds: (i) The data
complexity of CCQ entailment is PTIME-complete, (ii) The combined complexity of
CCQ entailment is 2EXPTIME-complete.

For PTIME-hardness of data complexity, it can be shown that the well known problem
of 3HornSat, the satisfiability of propositional Horn formulas with atmost 3 literals, and
for 2EXPTIME-hardness for the combined complexity, it can be shown that the word
problem of a double exponentially time bounded deterministic turing machine, which
is a well known 2EXPTIME-hard problem, is reducible to the CCQ entailment problem
(see [23] for detailed proof).

Reconsidering the quad-system in example 1, which is not context acyclic. Suppose
that the contexts are enabled with RDFS inferencing, i.e lclosure() = rdfsclosure().
During dChase construction, since any application of rule (5) can only create a triple in
c2 in which the skolem blank node is in the object position, where as the application
of rule (6), does not propogate constants in object postion to c1. Although at a first
look, the dChase might seem to terminate, but since the application of the following
RDFS inference rule in c2: (s, p, o)→ (o ,rdf:type, rdfs:Resource), derives a
quad of the form c2 : (:b, rdf:type, rdfs:Resource), where :b is the skolem
blank-node created by the application of rule (5). Now by application of rule (6) leads

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

221

to c1 : (:b,rdf:type, U1). Since rule (5) is applicable on c1 : (:b,rdf:type, U1),
which again brings a new skolem blank node to c2, and hence the dChase construction
doesn’t terminate. Hence, as seen above the notion of context acyclicity can alarm us
about such infinite cases.

5 Related Work

Contexts and Distributed Logics The work on contexts began in the 80s when Mc-
Carthy [21] proposed context as a solution to the generality problem in AI. After this
various studies about logics of contexts mainly in the field of KR was done by Guha
[29], Distributed First Order Logics by Ghidini et al. [14] and Local Model Semantics
by Giunchiglia et al. [15]. Primarily in these works contexts are formalized as a first or-
der/propositional theories, and bridge rules were provided to inter-operate the various
contexts. Some of the initial works on contexts relevant to semantic web were the ones
like Distributed Description Logics [4] by Borgida et al., E-connections [26] by Kutz
et al., Context-OWL [5] by Bouqet et al., and the work of CKR [31, 24] by Serafini et
al. These were mainly logics based on DLs, which formalized contexts as OWL KBs,
whose semantics is given using a distributed interpretation structure with additional se-
mantic conditions that suits varying requirements. Compared to these works, the bridge
rules we consider are much more expressive with conjunctions and existential variables
that supports value/blank-node creation.
∀∃ rules, TGDs, Datalog+- rules Query answering over rules with universal existen-
tial quantifiers in the context of databases/KR, where these rules are called tuple gen-
erating dependencies (TGDs)/Datalog+- rules, was done by Beeri and Vardi [3] even
in the early 80s, where the authors show that the query entailment problem in gen-
eral is undecidable. However, recently many classes of such rules have been identified
for which query answering is decidable. These includes (a) fragments s.t. the result-
ing models have bounded tree widths, called bounded treewidth sets (BTS), such as
Weakly guarded rules [7], Frontier guarded rules [2], (b) fragments called finite unifica-
tion sets (FUS), such as ‘sticky’ rules [6, 17], and (c) fragments called finite extension
sets (FES), where sufficient conditions are enforced to ensure finiteness of the chase
and its termination. The approach used for query answering in FUS is to rewrite the
input query w.r.t. to the TGDs to another query that can be evaluated directly on the
set of instances, s.t. the answers for the former query and latter query coincides. The
approach is called the query rewriting approach. FES classes uses certain termination
guarantying tests that check whether certain sufficient conditions are satisfied by the
structure of TGDs. A large number of classes in FES are based on tests that detects
‘acyclicity conditions’ by analyzing the information flow between the TGD rules. Weak
acyclicity [13, 11], was one of the first such notions, and was extended to joint acyclic-
ity [25], super weak acyclicity [27], and model faithful acyclicity [9]. The most similar
approach to ours is the weak acyclicity technique, where the structure of the rules is ana-
lyzed using a dependency graph that models the propagation of constants across various
predicates positions, and restricting the dependency graph to be acyclic. Although this
technique can be used in our scenario by translating a quad-system to a set of TGDs;
if the obtained translation is weakly acyclic, then one could use existing algorithms for
chase computation for the TGDs to compute the chase, the query entailment check can

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

222

Quad-System dChase size w.r.t Data Complexity of Combined Complexity
Fragment input quad-system CCQ entailment of CCQ entailment

Unrestricted Quad-Systems Infinite Undecidable Undecidable
Context acylic Quad-Systems Double exponential PTIME-complete 2EXPTIME-complete

Table 1: Complexity info for various quad-system fragments

be done by querying the obtained chase. However, our approach has the advantage of
straightforward implementability on existing quad-stores.

6 Summary and Conclusion

In this paper, we study the problem of query answering over contextualized RDF knowl-
edge. We show that the problem in general is undecidable, and present a decidable class
called context acyclic quad-systems. Table 1 summarizes the main results obtained. We
can show that the notion of context acyclicity, introduced in section 4 can be used to
extend the currently established tools for contextual reasoning to give support for ex-
pressive BRs with conjuction and existentials with decidability guarantees. We view
the results obtained in this paper as a general foundation for contextual reasoning and
query answering over contextualized RDF knowledge formats such as Quads, and can
straightforwardly be used to extend existing Quad stores to encorporate for-all existen-
tial BRs of the form (1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the Complexity Lines for Gen-

eralized Guarded Existential Rules. In: IJCAI. pp. 712–717 (2011)
3. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: ICALP. pp.

73–85 (1981)
4. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from

Peer Sources. J. Data Semantics 1, 153–184 (2003)
5. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:

Contextualizing Ontologies. In: ISWC. pp. 164–179 (2003)
6. Calı̀, A., Gottlob, G., Pieris, A.: Query Answering under Non-guarded Rules in Datalog+/-.

In: Hitzler, P., Lukasiewicz, T. (eds.) RR. Lecture Notes in Computer Science, vol. 6333, pp.
1–17. Springer (2010)

7. Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A Family of
Logical Knowledge Representation and Query Languages for New Applications. In: Logic
in Computer Science (LICS), 25th Annual IEEE Symposium on. pp. 228 –242 (july 2010)

8. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: Proc.
of the 14th int.l. conf. on WWW. pp. 613–622. ACM, New York, NY, USA (2005)

9. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity Conditions and their Application to Query Answering in Description Logics. In:
Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12). pp. 243–253. AAAI Press (2012)

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

223

10. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: Proceedings of the twenty-
seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
pp. 149–158. PODS ’08 (2008)

11. Deutsch, A., Tannen, V.: Reformulation of XML Queries and Constraints. In: In ICDT. pp.
225–241 (2003)

12. D.Lenat: The Dimensions of Context Space. Tech. rep., CYCorp (1998), published online
http://www.cyc.com/doc/context-space.pdf

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query An-
swering. In: Theoretical Computer Science. pp. 28(1):89–124 (2005)

14. Ghidini, C., Serafini, L.: Distributed first order logics. In: Frontiers Of Combining Systems
2, Studies in Logic and Computation. pp. 121–140. Research Studies Press (1998)

15. Giunchiglia, F., Ghidini, C.: Local models semantics, or contextual reasoning = locality +
compatibility. Artificial Intelligence 127 (2001)

16. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering conjunctive queries in the SHIQ
description logic. In: Proceedings of the IJCAI’07. pp. 299–404. AAAI Press (2007)

17. Gottlob, G., Manna, M., Pieris, A.: Polynomial Combined Rewritings for Existential Rules.
In: KR’14: International Conference on Principles of Knowledge Representation and Rea-
soning (2014)

18. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley Longman Pub-
lishing Company, Inc., Boston, MA, USA, 1st edn. (1978)

19. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (Feb 2004)
20. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema

and a semantic extension involving the OWL vocabulary. Web Semantics: Science, Services
and Agents on the WWW 3(2-3), 79–115 (2005)

21. J.McCarthy: Generality in AI. Comm. of the ACM 30(12), 1029–1035 (1987)
22. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and

inclusion dependencies. Computer and System Sciences 28, 167–189 (1984)
23. Joseph, M., Kuper, G., Serafini, L.: Query Answering over Contextualized RDF/OWL

Knowledge with Forall-Existential Bridge Rules: Attaining Decidability using Acyclicity
(full version). Tech. rep., CoRR Technical Report arXiv:1406.0893, Arxiv e-Print archive
(2014), http://arxiv.org/abs/1406.0893

24. Joseph, M., Serafini, L.: Simple reasoning for contextualized RDF knowledge. In: Proc. of
Workshop on Modular Ontologies (WOMO-2011) (2011)

25. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and
guardedness. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI’11). pp. 963–968. AAAI Press/IJCAI (2011)

26. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-Connections of Abstract Description
Systems. Artificial Intelligence 156(1), 1–73 (2004)

27. Marnette, B.: Generalized schema-mappings: from termination to tractability. In: Proceed-
ings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. pp. 13–22. PODS ’09, ACM, New York, NY, USA (2009)

28. McCarthy, J., Buvac, S., Costello, T., Fikes, R., Genesereth, M., Giunchiglia, F.: Formalizing
Context (Expanded Notes) (1995)

29. R.Guha: Contexts: a Formalization and some Applications. Ph.D. thesis, Stanford (1992)
30. Schueler, B., Sizov, S., Staab, S., Tran, D.T.: Querying for meta knowledge. In: WWW ’08:

Proceeding of the 17th international conference on World Wide Web. pp. 625–634. ACM,
New York, NY, USA (2008)

31. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. Web
Semantics: Science, Services and Agents on the World Wide Web (2012)

M. Joseph et al. Query answering over Contextualized RDF knowledge with Forall-Existential Bridge Rules

224

Revising Description Logic Terminologies to
Handle Exceptions: a First Step

Roberto Micalizio, Gian Luca Pozzato

Dipartimento di Informatica - Università degli Studi di Torino
roberto.micalizio@unito.it,gianluca.pozzato@unito.it

Abstract. We propose a methodology to revise a Description Logic
knowledge base when detecting exceptions. Our approach relies on the
methodology for debugging a Description Logic terminology, addressing
the problem of diagnosing incoherent ontologies by identifying a mini-
mal subset of axioms responsible for an inconsistency. In the approach
we propose, once the source of the inconsistency has been localized, the
identified axioms are revised in order to obtain a consistent knowledge
base including the detected exception. To this aim, we make use of a non-
monotonic extension of the Description Logic ALC based on the com-
bination of a typicality operator and the well established nonmonotonic
mechanism of rational closure, which allows to deal with prototypical
properties and defeasible inheritance.

1 Introduction
Exceptions do exist. Intuitively, we can define an exception as an individual (or
a group of individuals) that has, or has not, a property in contrast with other
individuals of the same class. For instance, a penguin can be considered as an
exceptional bird since, although equipped with wings, is unable to fly. We can
find numerous examples of exceptions in nature, but also in natural languages
(e.g., irregular verbs), medicine (e.g. situs inversus is an anomaly in which the
major visceral organs are reversed or mirrored from their normal positions, so
that the heart is positioned in the right-hand side of the chest), and many other
real-world scenarios.

Dealing with exceptions can be tricky for an ontology engineer. All the
exceptions should be known in advance by the ontology engineer; i.e., when
the ontology is being designed. Unfortunately, in many real-world scenarios,
exceptions are discovered just while the system is running, and the ontology
is actually used. Whenever exceptions are discovered at runtime, the resulting
ontology becomes incoherent (i.e., at least one concept is mapped to an empty set
of individuals). Some recent works [16, 17, 15, 8, 9, 13] have addressed the problem
of diagnosing incoherent ontologies by identifying a minimal subset of axioms
responsible for the inconsistency. The idea of these works is that once the source
of the inconsistency has been localized, the ontology engineer can intervene and
revise the identified axioms in order to restore the consistency. These approaches
presuppose that the ontology has become incoherent due to the introduction of
errors; as for instance when two ontologies are merged together. It is worth
noting that, albeit an exception has the same effect of an error (i.e., it causes an
ontology to become incoherent), an exception is not an error. An exception is

225

rather a piece of knowledge that partially contradicts what is so far known about
a portion of the ontology at hand. Thus, on the one hand, ignoring exceptions
would be deleterious as the resulting ontology would not reflect the applicative
domain correctly. On the other hand, accommodating exceptions requires the
exploitation of some form of defeasible reasoning that allows us to revise some
of concepts in the ontology.

In this paper we propose a methodology to revise a Description Logic (for
short: DL) knowledge base when detecting exceptions. Our approach relies on the
above mentioned methodology of [16, 17, 15] for detecting exceptions by identify-
ing a minimal subset of axioms responsible for an inconsistency. Once the source
of the inconsistency has been localized, the identified axioms are revised in order
to obtain a consistent knowledge base including the detected exception. To this
aim, we use a nonmonotonic extension of the DL ALC recently presented by
Giordano and colleagues in [7]. This extension is based on the introduction of a
typicality operator T in order to express typical inclusions. The intuitive idea is
to allow concepts of the form T(C), whose intuitive meaning is that T(C) selects
the typical instances of a concept C. It is therefore possible to distinguish between
properties holding for all instances of a concept C (C v D), and those only hold-
ing for the typical instances of C (T(C) v D). For instance, a knowledge base
can consistently express that birds normally fly (T(Bird) v Fly), but penguins
are exceptional birds that do not fly (Penguin v Bird and Penguin v ¬Fly).

The T operator is intended to enjoy the well-established properties of rational
logic, introduced by Lehmann and Magidor in [12] for propositional logic. In order
to reason about prototypical properties and defeasible inheritance, the semantics
of this nonmonotonic DL, called ALCRminT, is based on rational models and
exploits a minimal models mechanism based on the minimization of the rank of
domain elements. This semantics corresponds to a natural extension to DLs of
Lehmann and Magidor’s notion of rational closure [12].

The paper is organized as follows: in Section 2 we recall extensions of DLs for
prototypical reasoning, focusing on the approach based on a typicality operator
T and rational closure [7]; in Section 3 we recall and extend the notions intro-
duced in [17, 13] for diagnosing incoherent ontologies; in Section 4 we present
our methodology for revising a DL terminology to handle exceptions by means
of T; we conclude with some pointers to future issues in Section 5.

2 Description Logics and Exceptions

The family of Description Logics [1] is one of the most important formalisms of
knowledge representation. DLs are reminiscent of the early semantic networks
and of frame-based systems. They offer two key advantages: (i) a well-defined
semantics based on first-order logic and (ii) a good trade-off between expressiv-
ity and computational complexity. DLs have been successfully implemented by a
range of systems, and are at the base of languages for the Semantic Web such as
OWL. In a DL framework, a knowledge base (KB) comprises two components:
(i) a TBox, containing the definition of concepts (and possibly roles) and a spec-
ification of inclusion relations among them; (ii) an ABox, containing instances

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

226

of concepts and roles, in other words, properties and relations of individuals.
Since the primary objective of the TBox is to build a taxonomy of concepts, the
need of representing prototypical properties and of reasoning about defeasible
inheritance of such properties easily arises.

In the recent years, a large amount of work has been done in order to extend
the basic formalism of DLs with nonmonotonic reasoning features. The tradi-
tional approach is to handle defeasible inheritance by integrating some kind of
nonmonotonic reasoning mechanisms [5, 2, 10, 3, 4]. A simple but powerful non-
monotonic extension of DLs is proposed in [6]. In this approach, “typical” or
“normal” properties can be directly specified by means of a “typicality” op-
erator T enriching the underlying DL; the typicality operator T is essentially
characterized by the core properties of nonmonotonic reasoning, axiomatized by
preferential logic P in [11].

In this work we refer to the most recent approach proposed in [7], where
the authors extend ALC with T by considering rational closure as defined by
Lehman and Magidor [12] for propositional logic. Here the T operator is in-
tended to enjoy the well-established properties of rational logic R . Even if T
is a nonmonotonic operator (so that for instance T(Bird) v Fly does not entail
that T(BirduPenguin) v Fly), the logic itself is monotonic. Indeed, in this logic
it is not possible to monotonically infer from T(Bird) v Fly , in the absence of
information to the contrary, that also T(Bird u Black) v Fly . Nor it can be
nonmonotonically inferred from Bird(tweety), in the absence of information to
the contrary, that T(Bird)(tweety). Nonmonotonicity is achieved by adapting to
ALC with T the propositional construction of rational closure. This nonmono-
tonic extension allows to infer typical subsumptions from the TBox. Intuitively,
and similarly to the propositional case, the rational closure construction amounts
to assigning a rank (a level of exceptionality) to every concept; this rank is used
to evaluate typical inclusions of the form T(C) v D: the inclusion is supported
by the rational closure whenever the rank of C is strictly smaller than the rank of
Cu¬D. From a semantic point of view, nonmonotonicity is achieved by defining,
on the top of ALC with typicality, a minimal model semantics where the notion
of minimality is based on the minimization of the ranks of the domain elements.
The problem of extending rational closure to ABox reasoning is also taken into
account: in order to ascribe typical properties to individuals, the typicality of an
individual is maximized. This is done by minimizing its rank (that is, its level
of exceptionality). Let us recall the resulting extension ALCRminT in detail.

Definition 1. We consider an alphabet of concept names C, of role names R,
and of individual constants O. Given A ∈ C and R ∈ R, we define:

CR := A | > | ⊥ | ¬CR | CR u CR | CR t CR | ∀R.CR | ∃R.CR

CL := CR | T(CR)

A knowledge base is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions CL v CR. ABox contains assertions of the form CL(a) and R(a, b),
where a, b ∈ O.

We define the semantics of the monotonic ALC + TR, formulated in terms of
rational models: ordinary models of ALC are equipped with a preference relation

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

227

< on the domain, whose intuitive meaning is to compare the “typicality” of
domain elements, that is to say x < y means that x is more typical than y.
Typical members of a concept C, that is members of T(C), are the members x
of C that are minimal with respect to this preference relation (s.t. there is no
other member of C more typical than x).

Definition 2 ([7]). A model M of ALC+TR is any structure 〈∆,<, I〉 where:
∆ is the domain; < is an irreflexive, transitive and modular (if x < y then either
x < z or z < y) relation over ∆; I is the extension function that maps each
concept C to CI ⊆ ∆, and each role R to RI ⊆ ∆×∆ as follows: >I = ∆, ⊥I =
∅, (¬C)I = ∆\CI , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (∀R.C)I = {x ∈
∆ | ∀y.(x, y) ∈ RI → y ∈ CI}, (∃R.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ RI and y ∈ CI},
(T(C))I = Min<(CI), where Min<(S) = {u : u ∈ S and @z ∈ S such that z <
u}. Furthermore, < satisfies the Well − Foundedness Condition, i.e., for all S ⊆
∆, for all x ∈ S, either x ∈Min<(S) or ∃y ∈Min<(S) such that y < x.

Given anALC+TR modelM= 〈∆,<, I〉, we say that (i)M satisfies an inclusion
C v D if it holds CI ⊆ DI , (ii) M satisfies an assertion C(a) if aI ∈ CI and
(iii) M satisfies an assertion R(a, b) if (aI , bI) ∈ RI . Given K=(TBox,ABox),
we say that M satisfies TBox if M satisfies all inclusions in TBox, M satisfies
ABox if M satisfies all assertions in ABox and M satisfies K if it satisfies both
its TBox and its ABox.

Given a knowledge base K, an inclusion CL v CR and an assertion CL(a),
with a ∈ O, we say that the inclusion CL v CR is derivable from K, written
K |=ALCRT CL v CR, if CL

I ⊆ CR
I holds in all modelsM =〈∆,<, I〉 satisfying

K. Moreover, we say the assertion CL(a) is derivable fromK, writtenK |=ALCRT

CL(a), if aI ∈ CL
I holds in all models M =〈∆,<, I〉 satisfying K.

As already mentioned, although the typicality operator T itself is nonmonotonic
(i.e. T(C) v D does not imply T(CuE) v D), the logic ALC+TR is monotonic:
what is inferred from K can still be inferred from any K ′ with K ⊆ K ′. This is a
clear limitation in DLs. As a consequence of the monotonicity of ALC+TR, one
cannot deal with irrelevance, for instance. So, from the knowledge base of birds
and penguins, one cannot derive that K |=ALCRT T(Penguin u Black) v ¬Fly ,
even if the property of being black is irrelevant with respect to flying. In the same
way, if we added to K the information that Tweety is a bird (Bird(tweety)), in
ALC + TR one cannot tentatively derive, in the absence of information to the
contrary, that T(Bird)(tweety) and Fly(tweety).

In order to tackle this problem, in [7] the definition of rational closure intro-
duced by Lehmann and Magidor [12] for the propositional case has been extended
to the DL ALC + TR. Due to space limitations, we omit all definitions of the
rational closure of a DL knowledge base, reminding to [7].

From a semantic point of view, in [7] it is shown that minimal rational models
that minimize the rank of domain elements can be used to give a semantical
reconstruction of this extension of rational closure. The rank kM of a domain
element x is the length of the longest chain x0 < · · · < x from x to a minimal x0
(i.e. such that there is no x′ such that x′ < x0). The idea is as follows: given two

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

228

models of K, one in which a given domain element x has rank x1 and another in
which it has rank x2, with x1 > x2, then the latter is preferred, as in this model
the element x is “more normal” than in the former.

Given a knowledge base K=(TBox,ABox), in [7] it is shown that an inclu-
sion C v D (respectively, an assertion C(a)) belongs to the rational closure of
K if and only if C v D (resp., C(a)) holds in all minimal models of K of a “spe-
cial” kind, named canonical models. The rational closure construction for ALC
is inexpensive, since it retains the same complexity of the underlying logic, and
thus a good candidate to define effective nonmonotonic extensions of DLs. More
precisely, the problem of deciding whether a typical inclusion belongs to the ra-
tional closure of the TBox is in ExpTime as well as the problem of deciding
whether an assertion C(a) belongs to the rational closure over the ABox.

3 Explaining Incoherent Terminologies

In this paper, we propose a methodology to deal with exceptions that builds up
on the methodology for debugging a DL terminology proposed by Schlobach et
al. since their seminal work [17].

Let us first introduce the notion of incoherent terminology. Given a TBox
T , we say that it is coherent if there is no unsatisfiable concept, in other words
there is at least a model of T in which the extensions of all concepts are not
empty.

To explain incoherences in terminologies, Schlobach et al. propose a method-
ology based on two steps: first, axiom pinpointing excludes axioms which are
irrelevant to the incoherence; second, concept pinpointing provides a simplified
definition highlighting the exact position of a contradiction within the axioms
previously selected. In this paper we are interested in the axiom pinpointing step,
which identifies debugging-relevant axioms. Intuitively, an axiom is relevant for
debugging if, when removed, a TBox becomes coherent, or at least one pre-
viously unsatisfiable concept turns satisfiable. The notion of subset of relevant
axioms is captured by the following definition.

Definition 3 (MUPS, Definition 3.1 [17]). Let C be a concept which is
unsatisfiable in a TBox T . A set T ′ ⊆ T is a minimal unsatisfiability-preserving
sub-TBox (MUPS) of T if C is unsatisfiable in T ′, and C is satisfiable in every
sub-TBox T ′′ ⊂ T ′.

In the following, mups(T , C) is used to denote the set of MUPS for a given
terminology T and a concept C. Intuitively, each set of axioms in mups(T , C)
represents a conflict set; i.e., a set of axioms that cannot all be satisfied. From
this point of view, it is therefore possible to infer a diagnosis for the concept
C by applying the Hitting-Set tree algorithm proposed by Reiter [14]. However,
the set mups(T , C) is sufficient for our purpose of dealing with exceptions.

A drawback of the debugging approach in [16, 17] is that it is restricted to
unfoldable TBoxes, only containing unique, acyclic definitions. An axiom is called
a definition of A if it is of the form A v C, where A ∈ C is an atomic concept. An

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

229

axiom A v C is unique if the KB contains no other definition of A. An axiom
is acyclic if C does not refer either directly or indirectly (via other axioms)
to A [1]. This restriction is too strong for our objective of representing and
reasoning about defeasible inheritance in a natural way. As an example, the TBox
expressing that students are not tax payers, but working students do pay taxes,
can be naturally expressed by the following, not unfoldable, TBox={Student v
¬TaxPayer ,Student uWorker v TaxPayer}. In order to overwhelm this gap, in
[13, 8] axiom pinpointing is extended to general TBoxes, more suitable to our
purposes. As a further difference, Schlobach and colleagues limit their attention
to the basic ALC, whereas Parsia and colleagues in [8] are able to deal also with
the more expressive SHOIN , corresponding to OWL-DL. A set of algorithms
for computing axiom pinpointing, in particular to compute the set of MUPS for
a given terminology T and a concept A, is also provided.

In [16], Schlobach also proposes a methodology for explaining concept sub-
sumptions. The idea is to reduce the structural complexity of the original con-
cepts in order to highlight the logical interplay between them. To this aim,
Schlobach proposes to exploit the structural similarity of concepts, that can be
used to simplify terminological concepts, and hence the subsumption relations.
The structural similarity is based on the notion of qualified subconcepts; namely,
variants of those concepts a knowledge engineer explicitly uses in the model-
ing process, and where the context (i.e., sequence of quantifiers and number of
negations) of this use is kept intact. Schlobach specifies the notion of qualified
subconcepts in two ways: Generalized Qualified Subconcepts (gqs), and Special-
ized Qualified Subconcepts (sqs) which are defined by induction as follows:

Definition 4 (Generalized and Specialized Qualified Subconcepts, [16]).
Given concepts A, C and D, we define:

gqs(A) = sqs(A) = {A} if A is atomic
gqs(C uD) = {C ′, D′, C ′ uD′|C ′ ∈ gqs(C), D′ ∈ gqs(D)}
gqs(C tD) = {C ′ tD′|C ′ ∈ gqs(C), D′ ∈ gqs(D)}
gqs(∃r.C) = {∃r.C ′|C ′ ∈ gqs(C)}
gqs(∀r.C) = {∀r.C ′|C ′ ∈ gqs(C)}
gqs(¬C) = {¬C ′|C ′ ∈ sqs(C)}
sqs(C uD) = {C ′ uD′|C ′ ∈ sqs(C), D′ ∈ sqs(D)}
sqs(C tD) = {C ′, D′, C ′ tD′|C ′ ∈ sqs(C), D′ ∈ sqs(D)}
sqs(∃r.C) = {∃r.C ′|C ′ ∈ sqs(C)}
sqs(∀r.C) = {∀r.C ′|C ′ ∈ sqs(C)}
sqs(¬C) = {¬C ′|C ′ ∈ gqs(C)}

As Schlobach himself notes, a simple consequence of this definition is that |=
C v C ′ for every C ′ ∈ gqs(C), and |= D′ v D for each D′ v sqs(D).

We slightly extend the base case of Definition 4 as follows:

Definition 5 (Generalized and Specialized Qualified Subconcepts ex-
tended). We define sqs(C) and gqs(C) by adding to clauses in Definition 4 the
following ones:

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

230

gqs(A) = {A} ∪ {gqs(D) | A v D ∈ TBox} if A is atomic
sqs(A) = {A} ∪ {sqs(C) | C v A ∈ TBox} if A is atomic
gqs(¬A) = {¬A} ∪ {gqs(D) | ¬A v D ∈ TBox} if A is atomic
sqs(¬A) = {¬A} ∪ {sqs(C) | C v ¬A ∈ TBox} if A is atomic

Thus, we also take into account the axioms (i.e., concept inclusions) defined in
a given TBox. This generalization allows us to move upward (by means of gqs),
and downward (by means of sqs) in the hierarchy of concepts defined by a given
TBox T . Relying on the notions of sqs and gqs, we can define a partial ordering
relation between concepts as follows:

Definition 6. Let C and D be two concepts in a given TBox T , we say that
C is more specific than D, denoted as C ≺ D, iff at least one of the following
relations holds: (i) C ∈ sqs(D), or (ii) D ∈ gqs(C).

It is easy to see that ≺ is irreflexive, antisymmetric, and transitive; however, it
is just partial because ≺ is not defined for any pair of concepts; i.e., there may
exist two concepts C and D such that neither C ≺ D nor D ≺ C holds. As we
will discuss later, the methodology we propose for determining which concepts
represent properties to be made “typical” relies on the fact that concepts are
considered in order from the most specific to the most general. In those situations
where two concepts are not directly comparable with one another by means of ≺,
we need some further tools. For this reason, we introduce the notions of Concept
Network and depth of concepts. First of all, let S be the set of concepts (and
subconcepts) occurring in a given TBox.

Definition 7 (Concept Network). Given a TBox T , a concept network for T
is a graph CN(T) : 〈V,E〉 where V is a set of vertexes, each of which corresponds
to a concept C ∈ S, and E is a set of oriented edges of the form 〈C,D〉, where
C and D belong to V ; an edge 〈C,D〉 is in E iff C ≺ D.

Definition 8 (Depth of a concept). Given a TBox T , its corresponding con-
cept network CN(T), and a concept C ∈ S, the depth of a concept C ∈ T ,
denoted as depth(C), corresponds to the length of the longest path from > to C.

In principle, any two concepts C and D at the same depth can be considered by
our methodology in either orderings C ≺ D or D ≺ C. However, when both C
and ¬C are at the same depth, we use a further criteria of preference based on
the distance between concepts.

Definition 9 (Distance between concepts). Given a TBox T , its corre-
sponding concept network CN(T), and two concepts C,D ∈ S, the distance
between C and D in T , denoted as dist(C,D) is given by the shortest path in
CN(T) from C to D, if C ≺ D; ∞, otherwise.

Example 1. Let us consider a simple example in which a TBox Tstudent contains
the following concept definitions:

Student v ¬ TaxPayer
Student uWorker v TaxPayer

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

231

Of course, Tstudent is consistent only if there are no working students, and in
the following we will show how it can be repaired by means of the typicality
operator. For the time being, we are just interested in determining the depth of
the concepts in Tstudent. By applying Definition 6 we obtain:

Student u Worker ≺ Student ≺ ¬TaxPayer; Student u Worker ≺ TaxPayer.

It is easy to see that Student uWorker is the deepest concept in our terminology.
In fact, we have that both TaxPayer and ¬TaxPayer are at the same depth
1, as well as Worker; Student is at depth 2; whereas Student u Worker is at
depth 3. However, since dist(Student u Worker, TaxPayer) < dist(Student u
Worker,¬TaxPayer), we will prefer to consider TaxPayer before ¬TaxPayer.

Definition 5 above does not take into account that the terminology may be incon-
sistent, and hence some of the concepts generated via the generalization (special-
ization) rules might be trivially contradictory (e.g., having the form D u ¬D).
Moreover, the set of concepts within the gqs (sqs) of a given concept C are
not necessarily consistent with one another. For instance, let us consider again
Tstudent; it is easy to see that gqs(Student uWorker) is the set:
{Student u Worker, Student, TaxPayer, ¬TaxPayer, ¬ (Student u Worker),
Worker, ¬ TaxPayer u Worker, ¬ (Student u Worker) u Worker, TaxPayer}.

Both TaxPayer and ¬TaxPayer are members of gqs(Student uWorker), but
only one of them will be correct, the other will have to be pruned. As we have
already mentioned above, TaxPayer will be preferred as it is closer to Student u
Worker. In the next section we propose a pruning technique that discards those
concepts that, albeit generalize a concept C (i.e., belong to gqs(C)), contradict
the terminology T . Our pruning technique relies on a compact representation of
gqs. That is, rather than explicitly computing all concepts in gqs(C) by recur-
sively unfolding every gqs(C ′) for each C ′ ∈ gqs(C), we consider gqs(C) as a list
of concepts (not necessarily atomic), and gqss.

For example, gqs(Student uWorker) can be compactly represented as the list
of elements {Student u Worker, gqs(Student) u gqs(Worker), gqs(Student),
gqs(Worker)}. Intuitively, gqs(Student uWorker) is given by the union of the
concepts that are directly mentioned in the list (e.g., Student uWorker), or that
belong to one of the gqss mentioned in the list itself (e.g., gqs(Student)).

Note that we keep the list associated with gqs(C) ordered according to the
depth (and distance when necessary) of the mentioned concepts. Also in this case,
deepest concepts come first. However we have to pay some attention in dealing
with gqss. In fact, if D ≺ E, then also gqs(D) ≺ E, and hence gqs(D) ≺ gqs(E).
However, if both D and gqs(D) are in gqs(C), then D ≺ gqs(D). On the other
hand, if D and F have the same depth, we put first the concept which is closer
to C. In case, D and F are at the same distance from C than their relative
ordering is arbitrary. The idea is that gqs(D) abstracts a set of concepts which
are at least as specific as D, but possibly more general than D. Therefore, any
concept more specific than D is also more specific than gqs(D). Vice versa, if
D ≺ E, then also gqs(D) ≺ E as gqs(D) contains at least D.

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

232

4 Revising Terminologies Including Exceptions
In this section we present the methodology for automatically modify a TBox
T whenever a detected inconsistency can be treated as an exception. The basic
idea of our proposal is first to isolate a subset of T which is relevant for the
inconsistency, and for this purpose we will adopt the notion of MUPS introduced
in Definition 3. Then we reconsider all the concepts within a MUPS and try to
identify which concepts describe characterizing properties to be made “typical”.
The intuition is that all the properties labeled as typical hold for all “normal”
members of a given class C, but not necessarily for all members in C. That is,
we admit that a subset of individuals in C do not present the typical properties
of the class, and hence are considered as exceptional.

Let us start by considering a coherent terminology T , and assume we dis-
cover a new subsumption relation newC v D that once added to T introduces
an incoherence. As mentioned above, the first step consists in restricting our
attention to only those concepts that are relevant for the incoherence. These
concepts are identified by mups(T , newC) [18]. For the sake of discussion, we
will assume that mups(T , newC) will only contain a set of incoherent axioms,
the approach can be easily extended to consider the more general situation in
which mups(T , newC) is a set of sets.

In principle, we have to identify which concept subsumptions inmups(T , newC)
are to be modified by introducing the T operator on the left-hand side of an ax-
iom. The main issue in this process is that the terminology T might hide implicit
knowledge (i.e., implicit subsumptions), and these implicit subsumptions are still
hidden in mups(T , newC). Inferring implicit subsumptions is therefore essential
in order to correctly identify the most specific properties to be made typical.

To reach this result, we propose a search process that is based on the fol-
lowing intuition: Given a concept C in mups(T , newC), all the implicit sub-
sumptions we are looking for are already contained in gqs(C). In other words,
for any concept D ∈ gqs(C) (either atomic or not), the subsumption C v D
must hold by definition of gqs. However, we have to be cautious when dealing
with gqs(C) as it potentially contains subsumptions which are irrelevant, or even
incorrect, for the specific case under consideration. First of all, gqs(C) consid-
ers all the possible concept definitions in T , but we are just interested in those
concepts mentioned within mups(T , newC). Thus, in considering the concepts
mentioned within gqs(C) we have to restrict ourselves only to those concepts
which are also mentioned mups(T , newC); any other concept in gqs(C) will be
ignored as irrelevant. In addition, not all the generalizations suggested by gqs(C)
are consistent with the concepts in mups(T , newC). As we have already noted,
mups(T , newC) might contain the subsumption relation C v D; at the same
time, the concept ¬D appears in gqs(C); implying that C v ¬D. Of course, this
second subsumption is in direct contrast with a subsumption in mups(T , newC);
we say that C v ¬D syntactically contradicts C v D. (Note that such a contra-
diction is just syntactic, and hence it can be checked by inspecting concepts in
mups(T , newC).)

Another critical issue is that we are interested in finding the most specific
properties that have to be considered as typical. This is also the reason why we

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

233

look for implicit subsumptions: we want to discover what properties are inherited
by the concepts inmups(T , newC). Thus, when we look for inclusions, we have to
proceed from the most specific concepts in mups(T , newC) to the most general
ones. In this way, we can progressively build a new set of subsumption relations
S, in which the typicality operator is added to only those specific properties that
are relevant for dealing with the exception introduced by newC.

4.1 Algorithms
In this section we give a detailed description of the methodology we propose for
automatically managing, by means of the typicality operator, a concept newC
with exceptional properties D. We give for granted that mups(T , newC) has
already been computed by means of one of the calculi proposed in [8]. Thus,
mups(T , newC) identifies a minimal subset of concept inclusions that are rele-
vant for the inconsistency arising when T is extended with newC v D.

Algorithm 1 FindSubsumptionsMain(mups(T , newC))

1: S ← ∅
2: for all depth l of concepts in mups(T , newC), from the highest to the lowest do
3: for all Ci in mups(T , newC) such that depth(Ci) = l do
4: Si ← FindSubsmption(Ci, gqs(Ci), S)
5: end for
6: if S ∪⋃Si is coherent then
7: S ← S ∪⋃Si
8: else
9: for all Si do

10: for all C v D ∈ Si, such that C does not occur in D do
11: S ← S ∪ {T(C) v D}
12: end for
13: end for
14: end if
15: end for
16: return S

FindSubsumptionsMain To restore the consistency in T , we propose to
rewrite the inclusion relations in mups(T , newC) by characterizing some of them
with the typicality operator. As said above, we reach this goal by considering
all concepts mentioned in mups(T , newC) in depth ordering, starting from the
deepest ones up to the most generic concepts. Algorithm 1 simply shows this
loop over the concepts in mups(T , newC). At each iteration, a set S of inclu-
sions is incrementally extended with the new relations discovered by function
FindSubsumptions. In case several concepts Ci have the same depth, a further
consistency check among their corresponding sets Sis is performed to deal with
inconsistent properties, coming from different Sis, and inherited by a given con-
cept F . For instance, let us assume that F v CuD ∈ S, C and D have the same
depth and distance from F , thus we cannot prefer one to the other. In addition,
by invoking FindSubsumptions over C and D we get, respectively, C v E ∈ SC

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

234

and D v ¬E ∈ SD. Since F inherits both E and ¬E, we do not conclude
anything about F having, or not, property E; however, to build a coherent S,
T(C) v E and T(D) v ¬E are added to S.

FindSubsumptions Algorithm 2 sketches the main steps of function Find-
Subsumption: it takes as inputs a concept Ci mentioned in mups(T , newC), the
corresponding gqs(Ci) given as a list in compact form, and the set S of inclusions
found so far. The intuition is that all implicit inclusions we are looking for have
the form Ci v D, where D ∈ gqs(Ci).

First of all, the algorithm initializes some local structures: Si will contain
the subsumptions discovered in this invocation, BlackList will only contain the
gqs of concepts that have been pruned: future occurrences of concepts belonging
to these gqs have to be discarded; Queue will either contain concept nodes or
complex nodes: a concept node represents a concept (not necessarily atomic),
whereas a complex node represents a structure where at least a gqs is mentioned
(i.e., a complex node is an abstraction of a number of concepts). All nodes in
Queue are kept ordered from the most specific to the most general according to
the depth of the concepts they contain. At the beginning of the algorithm (see
lines 3- 12), Queue is initialized with the elements in gqs(C).

After these preliminary steps, the algorithm loops over the elements in Queue.
At each iteration, the first node n is removed from the head of Queue. The
algorithm then checks whether n is a concept node or a complex node.

Handling concept nodes (lines 15 - 28). If n is a concept node, for instance
representing concept D, the algorithm has discovered a possible inclusion Ci v D
to be added to Si. However, if Ci v ¬D is already in S ∪ Si, relation Ci v D
has to be discarded. Moreover, since we know that D is not acceptable, then
any other concept which generalizes D is not acceptable, too; thereby we remove
from Queue any node e belonging to gqs(D) (line 18), and then add gqs(D) in
BlackList (line 19). Otherwise (Ci v ¬D is not in S ∪ Si), Ci v D represents a
new piece of knowledge that we can add to Si. If S ∪Si ∪ {Ci v D} is coherent,
the new relation is added to Si as it is (line 22). Conversely, we have discovered
one of the most specific properties of Ci that have to be made typical. That is,
in order to restore the consistency in T when we also consider the exceptional
properties of newC, the inclusion Ci v D has to be rewritten as T(Ci) v D
(line 24).

Note that, since we add either Ci v D or T(Ci) v D, we can conclude that
any other concept in gqs(¬D) will not be acceptable as it would introduce an
inconsistency. Thus, we can remove from Queue any node e which is a general-
ization of ¬D (line 26), and then add gqs(¬D) in BlackList (line 27).

Handling complex nodes (lines 29 - 32). In case the head node n is a complex
node, then it must mention at least a gqs, which abstracts a number of con-
cepts. Dealing with a complex node means generating a number of child-nodes
by expanding one of the gqs mentioned in n. The ExpandComplexNode func-
tion is shown in Algorithm 3. The set of new nodes NewNodes returned by
ExpandComplexNode are enqueue in Queue in the specificity ordering.

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

235

Algorithm 2 FindSubsumptions(Ci, gqs(Ci),S)

1: Si ← ∅
2: BlackList ← ∅
3: Queue ← ∅
4: for all element e ∈ gqs(Ci), in the specificity ordering do
5: if e is a concept E then
6: create a concept node n[E]
7: enqueue n[E] in Queue in the ordering
8: else . e is a generalization of a concept E; i.e., gqs(E)
9: create a complex node n[gqs(E)]

10: enqueue n[gqs(E)] in Queue in the ordering
11: end if
12: end for
13: while Queue is not empty do
14: n← Head(Queue)
15: if n is a concept node then
16: Let D be the concept in n; then Si is possibly extended to include Ci v D
17: if Ci v ¬D ∈ S ∪ Si then
18: remove from Queue any node e such that e ∈ gqs(D)
19: enqueue gqs(D) in BlackList
20: else . Ci v ¬D /∈ S
21: if S ∪ Si ∪ {Ci v D} is coherent then
22: Si ← Si ∪ {Ci v D}
23: else
24: Si ← Si ∪ {T(Ci) v D}
25: end if
26: remove from Queue any node e such that e ∈ gqs(¬D)
27: enqueue gqs(¬D) in BlackList
28: end if
29: else . n is a complex node
30: NewNodes← ExpandComplexNode(n, BlackList)
31: enqueue each node n′ ∈ NewNodes in Queue in the ordering
32: end if
33: end while
34: return Si

Algorithm 3 ExpandComplexNode(n, BlackList)

1: List ← ∅
2: Let gqs(D) be one of the most specific gqs mentioned in n
3: for all element e ∈ gqs(D) such that e 6∈ gqs(F), ∀gqs(F) ∈ BlackList do
4: create a node n′ by substituting gqs(D) with e in n
5: if n′ is an inconsistent concept then
6: discard n′

7: else
8: put n′ in List
9: end if

10: end for
11: return List

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

236

ExpandComplexNode The expansion of a complex node is outlined in Algo-
rithm 3. It takes as inputs the complex node n that has to be expanded, and
the BlackList containing the gqss of those concepts that have been pruned off
so far. The algorithm returns a list of new nodes, either concept or complex.
After having initialized List, (line 1), the algorithm selects one of the most
specific gqs in n. In fact, since n is a complex node, then it must mention at
least one gqs (line 2). Let us assume that gqs(D) has been selected, remember
that gqs(D) is compactly encoded as a list of concepts or gqss. The algorithm
therefore loops over the elements e in the list gqs(D), if e belongs to any gqs(F) ∈
B lackList, then e can be pruned off as it has already been determined that F ,
and then any other concept in gqs(F), is not consistent with some axioms in
S (line 3). Otherwise, e can be used to create a new node n′. More precisely,
n′ is obtained by substituting gqs(D) with e in n. Of course, n′ can either be
a concept node or a complex node (line 4). As noted above, the generalizations
of a given concept D might contain contradictory concepts since the initial set
of axioms in mups(T , newC) is inconsistent. Thus, before adding n′ to List,
we first check whether n′ is contradictory, in which case we discard it (line 5).
Otherwise, n′ is added to List (line 8). The algorithm terminates by returning
the, possibly empty, list of new nodes (line 11).

Let newC v D be the subsumption relation that, once added to a TBox T ,
generates an inconsistency, and let mups(T , newC) the minimal subset of axioms
in T preserving the inconsistency, then we can prove the following properties.

Proposition 1. The set S of concept inclusions generated by Algorithm 1 with
the invocation FindSubsumptionsMain(mups(T , newC)) is coherent.

Intuitively, S is only modified either in line 7 or in line 11 of algorithm FindSub-
sumptionsMain. In the first case, we already know that all the sets Sis inferred
for all concepts at a given depth l are altogether coherent. In the second case,
instead, we know that an inconsistency has been detected; thereby we “correct”
the axioms in Sis by means of T, yielding the consistency of S. In fact, for the
properties ALCRminT in [7], since T is nonmonotonic, we have that S is coherent.

Proposition 2. Let S be the set of concept inclusions generated by Algorithm
1, then either newC v D or T(newC) v D belongs to S.

This follows directly by the fact that newC v D has generated an inconsistency
in T , and then mups(T , newC) necessarily includes such a relation. Algorithm
1 simply reconsiders all the axioms in mups(T , newC), and builds a new set S
of axioms which contains, at least, the same axioms as in mups(T , newC), but
at least one has been modified by the typicality operator.

Theorem 1. Let T ′ be a new terminology obtained as T ′ = T \mups(T , newC) ∪
S. The new terminology T ′ is coherent.

This allows us to conclude that once we have computed S, we have a means for
correcting the initially incoherent terminology T . The simplest way to do that is

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

237

to substitute the axioms in mups(T , newC) with S. Further details and proofs
are omitted due to space limitations.

Example 2. Let us consider again the terminology Tstudent presented in Exam-
ple 1. Algorithm 1 considers the concepts in the ordering: Student uWorker,
Student, TaxPayer, ¬TaxPayer, Worker. The first invocation of FindSub-
sumptons (Algorithm 2) is therefore over the inputs: StudentuWorker, gqs(Stu-
dentuWorker), and ∅ (i.e., at the beginning S is empty). The result of such a first
invocation is the set S = {Student uWorker v Student;Student uWorker v
TaxPayer;Student u Worker v Worker}. The second invocation of Find-
Subsumptions is over the inputs: Student, gqs(Student), S. In this case, the
algorithm will find the subsumption Student v ¬TaxPayer, which is inco-
herent with the subsumptions already in S, thus, ¬TaxPayer is considered
as the typical property of Student; in other words, S is modified by adding
T(Student) v ¬TaxPayer. It is easy to see that no further subsumptions
are added in S when FindSubsumptions is invoked over the remaining concepts
TaxPayer, Worker, and ¬TaxPayer. In conclusion, the original terminology
Tstudent, can be rewritten as T ′

student:

Student uWorker v Student Student uWorker v TaxPayer
Student uWorker vWorker T(Student) v ¬TaxPayer

By the properties of the DL ALCRminT, from the resulting knowledge base above
we are able to reason about defeasible inheritance. For instance, if we have
Student(franco) (Franco is a student), we are able to infer ¬TaxPayer(franco)
(Franco does not pay taxes), however this conclusion is retracted if we fur-
ther discover that Worker(franco) (Franco is also a worker), from which we ob-
tain TaxPayer(franco). We are also able to deal with irrelevance: for instance,
T(Student u Fat) v ¬TaxPayer can be inferred, and the above conclusions still
hold even if we further know Fat(franco) (Franco is fat).

Example 3. Let us consider a simplified variant of the Pizza ontology distributed
together with Protégé. In particular, let us assume that a TBox Ttops contains
the following subsumption relations:

ax1 : FatToppings v PizzaToppings,
ax2 : CheesyToppings v FatToppings,
ax3 : VegetarianToppings v ¬FatToppings.

Now, let us assume that we discover that there also exists the tofu cheese, which
is made of curdled soybeanmilk. Thus, we change Ttops by adding the following:

ax4 : CheesyVegetarianToppings v CheesyToppings u VegetarianToppings.

Let the ABox Atops contain CheesyVegetarianToppings(tofu). The resulting
knowledge base is inconsistent, respectively, the knowledge base obtained by
adding CheesyVegetarianToppings(tofu) to the initial ABox is inconsistent, since
FatToppings and DieteticToppings are disjunct concepts, whereas CheesyVege-
tarianToppings falls in their intersection.

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

238

The tofu cheese is an exception, and the first step to tackle is to compute
mups(Ttops, CheesyVegetarianToppings) = {ax2, ax3, ax4}. Concept inclusions
(even implicit) are taken into account: possibly, some of them will be “corrected”
by means of the typicality operator in order to accommodate the exceptional
CheesyVegetarianToppings concept. In particular, the inclusions discovered are:

Stops = {
CheesyVegetarianToppings v CheesyToppings,
CheesyVegetarianToppings v VegetarianToppings,
T(CheesyToppings) v FatToppings,
T(VegetarianToppings) v ¬FatToppings
}

The concept inclusions in mups(Ttops,CheesyVegetarianToppings) can be now
substituted in Ttops with the set Stops. Theorem 1 ensures that the new Ttop
so obtained is now coherent and correctly addresses the exceptional concept
CheesyVegetarianToppings. By the properties of ALCRminT, from the resulting
knowledge base, we will be able to reason about defeasible inheritance: for in-
stance, if we know CheesyToppings(brie) (Brie is a cheesy topping), we conclude
that FatToppings(brie) (Brie is a fat topping), whereas for tofu we say nothing
about being a fat topping or not. We are also able to deal with irrelevance:
for instance, it can be inferred that, normally, cheesy potatoes toppings are fat
toppings, i.e. T(Cheesy u Potatoes) v FatToppings.

5 Conclusions and Future Issues

We have presented some preliminary results in defining a methodology for au-
tomated revision of a DL terminology in presence of exceptions. We exploit
techniques and algorithms proposed in [8], which are also extended to more ex-
pressive DLs such as SHOIN , corresponding to ontology language OWL-DL.
On the one hand, we aim at extending our approach to such expressive DLs. On
the other hand, we intend to develop an implementation of he proposed algo-
rithms, by considering the integration with existing tools for manually modifying
ontologies when inconsistencies are detected.

Acknowledgements

The authors are supported by the twin projects ODIATI#1 and ODIATI#2:
“Ontologie, DIAgnosi e TIpicalità nelle logiche descrittive” of the local research
funds 2013 by the Università degli Studi di Torino - part B, supporting young
researchers.

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

239

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook - Theory, Implementation, and Applications, 2nd edi-
tion. Cambridge (2007)

2. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

3. Casini, G., Straccia, U.: Rational Closure for Defeasible Description Logics. In:
Janhunen, T., Niemelä, I. (eds.) Proceedings of the 12th European Conference on
Logics in Artificial Intelligence (JELIA 2010). Lecture Notes in Artificial Intelli-
gence, vol. 6341, pp. 77–90. Springer, Helsinki, Finland (September 2010)

4. Casini, G., Straccia, U.: Defeasible Inheritance-Based Description Logics. In:
Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI 2011). pp. 813–818. Morgan Kaufmann, Barcelona, Spain
(July 2011)

5. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential ex-
tension of Description Logics. Fundamenta Informaticae 96, 1–32 (2009)

6. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description
Logic for Reasoning About Typicality. Artificial Intelligence 195, 165–202 (2013)

7. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Minimal Model Semantics
and Rational Closure in Description Logics . In: Eiter, T., Glim, B., Kazakov, Y.,
Krtzsch, M. (eds.) Informal Proceedings of the 26th International Workshop on
Description Logics (DL 2013). CEUR Workshop Proceedings, vol. 1014, pp. 168 –
180. Ulm, Germany (7 2013)

8. Kalyanpur, A., Parsia, B., Cuenca-Grau, B., Sirin, E.: Axiom pinpointing: Finding
(precise) justifications for arbitrary entailments in SHOIN (owl-dl). Technical
report, UMIACS, 2005-66 (2006)

9. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts
in owl ontologies. In: ESWC. pp. 170–184 (2006)

10. Ke, P., Sattler, U.: Next Steps for Description Logics of Minimal Knowledge and
Negation as Failure. In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of De-
scription Logics. CEUR Workshop Proceedings, vol. 353. CEUR-WS.org, Dresden,
Germany (May 2008)

11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

12. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Arti-
ficial Intelligence 55(1), 1–60 (1992)

13. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW. pp.
633–640 (2005)

14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 (1),
57–96 (1987)

15. Schlobach, S.: Diagnosing terminologies. In: AAAI. pp. 670–675 (2005)
16. Schlobach, S., Cornet, R.: Explanation of terminological reasoning: A preliminary

report. In: Description Logics (2003)
17. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of

description logic terminologies. In: IJCAI. pp. 355–362 (2003)
18. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent

terminologies. Journal of Automated Reasoning 39(3), 317–349 (2007)

R. Micalizio and G.L. Pozzato. Revising Description Logic Terminologies to Handle Exceptions

240

Runtime Self-Checking via Temporal (Meta-)Axioms
for Assurance of Logical Agent Systems

Stefania Costantini and Giovanni De Gasperis1

Dip. di Ingegneria e Scienze dell’Informazione e Matematica (DISIM), Università di L’Aquila,
Coppito 67100, L’Aquila, Italy

{stefania.costantini, giovanni.degasperis}@univaq.it

Abstract. This paper deals with assurance of logical agent systems via runtime
self-monitoring and checking. We adopt temporal-logic-based special constraints
to be dynamically checked at a certain (customizable) frequency. These con-
straints are based upon a simple interval temporal logic particularly tailored to
the agent realm, A-ILTL (‘Agent-Oriented Interval LTL’, LTL standing as cus-
tomary for ‘Linear Temporal Logic’).

1 Introduction

Certification and assurance of agent systems constitute crucial and far-from-trivial is-
sues, as agents represent a particularly complex case of dynamic, adaptive and reactive
software systems. Certification is aimed at producing evidence indicating that deploying
a given system in a given context involves the lowest possible level of risk of adverse
consequences (which level of risk can be considered sufficiently “low” depends upon
the application at hand). Assurance is related to dependability, i.e., to ensuring (or at
least obtaining a reasonable confidence) that system users can rely upon the system.
The issue is nicely discussed in [1], where it is noted that:

The term [assurance] is used in a broad (and somewhat imprecise) sense.
Where there is a clear specification (which is not always the case!) then we can
use the two standard terms “verification” and “validation”. Verification in this
context refers to checking whether software meets its specification, and valida-
tion refers to checking whether the specification meets the user’s requirements.

It is widely acknowledged that industrial adoption of agents systems finds a serious
obstacle in the stakeholders lack of confidence about reliability of runtime behavior of
such systems. Citing [2],

. . . the use of adaptive systems for greater resilience create situations where
runtime verification and monitoring could be particularly valuable. . . . Within
suitable new frameworks, some of the evidence required for certification can
be achieved by runtime monitoring - by analogy with runtime verification, this
approach can, somewhat provocatively, be named “runtime certification”.

241

In this paper, we propose methods for runtime monitoring of agent systems. These
methods are not in alternative but rather complementary to the many existing verifica-
tion and testing methodologies.

Pre-deployment assurance and certification techniques for agent systems include
verification and testing. Since we do not have room for an extensive illustration we
can provide just few pointers to recent literature, so we invite the reader to refer to
the recent book [3] and to the references therein. Most verification methods rely upon
model-checking, and some (e.g., [4]) upon theorem proving. Among recent interest-
ing work about agent systems (pre-deployment) assurance we particularly mention [1]
which proposes (though in a preliminary way) a method that alternates the application
of testing with formal verification techniques applied within a “Shallow Scope”, i.e,
with a limited scope of variable values. The outcome of each phase should be taken as
a guidance for the other phase. Thus, different techniques are used in synergy so as to
improve the overall level of assurance. About fault detection and recovery a particularly
interesting work is that of [5], that opens a new promising direction in model-checking-
based verification techniques. This approach allows for CTL specifications that express
injection and eventual recovery from a fault.

For formalizing and implementing runtime self-checking in logical agents while
coping with unanticipated circumstances, we propose temporal-logic-based special con-
straints to be dynamically checked at a certain (customizable) frequency. These con-
straints are based upon a simple interval temporal logic particularly tailored to the agent
realm, A-ILTL (‘Agent-Oriented Interval LTL’, LTL standing as customary for ‘Linear
Temporal Logic’). In this setting, properties can be defined that should hold according
to events that have happened and to events which are supposed to happen or not to hap-
pen in the future. This also considering partially specified event sequences, unexpected
events or event order. The adoption of an interval logics allows for the specification
of time-bounded properties: it makes it possible to specify that some property should
occur within a certain time frame or before/after a certain time, where the interval can
also be conditionally defined. A-ILTL constraints are contextual, i.e., they can be speci-
fied in a general form and each time they are checked they are instantiated (via suitable
preconditions) to the present agent’s state.

In [2], it is advocated that for adaptive systems (of which agents are clearly a partic-
ularly interesting case) assurance methodologies should whenever possible imply not
only detection but also recovery from software failures. In fact, though (at least in prin-
ciple) a certified software should not fail, in practice serious software-induced incidents
have been observed in certified critical systems. In [2] examples are produced concern-
ing airplane and air traffic control, where failures are often due on the one hand to
incomplete specifications and on the other hand to unpredictability of the environment.

In [6], which discusses medical robotic applications in human telesurgery, it is em-
phasized how such systems should be fail safe in the sense that, in the event of failure,
should proactively respond so as to limit harm to other devices or danger to users.

Our methods in fact provide the possibility of correcting and/or improving agent’s
functioning: the behavior can be corrected whenever an anomaly is detected, but can
also be improved whenever it is acceptable, yet there is room for getting a better perfor-

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

242

mance. Counter measures can be object-level, i.e., related to the application, or meta-
level, e.g., replacing (as suggested in [2]) a software component by a diverse alternate.

A-ILTL constraints are defined over formulas of any underlying logic language L,
and are rooted in the Evolutionary Semantics of agent programs [7]. We thus obtain a
fairly general setting, that could be adopted in several logic agent-oriented languages
and formalisms, such as, e.g., AgentSpeak (cf. [8, 9] and the references therein), DALI
[10–12]), GOAL [13, 14], and 3APL [15, 16].

In this paper, we show how A-ILTL temporal constraints may be used to check
for critical situations and to enforce suitable reaction patterns for achieving recovery.
The novelty of the approach is in the following aspects. (i) A-ILTL temporal constraints
constitute a device for run-time self-monitoring which can be completely integrated into
agent programs and their semantics. I.e., there is no separate monitor which examines
a “trace” of observations performed on the agent’s behavior. (ii) Self-recovery/repair
is encompassed in the approach. (iii) The semantic integration into the Evolutionary
semantics is devised such that there is no need to implement a full temporal-logic in-
ference engine, at least if keeping the expressions to be checked reasonably simple. (iv)
Consequently, the complexity of check is reasonably low.

The paper is organized as follows. In Section 2 we recall the Evolutionary Seman-
tics. In Sections 3- 4 we introduce the A-ILTL logic, also in relation to the Evolutionary
Semantics. In Section 5 we illustrate A-ILTL constraints and show by means of ex-
amples how such constraints can be exploited for runtime monitoring and self-repair
of agent systems. In Section 6 we briefly discuss the complexity related to run-time
constraint checking. Finally, in Section 7 we discuss related work and propose some
concluding remarks.

2 Evolutionary Semantics

The Evolutionary semantics (introduced in [7]) is meant at providing a high-level gen-
eral account of evolving agents, trying to abstract away from the details of specific
agent-oriented frameworks. We define, in very general terms, an agent as the tuple Ag
= < PA, E > where A is the agent name and PA (that we call “agent program”, but
can be in turn a tuple) describes the agent according to some agent-oriented formalism
L. E is the set of the events that the agent is able to recognize or determine (so, E in-
cludes actions that the agent is able to perform), according to the specific agent-oriented
framework.

Let H be the history of an agent as recorded by the agent itself (in a form that
will depend upon the specific agent-oriented framework), i.e., H includes agent’s per-
ceptions and memories. For instance, in DALI the history consists of: the set Ev of
external and internal events, that represent respectively events that the agent presently
perceives of its environment, and events that the agent has raised by its own internal
reasoning processes; the set Act of the actions that the agent is enabled to perform at
its present stage of operation; the set P of most recent versions “past events”, which
include: previously perceived events, but also actions that the agent has performed (no-
tice that elements of Ev and Act will be transferred into P at the next stage); the set
PNV of previous instances of past events (e.g., P may contain the last measurements

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

243

of temperature while PNV may contain older ones), plus past constraints that specify
interaction between P and PNV .

We assume that program PA as written by the programmer is in general transformed
into an initial agent program P0 by means of an initialization step. When agent A
is activated P0 will go into execution, and will evolve according to events that either
happen or are generated internally, to actions which are performed, etc., i.e., according
to the evolution of H .

Evolution in this setting is represented via program-transformation steps, each one
transforming Pi into Pi+1 according to Hi, which is the partial history up to stage i.
The choice of which elements of Hi do actually trigger an evolution step is part of the
definition of a specific agent framework.

Thus, we obtain a Program Evolution Sequence PE = [P0, . . . , Pn, . . .]. The pro-
gram evolution sequence will imply a corresponding Semantic Evolution Sequence
ME = [M0, . . . ,Mn, . . .] where Mi is the semantics of Pi according to L. Notice
in fact that the approach is parametric w.r.t L.

Definition 1 (Evolutionary semantics). Let Ag be an agent. The evolutionary seman-
tics εAg of Ag is a tuple 〈H,PE,ME〉, where H is the history of Ag , and PE and
ME are respectively its program and semantic evolution sequences.

The next definition introduces the notion of instant view of εAg , at a certain stage
of the evolution (which is in principle of unlimited length).

Definition 2 (Evolutionary semantics snapshot). Let Ag be an agent, with evolu-
tionary semantics εAg = 〈H,PE,ME〉. The snapshot at stage i of εAgi is the tuple
〈Hi, Pi,Mi〉, where Hi is the history up to the events that have determined the transi-
tion from Pi−1 to Pi.

In [7], program transformation steps associated with DALI language constructs are
defined in detail. They can easily be adapted to AgentSpeak [8, 9] as the two languages
share a number of similarities. More generally however, in the specific agent setting
under consideration an evolution step will occur at least whenever new events are per-
ceived, reacted to, and recorded, and whenever an agent proactively undertakes mea-
sures to pursue its goals. An evolution step will possibly determine an update of the
history, which is a part of the agent’s belief base1. Thus, each evolution step affects
the belief or “mental” state of an agent. The evolutionary semantics may express for
instance the notion of trace of a GOAL agent [13, 14] where agent program Pi en-
compasses the agent’s mental state and each evolution step, which in GOAL is called
computation step is determined by a conditional action. For 3APL [15, 16], agent pro-
gram Pi encompasses the agent’s initial configuration, and the related sets GR of goal
rules, PR of plan rules, IR of interactive rules; the evolutionary semantics corresponds
to a 3APL agent computation run, and evolution steps are determined by the 3APL
transition system.

The semantics presented in [17] for Reactive Answer Set Programming, based upon
“incremental logic programs” and “online progression”, brings some conceptual simi-
larity with the (pre-existing) Evolutionary Semantics.

1 Equivalently, according to the specific agent framework with its own terminology, one may
talk of an agent’s knowledge base

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

244

3 A-ILTL

For defining properties that are supposed to be respected by an evolving system, a well-
established approach is that of Temporal Logic, and in particular of Linear-time Tem-
poral Logics (LTL, cf., e.g., [18]). These logics are called ‘linear’ because (in contrast
to ‘branching time’ logics) they evaluate each formula with respect to a vertex-labeled
infinite path (or “state sequence”) s0s1 . . . where each vertex si in the path corresponds
to a point in time (or “time instant” or “state”). In what follows, we use the standard
notation for the best-known LTL operators.

An interval-based extension to the well-known linear temporal logic LTL is formally
introduced in [19] where it is called A-ILTL for ‘Agent-Oriented Interval LTL’. Though,
as discussed in [19], several “metric” and interval temporal logic exist, the introduction
of A-ILTL is useful in the agent realm because the underlying discrete linear model
of time and the complexity of the logic remains unchanged with respect to LTL. This
simple formulation can thus be efficiently implemented, and is nevertheless sufficient
for expressing and checking a number of interesting properties of agent systems.

Formal syntax and semantics of A-ILTL operators (also called below “Interval Op-
erators”) are fully defined in [19]. A-ILTL expressions are (like plain LTL ones) in-
terpreted in a discrete, linear model of time. Formally, this structure is represented by
M = 〈N, I〉 where, given countable set Σ of atomic propositions, interpretation func-
tion I : N 7→ 2Σ maps each natural number i (representing state si) to a subset of Σ.
Given set F of formulas built out of classical connectives and of LTL and A-ILTL op-
erators (where however nesting of A-ILTL operators is not allowed), the semantics of a
temporal formula is provided by a satisfaction relation: for ϕ ∈ F and i ∈ N we write
M, i |= ϕ if, in the satisfaction relation, ϕ is true w.r.t.M, i. We can also say (leaving
M implicit) that ϕ holds at i, or equivalently in state si, or that state si satisfies ϕ. A
structureM = 〈N, I〉 is a model of ϕ ifM, i |= ϕ for some i ∈ N.

Some among the A-ILTL operators are the following.

Definition 3. Let ϕ ∈ F and let m,n be positive integer numbers.

Fm,n (eventually (or “finally”) in time interval). Fm,nϕ states that ϕ has to hold some-
time on the path from state sm to state sn. I.e.,M, i |= Fm,nϕ if there exists j such
that j ≥ m and j ≤ n andM, j |= ϕ. Can be customized into Fm, bounded eventu-
ally (or “finally”), where ϕ should become true somewhere on the path from the current
state to the (m)-th state after the current one.

Gm,n (always in time interval). Gm,nϕ states that ϕ should become true at most at
state sm and then hold at least until state sn. I.e.,M, i |= Gm,nϕ if for all j such that
j ≥ m and j ≤ nM, j |= ϕ. Can be customized into Gm, bounded always, where ϕ
should become true at most at state sm.

Nm,n (never in time interval). Nm,nϕ states that ϕ should not be true in any state
between sm and sn, i.e., M, i |= Nm,nϕ if there not exists j such that j ≥ m and
j ≤ n andM, j |= ϕ.

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

245

4 A-ILTL and Evolutionary Semantics

In this section, we refine A-ILTL so as to operate on a sequence of states that corre-
sponds to the Evolutionary Semantics defined before. In fact, states in our case are not
simply intended as time instants. Rather, they correspond to stages of the agent evolu-
tion. Time in this setting is considered to be local to the agent, where with some sort of
“internal clock” is able to time-stamp events and state changes. We borrow from [20]
the following definition of timed state sequence, that we tailor to our setting.

Definition 4. Let σ be a (finite or infinite) sequence of states, where the ith state ei, ei ≥
0, is the semantic snapshots at stage i εAgi of given agent Ag . Let T be a corresponding
sequence of time instants ti, ti ≥ 0. A timed state sequence for agent Ag is the couple
ρAg = (σ, T). Let ρi be the i-th state, i ≥ 0, where ρi = 〈ei, ti〉 = 〈εAg

i , ti〉.

We in particular consider timed state sequences which are monotonic, i.e., if ei+1 6=
ei then ti+1 > ti. In our setting, it will always be the case that ei+1 6= ei as there is no
point in semantically considering a static situation: as mentioned, a transition from ei
to ei+1 will in fact occur when something happens, externally or internally, that affects
the agent.

Then, in the above definition of A-ILTL operators, it is immediate to let si = ρi.
This requires however a refinement: in fact, in a writing Opm or Opm,n occurring in an
agent program parameters m and n will not necessarily coincide with time instants of
the above-defined timed state sequence. To fill this gap, in [19] a suitable approximation
is introduced.

We need to adapt the interpretation function I of LTL to our setting. In fact, we
intend to employ A-ILTL within agent-oriented languages, where we restrict ourselves
to logic-based languages for which an evolutionary semantics and a notion of logical
consequence can be defined. Thus, given agent-oriented language L at hand, the set
Σ of propositional letters used to define an A-ILTL semantic framework will coincide
with all ground expressions of L (an expression is ground if it contains no variables,
and each expression of L has a possibly infinite number of ground versions). A given
agent program can be taken as standing for its (possibly infinite) ground version, as
it is customarily done in many approaches. Notice that we have to distinguish between
logical consequence in L, that we indicate as |=L, from logical consequence in A-ILTL,
indicated above simply as |=. However, the correspondence between the two notions
can be quite simply stated by specifying that in each state si the propositional letters
implied by the interpretation function I correspond to the logical consequences of agent
program Pi:

Definition 5. Let L be a logic language. Let ExprL be the set of ground expressions
that can be built from the alphabet of L. Let ρAg be a timed state sequence for agent Ag ,
and let ρi = 〈εAg

i , ti〉 be the ith state, with εAg
i = 〈Hi, Pi,Mi〉. An A-ILTL formula τ

is defined over sequence ρAg if in its interpretation structureM = 〈N, I〉, index i ∈ N
refers to ρi, which means that Σ = ExprL and I : N 7→ 2Σ is defined such that, given
p ∈ Σ, p ∈ I(i) iff Pi |=L p. Such an interpretation structure will be indicated with
MAg . We will thus say that τ holds/does not hold w.r.t. ρAg .

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

246

A-ILTL properties will be verified at run-time, and thus they act as constraints over
the agent behavior2. In an implementation, verification may not occur at every state
(of the given interval). Rather, sometimes properties need to be verified with a certain
frequency, that can be specifically tuned to the various cases. Then, we have introduced
a further extension that consists in defining subsequences of the sequence of all states: if
Op is any of the operators introduced in A-ILTL and k > 1,Opk is a semantic variation
of Op where the sequence of states ρAg of given agent is replaced by the subsequence
s0, sk1 , sk2 , . . . where for each kr, r ≥ 1, kr mod k = 0, i.e., kr = g × k for some
g ≥ 1.

A-ILTL formulas to be associated to given agent can be defined within the agent
program, though they constitute an additional but separate layer, composed of formulas
{τ1, . . . , τl}. Agent evolution can be considered to be “satisfactory” if it obeys all these
properties.

Definition 6. Given agent Ag and given a set of A-ILTL expressionsA = {τ1, . . . , τl},
timed state sequence ρAg is coherent w.r.t.A if A-ILTL formulaGζ with ζ = τ1∧. . .∧τn
holds.

Notice that the expression Gζ is an invariance property in the sense of [21]. In fact,
coherence requires this property to hold for the whole agent’s “life”. In the formulation
Gm,nζ that A-ILTL allows for, one can express temporally limited coherence, concern-
ing for instance “critical” parts of an agent’s operation. Or also, one might express forms
of partial coherence concerning only some properties.

An “ideal” agent will have a coherent evolution, whatever its interactions with the
environment can be, i.e., whatever sequence of events arrives to the agent from the
external “world”. However, in practical situations such a favorable case will seldom be
the case, unless static verification has been able to ensure total correctness of agent’s
behavior. Instead, violations will occasionally occur, and actions should be undertaken
so as to attempt to regain coherence for the future.

A-ILTL rules may imply asserting and retracting rules or sets of object rules (“mod-
ules”). In this setting, assert and retract can be considered as special A-ILTL operators,
for which a formal semantics is provided (cf. [19]).

5 A-ILTL for Monitoring Liveness and Safety Properties

In this section we illustrate the usefulness of A-ILTL constraints for defining and veri-
fying liveness and safety properties in agent systems. In software engineering, liveness
properties concern the progress that an agent makes and express that a (good) state even-
tually will be reached, while safety properties express that some (bad) state will never
be entered. This implies that liveness is concerned with the evolution of a system, while
in general safety is not: notice in fact that, paradoxically, doing nothing prevents bad
states from being reached. Notice however that in our setting we restricted ourselves to
monotonic state sequences based upon the evolutionary semantics, so that our agents
evolve by definition. Notice that, if violated, liveness properties are violated in infinite

2 By abuse of notation we will indifferently talk about A-ILTL rules, expressions, or constraints.

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

247

time (a good state not yet reached might be in principle reached in the future) while
safety properties are violated in finite time, in case a “bad” state is reached. It is widely
acknowledged (cf., e.g., [22]) that any property can be expressed as a conjunction of a
safety and a liveness property. In agents, “bounded” liveness is often more interesting
than “pure” liveness: in fact, sometimes it does not suffice that a certain state might
be reached in an indefinite future, as agents are situated real-time working entities that
operate with limited computational resources and within deadlines. Bounded liveness
properties are equivalent to safety properties that are violated whenever the desirable
state is not reach withing the deadline. However, expressing such properties in the form
of liveness properties is often more intuitive. A-ILTL operators can be defined either
on finite intervals and then, to any practical extent, they define safety properties, or to
infinite intervals (with no upper bound) thus defining liveness properties.

We employ in the examples a pragmatic form for A-ILTL expressions related to
logic agent-oriented languages. In particular, we represent an A-ILTL expression in the
form OP(m,n; k)ϕ where: m,n define the time interval where (or since when, if n
is omitted) expression OP ϕ is required to hold, and k (optional) is the frequency (in
terms of states, or time instants) for checking whether the expression actually holds.

For instance, EVENTUALLY (m,n; k)ϕ states that ϕ should become true at some
point between time instants (states) m and n.

In rule-based logic programming languages, we may reasonably restrict ϕ to be
a conjunction of literals. In pragmatic A-ILTL formulas, ϕ must be ground when the
formula is checked. In fact, we allow variables to occur in an A-ILTL formula, to be
instantiated via a context χ (we then talk about contextual A-ILTL formulas). Notice
that, for the evaluation of ϕ and χ, we rely upon the procedural semantics of the ‘host’
language.

In the following, a contextual A-ILTL formula τ will implicitly stand for the ground
A-ILTL formula obtained via evaluating the context. In [19] it is specified how to oper-
ationally check whether such a formula holds. This by observing that A-ILTL operators
defined over finite intervals there is a crucial state where it is definitely possible to as-
sess whether a related formula holds or not in given state sequence, by observing the
sequence up to that point and ignoring the rest.

In runtime self-checking, as discussed above, an issue of particular importance in
case of violation of a property is that of undertaking suitable measures in order to re-
cover or at least mitigate the critical situation. Actions to be undertaken in such cir-
cumstances can be seen as an internal reaction to criticalities. More effective reaction
can be defined if complex reactive features are available in the underlying language.
In non-trivial cases, the issue of runtime recovery has a significant intersection (that
had not been identified so far) with “Complex Event Processing” (CEP), which is an
emergent relevant new field of software engineering and computer science [23]. In fact,
a lot of practical applications have the need to actively monitor vast quantities of event
data to make automated decisions and take time-critical actions [24–27] (cf. also the
Proceedings of the RuleML Workshop Series). Many of the current approaches to CEP
are declarative and based on rules, and often on logic-programming-like languages and
semantics: for instance, [24] is based upon a specifically defined interval-based Event
Calculus [28]. In logical agents, [29–31] tackled the issue of complex reactivity, by

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

248

considering the possibility of choosing among different possible reactive patterns also
by means of complex preferences. In the present paper, we show by means of examples
how kinds of A-ILTL constraints exploiting complex reactivity can be useful in runtime
recovery. For lack of space reactive patterns will be discussed informally in relation to
examples.

Below is the general form of an A-ILTL constraint with a reactive component that
we call recovery pattern.

Definition 7. A reactive A-ILTL rule is of the form (where M,N,K can be either vari-
ables or constants)

OP(M ,N ; K)ϕ :: χ÷ ρ
where:(i) OP(M ,N ; K)ϕ :: χ is a contextual A-ILTL formula, called the monitoring
condition, that should involve the observation of either external or internal events; (ii)
ρ is called the recovery component of the rule, and it consists of a complex reactive
pattern.

Whenever the monitoring condition (automatically checked at frequency K) is vi-
olated (i.e., it does not hold) within given interval, then the recovery component ρ is
executed. Syntax and semantics of reactive patterns usable in the recovery component
will depend upon the underlying languageL. In the examples, we adopt a sample syntax
suitable for logic-programming-based settings.

Consider for instance the example of a controller agent that has to keep the tem-
perature in a certain time frame (say between 8 a.m. and 5 p.m.) in the range 19–21
(Celsius degrees). In this case, the measure temperature of temperature implies sens-
ing actions to be performed with a sampling period by the agent. If the condition is
violated, a reaction should try to restore the wished-for situation. We assume in fact to
be in a smart building, where the temperature is monitored by intelligent agents, and
where each agent tries to select, in order to modify the temperature, the best suitable
energy source: for instance, according to present circumstances, an agent might select
the less expensive font of energy or, in case of a measure significantly different from
wished-for values, the font which guarantees the most efficient correction. Notice that
in the course of time different fonts of energy can be deemed to be the best choice. At
each check (where in fact the A-ILTL constraints is dynamically checked at the speci-
fied frequency, or at a default frequency in case none is provided) we assume that the
best choice can determined by means of an application-dependent decision procedure.
So, in given interval, the monitoring condition will sometimes succeed (the temperature
is within range, then nothing is done) and will sometimes fail. In the latter case, the font
of energy S which is deemed more effective (in terms of cost and/or efficiency) in that
moment is determined, and used in order to suitably affect the temperature and try to
keep it within the specified range (where modify temperatureG(S) is a goal, involv-
ing appropriate actions). In A-ILTL, this can be formalized as follows by exploiting
complex preferences introduced in [32]. As there are no variables, context is omitted.

ALWAYS (8 : 00 a.m., 5 : 00 p.m.; 10m) 19 ≤ temperature ≤ 21 ÷
modify temperatureG(S),
S IN {external electricity , gas, solar panel electricity : most effective}

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

249

The next example is a meta-statement expressing the capability of an agent to mod-
ify its own behavior. In case a goal G has not been achieved (in a certain context)
because the allotted time has elapsed, then the recovery component implies replacing
the planning module (assuming that more than one is available) and retrying the goal.
We suppose that the possibility of achieving a goalG is evaluated w.r.t. a moduleM that
represents the context for G (notation P (G,M), P standing for ’possible’). Necessity
and possibility evaluation within a reasonably complex framework has been discussed
in [30]. In case the goal is still deemed to be possible but has not been achieved before
a certain deadline, the reaction consists in substituting the present planning module and
re-trying the goal.

NEVER goal(G),
eval context(G ,M),P(G ,M), timed out(G),not achieved(G)÷

replace planning module, retry(G)

It can be useful to define properties to be checked upon arrival of event sequences,
of which however only relevant events (and their order) should be considered. To this
aim we introduce a new kind of A-ILTL constraints, that we call Evolutionary A-ILTL
Expressions. To define partially known sequences of any length, on the line of dynamic
logic [33] we admit for event sequences a syntax reminiscent of regular expressions
so as to specify irrelevant/unknown events, and repetitions. In particular, event expres-
sions (and, analogously, action expressions) may be primitive events e , sequences of
event expressions e1 ; e2 , . . ., zero or more iterations of an event expression e∗, or a
choice among event expressions e1 + e2 + We also admit “wild cards”, i.e., vari-
ables (starting with uppercase) to stand for unknown events/actions.

Definition 8 (Evolutionary A-LTL Expressions). Let SEvp be a sequence of past
events, and SF and J J be sequences of events. Let τ be a contextual A-ILTL formula
Op ϕ :: χ. An Evolutionary LTL Expression $ is of the form SEvp : τ ::: SF ::::
J J where: (i) SEvp denotes the sequence of relevant events which are supposed to
have happened, and in which order, for the rule to be checked; i.e., these events act as
preconditions: whenever one or more of them happen in given order, τ will be checked;
(ii) SF denotes the events that are expected to happen in the future without affecting τ ;
(iii) J J denotes the events that are expected not to happen in the future; i.e., whenever
any of them should happen, ϕ is not required to hold any longer, as these are “breaking
events”.

An Evolutionary LTL Expression can be evaluated w.r.t. a state si which includes
among its components the history of the agent, i.e., the list of past events perceived by
the agent. A history H satisfies an event sequence S whenever all events in S occur in
H , in the order specified by S itself.

Definition 9. An Evolutionary A-ILTL Expression $, of the form specified in Defini-
tion 8: (1) holds in state si whenever (i) history Hi satisfies SEvp and SF and does not
include any event in J J , and τ holds or (ii) Hi includes any event occurring in J J
(the expression is broken); (2) is violated in state si whenever Hi satisfies SEvp and
SF and does not include any event in J J , and τ does not hold.

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

250

Operationally, an Evolutionary A-ILTL Expression can be finally deemed to hold if
either the critical state has been reached and τ holds, or an unwanted event has occurred.
Instead, an expression can be deemed not to hold (or, as we say, to be violated as far
as it expresses a wished-for property) whenever τ is false at some point without the
occurrence of breaking events.

The following is an example of Evolutionary A-ILTL Expression that might occur
in an agent program installed on an autonomous robot working on batteries, and able
to check its own charge level. The robot moves in some environment to perform some
task. The following A-ILTL axiom states that after a battery recharge (indicated as a
past event, postfix ’P ’) at time T , the charge level should be sufficient for 6 hours
despite a sequence of actions which can be considered to be ’normal’ in relation to the
robot’s task. These actions may for instance involve moving around, cleaning rubbish,
delivering packages, etc. Instead, the charge level can be expected to be low in case of
extensive usage actions, for instance in case of an exceptional unexpected event that
requires the robot to increase its activities (e.g., drying water in case of a flooding from
a broken pipe). There is a classification of what should be intended by ’normal’ and
’extensive’ usage.

recharge batteryP :T :
ALWAYS (T, T + 6hour) charge level(L), L > low
::: normal usage action(Act)∗ :::: extensive usage action(Act)∗

The above expression should be combined with another A-ILTL expression forc-
ing recharge every six hours. The latter should state that if the last battery recharge
recharge batteryP has occurred at time T which is more than six hours different from
present time now , then as a recovery the goal recharge batteryG must be set. Achieving
this goal may require, for instance, reaching the nearest recharge station. Notice that,
in this case, we have used an A-ILTL constraint as a programming construct, which
however has a role in terms of assurance since it forces the agent to respect a timing
which is essential for the system good functioning.

ALWAYS
recharge batteryP :T ,now − T > 6hour ÷ recharge batteryG

Whenever an Evolutionary A-ILTL expression is either violated or broken, a reac-
tion can be attempted aiming at recovering a desirable or at least acceptable agent’s
state.

Definition 10. An evolutionary LTL expression with repair $r is of the form $|η1||η2
where $ is an Evolutionary LTL Expression adopted in language L, and η1, η2 are
atoms of L. η1 will be executed (according to L’s procedural semantics) whenever
$ is violated, and η2 will be executed whenever $ is broken. η1 and η2 are called
countermeasures.

In previous example, whenever the robot detects a low level of charge, countermea-
sure η1, taken in case of low battery under normal usage, may for instance imply alerting
the user, as a fault either in the battery or in the recharge station can be hypothesized.
Instead η2, taken in case of low battery under exceptional usage, will simply imply the
robot to resort to the recharge station. The overall expression will take the form:

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

251

recharge batteryP :T :
ALWAYS (T, T + 6hour) charge level(L), L > low
| alert user possible faultA || recharge batteryG

6 Complexity of Check and Discussion

In this section we synthetically analyze the complexity of checking A-ILTL expressions.
For lack of space, we cannot provide a detailed account. We make the simplifying as-
sumption that all expressions are checked at the same frequency: i.e., the agent devotes
with a certain periodicity some amount time to perform the check. Here we evaluate
this amount. Let us assume to have f A-ILTL expressions, and that the time for retriev-
ing each expression from the computer memory is m. Thus, retrieving all expressions
to be evaluated is O(f ? m). Let k be the number of the different A-ILTL operator
occurring in the f expressions. Let if eval be the time needed in order to understand
whether each expression needs to be evaluated at the present state: this includes check-
ing w.r.t. the crucial state and, in case of Evolutionary A-ILTL Expressions, checking
the event sequence SEvp w.r.t. current agent’s history. Let max eval be the maximum
time needed for the evaluation of each contextual A-ILTL formula Op ϕ :: χ. Let
if viol or broken be the maximum time needed to state whether each Evolutionary
A-ILTL Expressions is either violated or broken: this implies checking event sequences
SF and J J w.r.t. current agent’s history.

Therefore, the total time to be spent for checking all A-ILTL Expression (in the
worst case, where all of them are of the Evolutionary kind, and each of them needs to
be evaluated at the present state) can be estimated to:

O((f ? m) + (f ? (if eval + max eval + if viol or broken)))

Then, for each expression which is either violated or broken, there will be a time
spent in the recovery and countermeasure actions.

The relatively low complexity of check (which however requires to keep the number
of A-ILTL expressions as low as possible, and to tune frequency carefully, according
to the environment change rate) is due to the definition of A-ILTL in relation to the
Evolutionary semantics: in fact, it is not needed to implement a temporal logic inference
engine, rather to periodically check Op ϕ :: χ. This in the case of simple non-nested
A-ILTL expressions. Introducing more complex expressions is a subject of future work.

7 Related Work and Concluding Remarks

In this paper, we have proposed A-ILTL runtime constraints for agents’ self-checking
and monitoring. We have shown how to express via these constraints a number of useful
liveness and safety properties. We have provided a semantic framework general enough
for accommodating a number of agent-oriented languages, so as to allow A-ILTL con-
straints to be adopted in different settings. This work has been influenced by [34, 19,
35, 36].

We may easily notice similarities between A-ILTL constraints and event-calculus
formulations [28]. Also, approaches based on abductive logic programming such as,

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

252

SCIFF (cf. [37] and the references therein) allow one to model dynamically upcoming
events, and specify positive and negative expectations, and the concepts of fulfillment
and violation of expectations. Reactive Event Calculus (REC) stems from SCIFF [38]
and adds more flexibility by reacting to new events by extending and revising previously
computed results. However, these approaches have been devised for static or dynamic
checking when performed by a third party. Event sequences, the concepts of violated
and broken expressions, complex reaction patterns, and independence of the underlying
logic are however distinguished features of the proposed approach.

A well-established line of work concerning the use of temporal logic in order to
define run-time monitors is discussed in [39] and the references therein. However, this
work is not related to agents, and does not concern self-checking: in fact, they propose a
rule-based temporal language for defining “monitors” which examine either on-line or
off-line some kind of “observable trace” generated by the program under check. There
is no notion of recovery in case malfunctioning should be detected.

The proposed approach has been experimented in the context of energy management
in smart buildings [40]. Such intelligent control is dynamic by nature, and must fulfill
real-time requirements: in fact, each building has its own dynamical thermo-physical
behavior and is immersed in a dynamic environment where weather events change its
energy footprint in function of time. The outcome of the experiments is encouraging,
in the sense that adopting agents equipped with the proposed features allows for not
only general but also local (room-by-room or area-by-area) control of energy saving
according to user comfort requirements and preferences.

Future work includes refining A-ILTL constraints to adapt to different self-checking
issues and contexts. As suggested in [2], a very interesting line of investigation concerns
automated synthesis of runtime constraints from specifications but also from test results,
extracting invariants expressing correct or critical situations.

References

1. Winikoff, M.: Assurance of agent systems: What role should formal verification play? (2010)
2. Rushby, J.M.: Runtime certification. In Leucker, M., ed.: Runtime Verification, 8th Inter-

national Workshop, RV 2008. Selected Papers. Volume 5289 of Lecture Notes in Computer
Science. Springer (2008) 21–35

3. Dastani, M.M., Hindriks, K., Meyer, J.J.C., eds.: Specification and Verification of Multi-
agent Systems. Springer US (2010)

4. Shapiro, S., Lesprance, Y., Levesque, H.: The cognitive agents specification language and
verification environment (2010)

5. Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify fault
tolerance in multi-agent systems. In Sierra, C., Castelfranchi, C., Decker, K.S., Sichman,
J.S., eds.: 8th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Proceedings, Volume 1, IFAAMAS (2009) 113–120

6. Butner, S., Ghodoussi, M.: Transforming a surgical robot for human telesurgery. IEEE
Transactions on Robotics and Automation 19(5) (2003) 818–824

7. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Endriss, U., Omicini, A., Torroni, P., eds.: Declarative Agent Languages and
Technologies III, Third International Workshop, DALT 2005, Selected and Revised Papers.
Volume 3904 of LNAI. Springer (2006) 106–123

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

253

8. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language. In
de Velde, W.V., Perram, J.W., eds.: Agents Breaking Away, 7th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World, Proceedings. Volume 1038 of Lecture
Notes in Computer Science., Springer (1996) 42–55

9. Bordini, R.H., Hübner, J.F.: Semantics for the jason variant of agentspeak (plan failure and
some internal actions). In Coelho, H., Studer, R., Wooldridge, M., eds.: ECAI 2010 - 19th
European Conference on Artificial Intelligence, Proceedings. Volume 215 of Frontiers in
Artificial Intelligence and Applications., IOS Press (2010) 635–640

10. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424,
Springer-Verlag, Berlin (2002)

11. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI
3229, Springer-Verlag, Berlin (2004)

12. Costantini, S., D’Alessandro, S., Lanti, D., Tocchio, A., al.: DALI web site, download of the
interpreter (2012) Released: basic DALI features. For beta versions please ask the authors.

13. Hindriks, K.V.: Programming rationalagents in goal. In El Fallah Seghrouchni, A., Dix, J.,
Dastani, M., Bordini, R.H., eds.: Multi-Agent Programming:. Springer US (2009) 119–157

14. Hindriks, K.: A verification logic for goal agents (2010)
15. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming language for

cognitive agents goal directed 3apl. In Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.:
Programming Multi-Agent Systems, First International Workshop, PROMAS 2003, Selected
Revised and Invited Papers. Volume 3067 of Lecture Notes in Computer Science., Springer
(2004) 111–130

16. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in 3apl.
In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Volume 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations. Springer (2005) 39–67

17. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In
Delgrande, J.P., Faber, W., eds.: Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Proceedings. Volume 6645 of Lecture Notes in
Computer Science., Springer (2011)

18. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of Theoretical
Computer Science, vol. B. MIT Press (1990)

19. Costantini, S.: Self-checking logical agents. In: Proc. of LA-NMR 2012. Volume 911.,
CEUR Workshop Proceedings (CEUR-WS.org) (2012) Invited paper.

20. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In de Bakker, J.W.,
Huizing, C., de Roever, W.P., Rozenberg, G., eds.: Real-Time: Theory in Practice, REX
Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings. Volume 600 of Lecture
Notes in Computer Science., Springer (1992) 226–251

21. Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness properties of
concurrent programs. Sci. Comput. Program. 4(3) (1984) 257–289

22. Dederichs, F., Weber, R.: Safety and liveness from a methodological point of view. Inf.
Process. Lett. 36(1) (1990) 25–30

23. Chandy, M.K., Etzion, O., von Ammon, R.: 10201 Executive Summary and Manifesto –
Event Processing. In Chandy, K.M., Etzion, O., von Ammon, R., eds.: Event Processing.
Number 10201 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2011)

24. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: RuleML.
Volume 5858 of Lecture Notes in Computer Science., Springer (2009) 53–66

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

254

25. Etzion, O.: Event processing - past, present and future. Proceedings of the VLDB Endow-
ment, PVLDB Journal 3(2) (2010) 1651–1652

26. Paschke, A., Vincent, P., Springer, F.: Standards for complex event processing and reaction
rules. In Olken, F., Palmirani, M., Sottara, D., eds.: RuleML America. Volume 7018 of
Lecture Notes in Computer Science., Springer (2011) 128–139

27. Vincent, P.: Event-driven rules: Experiences in cep. In Olken, F., Palmirani, M., Sottara,
D., eds.: RuleML America. Volume 7018 of Lecture Notes in Computer Science., Springer
(2011) 11

28. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4
(1986) 67–95

29. Costantini, S., Dell’Acqua, P., Tocchio, A.: Expressing preferences declaratively in logic-
based agent languages. In: Proc. of Commonsense’07, the 8th International Symposium on
Logical Formalizations of Commonsense Reasoning, AAAI Press (2007) Event in honor of
the 80th birthday of John McCarthy.

30. Costantini, S.: Answer set modules for logical agents. In de Moor, O., Gottlob, G., Furche,
T., Sellers, A., eds.: Datalog Reloaded: First International Workshop, Datalog 2010. Volume
6702 of LNCS. Springer (2011) Revised selected papers.

31. Costantini, S., De Gasperis, G.: Complex reactivity with preferences in rule-based agents. In
Bikakis, A., Giurca, A., eds.: Rules on the Web: Research and Applications, RuleML 2012
- Europe, Montpellier, France, August 27-29, 2012. Proceedings. Volume 6826 of Lecture
Notes in Computer Science., Springer (2012) 167–181

32. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource
consumption and production in asp. J. Algorithms 64(1) (2009) 3–15

33. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: 17th Annual IEEE Sympo-
sium on Foundations of Computer Science, Proceedings, IEEE Computer Society (1976)

34. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of agent prop-
erties. In: Proc. of the Int. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP09). (2009)

35. Costantini, S.: Self-checking logical agents. In Gini, M.L., Shehory, O., Ito, T., Jonker, C.M.,
eds.: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’13, Proceedings, IFAAMAS (2013) 1329–1330

36. Costantini, S., Gasperis, G.D.: Meta-level constraints for complex event processing in logical
agents. In: Informal Proc. of Commonsense 2013, 11th International Symposium on Logical
Formalizations of Commonsense Reasoning. (2013)

37. Montali, M., Chesani, F., Mello, P., Torroni, P.: Modeling and verifying business processes
and choreographies through the abductive proof procedure sciff and its extensions. Intelli-
genza Artificiale, Intl. J. of the Italian Association AI*IA 5(1) (2011)

38. Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P.: Reactive event calculus for
monitoring global computing applications. In Artikis, A., Craven, R., Cicekli, N.K., Sadighi,
B., Stathis, K., eds.: Logic Programs, Norms and Action - Essays in Honor of Marek J. Sergot
on the Occasion of His 60th Birthday. Volume 7360 of Lecture Notes in Computer Science.,
Springer (2012) 123–146

39. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
eagle to ruler. J. Log. Comput. 20(3) (2010) 675–706

40. Caianiello, P., Costantini, S., Gasperis, G.D., Florio, N., Gobbo, F.: Application of hybrid
agents to smart energy management of a prosumer node. In: Proc. of DCAI 2013, 10th
International Symposium on Distributed Computing and Artificial Intelligence. Volume 217
of Advances in Intelligent and Soft Computing., Springer (2013) 597–607

S. Costantini, G. De Gasperis. Runtime Self-Checking via Temporal (Meta-)Axioms for Assurance of Logical AS

255

Complex Events and Actions in Logical Agents

Stefania Costantini1 and Regis Riveret2

1 Università di L’Aquila, Italy stefania.costantini@univaq.it
2 Imperial College London, UK, r.riveret@imperial.ac.uk

Abstract. Complex Event Processing (CEP) has emerged as a relevant new field
of software engineering and computer science. Many of the current approaches to
CEP are declarative and based on rules, and often on logic-programming-like lan-
guages and semantics. Some work on CEP is situated within the field of logical
agents. Usually, event processing is based upon Event-Condition-Action rules,
which are however able to manage only simple events or unstructured sets of
events. In this paper, we refine the notion of “complex event”, which is an event
that cannot be detected directly, but rather can be identified (not necessarily in a
deterministic way) by interrelating sets of simple events. We propose a formal-
ization and a possible implementation of such notion, that we extend to complex
actions.

1 Introduction

“Complex Event Processing” (CEP) has emerged as a relevant new field of software
engineering and computer science [1]. In fact, a lot of practical applications have the
need to actively monitor vast quantities of event data to make automated decisions and
take time-critical actions (the reader may refer, e.g., to the Proceedings of the RuleML
Workshop Series). Complex Event Processing is discussed in depth in [2]. With cloud
computing, the importance of event processing is even more visible, and a connection
of “event pattern languages” with ontologies and with the semantic web is envisaged.
Many of the current approaches are declarative and based on rules, and often on logic-
programming-like languages and semantics: for instance, [3] is based upon a specifi-
cally defined interval-based Event Calculus [4].

Complex Event Processing is particularly important in software agents. Naturally,
most agent-oriented languages architectures and frameworks are to some extent event-
oriented and are able to perform event-processing. The issue of event processing agents
(EPAs) is of growing importance in the industrial field, since agents and multi-agent
systems are able to manage rapid change and thus to allow for scalability in applica-
tions aimed at supporting the ever-increasing level of interaction. In particular this paper
is concerned with logical agents, i.e., agents whose syntax and semantics is rooted in
Computational Logic. There are several approaches to logical agents (for a recent sur-
vey cf., e.g., [5]). For lack of space, we are not able here to properly discuss and compare
their event-processing features. Rather, we recall only the approaches that have more
strongly influenced the present work.

A recent but well-established and widely used approach to CEP in computational
logic is ETALIS [6–8], which is an open source plug-in for Complex Event Processing

256

implemented prolog which runs in many prolog systems. ETALIS is in fact based on
a declarative semantics, grounded in Logic Programming. Complex events can be de-
rived from simpler events by means of deductive rules. ETALIS, in addition, supports
reasoning about events, context, and real-time complex situations, and has a nice repre-
sentation of time and time intervals aimed at stream reasoning. Relations among events
can be expressed via several operators, reminiscent of causal reasoning and Event Cal-
culus.

In logical agents, some relevant work about CEP is related to DALI, a logic agent-
oriented language (first appeared in 1999 [9]) that extends prolog with reactive and
proactive features [9–12] and is fully implemented and publicly available [13]. DALI,
like virtually all agent-oriented languages, is equipped with “event-condition-action”
rules (ECA rules) for defining the behavior of an agent in consequence of perception
of external events. The feature that makes DALI proactive and strongly event-oriented
is however the internal events construct: i.e., the programmer can indicate internal con-
ditions to be interpreted as events, to which a reaction can be defined. Management of
events which occur “together” (with the possibility to specify in which time interval),
priorities between events, and aggregation of simple events into complex ones via the
internal event construct are other useful features. Related to (the pre-existing) DALI
approach is for instance the work of [14], also providing ECA rules and a “snapshot”
semantics similar to the one already introduced in [12]. Work on CEP in DALI is pre-
sented in [15] and [16], which discuss the issue of of selecting different reactive patterns
by means of simple preferences, then extended to more complex forms of preferences in
[17]. Such preferences can be also defined in terms of “possible worlds” elicited from
a declarative description of a current or hypothetical situation, and can depend upon
past events, and the specific sequence in which they occurred. [18] and [19, 20] discuss
event-based memory-management, and temporal-logic-based constraints for complex
dynamic self-checking and reaction.

Teleo-Reactive Computing by Kowalski and Sadri [21–23] is an attempt to recon-
cile and combine conflicting approaches in logic programming, production systems,
active and deductive databases, agent programming languages, and the representation
of causal theories in AI. In this approach, enhanced reactive rules determine the inter-
action of an agent with the environment in a logical but not necessarily “just” deductive
way. The semantics relies upon an infinite Herbrand-like model which is incrementally
constructed.

The motivation of the present work relies in the observation that a complex event
cannot always be defined and recognized from simple deterministic incremental aggre-
gation of simple events. Rather, complex events sometimes require a more involved
and not necessarily deterministic description. In fact, in order to be flexible and ver-
satile instead of brittle and rigid an agent should be able to possibly interpret a set of
simple events in different ways, and to assign/learn the plausibility and reliability of
each interpretation (for a discussion of brittleness w.r.t. versatility in agents, cf. [24–
26]). For instance, in diagnosis a number of symptoms, if occurring together, might
lead to hypothesize the presence of one or more illness/fault, possibly with some cer-
tainty/probability. Another reason why event patterns should be carefully described is to

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

257

make an agent able to detect unknown events or wrong patterns, and take the necessary
counter-measures (see, e.g., [19, 20]).

In this paper, we propose a novel conceptual view of complex events and a possi-
ble formalization of the new concepts. In our view, an agent should be able to possibly
interpret a set of simple events in different ways, and to assign/learn a plausibility and
reliability of each interpretation. We also consider complex actions, which we con-
sider as agent-generated events. To this aim, we propose to equip agents with specific
modules, that we call Event-Action modules, describing complex events and complex
actions. Such modules receives as “input” a set of simple events, either perceived by the
agent at its present stage of operation (external events), or generated internally by the
agent itself. Each module returns: (i) possible interpretations of a set of simple events
in terms of complex events; (ii) an ordering of such interpretations (if more than one is
possible) in terms of preferences and/or of certainty factors; (iii) detection of anomalies;
(iv) (sets of) actions to perform in response. Modules are (automatically) re-evaluated
whevener new instances of the “triggering” events become available.

From a practical point of view, for both providing a formal semantics and an imple-
mentation of modules we have presently adopted Answer Set Programming (ASP, cf.,
among many, [27, 28]). ASP is a well-established logic programming paradigm, where
a program may have several (rather than just one) “model”, called “answer set”, each
one representing a possible interpretation of the situation described by the program.
So, in the proposed framework, a logical agents can be seen as composed of a “main
program” including event processing, planning, action making, etc. and a set of Event-
Action modules (implemented in ASP) for event/action recognition, generation, aggre-
gation and management. We propose to exploit, in order to discern among alternatives,
both preferences and probabilities, refined via reinforcement learning. The approach
is encompassed into the general declarative semantics for logical agents introduced in
[12] (and summarized below). This makes our proposal immediately applicable to many
agent-oriented logic languages/framework.

To define Event-Action modules we presently refer to a quite simple logical setting
which can be in fact translated into ASP. However, in principle such modules might
be based upon more expressive logics (e.g., modal and/or probabilistic logics which
would certainly be suitable to express event recognition/aggregation). The structure of
our proposal is such that the basic concept, i.e, modules for (non-deterministic, defea-
sible) reasoning about event aggregation, might be easily rephased upon another logic.
Clearly, in such case a suitable semantic and execution model (other than ASP) should
then be provided.

The paper is organized as follows. In Section 2 we provide some background about
the building blocks of the proposed apprach. In Section 3 we present the proposal,
and in Sections 4 and 5 its formalization, and some considerations about learning. In
Section 6 we conclude. This paper is the extended version of [29].

2 Background

In this section, we recall notions that define some basic foundation elements of the
proposed approach.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

258

2.1 Evolutionary Semantics of Logical Agent-Oriented Languages

The Evolutionary semantics (introduced in [12]) is meant to provide a high-level general
account of evolving agents, trying to abstract away from the details of specific agent-
oriented frameworks. As seen below, the Evolutionary semantics in fact generalizes the
specific semantic approaches underlying well-known logical agent-oriented languages.
Actually, the Evolutionary semantics can be seen as a meta-semantics, as it accounts
for agent evolution in terms of transformation steps. The precise definition of an agent
and how a transformation step is determined and described attains to the specific agent-
oriented language.

We define in fact, in very general terms, an agent as the tuple Ag = < PA, E >
where A is the agent name and PA (that we call “agent program”, but can be in turn a
tuple) describes the agent according to some agent-oriented formalism L. E is the set
of the events that the agent is able to recognize or determine (so,E includes actions that
the agent is able to perform), according to the specific agent-oriented framework.

Let H be the history of an agent as recorded by the agent itself (in a form that will
depend upon the specific agent-oriented framework), i.e., H includes agent’s percep-
tions and memories. We assume that events that either happen externally or are gen-
erated internally, actions which are performed, and other relevant agent’s activities are
recorded in H .

We assume that program PA as written by the programmer is in general transformed
into an initial agent program P0 by means of an initialization phase (possibly doing
nothing). When agent A is activated P0 will go into execution, and will evolve accord-
ing to the evolution of H .

Evolution is represented via program-transformation steps, each one transforming
Pi into Pi+1 according to Hi, which is the partial history up to stage i. The choice of
which elements of Hi do actually trigger an evolution step is part of the definition of a
specific agent framework.

Thus, we obtain a Program Evolution Sequence PE = [P0, . . . , Pn, . . .]. The pro-
gram evolution sequence will imply a corresponding Semantic Evolution Sequence
ME = [M0, . . . ,Mn, . . .] where Mi is the semantics of Pi according to L. Notice
in fact that the approach is parametric w.r.t L.

Definition 1 (Evolutionary semantics). Let Ag be an agent. The evolutionary seman-
tics εAg of Ag is a tuple 〈H,PE,ME〉, where H is the history of Ag , and PE and
ME are respectively its program and semantic evolution sequences.

The next definition introduces the notion of instant view of εAg , at a certain stage
of the evolution (which is in principle of unlimited length).

Definition 2 (Evolutionary semantics snapshot). Let Ag be an agent, with evolu-
tionary semantics εAg = 〈H,PE,ME〉. The snaphot at stage i of εAgi is the tuple
〈Hi, Pi,Mi〉, where Hi is the history up to the events that have determined the transi-
tion from Pi−1 to Pi.

In [12], program transformation steps associated with DALI language constructs
[10, 11] are defined in detail. They can easily be adapted to AgentSpeak (cf. [30] and

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

259

the references therein). The evolutionary semantics may also express the notion of trace
of a GOAL agent (cf. [31] and the references therein) where agent program Pi en-
compasses the agent’s mental state and each evolution step, which in GOAL is called
computation step and is determined by a conditional action. For 3APL (cf. [32] and
the references therein), agent program Pi encompasses the agent’s initial configuration,
and the related sets GR of goal rules, PR of plan rules, IR of interactive rules; the evo-
lutionary semantics corresponds to a 3APL agent computation run, and evolution steps
are determined by the 3APL transition system.

In Section 4.1 we provide an integration of the proposed approach to Complex Event
Processing into the Evolutionary semantics, in order to make it applicable to many
agent-oriented logic programming languages among which the above-mentioned ones.

2.2 Background on Answer Set Semantics

The answer set semantics is used in this paper to provide both a formal semantics and
an execution model for the proposed modules. In fact, this logic gives rise to answer set
programming (ASP), which is a very well-established and fully logical programming
paradigm. Many efficient solvers have become freely available for ASP, [33], each one
proposing many extension to aid practical programming.

In the answer set semantics (originally named “stable model semantics”),
a (logic) program Π (cf., [34]) is a collection of rules of the form H ←
A1, . . . , An, notB1, . . . , notBm where the Ais (i ≤ n and the Bjs (j ≤ m are atoms,
and in literals notBj not is default negation. A rule with empty body is called a fact.
A rule with empty head is a constraint, where a constraint ← L1, . . . , Ln. states that
literals L1, . . . , Ln cannot be all true in an answer set.

The answer sets semantics is a view of a logic program as a set of inference rules
(more precisely, default inference rules), or, equivalently, a set of constraints on the
solution of a problem: each answer set represents a solution compatible with the con-
straints expressed by the program. In simple program {q ← not p p← not q}, the first
rule is read as “assuming that p is false, we can conclude that q is true.” This program
has two answer sets. In the first one, q is true while p is false; in the second one, p is
true while q is false. Thus, this program represent choice among two alternatives.

In the ASP (Answer Set Programming) paradigm, each answer set is seen as a so-
lution of given problem, encoded as an ASP program. An ASP program is basically
composed by program fragments like the above ones that generate the search space by
defining available alternatives, and by constraints which prune the generated space thus
selecting solutions. To find these solutions, one employes one of the several existing
ASP solvers [33]. The expressive power of ASP and its computational complexity have
been deeply investigated (cf., e.g., [35]).

3 Complex Event Processing in Logical Agent Languages

In this section we present our approach to advanced Complex Event Processing in log-
ical agents. First, we recall how event processing and aggregation can be performed in
most existing frameworks. Then, we argue that new methods and tools would be useful,
and introduce our proposal.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

260

3.1 Complex Events Recognition and Evaluation: Simple Event Aggregation

Event processing is traditionally based upon Event-Condition-Action (ECA) rules, of
the form “IF Event then Reaction” where sometimes reaction is limited to performing
a sequence of actions, sometimes is enlarged so as to allow forms of reasoning and
various kinds of constraints. Most (virtually all) agent-oriented languages provide ECA
rules of some form.

For instance, the following sample ECA rules defined in DALI evaluate medical
symptoms, stating that to cope with high temperature one should assume an antipyretic,
and to cope with cough one should take a syrup (clearly, we do not aim at medical
precision). External events are indicated with postfix E, actions with postfix A, and
connective :> indicates reaction. I.e., :> is a specific connective used to define ECA
rules. Since DALI is an extension of prolog, the comma represents conjunction.
high temperatureE :> take antipyreticA.
intense coughE :> take cough syrupA.

Plain ECA rules can hardly provide more than this kind of simple reaction. Agent
languages may offer empowering mechanisms that allow for some form of CEP. In
DALI for instance, by means of the “internal event” construct evaluation can become
more involved. In the example we may, e.g., consider the possibility that a combi-
nation of symptoms suggests the occurrence of a more serious illness. For illustra-
tion purposes we assume to hypothesize the presence of either pneumonia, or just
flu, or both. In DALI external events are, a short while after perception (that may or
may not imply reaction), recorded as past events (postfix P), with a time-stamp. By
high temperatureP : [4days] it is intended that at least two past events of the form
high temperatureP : T1 and high temperatureP : T2 have been recorded, where
T2 − T1 is no less than four days. By default, the most recent records are considered,
so the interval refers to the last and to the immediately previous measures of tempera-
ture (if the time-stamp of a past event is omitted, the most recent version is implicitly
referred to).

The first rule below “reasons” about what has happened: if in fact both high
temperature and cough have occurred, and high temperature has lasted for at least
four days, one may conclude that occurrence of pneumonia should be suspected.
Therefore, from the occurrence of a set of simple events, the occurrence of a com-
plex event is inferred, as an internal event suspect pneumoniaI . Once inferred, such
an event can be reacted to exactly like external ones by an ECA rule, the one
below stating that the patient shoul take an antibiotic and consult a lung doctor.
suspect pneumoniaI :-

high temperatureP : [4days],
intense coughP ,
compatible(prenumonia, anamnesis).

suspect pneumoniaI :> take antibioticA,
consult lung doctorA.

Internal events are periodically re-evaluated at a certain (customizable) frequency.
Between one attempt and the next one, the agent’s belief base will evolve as new events
will have happened, reacted to and recorded. Thus, at each attempt an internal event
can be either generated (and reacted to) or not, according to the agent’s belief state. In

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

261

the example, the suspect of pneumonia will not raise immediately, but rather after four
days of high temperature measurements.

Clarly, the proposed example might be formalized also in ETALIS and in many
other agent-oriented frameworks, each one offering its own improvements over sim-
ple ECAs in view of CEP. In summary, by means of ECA rules little can be done for
CEP. By means of suitable empowring mechanisms such as the internal events, complex
events can posibly be generated (ad then reacted to) by reasoning on simple external
events.

We believe however that such a simple pattern is often not sufficient, as there are
many cases where the interpretation of sets of simple events is not univocal or straight-
forward. Therefore, different hypotheses about the meaning of a situation at hand should
be generated and evaluated. We then propose a novel view and a novel formalization of
event aggregation.

3.2 Complex Events Recognition and Evaluation: Event-Action Modules

Below we introduce the notion of Event and Action modules. For lack of space we il-
lustrate these modules by means of two examples that we consider as representatives of
significant situations. The first example concerns complex event recognition, the second
one concerns complex actions generation. We do not intend to propose here a specific
syntax for Event and Action modules: rather, we intend to point out what should be
the elements and functions of such modules. In the sample syntax, adopted only for
illustration purposes, as before postfix ’P’ indicates past events, i.e., events which have
occurred (after the ’:’ there is the time-stamp or the interval of occurrence). Postfix ’A’
indicates actions. Connective :> indicated Event-Condition-Action rules, while :- is
the usual prolog if.

Event Interpretation

The following example illustrates an Event-Action Module that re-elaborates the
previosly-introduced example concerning medical diagnosis. This should allow the
reader to appreciate the improvements over the simple formulation.

An Event-Action Module will be (re-)evaluated whenever the triggering events oc-
cur within a certain time interval, and according to specific conditions: in the example,
the module is evaluated whenever in the last two days both high temperature and intense
cough have been recorded.

EVENT-ACTION-MODULE

TRIGGER
(high temperatureP AND intense coughP) : [2days]

COMPLEX EVENTS
suspect flu OR suspect preumonia

suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP : [4days],

intense coughP .

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

262

PREFERENCES
suspect flu :- patient is healthy .
suspect pneumonia :- patient is at risk .

ACTIONS
suspect flu :> stay in bedA.
suspect flu, high temperatureP : [4days], not suspect pneumonia :>

take antibioticA.
suspect preumonia :>

take antibioticA, consult lung doctorA.

MANDATORY
suspect preumonia :- high temperatureP : [4days],

suspect fluP ,
take antibioticP : [2days].

From given symptoms, either a suspect flu or a suspect pneumonia or both can
be concluded, though for suspecting pneumonia high temperature should have lasted
for at least four days, accompanied by intense cough. This is stated in the COM-
PLEX EVENTS section, where each of the listed complex events (in the example, sus-
pect flu and suspect pneumonia) can be inferred, though according to the specified con-
ditions. Notice that the whole agent’s belief base (including the history) is implicitly in-
cluded in the definition of an Event-Action module. Explicit preferences are expressed
in the PREFERENCES section, here stating that hypothesizing a flu should be preferred
in case the patient is healthy, while pneumonia is more plausible for risky patients. If
either none or both options hold, then they are equally preferred. More involved forms
of preferences might be specified, that for lack of space we do not discuss here (cf.,
e.g., [17] and the references therein). Actions to undertake in the two cases are speci-
fied. As mentioned, the module is re-evaluated at subsequent new occurrences of high
temperature and intense cough. Re-evaluation is performed on the (possibly) updated
belief base.

Actions will be actually performed depending upon the outcome that the agent will
prefer to choose. In particular, if a flu is suspected then the patient should stay in bed,
and if the high temperature persists then an antibiotic should also be assumed (even if
pneumonia is not suspected). In case of suspect pneumonia, an antibiotic is mandatory,
plus a consult with a lung doctor.

The MANDATORY section of the module includes constraints, that may be of vari-
ous kinds: in this case, it specifies which complex events must be mandatorily inferred
in module (re)evaluations if certain conditions occur. Specifically, pneumonia is to be
assumed mandatorily whenever flu has been previously assumed, but high temperature
persists despite at least two days of antibiotic therapy.

Answer set modules for possibility and necessity (cf. [16]) find a fruitful integration
in the present approach. In the example, it may be for instance that clinical history and
conditions of a patient force to assume a pneumonia. A constraint such as the following
might be added:
MANDATORY suspect pneumonia :-

Necessary(clinical history , suspect pneumonia).

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

263

Generating Complex Actions

We have noted before that event interpretation is not necessarily deterministic and
straightforward. The same happens for actions: devising which actions and agent should
perform can be highly context-dependent, and can be subjected to various kinds of
uncertainty. To avoid brittleness, an agent should in our opinion be able to flexibly
choose what to do in specific circumstances, and to dynamically adapt to changes of
context/role/situation. This is why we propose to adapt previously introduced modules
to action generation.

We illustrate the approach by means of an example related to what happens when
two persons meet. The representation is simplicistic and is meant only to illustration
purposes. A “real” encoding of the module below might be much more involved, and
imply various kinds of knowledge representation methods, possibly including a theory
of emotions.

In the sample representation, we assume that the person/agent who first gets sight
of a person/agent (s)he knows possibly smiles, and then either simply waves or stops to
shake hands. Section RELATED EVENTS specifies, as a boolean combination, events
that may occur contextually to the triggering ones. There are some conditions, for in-
stance that one may smil and/or waves if (s)he is neither in a bad temper nor angry
at the other. Also, one who is in a hurry just waves, while good friends or people
who meet each other in a formal setting should shake hands. Actions simply consist
in returning what the other one does, and it is anomalous not doing so (e.g., if one
smiles and the other does not smile back). In the formalization below, the expression
meet friend(A,F) means that agent A meets agent F : then, each one possibly makes
some actions and the other one will normally respond. This module is totally revert-
ible, in the sense that it manages both the case where “we” meet a friend and the case
where vice versa somebody else meets us. This is the reason why in some module sec-
tions events have no postfixes. In fact, meet friend(A,F), smile, wave and shake hands
are present events if a friend meets “us”, and are actions if “we” meet a friend. Post-
fixes appear in the ACTIONS and ANOMALY sections, where all elements (whatever
their origin) have become past events to be coped with. The PRECONDITIONS section
expresses action preconditions, via connective :< . Section MANDATORY defines obli-
gations, here via a rule stating that it is mandatory to shake hands in a formal situation.
The anomaly management section (left undefined here) may include counter-measures
to be taken in case of unexpected behavior, that in the example may go from asking for
explanation to getting angry, etc.

EVENT-ACTION-MODULE

TRIGGER meet friend(A,F),
RELATED EVENTS
smile(A,F)OR (wave(A,F) XOR shake hands(A,F))

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

264

PRECONDITIONS
smileA(A,F) :<not angry(A,F), not bad temper(A).
waveA(A,F) :<not angry(A,F).
shake handsA(A,F) :<

good friends(A,F),
not angry(A,F), not in a hurry(A), not in a hurry(F).

MANDATORY
shake handsA(A,F) :- formal situation(A,F).

ACTIONS
smiled(A,F) :- smileP(A,F).
waved(A,F) :- waveP(A,F).
shaken hands(A,F) :> shake handsP(F ,A).
smiled(A,F) :> smileA(F,A).
waved(A,F) :>waveA(F,A).
shaken hands(A,F) :> shake handsA(F ,A).

ANOMALY
anomaly1 (meet friend(A,F)) :-

smileP(A,F), not smileA(F,A).
anomaly2 (meet friend(A,F)) :-

waveP(A,F), notwaveA(F,A).
anomaly3 (meet friend(A,F)) :-

shake handsP(A,F), not shake handsA(F,A).
ANOMALY MANAGEMENT ACTIONS
. . .

4 Formalization of Event-Action Modules

In this section we provide a formalization of Event-Action modules based upon
previously-introduced building blocks. To ensure integration of modules within the
most common agent-oriented programming languages, we suitably merge them into the
Evolutionary semantics. To provide (as a proof of concept) a formal semantics and an
execution model, we define a translation of Event-Action modules into ASP modules.

4.1 Evolutionary Semantics Extended

We now briefly illustrate how to refine the Evolutionary semantics so as encompass the
proposed approach. The agent program PA becomes now a tuple including at least the
“main” agent program PM, and the available Event-Action modules EA1, . . . , EAk.

Definition 3 (Evolutionary Semantics). Let Ag be an agent, defined by agent program

PA = 〈PM, 〈EA1, . . . , EAk〉, . . .〉

where PM is the main agent program, and EA1, . . . , EAk, k ≥ 0, are the available
Event-Action modules.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

265

Its evolutionary semantics is εAg = 〈H,PExt ,ME〉. The program evolution se-
quence, indicated by PExt , stems from an Extended initial program PExt0 obtained
from PM by means of a a suitable initialization phase. In particular, PExt0 includes
the following elements:

– Program P0, obtained by adding to given main agent program the rules included
in sections ACTIONS, ANOMALY MANAGEMENT ACTIONS and PRECON-
DITIONS of EA1, . . . , EAk.

– Tuple of ASP modules 〈Π1, . . . ,Πk〉, where each Πi is obtained by translating
Event-Action module EAi into ASP.

At the i-th evolution step, the agent’s history in general evolves, as new
events/knowledge items may be recorded/removed. This determines an evolution of
both the main agent program Pi and of the ASP modules: in fact, the main program
and the modules implicitly encompass the agent’s history as the set of given facts. This
implies that both the main program and modules semantics needs to be re-evaluated at
each step. Each module will admit none, one or several answer sets, among which just
one has to be selected. Such answer set will encompass a number of inferred complex
events and actions, as well as possibly a number of anomalies, that have to be added
to the agent’s history in order to be respectively reacted to (for events) or executed (for
actions) or coped with (for anomalies). Precisely, at each step we have:

Definition 4 (Evolutionary Semantics Snapshot). The snaphot at stage i of εAgi is the
tuple 〈Hi,PExt i,Mi〉, where Mi is in turn a tuple, i.e.,

Mi = 〈Fi, S1, . . . , Sr〉

where Fi is the semantics of Pi, and Si (i ≤ r ≤ k) is the set composed of the answer
sets of each Πi which has been (re-)evaluated at stage i. The evolution step to stage
i + 1 will imply: (i) the choice of one answer set Ai for each Πi (selected among the
elements of Si); (ii) and the addition to Hi+1 of all the complex events and actions and
anomalies included in Ai.

Therefore, at step i + 1, complex events, actions and anomalies generated at step
i by each ASP module will be coped with as specified in the original corresponding
Event-Action module, and then recorded as past events in the agent’s history.

In summary, the integration of Event-Action modules within a logical agent’s basic
functioning can be described as follows.

– At every agent’s evolution step, the TRIGGER headline of each Event-Action mod-
ule has to be checked, in order to state whether the module is to be re-avaluated.
We cannot treat here complexity of this check, that will depend upon complexity of
expressions involved.

– ASP modules corresponding to Event-Action modules that are to be (re-)evaluated
will be fed to an answer set solver. A module will admit as a result of evaluation
none, one or more answer sets.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

266

– If the module admits answer sets, each one will encompass a number of complex
events, actions and anomalies. One answer set will be selected, according to prefer-
ences (if expressed within the module), or by random choice, or by informed choice
deriving from a learning process, as discussed in Section 5. The rules for coping
with the inferred complex events, actions and anomalies are defined in sections
ACTIONS, ANOMALY MANAGEMENT ACTIONS and PRECONDITIONS, which
can be found in the main agent program.

4.2 ASP Representation of Modules

Each Event-Action module can be translated in a fully automated way into an ASP
module. This except sections ACTIONS, ANOMALY MANAGEMENT ACTIONS and
PRECONDITIONS, whose content as seen before has to be added to the main agent
program.

The answer set program (module)Π corresponding to a given Event-Action module
will be obtained by translating into ASP the contents of sections COMPLEX EVENTS,
CHECK, RELATED EVENTS, ANOMALIES and MANDATORY. The translation is
straightforward and can be fully automated.

For the sake of simplicity we outline a translation into basic ASP, thus not consid-
ering the various additional useful constructs that have been introduced in the literature
and in the implementations. It can be noted that extensions of ASP oriented to stream
reasoning have been defined (cf., e.g., [36]). We observe however that we do not per-
form stream reasoning, rather we perform periodical re-evaluation of modules, so at
present we do not deem it necessary to resort to such approach.

For lack of space we cannot properly describe how to cope with time intervals:
however, our method consists in representing time-stamps as additional arguments of
ASP predicates representing events. Intervals are then computed by trivial arithmetic
constraints.

The translation of (the relevant sections of) an Event-Action module into ASP can
be performed by means of the following guidelines (a formal definition of the transla-
tion, including the treatment of time intervals, is deferred to an extended version of this
paper).

conj In ASP, the conjunction among a number of elements a1, . . . , an is simply ex-
pressed as conj ← a1, . . . , an.

or-xor Disjunction among two elements a and b is expressed by the cycle a← b b←
a. This disjunction is not exclusive, since either a or b or both might be derived
elsewhere in the program. To obtain exclusive disjunction, a constraint
← a, b must be added. A constraint in ASP can be read as it cannot be that.... In
the case of exclusive disjunction, it cannot be that both a and b belong to the same
answer set. Disjunction (also exclusive) can be expressed also on several elements.

choice Choice, or possibility, or hypothesis, expressing that some element a may or
may not be included in an answer set, can be expressed by means of a cycle involv-
ing a fresh atom, say na. The cycle is of the form a← na na← a. Therefore, an
answer set will contain either a or na, the latter signifying the absence of a.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

267

choyf A choice that can be done (by pattern choice) on element a only if certain condi-
tions Conds are satisfied, is expressed by a choice pattern plus a rule c ← Conds
and a constraint← a, not c. The constraint states that a cannot be hypothesized in
an answer set if c does not hold, i.e., if Conds are not implied by that answer set.

mand Mandatory presence in an answer set of atom a defined by rule a← Body when-
ever Body is implied by that answer set can be obtained as follows. In addition to
the defining rule a← Body , a constraint must be added of the form← not a,Body
stating that it cannot be that an answer set implies Body but does not contain a. The
constraint is necessary for preventing a to be ruled out by some other condition oc-
curring elsewhere in the program.

– Events in the RELATED EVENTS section can be expressed by means of the choice
pattern, and their combinations via the conj and or-xor patterns. Constraints in the
MANDATORY can be expresses by means of the mand pattern.

– Section COMPLEX EVENTS is coped with by the choice and choyf patterns.
– Sections CHECK and ANOMALIES can be translated by a plain transposition of

their rules into ASP, possibly exploiting the conj and or-xor patterns.

5 Evaluating Outcomes and Reinforcement Learning

Outcomes of an Event-Action Module are often not univocal: thus, at each stage the
agent face a choice among the answer sets of corresponding ASP module Π . As we
have seen in the example, preferences may help the agent in choosing an outcome rather
than another one. However, knowledge can be incomplete or partial about reliability of
such preferences, and in general about plausibility of the choice. This choice is akin to
the “multi-armed bandit problem” [37], and thus machine learning techniques can be
used so that an agent will learn over time to make the ‘best’ choice over the answer sets
of each module Π (i.e., over the outcomes of each Event-Action Module).

Therefore, a self-improving process is in order, and for this purpose, an agent can be
endowed with a simple reinforcement learning mechanism [38]: at each evolution step,
occurring at a time t, an agent: (i) senses its environment; (ii) re-evaluates Π obtaining
the answer sets A1, . . . , Ak, k > 0; (iii) adopt one of them, say A, and evaluates its
“quality”, denoted with Q(A). In order to evaluate the quality of an answer set, we
assume that at stage t, a numerical value denoted V t(A) is associated to it: this value
can be either epistemic or practical. Its expression shall be dependent on the application
so we leave it unspecified in the description of the present general framework. At time t,
the quality of the selected answer A will be computed as a discounted moving average
of its value over time:

Qt+1(A) = Qt(A) + α.(V t(A)−Qt(A))

where α is the discount rate. Then, an agent draws an answer set A amongst all the
possible answer sets A1, . . . , Ak of Π with probability P t(A). This probability can be
computed using a Gibbs-Boltzmann distribution:

P t(M) = eQ
t(A)/τ/

∑

i

eQ
t(Ai)/τ

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

268

where τ is a ‘learning temperature’ to balance the exploitation and the exploration of
possible models.

6 Concluding Remarks

In summary, in this paper we have introduced kinds of Event-Action modules that allow
an agent to: aggregate simple events into complex ones, also according to constraints;
check events that occur w.r.t. expectations; cope with events possibly occurring con-
textually to certain other events; detect anomalies; decide actions to be performed in
both normal or anomalous cases, according to a number of issues among which we may
include context, role, circumstances, past experience, etc.

In future work, other event aggregation and recognition patterns might be intro-
duced. The approach might be extended to a more involved definition of complex ac-
tions, and to the choice among possible action patterns. The proposed simple learning
mechanism might be refined based on experimentations on suitable test cases. We may
notice that the approach is basically independent of the underlying logic, so that more
expressive (e.g., modal) logic might be employed in future extensions. Clearly, a se-
mantics and execution model going beyond ASP should then be provided.

We intend to introduce forms of ’deep’ learning of Event-Action modules. In our
intention, an Event-Action Modules might be initially defined in a tentative or embry-
onic form: then, module elements might be learnt via a training phase, and refined via
reinforcement learning during the agent’s ’life’ thus adding to agent’s flexibility and
adaptability. To this aim, we have been developing suitable argomentation-based learn-
ing techniques [39].

We do not intend to claim that all events can be recognized and reacted to, and all
actions generated, only in a logic-based way. Nevertheless, also based upon relevant
literature, we claim that event/actions recognition, generation and management oftens
require forms of (even non-trivial) reasoning. Overall, any really “intelligent” agent
capable of flexible interaction with complex real-world environment will presumably
result from a graceful integration of several kind of components, possibly based upon
different approaches.

References

1. Chandy, M.K., Etzion, O., von Ammon, R.: 10201 Executive Summary and Manifesto –
Event Processing. In Chandy, K.M., Etzion, O., von Ammon, R., eds.: Event Processing.
Number 10201 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2011)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)
3. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: RuleML.

Volume 5858 of Lecture Notes in Computer Science., Springer (2009) 53–66
4. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4

(1986) 67–95
5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road

map of current technologies and future trends. Computational Intelligence Journal 23(1)
(2007) 61–91

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

269

6. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Real-time complex event recognition
and reasoning-a logic programming approach. Applied Artificial Intelligence 26(1-2) (2012)
6–57

7. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event
processing in ETALIS. Semantic Web 3(4) (2012) 397–407

8. : Etalis web site. http://code.google.com/p/etalis/
9. Costantini, S.: Towards active logic programming. In Brogi, A., Hill, P., eds.: Electronic

Proceedings of COCL’99, Second Intl. Works. on Component–Based Software Develop-
ment in Computational Logic (included in PLI’99, Principles, Logics and Implementation
of High–level Programming Languages). On-line at the URL: http://www.di.unipi.
it/˜brogi/ResearchActivity/COCL99/proceedings/index.html, year =
1999.

10. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424,
Springer-Verlag, Berlin (2002)

11. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI
3229, Springer-Verlag, Berlin (2004)

12. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Endriss, U., Omicini, A., Torroni, P., eds.: Declarative Agent Languages and
Technologies III, Third International Workshop, DALT 2005, Selected and Revised Papers.
Volume 3904 of LNAI. Springer (2006) 106–123

13. Costantini, S., D’Alessandro, S., Lanti, D., Tocchio, A., al.: DALI web site, download of the
interpreter (2012) Released: basic DALI features. For beta versions please ask the authors.

14. Alferes, J.J., Banti, F., Brogi, A.: An event-condition-action logic programming language.
In: Logics in Artificial Intelligence, 10th European Conference, JELIA 2006. Volume 4160
of Lecture Notes in Computer Science., Springer (2006) 29–42

15. Costantini, S., Dell’Acqua, P., Tocchio, A.: Expressing preferences declaratively in logic-
based agent languages. In: Proc. of Commonsense’07, the 8th International Symposium on
Logical Formalizations of Commonsense Reasoning, AAAI Press (2007) Event in honor of
the 80th birthday of John McCarthy.

16. Costantini, S.: Answer set modules for logical agents. In de Moor, O., Gottlob, G., Furche,
T., Sellers, A., eds.: Datalog Reloaded: First International Workshop, Datalog 2010. Volume
6702 of LNCS. Springer (2011) Revised selected papers.

17. Costantini, S., De Gasperis, G.: Complex reactivity with preferences in rule-based agents. In
Bikakis, A., Giurca, A., eds.: Rules on the Web: Research and Applications, RuleML 2012
- Europe, Montpellier, France, August 27-29, 2012. Proceedings. Volume 6826 of Lecture
Notes in Computer Science., Springer (2012) 167–181

18. Costantini, S., Gasperis, G.D.: Memory, experience and adaptation in logical agents. In
Casillas, J., Mart́inez-López, F.J., Vicari, R., la Prieta, F.D., eds.: Management Intelligent
Systems: Second International Symposium, Proceedings. Advances in Intelligent and Soft
Computing, Springer (2013)

19. Costantini, S.: Self-checking logical agents. In Gini, M.L., Shehory, O., Ito, T., Jonker, C.M.,
eds.: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS
2013, Proceedings, IFAAMAS (2013) 1329–1330

20. Costantini, S., Gasperis, G.D.: Meta-level constraints for complex event processing in logical
agents. In: Online Proceedings of Commonsense 2013, the 11th International Symposium
on Logical Formalizations of Commonsense Reasoning. (2013)

21. Kowalski, R.A., Sadri, F.: Towards a logic-based unifying framework for computing. CoRR
abs/1301.6905 (2013)

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

270

22. Kowalski, R.A., Sadri, F.: Teleo-reactive abductive logic programs. In Artikis, A., Craven,
R., Cicekli, N.K., Sadighi, B., Stathis, K., eds.: Logic Programs, Norms and Action - Essays
in Honor of Marek J. Sergot on the Occasion of His 60th Birthday. Volume 7360 of Lecture
Notes in Computer Science., Springer (2012)

23. Kowalski, R.A., Sadri, F.: A logic-based framework for reactive systems. In: Rules on the
Web: Research and Applications - 6th International Symposium, RuleML 2012. Proceedings.
Volume 7438 of Lecture Notes in Computer Science., Springer (2012)

24. Brachman, R.J.: (AA)AI more than the sum of its parts. AI Magazine 27(4) (2006) 19–34
25. Anderson, M.L., Perlis, D.: Logic, self-awareness and self-improvement: the metacognitive

loop and the problem of brittleness. J. Log. Comput. 15(1) (2005) 21–40
26. Anderson, M.L., Fults, S., Josyula, D.P., Oates, T., Perlis, D., Wilson, S., Wright, D.: A

self-help guide for autonomous systems. AI Magazine 29(2) (2008) 67–73
27. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge

University Press (2003)
28. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, Chapter 7. Elsevier

(2007)
29. Costantini, S., Riveret, R.: Event-action modules for complex reactivity in logical agents.

In Lomuscio, A., Scerri, P., Bazzan, A., Huhns, M., eds.: International conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS 2014, Proceedings, IFAAMAS (2014)
1503–1504 Extended Abstract.

30. Bordini, R.H., Hübner, J.F.: Semantics for the jason variant of agentspeak (plan failure and
some internal actions). In Coelho, H., Studer, R., Wooldridge, M., eds.: ECAI 2010 - 19th
European Conference on Artificial Intelligence, Proceedings. Volume 215 of Frontiers in
Artificial Intelligence and Applications., IOS Press (2010) 635–640

31. Hindriks, K.V.: Programming rational agents in GOAL. In El Fallah Seghrouchni, A., Dix, J.,
Dastani, M., Bordini, R.H., eds.: Multi-Agent Programming:. Springer US (2009) 119–157

32. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in
3APL. In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent
Programming: Languages, Platforms and Applications. Volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer (2005) 39–67

33. Web-references: Some ASP solvers Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.
ac.at/proj/dlv; Smodels: www.tcs.hut.fi/Software/smodels.

34. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proc. of the Fifth Joint Int. Conf. and Symposium, MIT Press (1988) 1070–
1080

35. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys 33(3) (2001) 374–425

36. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Preliminary report. In Brewka, G., Eiter, T., McIlraith,
S.A., eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the Thir-
teenth International Conference, KR 2012, year = 2012

37. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University
Press, New York, NY, USA (2006)

38. Sutton, R., Barto, A.: Reinforcement learning: An introduction. Volume 116. Cambridge
Univ Press (1998)

39. Caianiello, P., Costantini, S., Riveret, R., Draief, M.: Concept learning by a monte-carlo tree
search of argumentations. In: Proc. of RCRA2014, 21st RCRA International Workshop on
Experimental Evaluation of Algorithms for solving problems with combinatorial explosion,
Part of the 2014 Vienna Summer of Logic. (2014) To appear.

S. Costantini and R. Riveret. Complex Events and Actions in Logical Agents

271

Argumentation for Propositional Logic and
Nonmonotonic Reasoning

Antonis Kakas, Francesca Toni, and Paolo Mancarella

1 University of Cyprus, Cyprus
antonis@cs.ucy.ac.cy

2 Imperial College London, UK
ft@imperial.ac.uk

3 Università di Pisa, Italy
paolo@di.unipi.it

Abstract. Argumentation has played a significant role in understanding
and unifying under a common framework different forms of defeasible
reasoning in AI. Argumentation is also close to the original inception of
logic as a framework for formalizing human argumentation and debate.
In this context, the purpose of this paper is twofold: to draw a formal
connection between argumentation and classical reasoning (in the form of
Propositional Logic) and link this to support defeasible, Non-Monotonic
Reasoning in AI. To this effect, we propose Argumentation Logic and
show properties and extensions thereof.

1 Introduction

Over the past two decades argumentation has played a significant role in under-
standing and unifying under a common framework defeasible Non-Monotonic
Reasoning (NMR) in AI [16, 10, 3]. Moreover, a foundational role for argumenta-
tion has emerged in the context of problems requiring human-like commonsense
reasoning, e.g. as found in the area of open and dynamic multi-agent systems to
support context-dependent decision making, negotiation and dialogue between
agents (e.g. see [14, 9]). This foundational role of argumentation points back to
the original inception of logic as a framework for formalizing human argumen-
tation.

This paper reexamines the foundations of classical logical reasoning from
an argumentation perspective, by formulating a new logic of arguments, called
Argumentation Logic (AL), and showing how this relates to Propositional Logic.
AL is formulated by bringing together argumentation theory from AI and the
syllogistic view of logic in Natural Deduction (ND). Its definition rests on a re-
interpretation of Reductio ad Absurdum (RA) through a suitable argumentation
semantics. One consequence of this is that in AL the implication connective
behaves like a default rule that still allows a form of contrapositive reasoning.
The reasoning in AL is such that the ex-falso rule where everything can be
derived from an inconsistent theory does not apply and hence an inconsistent
part of a theory does not trivialize the whole reasoning with that theory.

272

The main motivation for studying this argumentation perspective on logical
reasoning is to examine its use to bring together classical reasoning and non-
monotonic commonsense reasoning into a single unified framework. The paper
presents a preliminary investigation into building such a NMR framework based
on AL that integrates into the single representation framework of AL classical
reasoning, as in Propositional Logic including forms of Reductio ad Absurdum,
with defeasible reasoning. In particular, we study, in the context of examples,
the possible use of preferences over sentences of an AL theory to capture NMR
defeasible reasoning and naturally combine this with the classical reasoning of
AL. Our vision is for all forms of reasoning to be captured in the argumentation
reasoning of AL and its extensions with preferences.

This paper is an extract of [13].

2 Preliminaries on Natural Deduction

Let L be a Propositional Logic language and ` denote the provability relation of
Natural Deduction (ND) in Propositional Logic.4 Throughout the paper, theories
and sentences will always refer to theories and sentences wrt L. We assume that
⊥ stands for φ ∧ ¬φ, for any φ ∈ L.

Definition 1. Let T be a theory and φ a sentence. A direct derivation for φ
(from T) is a ND derivation of φ (from T) that does not contain any application
of RA. If there is a direct derivation for φ (from T) we say that φ is directly
derived (or derived modulo RA) from T , denoted T`MRAφ.

Example 1. Let T1 = {α → (β → γ)}. The following is a direct derivation for
α ∧ β → γ (from T1):

dα ∧ β hypothesis
α ∧E
α→ (β → γ) from T
β → γ → E
β ∧E
γc → E

α ∧ β → γ → I

Thus, T1 `MRA α ∧ β → γ (and, trivially, T1 ` α ∧ β → γ). Consider now
T2 = {¬(α ∨ β)}. The following

dα hypothesis
α ∨ β ∨I
¬(α ∨ β) from T
⊥c ∧I

¬α RA
is a ND derivation of ¬α that is not direct. Since there is no direct derivation of
¬α, T2 ` ¬α but T2 6`MRA ¬α.

4 See the appendix for a review of the ND rules that we use.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

273

Definition 2. A theory T is classically inconsistent iff T ` ⊥. A theory T
is directly inconsistent iff T `MRA ⊥. A theory T is (classically or directly)
consistent iff it is not (classically or directly, respectively) inconsistent.

Trivially, if a theory is classically consistent then it is directly consistent. How-
ever, a directly consistent theory may be classically inconsistent, as the following
example shows.

Example 2. Consider T1 = {α → ⊥,¬α → ⊥}. T1 is classically inconsistent,
since T1 ` ⊥ as follows:

dα hypothesis
α→ ⊥ from T
⊥c → E

¬α RA
d¬α hypothesis
¬α→ ⊥ from T
⊥c → E

α RA
⊥ ∧I

However, T1 is directly consistent, since T1 6`MRA ⊥. Consider instead T2 =
{α,¬α}. T2 is classically and directly inconsistent, since T2 `MRA ⊥, as follows:

α from T
¬α from T
⊥ ∧I

We will use a special kind of ND derivations, that we call Reduction ad Absur-
dum Natural Deduction (RAND). These are ND derivations with an outermost
application of RA:

Definition 3. A RAND derivation of ¬φ ∈ L from T is a ND derivation of ¬φ
from T of the form

dφ hypothesis
...

...

⊥c
...

¬φ RA
A sub-derivation (of some ψ ∈ L) of a derivation d is a RAND sub-derivation
of d iff it is a RAND derivation.

The ND derivation of ¬α given T2 in example 1 is a RAND derivation. Also,
given T1 in example 2, the sub-derivations5

dα d¬α
α→ ⊥ ¬α→ ⊥
⊥c ⊥c

¬α α
of the derivation (d) of ⊥ are RAND sub-derivations (of d).

5 If clear from the context, we omit to give the ND rules used.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

274

3 Argumentation Logic Frameworks

Given a propositional theory we will define a corresponding argumentation frame-
work as follows.

Definition 4. The argumentation logic (AL) framework corresponding to a the-
ory T is the triple 〈ArgsT , AttT , DefT 〉 defined as follows:

– ArgsT = {T ∪Σ|Σ ⊆ L} is the set of all extensions of T by sets of sentences
in L;

– given a, b ∈ ArgsT , with a = T ∪∆, b = T ∪ Γ , such that ∆ 6= {}, (b, a) ∈
AttT iff a ∪ b `MRA ⊥;

– given a, d ∈ ArgsT , with a = T ∪∆, (d, a) ∈ DefT iff
1. d = T ∪ {¬φ} (d = T ∪ {φ}) for some sentence φ ∈ ∆ (respectively
¬φ ∈ ∆), or

2. d = T ∪ {} and a `MRA ⊥.

In the remainder, b attacks a (wrt T) stands for (b, a) ∈ AttT and d defends or
is a defence against a (wrt T) stands for (d, a) ∈ DefT .

Note also that, since T is fixed, we will often equate arguments T ∪Σ to sets of
sentences Σ. So, for example, we will refer to T ∪{} = T as the empty argument.
Similarly, we will often equate a defence to a set of sentences. In particular, when
d = T ∪ Γ defends/is a defence against a = T ∪∆ we will say that Γ defends/is
a defence against ∆ (wrt T).

The attack relation between arguments is defined in terms of a direct deriva-
tion of inconsistency. Note that, trivially, for a = T ∪∆, b = T ∪Γ , (b, a) ∈ AttT
iff T ∪∆ ∪ Γ `MRA ⊥. The following example illustrates our notion of attack:

Example 3. Given T1 = {α→ (β→ γ)} in example 1, {α,β} attacks {¬γ} (and
vice-versa), {α,¬γ} attacks {β} (and vice-versa), {α,¬α} attacks {γ} (and vice-
versa) as well as any non-empty set of sentences (and vice-versa).

Note that the attack relationship is symmetric except for the case of the empty
argument. Indeed, for a, b both non-empty, it is always the case that a attacks b iff
b attacks a. However, the empty argument cannot be attacked by any argument
(as the attacked argument is required to be non-empty), but the empty argument
can attack an argument. For example, given T2 = {α,¬α} in example 2, {}
attacks {α} and {} attacks {β} (for any β ∈ L), since T `MRA ⊥. Finally, note
that our notion of attack includes the special case of attack between a sentence
and its negation, since, for any theory T , {φ} attacks {¬φ} (and vice-versa), for
any φ ∈ L.

The notion of defence is a subset of the attack relation. In the first case of the
definition we defend against an argument by adopting the complement6 of some
sentence in the argument, whereas in the second case we defend against any
directly inconsistent set using the empty argument. Then, in example 3, {¬α}
6 The complement of a sentence φ is ¬φ and the complement of a sentence ¬φ is φ.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

275

defends against the attack {α, β} and {} defends against the (directly inconsis-
tent) attack {α,¬α}. Note that the empty argument cannot be defended against
if T is directly consistent. Finally, note that when T is directly inconsistent the
attack and defence relationships trivialise, in the sense that any two non-empty
arguments attack each other, the empty argument attacks any argument, and
any argument can be defended against by the empty argument.

4 Argumentation Logic

In this section we assume that T is directly consistent.
As conventional in argumentation, we define a notion of acceptability of sets

of arguments to determine which conclusions can be dialectically justified (or
not) from a given theory. Our definition of acceptability and non-acceptability
is formalised in terms of the least fix point of (monotonic) operators on the
cartesian product of the set of arguments/sentences in L, as follows:

Definition 5. Let 〈ArgsT , AttT , DefT 〉 be the AL framework corresponding to
a directly consistent theory T , and R the set of binary relations over ArgsT .

– The acceptability operator AT :R→R is defined as follows: for any acc ∈ R
and a, a0 ∈ ArgsT :
(a, a0) ∈ AT (acc) iff

• a ⊆ a0, or
• for any b ∈ ArgsT such that b attacks a wrt T ,

∗ b 6⊆ a0 ∪ a, and
∗ there exists d ∈ ArgsT that defends against b wrt T such that (d, a0∪
a) ∈ acc.

– The non-acceptability operator NT : R → R is defined as follows: for any
nacc ∈ R and a, a0 ∈ ArgsT :
(a, a0) ∈ NT (nacc) iff

• a 6⊆ a0, and
• there exists b ∈ ArgsT such that b attacks a wrt T and

∗ b ⊆ a0 ∪ a, or
∗ for any d ∈ ArgsT that defends against b wrt T , (d, a0 ∪ a) ∈ nacc.

These AT and NT operators are monotonic wrt set inclusion and hence their
repeated application starting from the empty binary relation will have a least
fixed point.

Definition 6. ACCT and NACCT denote the least fixed points of AT and NT

respectively. We say that a is acceptable wrt a0 in T iff ACCT (a, a0), and a is
not acceptable wrt a0 in T iff NACCT (a, a0).

Thus, given the AL framework 〈ArgsT , AttT , DefT 〉 (for T directly consistent)
and a, a0 ∈ ArgsT :

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

276

– ACCT (a, a0), iff
• a ⊆ a0, or
• for all b ∈ ArgsT such that b attacks a:

∗ b 6⊆ a0 ∪ a, and
∗ there exists d ∈ ArgsT such that d defends against b and
ACCT (d, a0 ∪ a);

– NACCT (a, a0), iff

• a 6⊆ a0 and
• there exists b ∈ ArgsT such that b attacks a and
∗ b ⊆ a0 ∪ a, or
∗ for all d ∈ ArgsT such that d defends against b it holds that
NACCT (d, a0 ∪ a).

We will often equate the (non-)acceptability of an argument T ∪∆ wrt an argu-
ment T ∪∆0 to the (non-)acceptability of the set of sentences ∆ wrt the set of
sentences ∆0.

Note that non-acceptability, NACCT (a, a0), is the same as the classical nega-
tion of ACCT (a, a0), i.e. NACCT (a, a0) = ¬ACCT (a, a0). We choose to give
the definition of non-acceptability explicitly to aid readibility. We will use these
two versions of non-acceptability interchangeably.

Note that the empty argument is always acceptable, wrt any other argument.
Note also that the “canonical” attack of a sentence on its complement (i.e. of
T ∪ {φ} on T ∪ {¬φ} and vice-versa) does not affect the acceptability relation
as it can always be defended against by this complement itself.

The following examples illustrate non-acceptability.

{¬β} {α}

{}
(since T∪{¬β}`MRA⊥)

OO

{β}
(since T∪{α}∪{β}`MRA⊥)

OO

{¬β}

KS

{}
(since T∪{¬β}`MRA⊥)

OO

Fig. 1. Illustration of NACCT ({¬β}, {}) (left) and NACCT ({α}, {}) (right), for ex-
ample 4.

Example 4. Let T = {α ∧ β→⊥,¬β→⊥}. T is classically and directly consis-
tent, T ∪ {¬β} is classically and directly inconsistent, and T ∪ {α} is classically
inconsistent but directly consistent. It is easy to see that NACCT ({¬β}, {})
holds, as illustrated in figure 1 (left)7, since {¬β} 6⊆ {}, b = {} attacks {¬β}
7 Here and throughout the paper we adopt the following graphical convention: ↑ de-

notes an attack and ⇑ denotes a defence.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

277

and {} ⊆ {¬β}. Also, NACCT ({α}, {}) holds, as illustrated in figure 1 (right).
Indeed:

– since {α} 6⊆ {}, b = {β} attacks {α} and {¬β} is the only defence against b,
to prove thatNACCT ({α}, {}) it suffices to prove thatNACCT ({¬β}, {α});

– since {¬β} 6⊆ {α}, b = {} attacks {¬β} and {} ⊆ {α,¬β}, it follows that
NACCT ({¬β}, {α}) holds as required.

Note that if an argument a is attacked by the empty argument, then it is ac-
ceptable wrt a0 iff a ⊆ a0, since there is no defence against the empty argument.
This observation is used in the following example.

Example 5. Given T = T1 = {α→ ⊥,¬α→ ⊥} in example 2, NACCT ({α}, {})
and NACCT ({¬α}, {}) both hold. Indeed, for NACCT ({α}, {}), {α} is attacked
by {}.

The following example shows a case of non-acceptability making use of a non-
empty attack for the base case.

Example 6. Let T = {α∧¬β → ⊥, β ∧ γ → ⊥, α∧ β ∧¬γ → ⊥}. T is classically
(and directly) consistent, and T ∪ {α} is classically inconsistent but directly
consistent. NACCT ({α}, {}) holds, as illustrated in figure 2. Indeed:

{α}

{¬β}
(since T∪{α}∪{¬β}`MRA⊥)

OO

{β}

KS

{γ}
(since T∪{β}∪{γ}`MRA⊥)

OO

{¬γ}

KS

{α, β}
(since T∪{α,β}∪{¬γ}`MRA⊥)

OO

Fig. 2. Illustration of NACCT ({α}, {}) for example 6.

– since {α} 6⊆ {}, b = {¬β} attacks {α} and {β} is the only defence against b,
to prove that NACCT ({α}, {}) it suffices to prove that NACCT ({β}, {α});

– since {β} 6⊆ {α}, b′ = {γ} attacks {β} and {¬γ} is the only defence against
b′, to prove NACCT ({β}, {α}) it suffices to prove NACCT ({¬γ}, {α, β});

– since {¬γ} 6⊆{α, β}, b′′ ={α, β} attacks {¬γ} and b′′ ⊆ {α, β,¬γ},
NACCT ({¬γ}, {α, β}) and soNACCT ({β}, {α}) andNACCT ({α}, {}) hold.

The following example illustrates non-acceptability in the case of an empty (and
thus classically consistent) theory.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

278

Example 7. For T ={}, NACCT ({¬(β∨¬β)}, {}) holds, as illustrated in figure 3.
Also, trivially, NACCT ({β ∧ ¬β}, {}) holds, since it is attacked by the empty
argument.

{¬(β ∨ ¬β)}

{¬β}

OO

{β}

KS

{¬(β ∨ ¬β)}

OO

Fig. 3. Illustration of NACCT ({¬(β ∨ ¬β)}, {}) for example 7.

A novel, alternative notion of entailment can be defined for theories that are
directly consistent in terms of the (non-) acceptability semantics for AL frame-
works, as follows:

Definition 7. Let T be a directly consistent theory and φ ∈ L. Then φ is AL-
entailed by T (denoted T |=AL φ) iff ACCT ({φ}, {}) and NACCT ({¬φ}, {}).

This is motivated by the argumentation perspective, where an argument is held
if it can be successfully defended and it cannot be successfully objected against.

In the remainder of the paper we will study properties of |=AL and discuss
extensions thereof to support NMR.

5 Basic Properties

The following result gives a core property of the notion of AL-entailment wrt the
notion of direct derivation in Propositional Logic, for directly consistent theories.

Proposition 1. Let T be a directly consistent theory and φ ∈ L such that
T `MRA φ. Then T |=AL φ.

Proof: Let a = T ∪∆ be any attack against {φ}, i.e. T ∪{φ}∪∆ `MRA ⊥. Since
T `MRA φ then T ∪∆ `MRA ⊥. Since T is directly consistent, ∆ 6= {}. Hence
any such a can be defended against by the empty argument. Since ACCT ({}, Σ),
for any Σ ⊆ L, then ACCT ({φ}, {}) holds. Moreover, since T `MRA φ, neces-
sarily T ∪ {¬φ} `MRA ⊥. Hence the empty argument attacks {¬φ} and thus
NACCT ({¬φ}, {}) holds. QED

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

279

The following theorem shows (one half of) the link of AL with Propositional
Logic by showing how the RA rule, deleted from the ND proof system within
`MRA, can be recovered back through the notion of non-acceptability.8

Theorem 1. Let T be a directly consistent theory and φ ∈ L. If NACCT ({φ}, {})
holds then there exists a RAND derivation of ¬φ from T .9

dα dα
d¬β dβ
⊥c c(α)

¬¬β α ∧ β
β ⊥c
α ∧ β ¬β
⊥c ⊥c

¬α ¬α

Fig. 4. Two RAND derivations of ¬α in example 4: d1 (left) and d2 (right).

For example, the RAND derivation corresponding to the proof ofNACCT ({α},{})
in figure 1 is d1 in figure 4.10 Here, the inner RAND derivation in d1 corresponds
to the non-acceptability of the defence {¬β} against the attack {β} against {α}.
Derivation d2 in figure 1 is an alternative RAND of ¬α, but this cannot be ob-
tained from any proof of NACCT ({α}, {}), because there is a defence against
the attack {β} given by the empty set (in other words, d2 does not identify a
useful attack, that cannot be defenced against, for proving non-acceptability).

6 AL for Propositional Logic

The following result gives a core property of the notion of non-acceptability for
classically consistent theories.

Proposition 2. Let T be classically consistent and φ ∈ L. If NACCT ({¬φ}, {})
holds then ACCT ({φ}, {}) holds.

Proof: By theorem 1, since NACCT ({¬φ}, {}), then T ` φ. Suppose, by con-
tradiction, that ACCT ({φ}, {}) does not hold. Then NACCT ({φ}, {}) holds
(since NACCT ({φ}, {})=¬ACCT ({φ}, {})) and by theorem 1 there is a RAND
derivation of ¬φ from T and thus T ` ¬φ. This implies that T is classically

8 The other half of this result shows how (under some conditions) a RAND derivation
of ¬φ implies NACCT ({φ}, {}), proven in [12].

9 The proof of this theorem is included in [13].
10 Here and elsewhere in the paper, c(φ), for any φ ∈ L, indicates that φ is the hypoth-

esis of an ancestor sub-derivation copied within the current sub-derivation.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

280

inconsistent: contradiction. Hence ACCT ({φ}, {}) holds. QED

Thus, in Propositional Logic, trivially AL-entailment reduces to the notion of
non-acceptability:

Corollary 1. Let T be a classically consistent theory and φ ∈ L. Then T |=AL φ
iff NACCT ({¬φ}, {}).

The following property sanctions that AL-entailment implies classical derivabil-
ity:

Corollary 2. Let T be a classically consistent theory and φ ∈ L. If T |=AL φ
then T ` φ.

Proof: If NACCT ({¬φ}, {}), then, by theorem 1, there is a RAND derivation
of ¬¬φ from T and thus T ` φ. QED

This corollary gives that consequences of a classically consistent theory under
|=AL are classical consequences too. Proposition 1 sanctions that direct conse-
quences are not lost by |=AL. However, in general not all classical consequences
are retrieved by |=AL, namely the converse of corollary 2 does not hold, as the
following example shows.

Example 8. Let T = {¬α}. We show that T 6|=AL α → β by showing that
NACCT ({¬(α → β)}, {}) does not hold. A standard ND derivation of α → β
from T is:

dα
d¬β
c(α)
¬α from T
⊥c

¬¬β RA
βc ¬E

α→ β → I

This does not help with determining NACCT ({¬(α→ β)},{}). This is related
to the fact that the inconsistency in the inner RAND derivation of ¬¬β is de-
rived without the need of the hypothesis, ¬β, of this RAND derivation. In gen-
eral, any RAND derivation of ¬¬(α → β) (and hence of α → β) from this
theory, T , contains such a RAND sub-derivation relying on the inconsistency
of the copy of α from a (→I) sub-derivation, with ¬α from T . This means that
NACCT ({¬(α→ β)}, {}) cannot hold, since, otherwise, by theorem 1, we would
have a RAND derivation of ¬¬(α→ β) without such a sub-derivation. This is be-
cause by construction of the corresponding RAND derivation given by theorem 1
the existence of such a RAND sub-derivation would violate the non-acceptability
of some defence in the assumed non-acceptability of ¬(α→ β).

This example shows, in particular, that implication is not material implication
under |=AL.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

281

7 AL for Non-Monotonic Reasoning-Discussion

Here we present a first investigation on how AL can be used as a basis for NMR
unifying classical and defeasible reasoning, in the context of the well known
tweety example. Our examination is based on the (expected) need to extend AL
with preferences and the observation that when a theory is (directly) inconsis-
tent we have the possibility to reason with its sub-theories, considering these as
arguments that support their conclusions under AL. For the illustration we use
the following (abbreviations of) sentences:

φbf = [bird(tweety)→ fly(tweety)]
φp¬f = [penguin(tweety)→ ¬fly(tweety)]
φpb = [penguin(tweety)→ bird(tweety)]
φ¬f = [¬fly(tweety)] φp = [penguin(tweety)]
φ¬b¬p = [¬bird(tweety)→ ¬penguin(tweety)]

Example 9. Let T = {φbf , φpb, φ¬f} (T is classically consistent). It is easy
to see that T |=AL ¬bird(tweety) as {} attacks {bird(tweety)} and therefore
NACCT ({bird(tweety)}, {}). Similarly, T |=AL ¬penguin(tweety). In absence
of other information, we believe that these conclusions are legitimate/desirable.

Note that AL does not distinguish default rules and facts and it supports con-
trapositive reasoning with the single form of implication it allows. In example 9,
default logic [19] would derive the same conclusions only by labelling T as facts,
but would not derive either conclusion if the first sentence were labelled as a
default rule, as conventional.

Example 10. Let T = {φbf , φpb, φ¬f , φp¬f} (T classically consistent, obtained
by adding φp¬f to T in example 9). As in example 9, T |=AL ¬bird(tweety) and
T |=AL ¬penguin(tweety). From a commonsense reasoning perspective, this is
counter-intuitive, as it disregards the newly added sentence and the alternative
possibility for ¬fly(tweety) it supports, namely penguin(tweety).

By comparison, default logic with the first and last sentences in T labelled as
default rules (as conventional) would (sceptically) derive no conclusion as to
whether tweety is (or not) a bird or penguin. Arguably, this is too sceptical a
behaviour. Note that we have the same counter-intuitive behaviour of deriving
¬penguin(tweety) when the sentence ¬fly(tweety) is deleted from the theory of
example 10. In order to accommodate within AL the intuitive kind of reasoning
pointed out for these examples, we can extend AL with priorities over sentences,
so that, in particular, exceptions may override rules, in the spirit of prioritised
default logic [4, 5] and other approaches to supporting reasoning with priori-
ties [7]. In our illustration, these priorities may be drawn from the partial order
φ¬f , φp, φpb, φ¬b¬p > φp¬f > φbf . The challenge is to incorporate these priorities
without imposing a separation amongst sentences (as done instead in prioritised
and standard default logic) and without imposing a specific structure on the
defeasible knowledge (the default rules) so as to achieve, e.g., the behaviour of

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

282

AL in example 9. In example 10, the given priorities may be used to identify the
sub-theory {φpb, φ¬f , φp¬f} as the strongest and thus entail penguin(tweety).

By introducing priorities we can also use preference-based argumentation,
as in e.g. [14, 18], to distinguish between strengths of AL-entailment from sub-
theories, and, in particular, allow for stronger sub-theories to dominate, as
illustrated by the following example:

Example 11. Let T={φbf , φp, φ¬f , φ¬b¬p} (T is directly but not classically con-
sistent). Then, correctly, in absence of other information, T 6|=AL bird(tweety)
and T 6|=AL¬bird(tweety). The sub-theories T1 ={φbf , φ¬f} and T2 ={φp, φ¬b¬p}
AL-entail ¬bird(tweety) and bird(tweety) respectively and hence dispute each
other. If we now take into account φ¬b¬p>φbf , then, under a preference-based
argumentation approach, T2 would dominate T1 and thus T would correctly
entail bird(tweety).

The core technical challenge of using priorities over sentences is to under-
stand how these could influence the reasoning by contradiction afforded by RA
in AL. In our illustrative setting we want the priorities (especially φp¬f >
φbf) to restrict the application of RA. There are other cases, however, where
RA gives intuitive results and should not be restricted. For example, from the
theory {bird(tweety), φpb, φp¬f , φbf} with φpb > φp¬f > φbf we expect that
¬penguin(tweety) is entailed since fly(tweety) is an intuitive default conclusion
of this theory and then, by RA, penguin(tweety) cannot be entailed (as otherwise
through the stronger sentence of φp¬f , the sentence ¬fly(tweety) would follow).
Similarly, given the theory {fly(tweety), φpb, φp¬f , φbf} with φpb > φp¬f > φbf ,
we expect that ¬penguin(tweety) is entailed as penguin(tweety) would give
¬fly(tweety) due to the higher strength of φp¬f . To accommodate such cases
it may be necessary to use the priority information more tightly within the
definition of AL, i.e. within the definition of (non-)acceptability.

8 Related Work

AL is based on a notion of acceptability of arguments which is in the same
spirit as that in [8, 11] for capturing the semantics of negation as failure in
Logic Programming. These notions of acceptability are global in the sense that
acceptable and non-acceptable arguments are all defined at the same time. This
view has also recently been taken in [6, 20] where the argumentation semantics
is defined through the notion of a global labelling of arguments as IN, OUT or
UNDECIDED.

The link of argumentation to NMR has been the topic of extensive study for
many years. Most of these studies either separate in the language the classical
reasoning from the defeasible part of the theory (e.g. in Default Logic) or restrict
the classical reasoning (e.g. in LP with NAF) or indeed as in the case of circum-
scription [17] the theory is that of classical logic but a complex prescription of
model selection is imposed on top of the classical reasoning.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

283

Recently, [2] proposed an argumentation framework based upon classical logic
with the aim (that we share) to use argumentation to reason with possibly incon-
sistent classical theories, beyond the realms of classical logic. In their approach,
arguments are defined in terms of sub-theories of a given (typically inconsistent)
theory and they have minimal and consistent supports (wrt the full classical con-
sequence relation). Attacks are defined in terms of a notion of canonical undercut
that relies on arguments for the negation of the support of attacked argument.
Further, the evaluation of arguments is given through a related tree structure of
defeated or undefeated nodes.

Other works that aim for a tighter link between classical and defeasible rea-
soning include the work of Amgoud and Vesic [1], studying the problem of han-
dling inconsistency using argumentation with priorities over sentences, and [21],
who have adapted the approach of [2] to Description Logic and have proposed
an argumentation-based operator to repair inconsistencies. Our approach differs
from these works in that it starts with providing an alternative understanding
of Propositional Logic in argumentation terms on which to base any further de-
velopment of reasoning with inconsistent or defeasible theories. In comparison
with our approach, these other works can be seen more as a form of belief re-
vision, based on argumentation, for classically inconsistent theories rather than
a re-examination of classical logic through argumentation to provide a uniform
basis for classical and defeasible reasoning.

9 Conclusion and Future Work

We have presented Argumentation Logic (AL) and shown how it allows us to
understand classical reasoning in Propositional Logic in terms of argumenta-
tion. Its definition rests on capturing semantically the Reductio ad Absurdum
rule through a suitable notion of acceptability of arguments. One property of
the ensuing AL is that the interpretation of implication is different from that of
material implication. Further results on the relationship between AL and Propo-
sitional Logic including how AL can completely capture the entailment of PL
are given in [12].

Given the significant role that argumentation has played in understanding
under a common framework NMR in AI we have examined the problem of how
we could unify classical reasoning and NMR within the framework of AL. In this
context, we have considered the following questions: How could we use AL as
the underlying logic to build a NMR framework? Can AL with its propositional
language provide a single representation framework for classical and defeasible
reasoning without any distinctions on the type of sentences allowed in a given
theory? In particular, can we understand AL as a NMR framework with sen-
tences that would behave as default rules but also as classical rules, with a form
of contrapositive reasoning with these rules allowed? In this paper we have iden-
tified this problem and the challenges it poses, and studied these questions in
the context of examples.

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

284

Our preliminary investigation suggests the need for an extension of AL to ac-
commodate preferences amongst sentences. Many existing frameworks for NMR
use, either explicitly or implicitly, preferences to capture defeasible reasoning,
e.g. [4, 5] for Default Logic [19]. Also many frameworks of argumentation rely on
some form of preference between arguments, e.g. [14, 15, 18] to capture a notion
of (relative) strength of arguments through which the attack relation between
arguments can be realized. One way therefore to study this problem of inte-
grating classical and defeasible reasoning is to use some form of preference on
the sentences of AL theories, and adapt existing approaches of reasoning with
preferences to AL.

A Appendix: Natural Deduction

We use the following rules, for any φ, ψ, χ ∈ L:

∧I :
φ, ψ

φ ∧ ψ ∧E :
φ ∧ ψ
φ

∧E :
φ ∧ ψ
ψ

∨I :
φ

φ ∨ ψ
∨I :

ψ

φ ∨ ψ →I :
dφ . . . ψc
φ→ ψ

¬E :
¬¬φ
φ
¬I :

dφ . . .⊥c
¬φ

∨E :
φ ∨ ψ, dφ . . . χc, dψ . . . χc

χ
→ E :

φ, φ→ ψ

ψ
where dζ, . . .c is a (sub-)derivation with ζ referred to as the hypothesis. ¬I is
also called Reduction ad Absurdum (RA).

References

1. Amgoud, L., Vesic, S.: Handling inconsistency with preference-based argumen-
tation. In: Deshpande, A., Hunter, A. (eds.) SUM. Lecture Notes in Computer
Science, vol. 6379, pp. 56–69. Springer (2010)

2. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,

argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1–
2), 63–101 (1997)

4. Brewka, G.: Reasoning about priorities in default logic. In: Hayes-Roth, B., Korf,
R.E. (eds.) AAAI. pp. 940–945. AAAI Press / The MIT Press (1994)

5. Brewka, G., Eiter, T.: Prioritizing default logic. In: Hölldobler, S. (ed.) Intellectics
and Computational Logic. Applied Logic Series, vol. 19, pp. 27–45. Kluwer (2000)

6. Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation.
Studia Logica 93(2-3), 109–145 (2009)

7. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Computational Intel-
ligence 20(2), 308–334 (2004)

8. Dung, P.M., Kakas, A.C., Mancarella, P.: Negation as failure revisited. In: Tech-
nical Report, University of Pisa (1992)

9. Dung, P.M., Thang, P.M., Toni, F.: Towards argumentation-based contract nego-
tiation. In: Besnard, P., Doutre, S., Hunter, A. (eds.) Proceedings of the Second
International Conference on Computational Models of Argument (COMMA’08).
Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 134–146. IOS
Press (2008)

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

285

10. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

11. Kakas, A.C., Mancarella, P., Dung, P.M.: The acceptability semantics for logic
programs. In: ICLP. pp. 504–519 (1994)

12. Kakas, A., Toni, F., Mancarella, P.: Argumentation logic. Tech. rep., Department
of Computer Science, University of Cyprus, Cyprus (April 2012)

13. Kakas, A., Toni, F., Mancarella, P.: Argumentation for propositional logic and
nonmonotonic reasoning. In: Working notes of the 11th International Symposium
on Logical Formalizations of Commonsense Reasoning (2013)

14. Kakas, A.C., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: The Second International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Aus-
tralia, Proceedings. pp. 883–890. ACM (2003)

15. Kowalski, R.A., Toni, F.: Abstract argumentation. Artificial Intelligence and Law
4(3–4), 275–296 (1996)

16. Lin, F., Shoham, Y.: Argument systems: A uniform basis for nonmonotonic rea-
soning. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Proceedings of the 1st
International Conference on Principles of Knowledge Representation and Reason-
ing (KR’89). Toronto, Canada, May 15-18 1989. pp. 245–255. Morgan Kaufmann
(1989)

17. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial In-
telligence 13(1-2), 27–39 (1980)

18. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artificial Intelligence (2012), in Press

19. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132
(1980)

20. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Studies
in Logic 3(4), 12–29 (2010)

21. Zhang, X., Zhang, Z., Xu, D., Lin, Z.: Argumentation-based reasoning with incon-
sistent knowledge bases. In: Canadian Conference on AI. pp. 87–99 (2010)

A. Kakas et al. Argumentation for Propositional Logic and Nonmonotonic Reasoning

286

The representation of Boolean algebras in the
spotlight of a proof checker?

Rodica Ceterchi1, Eugenio G. Omodeo2, Alexandru I. Tomescu3

1 Facultatea de Matematică s,i Informatică, Universitatea din Bucures,ti
email: rceterchi@gmail.com

2 Dipartimento di Matematica e Geoscienze, Università di Trieste,
Via Valerio 12/1, I-34127 – Trieste, Italy

email: eomodeo@units.it
3 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki,
P.O. 68 (Gustaf Hällströmin katu 2b), FI-00014 – Helsinki, Finland

email: tomescu@cs.helsinki.fi

Abstract. We report on a proof-checked version of Stone’s result on
the representability of Boolean algebras via the clopen sets of a totally
disconnected compact Hausdorff space. Our experiment is based on a
proof verifier based on set theory, whose usability can in its turn benefit
from fully formalized proofs of representation theorems akin to the one
discussed in this note.

Key words: Theory-based automated reasoning; proof checking; Referee
aka ÆtnaNova; Boolean rings; Boolean algebras; Stone spaces.

“Boolean algebras have an almost embarrassingly rich structure.” [7, p. 10]

Introduction

This paper reports on a formally verified proof of Stone’s celebrated results
[20,21,22] on the representability of Boolean algebras as fields of sets, carried
out along the lines found in [4, pp. 41–43] by means of Jacob T. Schwartz’s
proof-checker Referee, aka ÆtnaNova, to be simply called ‘Ref’ for brevity in the
ongoing. The proof of Zorn’s lemma, formalized much earlier (cf. [19, Chapter 7])
and previously exploited in the compactness proof for classical propositional logic
[16], played again a crucial role in our present scenario.

A website reporting on our experiment is at http://www2.units.it/eomodeo/
StoneReprScenario.html. In its final form, the script-file supporting it and
leading from first principles to the topological version of Stone’s result, com-
prises 42 definitions and proves 210 theorems altogether, organized in 19 The-
orys, including the background Theory Set theory. Its processing takes about
25 seconds.
? Work partially supported by the INdAM/GNCS 2013 project “Specifica e verifica di

algoritmi tramite strumenti basati sulla teoria degli insiemi” and by the Academy
of Finland under grant 250345 (CoECGR)

287

1 Boolean algebras and rings

A ring is said to be Boolean when every one of its elements is self-inverse w.r.t.
addition and idempotent w.r.t. multiplication:

X +X = 0 ,
X · X = X .

The former of these laws makes it superfluous to postulate the commutativity
of addition (for, it implies it); the latter implies the commutativity of multipli-
cation. When endowed with multiplicative identity, 1, a Boolean ring is called a
Boolean algebra. (To avoid trivialities, we will require that 06=1).

An aspect of the richness of Boolean rings is that the relation

X 6 Y ↔DefX · Y = X

is a partial order, in which every pair X,Y of elements has greatest common
lower bound X u Y = X · Y and least common upper bound X t Y = X · Y +
X+Y . In this ordering 0 acts as the minimum and—when present—1 acts as the
maximum. Historically, Boolean algebras were first studied as lattices endowed
with peculiar properties (namely, distributivity and complementedness).4 The
salient operations, from this viewpoint, were u,t, ; the algebraic kinship with
the rings of numbers remained unnoticed for quite a while (cf.[9, p. 208]).

From the ring-based point of view—the one which will prevail in these pages—
the complementation operation turns out to be: X =Def 1 +X.

X ∈ B → X ∈ B & X = X & 1B = 0B & 0B = 1B
{X,Y } ⊆ B → X + X = 1B & Y ·X + Y ·X = Y & (Y ·X) · (Y ·X) = 0B
{X,Y } ⊆ B → X + Y = X · Y + X · Y

X ∈ B → X 6= X & (X /∈ {0B, 1B} → X ∈ B \ {0B, 1B})
{X,Y } ⊆ B → (X · Y = 1B → X = 1B & Y = 1B)

{U, V,X, Y } ⊆ B → U ·X + V · Y = (U ·X + V · Y) ·X · Y

Fig. 1. A few derived Boolean laws

4 From the lattice-based point of view, the simplest available characterization of the
structure ‘Boolean algebra’ is the one proposed by Herbert Robbins, ca. 1933 (cfr.
[12,10]). Ignoring the construct u, which can be introduced by way of shortening
notation, the Robbins laws are:

X t Y = Y tX, X t (Y t Z) = (X t Y) t Z, X t Y tX t Y = X.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

288

2 Fields of sets

Starting with a non-void set S, let us construct the following families of sets:5

– P(S) =Def {x : x ⊆ S } , the family of all subsets of S;
– F(S) =Def {x ⊆ S | |x| ∈ N } , the family of all finite subsets of S;
– B(S) =Def F(S) ∪ {S \ x : x ∈ F(S) } , the family formed by those subsets

of S each of which is either finite or has a finite complement (relative to S).

If S is finite, P(S) = F(S) = B(S) holds; otherwise, we get three families.

To get Boolean rings out of these, it suffices to define:

X · Y =Def X ∩ Y (intersection),
X + Y =Def (X ∪ Y) \ (X ∩ Y) (symmetric difference).

One readily sees that P(S) and B(S) thus become Boolean algebras, whose
additive identity, 0, and multiplicative identity, 1, are ∅ and S; as for F(S), it
lacks 1 when S is infinite.

By generalizing the case of P(S) and B(S), one calls field of sets any
family B which

– is closed under the operations of intersection and symmetric difference;
– has

⋃B among its members, viz., owns a maximum w.r.t. set inclusion;
– differs from {∅}.

This clearly is an instance of a Boolean algebra. How general? A renowned
theorem by Marshall H. Stone [20] gives us the answer:

Every Boolean algebra is isomorphic to a field of sets.

This field is not always of the form P(S) (this holds only for particular Boolean
algebras, among which the ones whose underlying domain is finite6): in fact it
is trivial that the field B(N), whose cardinality equals the one of N, cannot be
isomorphic to P(S) for any S.7

3 Stone spaces

We define a base of a topological space to be a pair (X , β) such that:
(i) X 6= ∅; (ii) β ⊆ P(X); (iii) β enjoys, w.r.t. dyadic intersection, ∩, and to
monadic union,

⋃
, the following closure properties:

5 We designate by |X| the cardinality of a set X and by N the set {0, 1, 2, . . . } of all
natural numbers (which is, in its turn, a cardinal number—the first infinite one).

6 More generally, the Boolean algebras which are isomorphic to P(S) for some S are
the ones which are completely distributive; [2, pp. 221–222] credits this result to
Alfred Tarski.

7 Indeed, |P(S)| ∈ N (i.e., |P(S)| is smaller than the cardinal number N) when |S| ∈ N;
whereas |P(S)| exceeds N—because |P(S)| exceeds |S|—when S is infinite.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

289

1)
⋃
β = X ,

2) (A ∈ β & B ∈ β)→ (A ∩B) ⊆ ⋃{ c ∈ β | c ⊆ (A ∩B) }.

The topological space generated by such a base is, by definition, the pair
(X , τ) where

τ = {⋃ a : a ⊆ β} .
A topological space hence is a pair (X , τ) such that: (i) X 6= ∅; (ii) τ ⊆ P(X); (iii)
τ enjoys, w.r.t. dyadic intersection, ∩, and to monadic union,

⋃
, the following

closure properties:

– X ∈ τ ,
– A,B ∈ τ → (A ∩B) ⊆ ⋃{ c ∈ τ | c ⊆ (A ∩B) },
– A ∈ P(τ)→ ⋃A ∈ τ ,

whence it plainly follows that A,B ∈ τ → A ∩ B ∈ τ and, more generally, that
A ∈ F(τ)→ ⋂A ∈ τ , under the proviso that the intersection

⋂ ∅ equals X .

The open and the closed sets of such a space are, respectively, the members
of τ and their complements X \ A (with A ∈ τ). A subset of X which is open
and closed is called a clopen set: examples are ∅ and X . It is apparent that
clopen sets form a field of sets.

A topological space is said to be

a Hausdorff space if: for every pair of distinct members p, q ∈ X , there exist
disjoint open sets P,Q ⊆ X such that p ∈ P , q ∈ Q;8

compact if: every family of open sets whose union is X includes a finite sub-
family whose union is X .

One calls Stone space any topological space which, in addition to enjoying the
two properties just stated, also

– owns a base—namely a β ⊆ τ such that every open set is the union of a
subfamily of β—entirely formed by clopen sets.

By relying on these concepts, one enhances the claim of Stone’s theorem as
follows (cf. [21,22]):

Every Boolean algebra is isomorphic to a field of sets consisting of the
clopen sets of a Stone space.

In sight of the proof of this theorem, it is worthwhile to recall another way
of stating the compactness property, dual to the one proposed above:

A topological space (X , τ) is compact if and only if every (non-void)
family C of closed sets whose intersection

⋂ C is void has some finite
subfamily whose intersection is void : F ⊆ C, |F| ∈ N \ {0}, ⋂F = ∅.

8 This definition implies that in a Hausdorff space every singleton subset of X is closed.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

290

4 Boolean ideals and their maximal enlargements

The study of an abstract algebraic structure forcibly leads one to investigate
the associated homomorphisms. In the Boolean case at hand, to move reso-
lutely in the direction that best suits our purposes, we will just consider those
homomorphisms which translate the operations of a Boolean algebra (the homo-
morphism’s domain) into the set-operations ∩,4 of intersection and symmetric
difference. The images of such a homomorphism will hence form a field of sets;
particularly worth of consideration, among the homomorphisms of interest, are
the ones whose values form the special field 2 =

({
∅, {∅}

}
,∩,4, {∅}, ∅

)
.

Let us refer by B = (B, ·,+, 1B, 0B) to a Boolean algebra which, tacitly, will
act as domain of the homomorphisms that will enter into play. A homomorphism
of B into 2 is fully characterized by either one of the two subsets of the underlying
domain B which are counter-images, respectively, of 0 = ∅ and of 1 = {∅}. Not all
subsets of B can play the role of counter-images of the minimum via a Boolean
homomorphism; let us hence figure out which conditions a set must meet in
order to qualify for such a role. In investigations of this nature, algebraists tend
to focus on the counter-images of the minimum, the so-called ideals, or ‘kernels’;
logicians, on the opposite, tend to focus on the counter-images of the maximum,
the so-called filters, or ‘shells’. We will conform to the algebraic habit; moreover,
since we must concentrate mainly on homomorphisms into 2, we will tribute
special attention to ideals which are maximal w.r.t. to set inclusion.

Definition 1. An ideal is a subset of the underlying domain B which is closed
with respect to addition, as well as to multiplication of its elements by elements
of B, and which is not one of the (exceedingly trivial) sets ∅, {0B},B.

Three theorems about ideals play a crucial role in the proof of Stone’s results:

a) Every element x of B which is neither 1B nor 0B belongs to at least one
ideal: the least such ideal, named a principal ideal, is simply formed by
the multiples of x. It hence follows, save in the case when B = {0B, 1B}, that
there is at least one ideal.

b) To each ideal I and each x 6= 1B not belonging to I, there corresponds an
ideal J ⊇ I one of whose elements is x: this is {a · x+ y : a ∈ B, y ∈ I}.

c) Every ideal I is included in an ideal which is maximal w.r.t. ⊆.

Checking the first two of these is very plain; the third can be proved by means
of Zorn’s lemma, after observing that every chain of ideals is closed w.r.t. union.

5 1st Stone’s representation theorem

Let us recall first the algebraic version of Stone’s theorem:

Theorem 1 (Stone’s algebraic representation). Every Boolean algebra

B = (B, ·,+, 1B, 0B)

is isomorphic to a field H of sets whose underlying domain is included in P(H),
where H is the set of all homomorphisms from B into 2.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

291

Proof. Associate with each x ∈ B the set x̃ of those homomorphisms in H which
send x to {∅}; thus, clearly, 0̃B = ∅ and 1̃B = H. Moreover x̃ · y = x̃ ∩ ỹ
holds: in fact, when h is a homomorphism, h(x · y) = h(x) ∩ h(y) equals {∅} if
and only if h(x) = h(y) = {∅}, i.e. iff h ∈ x̃ ∩ ỹ. By an analogous argument,
h(x + y) = h(x)4 h(y) and x̃+ y = x̃4 ỹ. Take H to be the image-set of the
function x 7→ x̃.

In order to see the injectivity of this function, consider the difference e0 =
x0 + x0 · x1 between two elements x0, x1 ∈ B such that x0 · x1 6= x0 (whence
e0 6= 0B). We will show that there is an h ∈ H sending e0 to 1B; accordingly,
since 1B = h(e0) = h(x0 + x0 · x1) = h(x0) 4

(
h(x0) ∩ h(x1)

)
, we will have

h(x0) = {∅}, h(x1) = ∅, and therefore h ∈ x̃0 \ x̃1 as desired. We readily get the
sought h if B = {0B, 1B}; otherwise we pick a y0 ∈ B\{0B, 1B}, choosing y0 = e0
if e0 6= 1B. This y0 belongs to a principal ideal and hence to a maximal ideal M ,
and it is plain that the opposite h = 1−χM of the characteristic function of M ,
manifestly a homomorphism from B to 2, does to our case. a

Call set-representation of the algebra B the field of sets just built. We
will see next that this H generates a very peculiar topology on H.

6 2nd Stone’s representation theorem

We are now ready for the topological version of Stone’s theorem:

Theorem 2 (Stone’s topological representation). The field of sets by which
we have represented a Boolean algebra B is the base—as well as the family of all
clopen sets—of a topology on the set H of all homomorphisms from B into 2.
Once endowed with such a topology, H turns out to be a Stone space.

Proof. To see that H (constructed as in the preceding proof) is the base of a
topology on H, we can directly check that H ⊆ P(H) and

⋃
H = H 6= ∅ hold,

and that
⋂
F belongs to H for every finite non-void subset F of H. Indeed, H

is the image-set of an injective function x 7→ x̃ from B into P(H), where B is at
least doubleton; hence, readily, H 6= ∅, H ⊆ P(H), and

⋃
H ⊆ H hold. The last

inclusion is in fact an equality, because H, which is 1̃B, belongs to H. Then we
get that H is closed under intersection through the remark, made above, that
x̃ ∩ ỹ = x̃ · y.

Knowing, at this point, that H qualifies as the base for a topology on H,
let us notice that all sets in H are clopen in the topology τ generated by it: in

fact, since H \ x̃ = H 4 x̃ = 1̃B 4 x̃ = 1̃B + x, the complement of a set in the
base belongs to the base in its turn. This remark readily gives us that (H, τ) is
a Hausdorff space. In fact, when f, g ∈ H differ, there is an x ∈ B such that
f(x) = 1↔ g(x) 6= 1; thus, since H \ x̃ = x̃, we can find sets u, v ∈ τ such that
f ∈ u, g ∈ v, and u ∩ v = ∅, by also insisting that {u, v} = {x̃, x̃}.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

292

It remains to be shown that the space is compact, which will also yield that
every clopen set of τ belongs to H.9 One easily sees that the closed sets in τ
are: H and all intersections of non-void subsets of {x̃ : x ∈ B}; compactness
will hence readily follow if we manage to show that whenever ∅ 6= O ⊆ H and⋂O = ∅ hold, there is an F ⊆ O such that |F| ∈ N \ {0} and

⋂F = ∅.
Equivalently, assuming that ∅ 6= O ⊆ H and that

⋂F 6= ∅ holds for every finite
non-void subset F of O, we will show that

⋂O 6= ∅.
Notice that the subset

B0 =Def

{
x : F ⊆ O | |F| ∈ N \ {0}& x̃ =

⋂
F
}
∪ {1B}

of B meets the conditions:

1) x · y ∈ B0 for all x, y ∈ B0 ,
2) 0B /∈ B0 6⊆ {1B},

implying that { a · x : a ∈ B , x ∈ B0 } is an ideal of B. By enlarging this into a
maximal ideal, we get the kernel of a homomorphism h sending all complements
of el’ts of B0 to ∅, hence sending all elements of B0 to {∅}. Thus, h ∈ ⋂O. a

7 Formalization of Stone’s representation theorems in Ref

This section offers glimpses of our formal development of Stone’s result on the
representability of Boolean algebras via the clopen sets of a totally disconnected,
compact Hausdorff space. In carrying out this task, we relied on a proof checker:
Ref. Our experiment culminated in a rather elaborate series of mathematical
claims, shown not in this section, but in the appendix.

Organization and rationale of our automated proof assistant are extensively
discussed in [19]; but so far, due to the short time elapsed from its implementa-
tion, Ref is not widely known. Hence, putting aside our report on our experiment
for a moment, we devote a quick subsection to introducing Ref itself.

7.1 Brief presentation of the proof-checking framework

Ref is a proof assistant for mathematics based on a variant of Zemelo-Fraenkel
set theory, which is “hardwired” in Ref’s proof-checking abilities. From the user
Ref receives script files, called scenarios, consisting of successive definitions, the-
orems, and auxiliary commands, which it either certifies as constituting a valid
sequence or rejects as defective. In the case of rejection, the verifier attempts
to pinpoint the troublesome locations within a scenario, so that errors can be

9 To derive from compactness that
⋃O ∈ H holds when O ⊆ H and

⋃O is closed,
we argue as follows. Assuming, w.l.o.g., that ∅ 6= O, since ∅ = (

⋃O) ∩ (H \⋃O) =
(
⋃O) ∩⋂{H \ u : u ∈ O} is the intersection of a family of closed sets, we can pick

an F such that ∅ 6= F ⊆ O, |F| ∈ N, and (
⋃O) ∩ ⋂{H \ u : u ∈ F} = ∅. Thus⋃O =

⋂{H \ u : u ∈ F} ∈ H, because H is closed relative to complementation and
to finite intersection.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

293

located and repaired. Step timings are produced even for correct proofs, to help
the user in spotting places where appropriate modifications could speed up proof
processing.

The bulk of the text normally submitted to the verifier consists of theorems
and proofs. Some theorems (and their proofs) are enclosed within so-called The-
orys, whose external conclusions are justified by these internal theorems. This
lets scenarios be subdivided into modules, which increases the readability and
supports proof reuse.

Many theorems are not enclosed within a user-defined Theory; when this
happens, they belong on their own right to the underlying “big” Theory identified
by the name Set theory.

Of all relationships treated within Set theory, the most fundamental is mem-
bership, ∈, which is supposed to be well founded in the sense that no infinite
sequence x0, x1, x2, . . . of sets can satisfy xi+1 ∈ xi for every i. The well founded-
ness of ∈ is witnessed by the built-in arbitrary selection operator, arb, meeting
the conditions arb(x) ∈ x and arb(x)∩x = ∅ for every set x other than the null
set ∅ (about which the equality arb(∅) = ∅ is assumed).

At their simplest definitions are merely abbreviations which concentrate at-
tention on interesting constructs by assigning them names which shorten their
syntactic form (an example of this kind is the definition of finitude that we will
soon meet). Beyond this simple level, Ref offers a primitive scheme of ∈-recursive
definition legitimatized by the well foundedness of ∈ and illustrated, e.g., by the
following specification:

Def : [Join singletons] filum(X) =Def {X} ∪ arb
({

filum(y) : y ∈ X |X = {y}
})

(This collects together into filum(X) all elements of the finitely many singletons
“spreading”—in a quite definite sense—from {X}.)

This example also shows the availability, in the formal language of Ref, of
perspicuous set-formers such as

{
filum(y) : y ∈ X |X = {y}

}
. Just in order to

see a few other set-formers at work, consider the following shorthand definitions:⋃
Y =Def { z : x ∈ Y , z ∈ x} ,

edges(V,E) =Def

{
{x, y} : x ∈ V, y ∈ V | x 6= y

}
∩ E ,

Connected(E) ↔Def {b : b⊆ E | ⋃ b ∩⋃(E \ b) = ∅} ⊆ {∅,E} .
A very small Ref scenario, consisting of one definition (involving yet another

set-former) and two theorems with their proofs, is shown in Fig. 2. As one sees
there, each inference step in a Ref proof has two components, separated by the
‘⇒’ sign: on the right of which a logical statement (sometimes hidden behind one
of the keywords Auto, Qed) appears; while, on the left, there is a justification
of the statement, namely an indication of which inference method enables its
derivation from the preceding part of the proof.

Last but not least, Ref supports proof reuse through a costruct named The-
ory, essentially a second-order form of Skolemization. Fig. 3 shows the interface
of a specific Theory, named finite image, which has two input parameters: s0, a

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

294

Def P: [Family of all subsets of a given set] PS =Def {x : x⊆ S}

Thm pow0: [No set equals its own powerset] (X⊇ Y↔ Y ∈ PX) & X 6= PX. Proof:
Suppose not(x0, y0)⇒ Auto
Use def(Px0)⇒ Auto
Suppose⇒ x0 = Px0
ELEM⇒ Stat0 : x0 /∈ {y : y ⊆ x0}
〈x0〉↪→Stat0⇒ false; Discharge⇒ Auto
EQUAL⇒ Stat1 : x0 ⊇ y0 6= y0 ∈ {y : y ⊆ x0}
Suppose⇒ Stat2 : y0 ∈ {y : y ⊆ x0}
〈y1〉↪→Stat2(Stat1?)⇒ false; Discharge⇒ Stat3 : y0 /∈ {y : y ⊆ x0}
〈y0〉↪→Stat3(Stat1?)⇒ false; Discharge⇒ Qed

Thm pow1: [Monotonicity of powerset] S⊇ X→ PX ∪ {∅,X} ⊆ PS. Proof:
Suppose not(s0, x0)⇒ Auto
Set monot⇒ {x : x⊆ x0} ⊆ {x : x⊆ s0}
Use def(P)⇒ Stat1 : ∅ /∈ {x : x⊆ s0} ∨ x0 /∈ {x : x⊆ s0}
〈∅, x0〉↪→Stat1⇒ false; Discharge⇒ Qed

Thm pow2: [Powerset of null set and of singletons] P∅= {∅} &
P {X} = {∅, {X}} . Proof:

Suppose not(x0)⇒ Auto
Suppose⇒ P∅ 6= {∅}
〈∅, ∅〉↪→Tpow1 ⇒ Stat0 : P∅ 6⊆ {∅}
〈y0〉↪→Stat0(Stat0?)⇒ Stat1 : y0 ∈ P∅ & y0 /∈ {∅}
〈∅, y0〉↪→Tpow0(Stat1?)⇒ false; Discharge⇒ P {x0} 6= {∅, {x0}}
〈 {x0} , {x0} 〉↪→Tpow1 ⇒ Stat2 : P {x0} 6⊆ {∅, {x0}}
〈y1〉↪→Stat2⇒ Stat3 : y1 ∈ P {x0} & y1 /∈ {∅, {x0}}
〈 {x0} , y1〉↪→Tpow0(Stat3?)⇒ false; Discharge⇒ Qed

Fig. 2. Tiny sample of a Ref scenario

finite set, and g, a global function. Inside finite image, from the assumed finite-
ness of s0 the user has derived that { g(x) : x ∈ s0 } is a finite set; moreover, (s)he
has defined the output parameter fΘ so as to insure that fΘ be an ⊆ -minimal
subset of s0 such that fΘ and s0 are sent by g to the same image.

Theory finite image (s0 , g(X))
Finite(s0)

⇒ (
fΘ
)

Finite
(
{ g(x) : x ∈ s0 }

)

fΘ ⊆ s0 & 〈 ∀ t ⊆ fΘ | g(t) = g(s0) ↔ t= fΘ 〉
End finite image

Fig. 3. Interface of a Theory specifying an induction principle

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

295

7.2 Excerpts from our proof scenario of Stone’s theorems

As a warm-up exercise, we developed with the assistance of Ref the Theory
pord displayed in Fig. 4, showing that every partially ordered set is isomorphic
to a family of sets partially ordered by inclusion. The assumptions of pord state
that Le must be a partial ordering of dd. By sending each element x of dd to the
set consisting of those elements of dd which are smaller than or equal to x, we get
an order monomorphism between (dd, Le) and (P(dd),⊆): whose name ‘poIsoΘ’,
as indicated by the subscript Θ, is specified—along with its definition—inside
the Theory.

Theory pord
(
dd, Le(U,V)

)

〈∀x, y | {x, y} ⊆ dd→ (
Le(x, y) & Le(y, x)↔ x = y

)〉
〈∀x, y, z | {x, y, z} ⊆ dd→ Le(x, y) & Le(y, z)→ Le(x, z)〉

⇒ (poIsoΘ)
poIsoΘ = {[x, {v ∈ dd | Le(v, x)}] : x ∈ dd}
〈∀x | x ∈ dd→ Le(x, x) & poIsoΘ�x = {v ∈ dd | Le(v, x)} 〉
〈∀x, y | {x, y} ⊆ dd→ (

Le(x, y)↔ poIsoΘ�x ⊆ poIsoΘ�y
)〉

1–1(poIsoΘ) & domain(poIsoΘ) = dd
End pord

Fig. 4. Interface of a representation Theory about partial orderings

Our next step consisted in developing a theory of Boolean rings:

Theory booleanRing(bb, ·,÷)
bb 6= ∅
〈∀x, y | {x, y} ⊆ bb→ x · y ∈ bb〉
〈∀x, y | {x, y} ⊆ bb→ x ÷ y ∈ bb〉
〈∀x, y, z | {x, y, z} ⊆ bb→ x · (y · z) = (x · y) · z〉
〈∀x, y, z | {x, y, z} ⊆ bb→ x ÷ (y ÷ z) = (x ÷ y)÷ z〉
〈∀x, y, z | {x, y, z} ⊆ bb→ (x ÷ y) · z = z · y ÷ z · x〉
〈∀x, y | {x, y} ⊆ bb→ x ÷ x = y ÷ y〉
〈∀x, y | {x, y} ⊆ bb→ x ÷ (y ÷ x) = y〉
〈∀x | x ∈ bb→ x · x = x〉

⇒ (zzΘ)
zzΘ = arb(bb)÷ arb(bb)

〈∀x | (x ∈ bb→ x ÷ x = zzΘ & x ÷ zzΘ = x & zzΘ ÷ x = x) & zzΘ ∈ bb〉
〈∀x, y | x, y ∈ bb→ x ÷ y = y ÷ x〉
〈∀x, y | x, y ∈ bb→ x · y = y · x〉
〈∀x | x ∈ bb→ zzΘ · x = zzΘ〉
〈∀u, v | {u, v} ⊆ bb & u · v = u & v · u = v→ u = v〉

End booleanRing

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

296

Here zzΘ designates the additive identity. Notice, among the internally derived
claims, the commutativity laws.

Due to its entirely algebraic character, this Theory could have been de-
veloped somewhat more easily with an autonomous theorem prover oriented to
the treatment of equality: as announced in [6, Sec. 3], we plan to implement
interfaces between Ref and outer automated proof assistants.

Our next Theory, presupposing the definition of symmetric difference, shows
that rings of sets match the assumptions of the Theory booleanRing:

Theory protoBoolean(dd)
∅ 6=⋃

dd

〈∀x, y | {x, y} ⊆ dd→ x ∩ y ∈ dd〉
〈∀x, y | {x, y} ⊆ dd→ x 4 y ∈ dd〉

⇒
dd 6= ∅
〈∀x ∈ dd, y ∈ dd, z ∈ dd | x ∩ (y ∩ z) = (x ∩ y) ∩ z〉
〈∀x ∈ dd, y ∈ dd, z ∈ dd | x 4 (y 4 z) = (x 4 y)4 z〉
〈∀x ∈ dd, y ∈ dd, z ∈ dd | (x 4 y) ∩ z = z ∩ y 4 z ∩ x〉
〈∀x ∈ dd, y ∈ dd | x 4 x = y 4 y〉
〈∀x ∈ dd, y ∈ dd | x 4 (y 4 x) = y〉
〈∀x ∈ dd | x ∩ x = x〉

End protoBoolean

Two claims, proved inside the background Theory, namely Set theory, and pre-
supposing the definition of P, show that the family of all subsets, and the
one of all finite and cofinite subsets, of a non-void set constitute instances of
protoBoolean:

Thm . W 6= ∅ & {X,Y} ⊆ PW→ {X ∩ Y,X 4 Y} ⊆ PW &
⋃

(PW) 6= ∅ ,
Thm . W 6= ∅ & D = {s ⊆W | Finite(s) ∨ Finite(W\s)} & {X,Y} ⊆ D→

{X ∩ Y,X 4 Y} ⊆ D &
⋃

D 6= ∅.

Another Theory, akin to the preceding one, introduces a slightly more spe-
cific algebraic variety than the one treated by protoBoolean:

Theory archeoBoolean(dd)
∅ 6=⋃

dd

〈∀x, y, z | {x, y} ⊆ dd & z ⊆ x ∪ y→ z ∈ dd〉
⇒
〈∀x, y | {x, y} ⊆ dd→ x ∩ y ∈ dd〉
〈∀x, y | {x, y} ⊆ dd→ x 4 y ∈ dd〉
dd 6= ∅

End archeoBoolean

After switching back to the background Set theory level, one proves that
there are fields of sets which are instances of protoBoolean but are not instances

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

297

of archeoBoolean. Indeed, the collection of all finite and cofinite subsets of an
infinite set is not closed with respect to inclusion.

Thm . ¬Finite(W) & D = {s ⊆W | Finite(s) ∨ Finite(W\s)}→
W ∈ D & 〈∃z ⊆W | z /∈ D〉.

Surprisingly enough, it is unnecessary to resort to a theory of cardinals of any
sophistication in order to get the result just cited: the distinction between finite
sets and sets which are not finite more than suffices for that purpose, where the
following definition applies:

Def : [Finitude] Finite(F) ↔Def 〈∀g ∈ P(PF)\ {∅} ,∃m | g ∩ Pm = {m} 〉

Last but not least, we developed the Theory booleanAlgebra whose interface
is shown in the Appendix.

Conclusions and future work

Proof-verification can highly benefit from representation theorems of the kind
illustrated by Stone’s results on Boolean algebras. On the human side, such
results disclose new insights by shedding light on a discipline from unusual angles;
on the technological side, they enable the transfer of proof methods from one
realm of mathematics to another.

Examples of this can be found in various recent proofs concerning connected
claw-free graphs:10 thanks to a convenient choice on how to represent those
graphs, Milanič and Tomescu [13] proved with relative ease two classical propo-
sitions, namely that any such graph owns a near-perfect matching and has a
Hamiltonian cycle in its square; a proof of the somewhat deeper theorem [8]
that all connected claw-free graphs have a vertex-pancyclic square was also at-
tained cheaply through the same representation [23]. Specifically, the facilitation
stems from transferring those results to the special class of the membership di-
graphs, whose set of vertices is a hereditarily finite set and whose arcs precisely
reflect the membership relation between vertices. Under this change of perspec-
tive, a fully formal reconstruction of the first two results became affordable and,
once carried out, was certified correct with the Ref proof-checker [15,17,18].

This motivated us in undertaking the formal development, with Ref, of proofs
of various representation theorems (see also [1]). An envisaged continuation of
the present work will be in the direction of MV-algebras (cf. [14,5,3,11]).

10 A graph is said to be claw-free if no induced subgraph of its is isomorphic to the
graph, called the claw : K1,3 =

(
{w, x, y, z},

{
{y, x}, {y, z}, {y, w}

})
.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

298

References

1. P. Calligaris, E. G. Omodeo, and A. I. Tomescu. A proof-checking experiment on
representing graphs as membership digraphs. In D. Cantone and M. Nicolosi As-
mundo, editors, CILC 2013: Italian Conference on Computational Logic, volume
1068 http://ceur-ws.org/Vol-1068/, ISSN 1613-0073, pages 227–233. CEUR
Workshop Proceedings, Sept. 2013.

2. Paul Moritz Cohn. Universal Algebra. Harper and Row, 1965.
3. E. J. Dubuc and Y. A. Poveda. Representation theory of MV-algebras. Ann. Pure

Appl. Logic, 161(8):1024–1046, 2010.
4. Nelson Dunford and Jacob T. Schwartz. Linear Operators, Part I General Theory.

Interscience Publishers, 1958.
5. A. Dvurečenskij. Pseudo MV-algebras are intervals in `-groups. J. Austral. Math.

Soc., 72:427–425, 2002.
6. Andrea Formisano and Eugenio G. Omodeo. Theory-specific automated reasoning.

In Agostino Dovier and Enrico Pontelli, editors, A 25-Year Perspective on Logic
Programming: Achievements of the Italian Association for Logic Programming,
GULP, volume 6125 of Lecture Notes in Computer Science, pages 37–63. Springer,
2010.

7. Paul R. Halmos. Algebraic Logic. AMS Chelsea Publishing, Providence, Rhode
Island, 1962.

8. George Hendry and Walter Vogler. The square of a connected S(K1,3)-free graph
is vertex pancyclic. Journal of Graph Theory, 9(4):535–537, 1985.

9. Nathan Jacobson. Lectures in Abstract Algebra, Vol.1 – Basic Concepts. D. Van
Nostrand, New York, 1951.

10. G. Kolata. With major math proof, brute computers show flash of reasoning power.
The New York Times, Dec. 10, 1996.

11. M. Konig. Gödel Lukasiewicz logic. LP&S – Logic and Philosophy of Science,
VIII(1):119–142, 2010.

12. W. W. McCune. Solution of the Robbins problem. J. of Automated Reasoning,
19(3):263–276, 1997.

13. M. Milanič and A. I. Tomescu. Set graphs. I. Hereditarily finite sets and extensional
acyclic orientations. Discrete Applied Mathematics, 161(4-5):677–690, 2013.

14. D. Mundici. Interpretation of af c∗-algebras in Lukasiewicz sentential calculus. J.
Funct. Anal., 65:15–63, 1986.

15. E. G. Omodeo. The Ref proof-checker and its “common shared scenario”. In
Martin Davis and Ed Schonberg, editors, From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pages 121–131. Springer, 2012.

16. E. G. Omodeo and A. I. Tomescu. Using Ætnanova to formally prove that the
Davis-Putnam satisfiability test is correct. Le Matematiche, 63(1):85–105, 2008.

17. E. G. Omodeo and A. I. Tomescu. Appendix: Claw-free graphs as sets. In Mar-
tin Davis and Ed Schonberg, editors, From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pages 131–167. Springer, 2012.

18. E. G. Omodeo and A. I. Tomescu. Set graphs. III. Proof Pearl: Claw-free graphs
mirrored into transitive hereditarily finite sets. J. Autom. Reason., 52(1):1–29,
2014.

19. J.T. Schwartz, D. Cantone, and E.G. Omodeo. Computational Logic and Set The-
ory - Applying Formalized Logic to Analysis. Springer, 2011.

20. Marshall H. Stone. The theory of representations for Boolean algebras. Transac-
tions of the American Mathematical Society, 40:37–111, 1936.

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

299

21. Marshall H. Stone. Applications of the theory of Boolean rings to general topology.
Transactions of the American Mathematical Society, 41:375–481, 1937.

22. Marshall H. Stone. The representation of Boolean algebras. Bulletin of the Amer-
ican Mathematical Society, 44(Part 1):807–816, 1938.

23. Alexandru I. Tomescu. A simpler proof for vertex-pancyclicity of squares of con-
nected claw-free graphs. Discrete Mathematics, 312(15):2388–2391, 2012.

A The main theory in our scenario on Boolean algebras

Theory booleanAlgebra(B, ·,÷, 1B)
1B ∈ B
1B 6= 1B ÷ 1B
〈∀x, y | {x, y} ⊆ B→ x · y ∈ B〉
〈∀x, y | {x, y} ⊆ B→ x ÷ y ∈ B〉
〈∀x, y, z | {x, y, z} ⊆ B→ x · (y · z) = (x · y) · z〉
〈∀x, y, z | {x, y, z} ⊆ B→ x ÷ (y ÷ z) = (x ÷ y)÷ z〉
〈∀x, y, z | {x, y, z} ⊆ B→ (x ÷ y) · z = z · y ÷ z · x〉
〈∀x, y | {x, y} ⊆ B→ x ÷ x = y ÷ y〉
〈∀x, y | {x, y} ⊆ B→ x ÷ (y ÷ x) = y〉
〈∀x | x ∈ B→ x · x = x〉
〈∀x | x ∈ B→ 1B · x = x〉

⇒ (0Θ, ()Θ, IdealΘ,BooHomΘ,HΘ, ϕΘ)
0Θ = arb(B)÷ arb(B)
〈∀x | (x ∈ B→ x ÷ x = 0Θ & x ÷ 0Θ = x & 0Θ ÷ x = x) & 0Θ ∈ B〉
〈∀x, y | {x, y} ⊆ B→ x ÷ y = y ÷ x〉
〈∀x, y | {x, y} ⊆ B→ x · y = y · x〉
〈∀u, v | {u, v} ⊆ B & u · v = u & v · u = v→ u = v〉
〈∀x | x ∈ B→ (x)Θ = 1B ÷ x〉
〈∀x |

(
x ∈ B→ (x)Θ ∈ B &

(
(x)Θ

)
Θ

= x
)

&
(
1B
)
Θ

= 0Θ &
(
0Θ
)
Θ

= 1B〉
〈∀x, y | {x, y} ⊆ B→ (x)Θ ÷ x = 1B & y · x ÷ y · (x)Θ = y & y · x ·

(
y · (x)Θ

)
= 0Θ〉

〈∀x, y | {x, y} ⊆ B→ (x ÷ y)Θ = x · y ÷ (x)Θ · (y)Θ〉〈∀x | x ∈ B→ (x)Θ 6= x &
(
x /∈ {0Θ, 1B} → (x)Θ ∈ B\ {0Θ, 1B}

)〉
〈∀u, v | {u, v} ⊆ B & u · v = 1B→ u = 1B & v = 1B〉
〈∀u, v, x, y | {u, v, x, y} ⊆ B→ u · (x)Θ ÷ v · (y)Θ =

(
u · (x)Θ ÷ v · (y)Θ

)
· (x · y)Θ〉

〈∀i | IdealΘ(i)↔ {x ÷ y : x ∈ i, y ∈ i} ⊆ i & {x · y : x ∈ B, y ∈ i} ⊆ i & i ⊆ B\ {1B} & i 6⊆ {0Θ} 〉
〈∀i, x, y | IdealΘ(i) & {x, y} ⊆ i→ x ÷ y ∈ i〉
〈∀i | IdealΘ(i)→ 0Θ ∈ i &

(
x ∈ i & y ∈ B→ x · y, y · x ∈ i & (x)Θ /∈ i

)
& 1B /∈ i〉

〈∀i | IdealΘ(i)→ 〈∃m | i ⊆ m & 〈∀j | IdealΘ(j) & m ⊆ j↔ j = m〉〉〉
〈∀b | b ⊆ B\ {0Θ} & {x · y : x ∈ b, y ∈ b} ⊆ b & b 6⊆ {1B} → IdealΘ

(
{a · (x)Θ : a ∈ B, x ∈ b}

)

〈∀x | x ∈ B\ {0Θ, 1B} → IdealΘ({a · x : a ∈ B}) & x ∈ {a · x : a ∈ B} 〉
〈∀h | BooHomΘ(h)↔ Svm(h) & domain(h) = B & h�1B =

⋃
range(h) & h�1B 6= h�0Θ &

〈∀x ∈ B, y ∈ B | h�(x · y) = h�x ∩ h�y & h�(x ÷ y) = h�x 4 h�y〉〉

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

300

HΘ = {h ⊆ B× 2 | BooHomΘ(h)}
〈∀h | h ∈ HΘ→ h�0Θ = ∅ & h�1B = 1〉
〈∀h | h ∈ HΘ & {x, y} ⊆ B & h�(x ÷ x · y) = 1 & h�y = ∅→ h�x = 1〉
〈∀i, x | IdealΘ(i) & x ∈ B & (x)Θ /∈ i→ 〈∃j | IdealΘ(j) & i ∪ {x} ⊆ j〉〉
〈∀x,m | x /∈ m & x ∈ B & 〈∀j | IdealΘ(j) & m ⊆ j↔ j = m〉→ (x)Θ ∈ m〉
〈∀m | 〈∀j | IdealΘ(j) & m ⊆ j↔ j = m〉→ {[x, if x ∈ m then ∅ else 1 fi] : x ∈ B} ∈ HΘ〉
B ⊆ {0Θ, 1B} → {[0Θ, ∅] , [1B, 1]} ∈ HΘ
〈∀x ∈ B\ {0Θ} | {h ∈ HΘ | h�x = 1} 6= ∅〉 & HΘ 6= ∅
ϕΘ = {[b, {h ∈ HΘ | h�b = 1}] : b ∈ B}
〈∀x ∈ B | ϕΘ�x = {h ∈ HΘ | h�x = 1} 〉
〈∀x, y | {x, y} ⊆ B→ ϕΘ�(x · y) = ϕΘ�x ∩ ϕΘ�y & ϕΘ�(x ÷ y) = ϕΘ�x 4 ϕΘ�y〉
〈∀x, y | {x, y} ⊆ B & x · y 6= x→ ϕΘ�x 6= ϕΘ�y〉
HΘ =

⋃
range(ϕΘ) & ϕΘ�0Θ = ∅ & ϕΘ�1B 6= ϕΘ�0Θ & ϕΘ�1B =HΘ

〈∀x ∈ B | ϕΘ�(x)Θ =HΘ\ϕΘ�x〉
1–1(ϕΘ) & domain(ϕΘ) = B
BooHomΘ(ϕΘ)
range(ϕΘ)⊆ {x : x⊆ HΘ} & ∅ ∈ range(ϕΘ) & HΘ ∈ range(ϕΘ)
〈∀u ∈ range(ϕΘ) | HΘ\u ∈ range(ϕΘ)〉
〈∀f, g | {f, g} ⊆ HΘ & f 6= g→ 〈∃u ∈ range(ϕΘ), v ∈ range(ϕΘ) | f ∈ u & g ∈ v & u ∩ v = ∅〉〉
〈∀f ⊆ range(ϕΘ) | f 6= ∅ & Finite(f)→ ⋂

f ∈ range(ϕΘ)〉
〈∀k⊆ range(ϕΘ) | k 6= ∅ &

⋂
k = ∅→ 〈∃f ⊆ k | f 6= ∅ & Finite(f)→ ⋂

f = ∅〉〉
End booleanAlgebra

R. Ceterchi et al. The representation of Boolean algebras in the spotlight of a proof checker

301

Short papers

A framework for the verification of
parameterized infinite-state systems∗

Francesco Alberti1,3, Silvio Ghilardi2, Natasha Sharygina1

1 University of Lugano, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

3 Verimag, Grenoble, France

Abstract. We present our tool, developed for the analysis and verifi-
cation of parameterized infinite-state systems. The framework has been
successfully applied in the verification of programs handling unbounded
data-structures. In such application domain, being able to infer quanti-
fied invariants is a mandatory requirement for successful results. We will
describe the techniques implemented in our system and discuss how they
contribute in achieving important results in the analysis of parameter-
ized distributed and timed systems, as well as of programs with arrays
of unknown length.

1 Introduction

Efficient and automatic static analysis of imperative programs is still an open
challenge. A promising line of research investigates the use of model-checking
coupled with abstraction-refinement techniques [11, 20, 27, 30, 35, 36] including
Lazy Abstraction [12, 32] and its later improvements that use interpolants dur-
ing refinement [34]. An intrinsic limitation of the approaches based on Lazy
Abstraction is that they manipulate quantifier-free formulæ to symbolically rep-
resent states. However, when defining properties over arrays, universal quantified
formulæ are needed, e.g., as in specifying the property “the array is sorted”. The
tool we present mcmt (in the new version 2.5) is based on a novel approach [4],
in which Lazy Abstraction is used in combination with the backward reach-
ability analysis of array-based systems [28]; recent acceleration techniques for
arrays [8, 9] have also been significantly (although not yet completely) included
in the latest version of the tool.

2 The Tool

mcmt takes as input a transition system (v, τ(v,v′), ι(v)) representing the en-
coding of an array-based system [28]: this can be a parameterized distributed
system, a network of timed automata, an imperative program, etc. The essential
nature of the specification system is its parametricity : a finite (but unspecified)

∗The work of the first author was supported by Swiss National Science Foundation
under grant no. P1TIP2 152261.

303

number of components takes part in it, the components being interpreted as
single processes, agents, array cells, etc. Formally, the array based system is
specified by fixing a tuple v of state variables, a formula ι(v) describing initial
states and a formula τ(v,v′) relating current variables v with their updated
counterparts v′. State variables are typed and some of them represent arrays,
modeled as free function symbols from a sort of indexes INDEX to some elements
ELEM1, . . . , ELEMk sorts. The type of indexes is natural numbers, whereas the
types of elements can be integers, Boolean, reals, enumerated data-types, etc. A
set of formulæ {Uk(v)} representing unsafe states is also given to the tool; each
Uk represents an undesired property, e.g. a violation of an assertion in the code.
Next we describe the main features of the tool.

Symbolic Reachability Analysis - This module implements a classical back-
ward reachability analysis [1–3]. Starting from the set of unsafe states, it repeat-
edly computes the pre-images with respect to the transition relation. It halts
once it finds (the negation of a) safe inductive invariant S for the input system
or when a run from an initial state to an unsafe state is found. The symbolic
reachability search is based on the safety and the covering tests: the former
checks the violation of an assertion while the latter tests fix-points.
Lazy Abstraction - The search for a safe inductive invariant on the original
(concrete) system may require a lot of resources or it cannot be computed be-
cause of possible divergence. To mitigate this problem, mcmt extends the Lazy
Abstraction paradigm by allowing existentially quantified formulæ to represent
states. Moreover, mcmt is able to introduce new quantified predicates on the
fly, by means of Term Abstraction or Acceleration, see below.
Acceleration - Acceleration is a well established technique in model-checking:
the acceleration (i.e. the transitive closure) of a relation encoding systems evo-
lution (like loops in programs) allows us to compute ‘in one shot’ the reachable
set of states after an arbitrary but finite number of execution steps. This has the
great advantage of keeping under control sources of (possible) divergence arising
in the reachability analysis. Definability results for accelerations are well known
in numerical domains like difference bounds constraints [17, 21], octagons [14]
and finite monoid affine transformations [26] (the paper [16] presents a general
approach covering all these domains); however, little is known for more complex
data structures like arrays (but see [15]). In [8,9] it is shown that the acceleration
of relations corresponding to some classes of guarded assignments over arrays
lead to formulæ in decidable fragments of the theory of arrays; as a consequence,
some common classes of imperative programs over arrays (including those im-
plementing searching, initializing, finding, copying, comparing functions) have
decidable reachability problems. Acceleration for arrays is another way of in-
troducing quantifiers in formulæ describing reachable states; it is only partially
implemented in mcmt, where it is exploited for over-approximations in abstrac-
tion/refinements loops.
Quantifier Handling - The presence of quantified formulæ imposes partic-
ular attention during the satisfiability tests: available SMT-Solvers might not
be able to deal automatically with such quantified formulæ. mcmt provides a

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

304

specific instantiation procedure, adapted from [29] to address this issue. To be
effective, this procedure implements caching of information inside of specific
data-structures used to represent formulæ. On one hand the caching increases
the amount of space, on the other hand it cuts the number of instantiations due
to constant-time checks.
Refinement - This module receives an abstract counterexample and it checks
first if the counterexample has a concrete counterpart. If so a feasible execution
violating an assertion corresponding to some satisfied Uk is returned to the user.
Otherwise the formulæ representing the states along the abstract execution trace
have to be strengthened, possibly by adding new predicates, in order to rule out
spurious executions. In the current implementation, refinement is performed by
means of a form of interpolation guided by term abstraction.
Term Abstraction - Term Abstraction [4] is a novel technique applied during
the abstraction phase to select the “right” over-approximation to be computed,
and during the refinement phase to “lift” the concrete infeasible counterexample
to a more abstract level, by eliminating some terms. Term Abstraction (imple-
mented also in the safari tool [5]) is the main heuristic which distinguishes
mcmt from other tools based on abstraction-refinement. It works as follows.
Suppose we are given a list of undesired terms t1, . . . , tn (called term abstrac-
tion list). The underlying idea is that terms in this list should be abstracted
away for achieving convergence of the model checker. Iteratively, these terms are
abstracted out (if possible) from formulæ over-approximating sets of reachable
states; one way to do this is to replace them by fresh free constants, so that they
are likely not to occur anymore in interpolants or in formulæ to which quantifier
elimination is applied. mcmt retrieves automatically from the input system a list
of terms to be abstracted. The terms to be abstracted are usually set to iterators
or variables representing the lengths of the arrays or the bounds of loops. The
user can also suggest terms to be added to the list.
Specification Syntax - mcmt has its own specification language (roughly, an
extension of the specification language of the underlying SMT-Solver Yices).
Even though it has been significantly improved, it is still rather low level. Such
a language is exploited by the booster verifying compiler4.

3 Implementation and Related Work

mcmt is written in C and can be downloaded from http://users.mat.
unimi.it/users/ghilardi/mcmt/. Information on the usage of the tool
and a full description of all the options can be found on the User Manual that
can be downloaded from mcmt’s website. The use of the appropriate options is
crucial not only for performances, but also for convergence (some benchmarks
can be solved by plain backward search, in some cases run-time invariant search
can be exploited to speed up the tool, for imperative programs it is essential
to use abstraction/refinement mode or acceleration or both). mcmt relies on

4The interested reader is pointed to the booster web-page, http://inf.usi.
ch/phd/alberti/prj/booster for more information about it.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

305

the SMT-Solver Yices (see http://yices.csl.sri.com/) to decide satisfi-
ability queries; the solver can be linked to the model-checker on a client/server
architecture via API. mcmt distribution includes about 100 examples files taken
from different sources (cache coherence and mutual exclusion problems, timed
and fault tolerant systems, imperative programs, etc); more examples related to
specific case studies [6, 7, 18, 19] can be reached from mcmt web-page. A Table
covering few experimental results is attached in the Appendix below.

Current literature on infinite state model checking is extremely large, how-
ever it is much more limited if we restrict to papers and tools handling para-
metric specifications. For distributed systems, the best performing tool (result-
ing from an extension and a re-implementation on a parallel architecture of
mcmt framework) is probably Cubicle [22, 23]. In software model checking,
unbounded arrays problems have been attacked from various viewpoints, includ-
ing abstract interpretation [24, 25, 31], program transformations [10], predicate
abstraction [35, 36] and template/constraints generation [13, 33, 37]. An experi-
mental tool comparison is difficult for various practical reasons; however, since
most benchmarks are taken from common sources, from the results reported in
the above mentioned papers, it seems that mcmt compares well, both in terms
of performances and in terms of solved instances.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. of LICS, pages 313–321, 1996.

2. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model checking
without transducers. In TACAS, volume 4424 of LNCS, pages 721–736, 2007.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In CAV, pages 145–157, 2007.

4. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Ab-
straction with Interpolants for Arrays. In LPAR-18, pages 46–61, 2012.

5. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI:
SMT-Based Abstraction for Arrays with Interpolants. In CAV, pages 679–685,
2012.

6. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Automated support
for the design and validation of fault tolerant parameterized systems - a case study.
In Proc. of AVOCS, 2010.

7. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Brief announcement:
Automated support for the design and validation of fault tolerant parameterized
systems - a case study. In DISC, pages 392–394, 2010.

8. F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in
a theory of arrays and its applications. In FroCoS, pages 23–39, 2013.

9. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. In TACAS, pages 15–30, 2014.

10. E. De Angelis, F. Fioravanti, M. Proietti, and A. Pettorossi. Verifying Array
Programs by Transforming Verification Conditions. In VMCAI, 2014.

11. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Ab-
straction of C Programs. In PLDI, pages 203–213, 2001.

12. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. STTT, 9(5-6):505–525, 2007.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

306

13. N. Björner, K. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. In SAS, pages 105–125, 2013.

14. M. Bozga, C. Girlea, and R. Iosif. Iterating octagons. In TACAS, LNCS, pages
337–351, 2009.

15. M. Bozga, P. Habermehl, R. Iosif, F. Konecný, and T. Vojnar. Automatic verifi-
cation of integer array programs. In CAV, pages 157–172, 2009.

16. M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic rela-
tions. In CAV, LNCS, 2010.

17. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Funda-
menta Informaticae, (91):275–303, 2009.

18. R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise. Automated Analysis of
Parametric Timing Based Mutual Exclusion Protocols. In NASA Formal Methods
Symposium, 2012.

19. A. Carioni, S. Ghilardi, and S. Ranise. MCMT in the land of parameterized timed
automata. In In proc. of VERIFY, 2010.

20. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In CAV, pages 154–169, 2000.

21. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and pres-
burger arithmetic. In CAV, volume 1427 of LNCS, pages 268–279. Springer, 1998.

22. S. Conchon, A. Goel, S. Krsti, A. Mebsout, and F. Zadi. Cubicle: a Parallel SMT-
based Model-Checker fro Parameterized Systems. In Proc. of CAV, LNCS, 2012.

23. S. Conchon, A. Goel, S. Krsti, A. Mebsout, and F. Zadi. Invariants for Finite
Instances and Beyond. In Proc. of FMCAD, 2013.

24. P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis. In POPL, 2011.

25. I. Dillig, T. Dillig, and A. Aiken. Fluid Updates: Beyond Strong vs. Weak Updates.
In Programming Languages and Systems. 2010.

26. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications
to broadcast protocols. In FST TCS 02, pages 145–156. Springer, 2002.

27. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL, pages 191–202, 2002.

28. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model-Checking
of Array-based Systems. In Proc. of IJCAR, LNCS, 2008.

29. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,
pages 22–29, 2010.

30. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV,
pages 72–83, 1997.

31. N. Halbwachs and Mathias P. Discovering Properties about Arrays in Simple
Programs. In PLDI’08, pages 339–348, 2008.

32. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In
POPL, pages 58–70, 2002.

33. D. Larraz, E. Rodŕıguez-Carbonell, and A. Rubio. SMT-based array invariant
generation. In VMCAI, pages 169–188, 2013.

34. K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
35. M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for Quantified

Array Assertions. In SAS, pages 3–18, 2009.
36. S.Lahiri and R. Bryant. Predicate Abstraction with Indexed Predicates. TOCL,

9(1), 2007.
37. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate

Abstraction. In PLDI, 2009.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

307

A Some experimental data

We report in the Table below some experimental data on benchmark problems;
we made a selection including both easy well known problems and more chal-
lenging ones. The experiments were run on a laptop Intel(R) Core(TM) i3 CPU
2.27GHz with 4GB RAM running Linux Ubuntu 12.04.

In the second column we indicate the class of the problem: (M) mutual exclu-
sion, (C) cache coherence, (D) other distributed protocols (timed, fault tolerant,
etc.), (S) sequential program for arrays, (S+) sequential program for arrays with
nested loops. In column 3-8 we respectively give the depth of the search tree, the
number of nodes generated by the tool in the search tree, the number of sub-
sumed or subcovered nodes, the number of calls to the SMT solver, the number
of invariants found by the tool in forward search and the number of refinements
applied in abstraction/refinement mode. In the last column we put the total
time in seconds and in the last-but-one column the options used (A=acceleration,
AR=abstraction/refinement, I=invariant search).5 For each problem we reported
the result in the best configuration we found for the tool.

Problem kind d #n #del #SMT #inv #ref heur time

Illinois (C) 4 8 0 212 0 0 - 0.06
German (C) 26 2121 255 117121 0 0 - 60.76
German buggy (C) 16 1300 203 24275 0 0 - 14.28
Bakery (M) 2 1 0 29 0 0 - 0.00
Szymanski (M) 11 17 5 1092 12 0 I 0.21
Szymanski atomic (M) 19 63 7 5470 32 0 I 1.82
Distributed Lamport (M) 23 248 42 19622 7 0 I 27.18
Crash (D) 13 113 21 1731 0 0 - 0.75
Fischer (D) 10 16 2 363 0 0 - 0.08
Fischer buggy (D) 6 16 0 307 0 0 - 0.06
Lynch-Shavit full (D) 25 1103 99 56638 0 0 - 33.39
Strcpy (S) 4 4 2 48 0 0 A 0.01
Strcmp (S) 6 10 4 128 0 0 A 0.02
Max in array (S) 7 13 6 166 0 0 A 0.04
Reverse (S) 4 8 5 101 0 0 A 0.03
Palindrome (S) 4 7 4 107 0 0 A 0.04
AllDifferent (S+) 7 49 39 871 0 8 A + AR 0.40
BubbleSort (S+) 5 14 10 200 0 0 A 0.07
InsertionSort (S+) 18 98 56 3874 0 2 AR 1.43
SelectionSort (S+) 8 101 77 6059 8 11 AR + I 4.98

5Corresponding command line options: -Z gives acceeration, -i1, -i2, -i3,
-a, -I give different invariant searches in normal mode, -AN gives abstraction-
refinement (with max N refinements per node), -CN gives abstraction-refinement (with
max N refinements per node) together with a specific form of invariant search.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

308

On Relating Voting Systems and Argumentation
Frameworks

Irene Benedetti?, Stefano Bistarelli??, and Paolo Piersanti

Dipartimento di Matematica e Informatica, Università di Perugia
[irene.benedetti,bista]@dmi.unipg.it

paolopiers@gmail.com

Abstract. In the modern world formal voting theories are becoming established
and can be used to determine if a Voting System (VS) is fair or not in order to
preserve democracy. The Argumentation Framework (AF) is based on the exchange
and the evaluation of interacting arguments which may represent information
of various kinds. We define a bijective mapping between the two theories and
investigate how fairness criteria defined for voting systems can be re-interpreted
inside the Argumentation Frameworks.

1 Introduction
The analysis of voting methods and their properties start from the pioneering work of
Arrow [1]. Using his impossibility theorem results classical and nowadays voting and
election systems can be analyzed and some fairness judgements can be expressed.

The formal study of argumentation has come to be increasingly central as a core
study within Artificial Intelligence and it is also of interest in several disciplines, such as
Logic, Philosophy and Communication Theory [7]. Argumentation [4, 5] is based on the
exchange and the evaluation of interacting arguments which may represent information
of various kinds, especially beliefs or goals. Many theoretical and practical developments
are built on Dung’s seminal theory of argumentation.

We define a voting system VS as a function that associates to the given set of votes,
the elected candidate(s). We then define a map from VSs to AFs and study the known
semantics (ground extension in particular) as voting methods.

2 Argumentation framework
Definition 1. An Argumentation Framework (AF) is a pair 〈Args, R〉 of a set Args of
arguments and a binary relation R on Args called the attack relation. ∀ai, aj ∈ Args,
aiRaj means that ai attacks aj . An AF may be represented by a directed graph (the
interaction graph) whose nodes are arguments and edges represent the attack relation. A
set of arguments B attacks an argument a if a is attacked by an argument of B. A set of
arguments B attacks a set of arguments C if there is an argument b ∈ B which attacks
an argument c ∈ C.
? partially supported by the Italian Research Project GNAMPA 2014: "Metodi Topologici: sviluppi
ed applicazioni a problemi differenziali non lineari".

?? Partially supported by the italian MIUR project PRIN "Metodi logici per il trattamento
dell’informazione"

309

The “acceptability” of an argument [5] depends on its membership to some sets, called
extensions. These extensions characterize collective “acceptability”. Dung [5] gave
several semantics to “acceptability”. These various semantics produce none, one or
several acceptable sets of arguments, called extensions. In Def. 2 we define the concepts
of conflict-free and stable extensions:
Definition 2. A setB ⊆ Args is conflict-free iff no two arguments a and b inB exist such
that a attacks b. A conflict-free set B ⊆ Args is a stable extension iff for each argument
which is not in B, there exists an argument in B that attacks it.
The other semantics for “acceptability” rely upon the concept of defense:
Definition 3. An argument b is defended by a set B ⊆ Args (or B defends b) iff for any
argument a ∈ Args, if a attacks b then B attacks a.
An admissible set of arguments according to Dung must be a conflict-free set which
defends all its elements. Formally:
Definition 4. A conflict-free set B ⊆ Args is admissible iff each argument in B is
defended by B.
Besides the stable semantics, three semantics refining admissibility have been introduced
by Dung [5]:
Definition 5. A preferred extension is a maximal (w.r.t. set inclusion) admissible subset
of Args. An admissible B ⊆ Args is a complete extension iff each argument which is
defended by B is in B. The least (w.r.t. set inclusion) complete extension is the grounded
extension.
A stable extension is also a preferred extension and a preferred extension is also a complete
extension. Stable, preferred and complete semantics admit multiple extensions whereas
the grounded semantics ascribes a single extension to a given argument system. Since
the grounded extension is proven to be unique, and we are going to define a new voting
systems using Argumentation Semantics, this semantics will be our best candidate (see
Section 4).

3 Voting Systems
The process of cooperative decision making has been formalized using formal social
choice theory and formal game theory, see e.g. [3, 8]. A voting system enforces rules to
ensure valid voting, and how votes are counted and aggregated to yield a final result.

More formally, a voting system specifies the form of the ballot, the set of allowable
votes, and the tallying method, an algorithm for determining the outcome. This outcome
may be a single winner, or may involve multiple winners such as in the election of a
legislative body. We focus our study on the non-preferential voting methods such as the
block voting.
Example 1 (Block voting). This non preferential voting method is used to elect n options
from a group ofm options (m > n). The voter has to point out l with n ≥ l preferences
between them available. Consider five candidates A, B, C, D and E and suppose each
of them vote three options between the five proposed. Let’s suppose the result yielded by
the election is as in Table 1. This situation leads to a tie because there are four candidates,
each one with three votes received (or to elect all of them). �

I. Benedetti et al. On Relating Voting Systems and Argumentation Frameworks

310

Table 1: Selecting the winner with block voting.

Voter/ Candidate Vote Votes received
A B, A, D 3
B C, D, E 3
C A, B, C 3
D D, E, A 3
E C, E, B 2

Different voting systems may give very different results, particularly in cases where there
is no clear majority preference. Many fairness criteria were defined; We remind here the
five basic criteria of fairness proposed by Arrow in 1950 [1] and revised in 1963 [2].

Definition 6 (Arrow Fairness Criteria).
1. Universal admissibility (unrestricted domain): Voting systems should not place

any restrictions other than transitivity on how voters can rank the candidates in an
election.

2. Monotonicity: if an election is held and a winner is declared, this winning candidate
should remain the winner in any revote in which all preference changes are in favor
of the winner of the original election.

3. Independence of irrelevant alternatives (IIA) (binary independence): If an elec-
tion is held and a winner is declared, this winning candidate should remain the winner
in any recalculation of votes as a result of one or more of the losing candidates
dropping out.

4. Condition of citizens sovereignity (non imposition): Voting systems should not
be imposed in any way. That is, there should never be a pair of candidates in an
election, say A and B, such that A is preferred over or tied with B in the resulting
social preference order regardless of how any of the voters vote.

5. Condition of non-dictatorship: Voting systems should not be dictatorial. That is,
there should never be a voter v such that, for any pair of candidates A and B, if v
prefers A over B, then society will also prefer A over B.

Theorem 1 (Arrow [1,2]). If there are at least three candidates, any (preferential) voting
method satisfying criteria 1,2 and 3 must be either imposed or dictatorial.

4 Main results
In this section we formally define a voting system and the mapping between Voting
Systems and Argumentation Frameworks.

Definition 7 (Ballots andVoting Systems).ABallotB is a pairB = 〈Cands∪Voters, V P 〉
of a set Cands of Candidates, a set Voters of Voters and a Voting Procedure V P rep-
resenting a binary relation on Voters × P(Cands) (where given a set A with P(A) we
denote the power set of A) that associates to each voter v ∈ Voters her votes to the
candidates C ⊆ Cands. A Voting System vs : Cands ∪ Voters × V P → P(Cands) is a
function assigning to a ballot B = 〈Cands ∪ Voters, V P 〉 a set (or more sets in case of
ties) of winning candidatesW ⊆ P(Cands).

I. Benedetti et al. On Relating Voting Systems and Argumentation Frameworks

311

In the rest of this paper we assume the set of Candidates Cands, and the set of Voters
Voters to coincide in an unique set of Options O = Cands = Voters (as in many real
social elections).

The first of our results is to show that using a suitable mapping between VSs and
AFs, the Semantics of an argumentation framework can be used to define a voting system
with interesting properties. More in detail, we map every option (representing candidates
or voters) to an argument and the relation ‘a votes for b’ to the attacks a → b′ for any
b′ 6= b (to support in this way b).

Definition 8 (from VS to AF and back). We define a mapping m from VSs (more
specifically from a ballot B) to AFsm : O× V P → Args ×R such that

– for each option o ∈ O we consider an argument a = m(o),
– for each vote 〈o, C〉 ∈ O × P(O), we obtain the set of attacks m(〈o, C〉) =
{〈a,m(c′)〉, s.t. c′ 6∈ C}

Usingm−1 we can instead define the corresponding mapping from AFs to VSs:

– for each argument a we consider the corresponding option (candidate/voter) o =
m−1(a),

– for each argument a, b ∈ Args, and the set B =
⋃

b∈Args
b s.t. 〈a, b〉 ∈ R, we

consider the set of votes 〈m−1(a),m−1(B′)〉, wherem−1(B′) = {m−1(b′) s.t. b′ 6∈
B}

Chosen a semantic s (i.e. chosen an argumentation function), the result of the election
described by the compositionm−1 ◦ s ◦m as in Fig. 1 is a voting system. We will study
which fairness criteria it satisfies.

O × V P P(O)

Args ×R P(Args)

vs

m m−1

s

Fig. 1: The voting system vs = m−1 ◦ s ◦m.

Proposition 1. The composition vs = m−1 ◦ s ◦ m : O × V P → P(O) is a voting
system.

Theorem 2. Given a semantic grounded s, by the compositionm−1 ◦ s ◦m we obtain a
voting method without ties that satisfies the IIA and monotonicity.

We can apply the mapping in Proposition 1 to the Example 1 of Section 2:

I. Benedetti et al. On Relating Voting Systems and Argumentation Frameworks

312

A

B

C

DE

Fig. 2: The AF obtained from Example 1.

Example 2 (The mapping from block voting Example 1). The block voting example
is transformed in the AF as in Figure 2. The elected candidates (using the grounded
semantic) are the set {A,D}. �

5 Conclusions and Future Works
Our proposal uses negative judgements (as attacks) instead of positive ones (preferences).
The computation of (indirect) positive judgement given by explicitly negative judgment
have been already used in Germany in 2005 to elect the German Bundestag [9]. We
proved that the voting system constructed using grounded semantics (such as conflict free,
admissible, stable,...) satisfies many fairness cirteria but the majority criteria. Indeed there
are several voting systems that do not satisfy this criterion, see [6]. Moreover we would
like to consider the result of an election with a voting system how a specific semantics
in AFs. Finally, the situations where Cands 6= Voters as well as special restrictions on
the voting mechanism (a candidate can vote only one candidate, or at least herself, or
preference based votes) will be subject of further research.

References
1. Arrow, K.J.: A difficulty in the concept of social welfare. The Journal of Political Economy

58(4), 328–346 (Aug 1950)
2. Arrow, K.J.: Social Choice and Individual Values. John Wiley & Sons, Inc., New York, London,

Sydney (1963)
3. Arrow, K., Sen, A., Suzumura, K.: Handbook of social choice and welfare. Elsevier, Amsterdam

[u.a.], 1. ed. edn. (2002)
4. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl-

edge Eng. Review 26(4), 365–410 (2011)
5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)
6. Galam, S.: Sociophysics: A Physicist’sModeling of Psycho-Political Phenomena (Understanding

Complex Systems). Springer-Verlag (2012)
7. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9-10),

901–934 (2009)
8. Moulin, H.: Axioms of cooperative decision making, Econometric Society Monographs, vol. 15.

Cambridge University Press, (1988)
9. Pukelsheim, F.: Electoral reform in germany: A positive twist to negative voting weights? In:

Voting Power in Practice Summer Workshop, Assessing Alternative Voting Procedures (2010)

I. Benedetti et al. On Relating Voting Systems and Argumentation Frameworks

313

A First Study of the Horn Fragment of the Modal Logic
of Time Intervals?

D. Bresolin1, E. Muñoz-Velasco2, and G. Sciavicco3

1 Department of Computer Science and Engineering
University of Bologna (Italy) (davide.bresolin@unibo.it)

2 Department of Applied Mathematics
University of Malaga (Spain) (emilio@ctima.uma.es)

3 Department of Information, Engineering and Communications
University of Murcia (Spain) (guido@um.es)

Abstract. Interval temporal logics provide a natural framework for temporal rea-
soning about interval structures over linearly ordered domains, where intervals
are taken as the primitive ontological entities. The most influential propositional
interval-based logic is probably Halpern’s and Shoham Modal Logic of Time In-
tervals, a.k.a. HS. While most studies focused on the computational properties of
the syntactic fragments that arise by considering only a subset of the set of modal-
ities, the fragments that are obtained by weakening the propositional side of HS
have received much less attention. Here, we approach this problem by consider-
ing the Horn fragment of HS and proving that the satisfiability problem remains
undecidable, at least for discrete linear orders.

1 Introduction

Most temporal logics proposed in the literature assume a point-based model of time, and
they have been successfully applied in a variety of fields. However, there are examples
of relevant application domains, such as planning and temporal databases, where inter-
esting problems are dealt with in an unsatisfactory way by point-based formalisms [9,
10]. Interval temporal logics provide a natural framework for temporal reasoning about
interval structures over linearly (or partially) ordered domains. They take time intervals
as the primitive ontological entities and define truth of formulas relative to time inter-
vals, rather than time points; their modalities correspond to various relations between
pairs of intervals. In particular, the well-known logic HS [6] features a set of modali-
ties that make it possible to express all Allen’s interval relations [1]. Unfortunately, in
interval temporal logic undecidability is the rule and decidability the exception: HS is
undecidable when interpreted on most meaningful classes of linearly ordered sets, and
limiting the set of temporal modalities of the logic is not always sufficient to achieve
decidability. For example, when formulas are interpreted over strongly discrete linear
orders, only 44 decidable fragments exist [3].
? The authors acknowledge the support from the Italian GNCS Project “Automata, games and

temporal logics for verification and synthesis of safety-critical systems” (D. Bresolin), the
Spanish Project TIN12-39353-C04-01 (E. Muñoz-Velasco), and the Spanish fellowship pro-
gram ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco).

314

In this context, it makes sense to study sub-propositional fragments of HS, such as
the Horn fragment. Horn fragments of modal and temporal logics have been studied,
for example, in [2, 4, 5, 7]. Being sub-propositional, the obvious question is whether
or not the satisfiability problem of Horn HS remains undecidable, and, if so, on which
classes of linearly ordered sets. The results presented in this preliminary study proves
that, unfortunately, at least in the class of models built over Z and other strongly discrete
linear orders, this is the case. While discouraging, these results should be seen as the
first attempt of studying sub-propositional fragments of interval temporal logics. Horn
HS is still undecidable, but we might find out that the decidability frontier is different
from the one for the syntactical fragments of full HS, and/or that some of the decidable
fragments present a better computational behaviour.

2 The Logic HS and its Horn Fragment

Halpern and Shoham’s logic HS is a multi-modal logic with formulas built on a set
AP of proposition letters, the Boolean connectives ∨ and ¬, plus the six modalities to
capture the existence of an interval in a particular Allen’s relation with the current one:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈B〉ϕ | 〈B〉ϕ | 〈E〉ϕ | 〈E〉ϕ

The other Boolean connectives, the box modalities, and the temporal modalities cor-
responding to other Allen’s relations (such as during, 〈D〉, later, 〈L〉, and overlaps,
〈O〉) are definable in the language (e.g. [A]ϕ ≡ ¬〈A〉¬ϕ, 〈D〉ϕ = 〈E〉〈B〉ϕ, and
〈L〉ϕ = 〈A〉〈A〉ϕ).

Let D = 〈D,<〉 be a discrete linearly ordered set. An interval over D is an ordered
pair [x, y], where x, y ∈ D and x < y (strict semantics). An interval of the type [x, x+1]
is called unit. The semantics of HS is given in terms of interval modelsM = 〈I(D), V 〉,
where I(D) is the set of all intervals over D and V : AP 7→ 2I(D) is a valuation function
that assigns to every p ∈ AP the set of intervals V (p) over which p holds. The truth
relation of a formula over a given interval [x, y] in an interval model M is defined
by structural induction on formulas (Boolean connectives are dealt with in the standard
way):

– M, [x, y] p iff [x, y] ∈ V (p);
– M, [x, y] 〈A〉ϕ iff there exists z > y such that M, [y, z] ϕ;
– M, [x, y] 〈A〉ϕ iff there exists z < x such that M, [z, x] ϕ;
– M, [x, y] 〈B〉ϕ iff there exists x < z < y such that M, [x, z] ϕ;
– M, [x, y] 〈B〉ϕ iff there exists z > y such that M, [x, z] ϕ;
– M, [x, y] 〈E〉ϕ iff there exists x < z < y such that M, [z, y] ϕ;
– M, [x, y] 〈E〉ϕ iff there exists z < x such that M, [z, y] ϕ.

A HS-formula ϕ is satisfiable if and only if there exists a modelM and an interval [x, y]
such that M, [x, y] ϕ. The satisfiability problem for HS is the problem of finding a
model and an interval that satisfies a formula.

Following [7], we define the Horn fragment of HS. First, consider only formulas in
negative normal form (nnf) (i.e., with only ∧ and ∨ as Boolean connectives and such
that ¬ occurs only in front of propositions). A formula in nnf is called negative if and

D. Bresolin et al. A First Study of the Horn Fragment of the Modal Logic of Time Intervals

315

only if every proposition is prefixed by negation; it is non-negative if it is not negative,
and positive if its negation is a negative formula. An HS-formula ϕ is called a Horn
HS-formula (or, simply, Horn) if and only if (i) ϕ is a proposition; (ii) ϕ is a negative
formula; (iii) ϕ = [X]ψ, ϕ = 〈X〉ψ, or ϕ = ψ ∧ ρ, where ψ and ρ are Horn and
〈X〉 is any HS modality; (iv) ϕ = ψ → ρ, where ψ is positive and ρ is Horn; (v) ϕ
is a disjunction of a negative formula and a Horn formula. Alternative definitions of
modal Horn clauses can be found, for example, in [2, 4, 5]. However, these definitions
are equivalent to Nguyen’s one [7], in the sense that every given set of Horn formulas
(or clauses) in the latter can be translated into set of equi-satisfiable Horn clauses of any
of the formers.

In the following we will make use of the universal modality [U], that can be defined
in Horn HS as a conjunction of boxes ([U]ϕ = [A][A][A]ϕ ∧ [A][A]ϕ ∧ [A][A][A]ϕ),
and of the difference modality [6=], meaning for every interval, except the current one,
that can be defined in a similar way.

3 Undecidability of Horn HS

In this section, we assume that Horn HS is interpreted over Z. Notice that this assump-
tion can be immediately relaxed, to include Horn HS interpreted over N, over the class
of all strongly discrete linear orders, and over the class of finite linear orders. Our con-
struction, that closely follows both the original undecidability proof for full HS [6] and
more recent undecidability proofs for fragments of HS [3], is based on a reduction from
the halting problem of a deterministic Turing Machine on empty input [8].

A Turing Machine is defined as a tuple A = (Q,Σ, Γ, δ, q0, qf), where Q is the set
of states, q0 (resp., qf) is the initial (resp., final) state, Σ is the machine’s alphabet that
does not contain t (blank), Γ = Σ∪{t} is the tape alphabet, and δ : Q×Γ → Q×Γ×
{L,R} is the transition function (L,R represent the possible moves on the machine’s
tape: left, right). Even under the assumption thatΣ = {0, 1} and that the input is empty,
the halting problem for a deterministic Turing Machine is undecidable [8].

In the following, we reduce the halting problem of a Turing Machine to the satisfia-
bility problem for Horn HS over Z. The underlying idea is to represent the computation
history of the machine using the propositional symbol ∗ to separate successive configu-
rations, the propositional symbols 0, 1,t to represent tape cells not under the machine’s
head, and propositional symbols qc, with q ∈ Q \ {qf} and c ∈ {0, 1,t}, to represent
the tape cell under the head and the current (non-final) state of the machine. We will use
the propositional symbols Fr to encode the initial configuration, u to represent the units,
Co to represent a generic configuration, and Cr to connect successive configurations.
When the machine is in the final state qf the computation immediately halts. For this
reason we can discard the symbol under the head and use a unique propositional letter
qf . We denote by L the set {0, 1,t, ∗} ∪ {qc | q ∈ Q \ {qf} ∧ c ∈ {0, 1,t}} ∪ {qf}.
Any terminating run of the Turing Machine will make use of only a finite portion of the
tape. Hence, we can assume w.l.o.g. that all configurations have the same length and
that they are long enough to contain the relevant part of the tape.

〈A〉u ∧ [U](u→ (〈A〉u ∧ [B]⊥)) units’ structure

D. Bresolin et al. A First Study of the Horn Fragment of the Modal Logic of Time Intervals

316

[U]
∧
l∈L(l→ u) tape/state propositions and ∗ are units

[U]
∧
l,l′∈L,l 6=l′(l→ ¬l′) tape/state propositions and ∗ are unique

〈A〉(∗ ∧ 〈A〉Fr) ∧ 〈A〉Co ∧ [U](Fr → [6=]¬Fr) initial configuration
[U](Fr → (〈B〉qt0 ∧ 〈E〉 ∗ ∧([D](u→ t)))) Fr structure
[U](Co → (〈A〉Co ∧ 〈B〉 ∗ ∧〈E〉 ∗ ∧[D]¬∗) configuration sequence
[U](Co → ([D]¬Co ∧ [B]¬Co ∧ [E]¬Co)) configuration structure

Intuitively, the above formulas guarantee that configurations (denoted by Co) are built
of units, each one of them contains either ∗ or a tape/head element and that there is an
infinite and unique sequence of configurations. The proposition Fr sets the structure of
the first configuration: a single ∗, followed by q0 reading blank, and a number of blanks,
followed by a ∗.

The relation between successive configurations is maintained by the proposition Cr
(corresponds), constrained by the following formulas. These are also used to guarantee
that all configurations have the same length.

[U](u→ (〈A〉Cr ∧ 〈A〉Cr)) each unit starts and ends a “Cr”
[U](Cr → ([B]¬Cr ∧ [D]¬Cr ∧ [E]¬Cr)) “Cr” structure
[U](Co → (¬Cr ∧ [D]¬Cr ∧ [D]¬Cr ∧ [E]¬Cr) “Cr/Co” relation

It remains to ensure that the machine A behaves as imposed by δ. In the encoding
of the transition function, we treat as special cases the situations in which (i) the head is
at the last cell of the segment of the tape currently shown and the head must be moved
to the right and, (ii) the head is at the first cell of the tape and the head must be moved to
the left. In the following formulas, c, c′, c′′ ∈ {0, 1,t}, d ∈ {0, 1,t, ∗}, and q, q′ ∈ Q
(by a little abuse of notation, we assume that all symbols qcf are equal to qf).
∧
d,δ(q,c)=(q′,c′,R),c′′ [U]((qc ∧ 〈A〉c′′ ∧ 〈A〉d)→ to the right, not the last cell

[A](Cr → 〈A〉(c′ ∧ 〈A〉q′c′′ ∧ 〈A〉d)))∧
δ(q,c)=(q′,c′,R) [U]((qc ∧ 〈A〉∗)→ ⊥) to the right, last cell: forbidden∧
d,δ(q,c)=(q′,c′,L),c′′ [U]((qc ∧ 〈A〉c′′ ∧ 〈A〉d)→ to the left, not the first cell

[A](Cr → 〈A〉(c′ ∧ 〈A〉q′c′′ ∧ 〈A〉d)))∧
d,δ(q,c)=(q′,c′,L) [U]((qc ∧ 〈A〉 ∗ ∧〈A〉d)→ to the left, first cell

[A](Cr → 〈A〉(q′c′ ∧ 〈A〉 ∗ ∧〈A〉d)))

Finally, we force cells located away from the head to remain unchanged.
∧
c,c′,c′′ [U]((c ∧ 〈A〉c′ ∧ 〈A〉c′′)→ [A](Cr → 〈A〉c))

The conjunction ϕA of all formulas above encodes a computation of the Turing
Machine.

Theorem 1. LetA be a deterministic Turing Machine. Then,A halts on an empty input
if and only if the Horn HS-formula ϕA ∧ 〈L〉qf is satisfiable over Z.

This proves that the satisfiability problem for Horn HS interpreted over Z is unde-
cidable. The construction can be rephrased to deal with the cases where Horn HS is
interpreted over N, or in the class of all strongly discrete linear orders, or over finite
linear orders.

D. Bresolin et al. A First Study of the Horn Fragment of the Modal Logic of Time Intervals

317

4 Conclusions

Sub-propositional fragments, such as the Horn fragment, of classical and modal logics
have been extensively studied. The generally high complexity of the (few) decidable in-
terval temporal logics justifies the study of sub-propositional fragments of interval log-
ics in search of expressive languages that present a better computational behaviour. In
this paper we proved a first negative result in this sense, by showing that the well-known
interval temporal logic HS is still undecidable when its Horn fragment is considered, at
least in the discrete case. Nevertheless, we believe that syntactical fragments of Horn
HS should be studied in the same way in which syntactical fragments of full HS have
been. In the long run, we plan to consider the Horn fragments of decidable interval log-
ics like AA and ABBL, to understand whether or not their satisfiability problem present
a better computational behaviour.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

2. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. The complexity of clausal
fragments of LTL. In Proc. of the 19th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), volume 8312 of LNCS, pages 35–52. Springer,
2013.

3. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval temporal log-
ics over strongly discrete linear orders: the complete picture. In Proc. of the 4th International
Symposium on Games, Automata, Logics, and Formal Verification (GANDALF), volume 96
of EPTCS, pages 155–169, 2012.

4. C. Chen and I. Lin. The computational complexity of the satisfiability of modal Horn clauses
for modal propositional logics. Theoretical Computer Science, 129(1):95–121, 1994.

5. L. Fariñas Del Cerro and M. Penttonen. A note on the complexity of the satisfiability of
modal Horn clauses. Journal of Logic Programming, 4(1):1–10, 1987.

6. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935–962, 1991.

7. L. Nguyen. On the complexity of fragments of modal logics. Advances in Modal Logic,
5:318–330, 2004.

8. M. Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
9. D. E. Smith. The case for durative actions: a commentary on PDDL2.1. Journal of Artificial

Intelligence Reasoning, 20(1):149–154, Dec. 2003.
10. D. Toman. Point vs. interval-based query languages for temporal databases. In Proceed-

ings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database
Systems, pages 58–67. ACM, 1996.

D. Bresolin et al. A First Study of the Horn Fragment of the Modal Logic of Time Intervals

318

Distributed Runtime Verification of JADE and
Jason Multiagent Systems with Prolog?

Daniela Briola, Viviana Mascardi, and Davide Ancona

DIBRIS, Genoa University, Italy
daniela.briola,viviana.mascardi,davide.ancona@unige.it

1 Introduction

Verifying properties of interactions taking place inside open, complex, distributed,
dynamic systems is of paramount importance for most applications and is manda-
tory for safety-critical ones. Verification can take place at design time (offline or
static verification) or at runtime (online or dynamic). For runtime verification
some layer between the monitor executing the verification engine and the sys-
tem under monitoring must exist, so that actual interactions can be intercepted
and the compliance of each one against the protocol can be checked. A common
way to improve efficiency and fault tolerance of the runtime verification is to
distribute it among many monitors. This requires that the protocol is projected
onto subsets of participants.

If the system has been engineered as a multiagent system (MAS), which is
a good option when openness, complexity, distribution, dynamics are character-
izing features, then the choice of either JADE, http://jade.tilab.com/, or Jason
http://jason.sourceforge.net/, as the platform for implementing it may be a very
natural one. JADE, implemented in Java, is the state-of-the-art tool for MAS
development and has been used for many real industrial applications. Jason,
implemented in Java as well and based on a Prolog engine built from scratch by
its developers, is one of the most widely used frameworks when the agents un-
der development are designed according to the Belief, Desire, Intentions (BDI)
architecture.

Due to the wide range of possible application fields of Jason and to the large
amount of real use cases of JADE, being able to verify interactions taking place
in MASs implemented in one of these two frameworks is a concrete step towards
making MASs more reliable and enhancing their industrial and commercial us-
ability. In this demo we show our contribution for the achievement of this goal.

We have in fact designed and implemented a framework for distributed run-
time verification of MASs and ad hoc interfaces for monitoring JADE and Jason
interactions. The framework consists of four layers: (1) a formalism for describ-
ing agent interaction protocols (AIPs) based on constrained global types [1] and
their extension with attributes [7]; (2) a mechanism for projecting AIPs onto
subsets of agents, obtaining a new protocol in the same formalism of constrained
global types [2]; (3) a mechanism for verifying that interactions are compliant

? Paper presented at the CILC 2014 Demo Session, based on published material [3, 4].

319

Fig. 1. Our modular framework for distributed runtime verification of MASs.

with the AIP [3]; and (4) a mechanism for intercepting messages involving the
agents under monitoring, be them JADE or Jason ones, in a way as transparent
as possible.

The strength of our framework, represented in Figure 1, is its high modu-
larity and potential for code reuse: the first three layers are independent from
the actual MAS under monitoring and have been implemented in Prolog. The
“protocol representation” and “compliance verification” layers have been tested
and improved over time, reaching an almost stable version now, whereas the
projection layers works under the assumption that the protocol contains no at-
tributes (namely, it is a “plain” constrained global type) and has not been tested
extensively yet. The fourth layer depends on the MAS framework under moni-
toring: nothing prevents us from adding new agent frameworks at the bottom of
our architecture by developing ad hoc mechanisms for message interception, still
leaving the first three layers unchanged. By exploiting the components offered by
our stacked framework it is possible to implement both monitors external to the
MAS, implemented as completely separate processes that do not intervene in the
observed system, and agents which are able to monitor the protocol executions
and have the power to intervene when they detect a violation. Associating the
“compliance verification” capability with an artifact (as in the first case) or with
an agent (as in the second case) are two different design choices, each with pros
and cons. We experimented both approaches, as discussed in Section 3 where
monitoring is performed by a Java artifact that does not intervene in the MAS
activity, and in Section 4 where the Jason agent in charge of the monitoring
activity can prevent other agents from sending non compliant messages.

Whatever the choice, compliance verification should be an efficient process.
Although efficiency issues are still to be explored, distributing the runtime veri-
fication by projecting onto subsets of agents could be a way to balance the load
of the monitoring activity among more entities.

2 Background

Global types [6] are a behavioral type and process algebra approach to the
problem of specifying and verifying multiparty interactions between distributed
components. We took inspiration from global types to propose a formalism,

D. Briola et al. Distributed Runtime Verification of JADE and Jason MAS with Prolog

320

constrained global types, suitable for representing AIPs. Because of space con-
straints we cannot go into the details of the formalism which can be found in
[7]. Since attribute global types are interpreted coinductively, it is possible to
specify protocols that are not allowed to terminate like for example the SERVER
protocol defined by the equation

SERVER = (receive request,0):(serve request,0):SERVER

where SERVER is a logical variable which is unified with a recursive (or cyclic,
or infinite) Prolog term consisting of a receive request producer interaction
type, followed by a serve request producer interaction type (both requiring
0 consumers), followed by the term itself. This protocol models the (infinite)
behavior of a server which is always ready to receive and serve requests; the only
valid interaction trace is the infinite sequence receive request serve request

receive request serve request

By means of attribute global types we were able to concisely represent pro-
tocols which are well known in the concurrent systems and MAS communities
like the Alternating Bit Protocol (en.wikipedia.org/wiki/Alternating bit proto-
col) and the FIPA Iterated Contract Net Protocol (fipa.org/specs/fipa00030).
FYPA (Find Your Path, Agent! [5]) is not as well known, but is a negotiation
protocol for a real MAS used by Ansaldo STS, and is far more complex than the
two others. We exploited our formalism to model FYPA as well [8].

Constrained global types can be easily expressed as a set of Prolog equa-
tions like the one defining SERVER. Attributes and constraints on their values
are represented as additional Prolog facts. In order to allow agents to verify
only a sub-protocol of the global interaction protocol, we designed a projec-
tion algorithm that takes a constrained global type and a set of agents Ags as
input, and returns a constrained global type which contains only interactions
involving agents in Ags as output [2]. Projection can be described as a function
Π : CT × P(AGS) → CT where CT is the set of constrained global types and
AGS is the set of agents. The intuition besides the algorithm is that interactions
that do not involve agents in Ags are removed from the projected constrained
global type.

Whatever the protocol to be monitored (global one or projection) and the
framework (JADE or Jason), a monitor keeps track of the runtime evolution of
the protocol by saving its current state (which is an attribute global type) and
checking that each interaction taking place in the MAS is allowed by the current
state (namely, can lead to a new state by means of the transition function which
defines the semantics of attribute global types, implemented in Prolog). If the
interaction is not allowed, an error is reported. The monitor also checks agents
responsiveness by means of a time-out whose value can be set by the user: if
the current state of the monitor corresponds to the empty protocol (that is,
the protocol must terminate), then the monitor reports an error as soon as an
interaction is detected (independently of the time-out); if the current state is not
final (that is, the protocol is not allowed to terminate), then the monitor reports
a warning as soon as the time-out expires, if no interaction is detected (and of

D. Briola et al. Distributed Runtime Verification of JADE and Jason MAS with Prolog

321

course an error is reported in case an invalid interaction is detected before the
time-out).

3 Runtime Verification of JADE MASs

In order to verify the interactions taking place in a JADE MAS, we have designed
a monitor meeting the following requirements for non intrusiveness and code
reuse [4]: (1) the monitor must be able to supervise the execution of the MAS
without interfering with it, (2) the monitor activity must require no changes to
the agents’ code, (3) the formalism for representing the AIP must be attribute
global types, and (4) the Prolog code already developed for implementing veri-
fication of interactions w.r.t. attribute global types and for protocol projection
must be re-used as it is.

To meet requirements 1 and 2 we extended the JADE Sniffer agent which is
able to sniff all the messages exchanged during the execution of the MAS in a
non intrusive way: JADE is developed under the LGPL (Lesser General Public
License) and the Java source code is available to the research community, so we
were able to modify it to achieve our goals.

To meet requirements 3 and 4 we exploited the JLP library1 providing a
bidirectional interface between Java and SWI Prolog. As all our previous work on
attribute global types was implemented in Prolog, allowing our JADE Monitor
to consult Prolog programs and to call Prolog predicates was the best way to
ensure reusability.

The monitor reads a file containing the Prolog code implementing verification
and projection, and a configuration file listing the agents to be monitored, and
onto which the protocol projection will be performed. A log file is written as the
monitoring goes on. The Prolog file contains definitions for three predicates:

– initialize(LogFile, SniffedAgents) which sets LogFile as the file where
writing the outcome of the verification, and projects the global protocol - which
must be defined by the global type/1 predicate -, onto SniffedAgents.

– remember(ParsedMsg) which inserts the Prolog representation of the JADE
sniffed message into a message list, where messages are ordered by time stamp
(if they have a time stamp, which is not mandatory) or in order of arrival.

– verify(CurrentTime) which verifies the compliance of each message re-
membered in the message list and whose time stamp is lower than CurrentTime

to the global protocol.
These predicates are called in different methods of the monitor code, imple-

menting the wanted behavior.

With this approach no changes are required to the monitored agents and hence
existing MASs can be monitored without accessing to their code, but the monitor
detects a violation only after it took place and even in case of a protocol violation
the MAS execution goes on.

1 http://www.swi-prolog.org/packages/jpl/java api/

D. Briola et al. Distributed Runtime Verification of JADE and Jason MAS with Prolog

322

4 Runtime Verification of Jason MASs

Since Jason agents can integrate Prolog facts and rules for defining their knowl-
edge, the Jason monitor [3] can be generated in a trivial way by integrating
directly into its code the Prolog code for protocol specification, monitoring and
projection that the JADE monitor must instead read from the Prolog file. The
way interactions are sniffed in Jason depends on some assumption on the agents’
code and requires some modifications to it: we assume that agents interact via
asynchronous exchange of messages with tell performatives; their original code
must be modified in the following way:

1. the .send built-in action for message delivery is replaced by !my send and
2. two plans must be added for managing the interaction with the monitor.

The first plan is triggered by the !my send internal goal; my send has the
same signature as the .send internal action, but, instead of sending a message
with performative Perf and Content to Receiver, it sends a tell message
to the monitor with content msg(Sender, Receiver, Perf, Content). When
received, this message will be checked by the monitor against the attribute global
type representing the protocol, as briefly explained in Section 2.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver. In reaction to the re-
ception of such a message, the agent sends the corresponding message to the
expected agent.

With this approach the code of the monitored agents must be conceived and
implemented in a way that makes monitoring possible, but the monitor detects a
violation prior than the actual message is sent and can stop the agent violating
the protocol by not allowing it to send the “wrong” message.

References

1. D. Ancona, M. Barbieri, and V. Mascardi. Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In SAC. ACM, 2013.

2. D. Ancona, D. Briola, A. E. F. Seghrouchni, V. Mascardi, and P. Taillibert. Efficient
verification of MASs with projections. In EMAS Pre-proceedings, 2014.

3. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In DALT X, volume
7784 of LNAI. Springer, 2012.

4. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
multiagent systems. In IDC, Studies in Computational Intelligence. Springer, 2014.

5. D. Briola, V. Mascardi, M. Martelli, R. Caccia, and C. Milani. Dynamic resource
allocation in a MAS: A case study from the industry. In WOA, 2009.

6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, LNCS, pages 2–17. Springer, 2007.

7. V. Mascardi and D. Ancona. Attribute global types for dynamic checking of proto-
cols in logic-based multiagent systems. TPLP, 13(4-5-Online-Supplement), 2013.

8. V. Mascardi, D. Briola, and D. Ancona. On the expressiveness of attribute global
types: The formalization of a real multiagent system protocol. In AI*IA, 2013.

D. Briola et al. Distributed Runtime Verification of JADE and Jason MAS with Prolog

323

Finding Commonalities in Linked Open Data

Simona Colucci1, Silvia Giannini1, Francesco M. Donini2, and Eugenio Di
Sciascio1

1 DEI, Politecnico di Bari, Bari, Italy
2 DISUCOM, Università della Tuscia, Viterbo, Italy

Abstract. The availability of a data source as huge, open, accessible
and machine–understandable as the Web of Data asks for new and so-
phisticated inferences to be implemented in order to deeply exploit such
a rich informative content. Towards this direction, the paper proposes
an approach for inferring clusters in collections of RDF resources on the
basis of the features shared by their descriptions. The approach grounds
on an algorithm for Common Subsumers computation proposed in a pre-
vious work of some of the authors. The clustering service introduced here
returns not only different cluster proposals for a given collection, but also
a description of the informative content shared by the RDF resources
within the clusters, in terms of (generalized) RDF triples.

1 Introduction

The Web of Data [7], born as a research challenge supporting the Semantic Web
[1] initiative, is nowadays a fact, as testified by the huge amount of data avail-
able in machine-understandable and inter-operable formats, like the Resource
Description Framework3 (RDF). The Linked Open Data (LOD)4 initiative has
in fact been joined by several organizations, that chose to publish their data fol-
lowing the RDF standard notation. Once such an open, continuously enriched
and up to date data-source is at hand and accessible, a significantly rich in-
formative content becomes available, opening the way to new challenges to be
addressed through reasoning.

The approach proposed in this paper aims at finding commonalities in LOD
by exploiting a specifically developed reasoning service, Common Subsumer (CS)
of pairs of RDF resources [3], which copes with the difficulties arising from the
attempts of reasoning over RDF [4]. As the service name may suggest, CS is de-
fined in analogy with a specific DLs inference: Least Common Subsumer (LCS)
[2]. Differently from LCS, CS computation gives up subsumption minimality
and searches for knowledge pieces which may be inferred by both RDF input re-
sources. In this paper we show how such information, although not subsumption-
minimal, is still useful to deduce descriptions of clusters of RDF resources in

3 http://www.w3.org/RDF/
4 http://linkeddata.org/

324

a knowledge domain. In particular, we chose LOD by Chamber of Deputies of
Italian Parliament5 as case study.

The paper is organized as follows: in the next section we describe the main
features of the proposed approach, together with some details on its implementa-
tion. In Section 3, some preliminary results are shown, before closing the paper.

2 The Approach

The approach we propose here aims at automatically clustering a target col-
lection of RDF resources according to a fully semantic-based classification. In
particular, RDF descriptions are investigated to infer clusters of resources en-
tailing the same sets of RDF triples, in order to provide a description of the
informative content shared within each cluster.

The originality of the proposal lays in the choice of adopting deductive ser-
vices to learn6 clusters description from examples represented in RDF. In fact,
although clustering is a thoroughly investigated task in machine learning litera-
ture, approaches solving it usually adopt induction to identify clusters according
to some—sometimes semantic-based—distance between elements in the same
cluster ([6], [8]).

We propose to solve clustering through a deductive and fully semantic-based
approach, which relies on the iteration of the following two steps: i) the CS of two
randomly selected RDF resources (in the following referred as seed-resources)
is computed; ii) the rest of the target collection is queried in order to find other
items entailing the same CS. The sub-collection made up by the two initial
resources and those returned by step ii) is one cluster of the collection. Therefore,
it is subtracted from the initial target collection, and the two steps are iterated
until there are no more resources to be clustered.

An anytime algorithm to compute a CS of pairs of RDF resources has been
proposed in [3] by some of the authors. In order to ensure correctness and com-
putability, the CS computation refers to a customized representation of RDF
resources which we call r-graph: a portion of the Web of Data we consider rele-
vant for the description of each input resource. In a nutshell, the algorithm for
CS computation starts by computing the r-graphs corresponding to the input
resources t and s, and returns their CS as a pair 〈x, T 〉, made up by a blank
node x (i.e., the CS of t and s itself) and a set of (generalized) RDF triples T ,
entailed by the r-graphs of both input resources7.

Then, the set T of triples is used to model a SPARQL [5] query, which returns
a subset P of the target collection R, such that the RDF description of each
item in P entails all triples in T .

In order to exemplify our clustering approach, we adopt the LOD by Cham-
ber of Deputies of Italian Parliament as use case. Such an informative source

5 http://dati.camera.it/data/en/
6 In Machine Learning vocabulary, what we do is called unsupervised learning
7 Due to space limits, the CS extraction algorithm [3] is only sketched through an

example in the sequel.

S. Colucci, S. Giannini, F. M. Donini, E. Di Sciascio. Finding Commonalities in Linked Open Data

325

is organized in about thirty different interlinked RDF datasets8 (last update on
the 5th November, 2012), accessible through a public SPARQL endpoint9. Each
dataset contains the metadata describing a resource (by properties dc:date,
dc:description, dc:title, and rdfs:label), and the statements about pos-
sible relations between that resource and other domain-related or web ones. For
the current experimental evaluation, we cluster only resources contained in the
dataset deputato.rdf, even though their descriptions span multiple datasets.

In Figure 1, the reader may find two example r-graphs describing a pair of
resources (ocd:d3140 10 and ocd:d270 10) in our reference dataset. In the most
general case, all triples of datasets of interest having the seed-resource as subject
are considered relevant for the description of the resource itself. Here, we adopt a
more restrictive strategy driven by specific knowledge of the domain, and discard
as not relevant for the description of a resource r also triples <<r p o>> such
that p ∈ {dc:date, dc:title, foaf:depiction, foaf:firstName, foaf:nick,
foaf:surname, ocd:endDate, ocd:file, ocd:startDate, ods:modified, rdfs:
comment, rdfs:label, terms:isReferencedBy}.

Fig. 1. Two possible r-graphs for RDF resources ocd:d3140 10 and ocd:d270 10 cor-
responding, respectively, to deputies Nilde Iotti and Tina Anselmi of the 10th legis-
lature of the Italian Republic. For the sake of clarity, resources ocd:deputato and
ocd:repubblica 10, common to both r-graphs, are depicted as distinct nodes and sur-
rounded by a smoothed dashed-line rectangle

Figure 2 shows a CS of resources ocd:d3140 10 and ocd:d270 10 whose two
possible r-graphs are those in Figure 1.

8 http://data.camera.it/data/en/datasets/
9 http://dati.camera.it/sparql

S. Colucci, S. Giannini, F. M. Donini, E. Di Sciascio. Finding Commonalities in Linked Open Data

326

Fig. 2. A graphical representation of a CS 〈x0, T 〉 of the RDF resources in Fig. 1.

3 Results

In Table 1, we report a clustering proposal for all deputies of the 10th legislature,
where resources ocd:d3140 10 and ocd:d270 10 of the above example10 were
forcibly selected as seed pair for the extraction of the first cluster (P1). By
looking at the first row, one can notice how no other resource in the collection
shares the features of the CS originated by the first seed-pair, i.e., |P1| = 2. All
subsequent clusters have been extracted with a random selection of seed’s URIs.

Table 1. Clustering results adopting ocd:d3140 10 and ocd:d270 10 as first seed pair.

#P Seed’s URIs o
c
d
:
r
i
f
m
a
n
d
a
t
o
C
a
m
e
r
a

o
c
d
:
m
e
m
b
r
o

o
c
d
:
a
d
e
r
i
s
c
e

f
o
a
f
:
g
e
n
d
e
r

d
c
:
d
e
s
c
r
i
p
t
i
o
n

o
c
d
:
r
i
f
u
f
f
i
c
i
o
P
a
r
l
a
m
e
n
t
a
r
e

|P |

P1 (d3140 10, d270 10) :x1 :x2 :x3 "female"
"Laurea in lettere;
insegnante."@it

2

P2 (d200023 10, d22710 10) :x1 :x2 :x3 "female" 81

P3 (d30010 10, d17060 10) :x1 :x2 :x3 "male"
"Laurea in
giurisprudenza;
avvocato"@it

44

P4 (d20910 10, d30570 10) :x1 :x2 :x3 "male" :x4 148
P5 (d30140 10, d60499 10) :x1 :x2 :x3 "male" 398
P6 (d24780 10, d31040 10) :x1 :x2 "male" 7

10 Notice that, although the resources are the same as in the above example, we here
adopt a different criterion for selecting relevant triples.

S. Colucci, S. Giannini, F. M. Donini, E. Di Sciascio. Finding Commonalities in Linked Open Data

327

Table 2. A clustering result adopting randomly selected initial seed pairs.

#P Seed’s URIs ocd:rif mandatoCamera o
c
d
:
m
e
m
b
r
o

o
c
d
:
a
d
e
r
i
s
c
e

f
o
a
f
:
g
e
n
d
e
r

dc:description |P |

P1 (d19990 1, d20060 1) :x1 :x2 :x3 "male"
"Laurea in giurisprudenza;

127
avvocato."@it

P2 (d3140 1, d14290 1) :x1 :x2 :x3 "female"
"Laurea in lettere;

9
insegnante."@it

P3 (d12560 1, d13120 1) :x1 :x2 :x3 "male" :x4 431
P4 (d26000 1, d10090 1) :x1 :x2 :x3 "female" :x5 35
P5 (d10800 1, d25610 1) :x1 :x2 :x3 "male" 9
P6 (d12140 1, d8520 1) :x1 :x2 :x3 2

Table 2, instead, shows a clustering result obtained for the target collection
R of 613 resources corresponding to deputies of the first legislature of the Italian
Republic. It means that every pair of seed’s URIs (t, s), randomly selected from
R, returns a CS described, at least, by the following triples: : x rdf : type ocd :
deputato . and : x ocd : rif leg ocd : repubblica 01 ., where :x stands for
the blank node associated to the CS of t and s (for improving readability, these
triples are not reported in the table).

The six listed partitions have been obtained in 14.138 s. By looking at the
first row as an example, one can notice how the algorithm aggregates all resources
in R that (please follow the columns order): received an open mandate to the
Chamber of Deputies; were members of a committee, joined a parliamentary
group, are of male gender; worked as a lawyer, after obtaining a law degree.

4 Conclusion

This paper proposed a new and deductive strategy for clustering collections of
RDF resources on the basis of the informative content shared by their descrip-
tions expressed in form of generalized RDF triples. The clustering mechanism
relies on the computation of the CS [3] of pairs of resources used as seed. In order
for such a computation to be finite, we select a relevant portion of the Web of
Data to describe the seed resources, according to a characteristic function to be
determined on the basis of domain-dependent criteria.

The evaluated execution time of the whole clustering approach, together with
the clustering results in terms of provided informative content, seem to support
the effort spent in designing and implementing the clustering strategy.

Part of the future work will be devoted to the extension of CS definition and
computation to other entailment regimes, to the investigation on (as general
as possible) criteria for the selection of relevant triples, aimed at the combined
optimization of both description expressiveness and computational complexity,
and to a comparative experimental evaluation involving the definition of a metric
for clusters quality assessment.

S. Colucci, S. Giannini, F. M. Donini, E. Di Sciascio. Finding Commonalities in Linked Open Data

328

Acknoledgements

We acknowledge support of projects “A Knowledge based Holistic Integrated
Research Approach” (KHIRA - PON 02 00563 3446857) and “Enhance Risk
Management through Extended Sensors” (ERMES - PON01 03113/F3).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
248(4) (2001), (34-43)

2. Cohen, W., Borgida, A., Hirsh, H.: Computing Least Common Subsumers in De-
scription Logics. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of AAAI’92. pp.
754–761. AAAI Press (1992)

3. Colucci, S., Donini, F.M., Di Sciascio, E.: Common Subsumers in RDF. In: Proc.
of AI*IA 2013. LNAI, Springer (2013)

4. Patel-Schneider, P.F.: Reasoning in RDFS is Inherently Serial, At Least in The
Worst Case. In: Glimm, B., Huynh, D. (eds.) Proc. of ISWC’12 (Demos & Posters).
CEUR Workshop Proceedings, vol. 914. CEUR-WS.org (2012)

5. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (Sep 2009)

6. Qi, L., Lin, H.T., Honavar, V.: Clustering remote RDF data using SPARQL update
queries. In: Data Engineering Workshops (ICDEW), 2013 IEEE 29th International
Conference on. pp. 236–242. IEEE (2013)

7. Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. Intelligent
Systems, IEEE 21(3), 96–101 (2006)

8. Zhang, X., Zhao, C., Wang, P., Zhou, F.: Mining link patterns in Linked Data. In:
Web-Age Information Management, pp. 83–94. Springer (2012)

S. Colucci, S. Giannini, F. M. Donini, E. Di Sciascio. Finding Commonalities in Linked Open Data

329

Keeping interval-based functional dependencies
up-to-date ⋆

Carlo Combi and Pietro Sala

Department of Computer Science, University of Verona{carlo.combi|pietro.sala} @univr.it

Abstract. In the temporal database literature, every fact stored in a
database may be equipped with two temporal dimensions: the valid time,
which describes the time when the fact is true in the modeled reality, and
the transaction time, which describes the time when the fact is current
in the database and can be retrieved. Temporal functional dependen-
cies (TFDs) add valid time to classical functional dependencies (FDs)
in order to express database integrity constraints over the flow of time.
Currently, proposals dealing with TFDs adopt a point-based approach,
where tuples hold at specific time points, to express integrity constraints
such as “for each month, the salary of an employee depends only on his
role”. To the best of our knowledge, there are no proposals dealing with
interval-based temporal functional dependencies (ITFDs), where the as-
sociated valid time is represented by an interval and there is the need
of representing both point-based and interval-based data dependencies.
In this paper, we propose ITFDs based on Allen’s interval relations and
discuss their expressive power with respect to other TFDs proposed in
the literature: ITFDs allow us to express interval-based data dependen-
cies, which cannot be expressed through the existing point-based TFDs.
ITFDs allow one to express constraints such as “employees starting to
work the same day with the same role get the same salary” or “employees
with a given role working on a project cannot start to work with the same
role on another project that will end before the first one”. Furthermore,
we propose new algorithms based on B-trees to efficiently verify the sat-
isfaction of ITFDs in a temporal database. These algorithms guarantee
that, starting from a relation satisfying a set of ITFDs, the updated
relation still satisfies the given ITFDs.

1 An example of interval-based constraints

Most health care institutions collect a large quantity of clinical information about
patient and physician actions, such as therapies and surgeries, as well as about
health care processes, such as admissions, discharges, and exam requests. All
these pieces of information are temporal in nature and the associated tempo-
ral dimension needs to be carefully considered in order to be able to properly
represent clinical data and to reason about them [2]. In this section, we briefly

⋆ A short summary of the results published in [3] and [4].

330

TherType PatId Phys DrugCode Qty B E
1 antiviral 1 Dorian 0458 300 1 16
2 analgesics 1 Cox 0976 200 2 10
3 cardiovascular 1 Turk 0118 100 3 8
4 antipyretics 1 Cox 0976 100 9 11
5 sedative 1 Turk 0345 10 13 15
6 anxiolytic 1 Dorian 0345 10 17 19
7 antiviral 2 Kelso 0458 200 1 10
8 cardiovascular 2 Quinlan 0118 100 4 7
9 analgesics 2 Reid 0976 150 5 9
10 antiviral 2 Reid 0458 300 8 14
11 antiviral 1 Dorian 0789 200 1 18

Dorian

Dorian

Dorian

Cox

CoxTurk Turk

Kelso

Quinlan

Reid

Reid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 1. An instance of relation PatTherapies, storing data about patient therapies and
its representation on the time line with values for attribute Phys

introduce a real-world example taken from clinical medicine, namely that of
patient therapies.

Suppose we have patients who undergo several different therapies: each ther-
apy can be supervised by a physician, and consists of the administration of some
drug to the patient. Information about patients and therapies is stored in a re-
lation according to the schema PatTherapies(TherType, PatId ,DrugCode,Qty ,
Phys,B ,E), where TherType identifies a type of pharmacological therapy, PatId
represents a patient ID, DrugCode and Qty the prescribed drug and its quan-
tity, respectively, and Phys the physician who made the prescription (and is re-
sponsible for the therapy). Finally, attributes B and E represent the beginning
and end time points of the tuple valid interval, respectively: they represent the
bounds of the interval specified by the physician for each therapy. An instance
of PatTherapies is provided in Fig. 1.

Example 1. A policy of the hospital may be described as follows:

Every patient may receive several therapies at the same time from different
physicians, but overlapping therapies for the same patient must be prescribed
by the same physician. In other words, if a patient during a therapy needs
another therapy which lasts beyond the end of the current therapy, then this
therapy must be prescribed by the same physician who prescribed the other
one;

C. Combi and P. Sala. Keeping interval-based functional dependencies up-to-date

331

I0

I4

I5

I6

I3

I2

I1

I1 finishes I0 (I1 F I0)

I2 during I0 (I2 D I0)

I3 starts I0 (I3 S I0)

I4 overlaps I0 (I4 O I0)

I5 meets I0 (I5 M I0)

I6 before I0 (I6 B I0)

I0 equals I0 (I0 = I0)

I0 finished by I1 (I0 F̄ I1)

I0 contains I2 (I0 D̄ I2)

I0 started by I3 (I0 S̄ I3)

I0 overlapped by I4 (I0 Ō I4)

I0 met by I5 (I0 M̄ I5)

I0 after I6 (I0 B̄ I6)

Fig. 2. The thirteen Allen relations between intervals

It is easy to see that in order to verify these policies through the acquired
data, both the start points and the end points of every pair of tuples come into
play.

2 Interval-based functional dependencies

Given a totally ordered set O = ⟨O,≤⟩, an interval I over O is a pair I = [b, e]
where b, e ∈ O and b ≤ e. For any interval I = [b, e] over O let points(I) denote the
set of points in O between b and e: points(I) = {p ∣ p ∈ O and b ≤ p ≤ e}. While
the possible distinct relations between two points considering only the linear
order are reduced to three (equality, successor, and predecessor), considering
the order among the two endpoints of two intervals leads us to have thirteen
possible relations. These relations are depicted in Fig. 2 according to the notation
proposed by Allen in [1]. It is worth noting that every relation has its dual
obtained by switching the position of the two intervals. Consider, for example,
two intervals I1 = [b1, e1] and I2 = [b2, e2]: we have that I1 D I2 (I1 during I2),
if and only if b2 < b1 < e1 < e2. By reverting the arguments, we have that I2 D I1
(I2 contains I1), if and only if b2 < b1 < e1 < e2, which is equivalent to I1 D I2.
More precisely, given two intervals I = [b, e] and I ′ = [b′, e′] we say that:

(1) I = I ′ iff b = b′ and e = e′; (2) I M I ′ iff e = b′;
(3) I S I ′ iff b = b′ and e < e′; (4) I F I ′ iff b > b′ and e = e′;
(5) I O I ′ iff b < b′ and b′ < e < e′; (6) I D I ′ iff b′ < b and e < e′;
(7) I B I ′ iff e < b′.

In discussing our new functional dependencies based on intervals within a
relational framework, we use a simple temporal (relational) data model based
on the concept of temporal relation. A temporal relation r is a relation on a tem-
poral relation schema R defined on attributes U ∪ {B,E}, where U represents a

C. Combi and P. Sala. Keeping interval-based functional dependencies up-to-date

332

set of atemporal attributes and B,E are the temporal attributes describing the
valid interval of a tuple. We assume that the domain of both attributes B and
E is a totally ordered set O. Clearly, a tuple t ∈ r satisfies t[B] ≤ t[E]. We recall
that, assuming the underlying domain for attributes A1 and A2 has a total order,
atomic formulas for comparing tuples are either of the form t[A1] θ t′[A2] or of
the form t[A1] θ c, with θ ∈ {=,≠,<,≤,>,≥}, A1,A2 being attribute names, c a
constant value and t, t′ tuples of relation r. To avoid ambiguities in the terminol-
ogy employed, in the following we will use (temporal) instance for “(temporal)
relation” and will let relation refer to Allen’s interval relations.

2.1 Interval-based temporal functional dependencies

Let us now consider the basic definition of an Interval-based Temporal Functional
Dependency (ITFD). In the following, we will only deal with interval relations
in the set A = {S,F,B,M,D,O, =}. Indeed, in this case it is not meaningful to
distinguish between a relation and its dual, as it will be clear from the following
definition of interval-based temporal functional dependency.

Definition 1. Let X and Y be sets of atemporal attributes of a temporal relation
schema R = R(U,B,E) and ∼ an Allen’s interval relation. An instance r ofR satisfies an ITFD X →∼ Y if for each pair of tuples t1 and t2 such that[t1[B], t1[E]] ∼ [t2[B], t2[E]] and t1[X] = t2[X], it is also true that t1[Y] =
t2[Y].
Basically, ITFDs group tuples whose B and E attribute values satisfy the interval
relation ∼. In the above definition, all the possible tuples having as valid interval
either [b, e] or [b′, e′], where [b, e] ∼ [b′, e′] are considered together. If there exist
two tuples having their valid intervals related through the considered relation∼, respectively, and both tuples agree on (the tuple of) values of atemporal
attributes X, then the ITFD imposes that both tuples must agree on (the tuple
of) values of atemporal attributes Y .

As already mentioned, we focus only on (sub) set A of Allen’s interval rela-
tions, without considering the dual ones. Indeed, dual relations are not needed
for the specification and verification of ITFDs, because ITFDs are based on the
equality of the considered (atemporal) values. Thus, each (ordered) pair of tu-
ples satisfying an interval relation will satisfy also the dual one, where tuples
will be considered in the pair with the opposite order. In other words, any ITFD
with a given interval relation implies also the corresponding ITFD with the dual
relation (and vice versa).

Let us now consider the first requirement expressed in Example 1 of Sect. 1: it
can be rephrased as “overlapping drug administrations for a given patient must
have the same physician”. This constraint can be expressed by the ITFD

PatId →O Phys.

A time-oriented graphical account of tuples of relation PatTherapies is pro-
vided in the lower part of Fig. 1. As we may notice, the instance satisfies ITFD

C. Combi and P. Sala. Keeping interval-based functional dependencies up-to-date

333

PatId →O Phys only for tuples related to the patient with PatId = 1. Dr. Cox
added a therapy antipyretics, but the related valid interval is contained in the in-
terval of therapy antiviral prescribed by Dr. Dorian. Tuples related to therapies
of patient with PatId = 2 instead do not satisfy ITFD PatId →O Phys, as both
intervals of therapies prescribed by Dr. Reid overlap a therapy prescribed by
another physician. This kind of property cannot be expressed with point-based
TFDs.

Verifying the satisfaction of X
∼→ Y may be considered in two different but

intertwined ways: i) given an instance r of R, check whether or not r satisfies

X
∼→ Y , ii) given an instance r of R satisfying X

∼→ Y and a tuple t, verify

whether r ∪ {t} still satisfies X
∼→ Y . We call the first problem checking ITFD

satisfaction, while the second one is called incremental ITFD verification. It is
not difficult to see that these two problems are closely related. In fact, checking
ITFD satisfaction reduces to the incremental ITFD verification by adopting the
algorithm developed for this problem and, starting from i = 0 with instance r0 = ∅
with schema R, incrementally verifying whether ri ∪ {ti} with ti ∈ r ∖ ri satisfies

ITFD X
∼→ Y . If the update of ri with ti still verifies X

∼→ Y , then ri+1 = ri∪{ti},

i = i + 1 and the algorithm is applied again. If r satisfies X
∼→ Y , after ∣r∣

iterations we can determine ITFD satisfaction. Some complexity improvements
to this naive approach can be done as shown in Table 1.

ITFD tuple insertion tuple deletion ITFD satisfaction checking

X →S Y O(log(∣r∣)) O(log(∣r∣)) O(∣r∣ ⋅ log(∣r∣))
X →F Y O(log(∣r∣)) O(log(∣r∣)) O(∣r∣ ⋅ log(∣r∣))
X →B Y O(log(∣r∣)) O(log(∣r∣)) O(∣r∣ ⋅ log(∣r∣))
X →M Y O(log(∣r∣)) O(log(∣r∣)) O(∣r∣ ⋅ log(∣r∣))
X →D Y O(log(∣r∣)) O(∣r∣) O(∣r∣ ⋅ log(∣r∣))
X →O Y O(log(∣r∣)) O(∣r∣) O(∣r∣ ⋅ log(∣r∣))

Table 1. The complexities for the tuple insertion, deletion, and ITFD satisfaction
checking, by our proposed incremental verification algorithm of ITFDs

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[2] Carlo Combi, Elpida Keravnou-Papailiou, and Yuval Shahar. Temporal Information
Systems in Medicine. Springer-Verlag New York, Inc., New York, NY, USA, 2010.

[3] Carlo Combi and Pietro Sala. Temporal functional dependencies based on interval
relations. In Carlo Combi, Martin Leucker, and Frank Wolter, editors, TIME, pages
23–30. IEEE, 2011.

[4] Carlo Combi and Pietro Sala. Interval-based temporal functional dependencies:
specification and verification. Annals of Mathematics and Artificial Intelligence,
pages 1–46, 2013.

C. Combi and P. Sala. Keeping interval-based functional dependencies up-to-date

334

A computational model for MapReduce job flow

Tommaso Di Noia, Marina Mongiello, Eugenio Di Sciascio

Dipartimento di Ingegneria Elettrica e Dell’informazione
Politecnico di Bari

Via E. Orabona, 4 – 70125 BARI, Italy
{firstname.lastname}@poliba.it

Abstract. Massive quantities of data are today processed using parallel
computing frameworks that parallelize computations on large distributed
clusters consisting of many machines. Such frameworks are adopted in big
data analytic tasks as recommender systems, social network analysis, le-
gal investigation that involve iterative computations over large datasets.
One of the most used framework is MapReduce, scalable and suitable for
data-intensive processing with a parallel computation model character-
ized by sequential and parallel processing interleaving. Its open-source
implementation – Hadoop – is adopted by many cloud infrastructures as
Google, Yahoo, Amazon, Facebook.
In this paper we propose a formal approach to model the MapReduce
framework using model checking and temporal logics to verify properties
of reliability and load balancingof the MapReduce job flow.

1 Introduction and motivation

During the last decades the phenomenon of “Big Data” has steadily increased
with the growth of the amounts of data generated in academic, industrial and
social applications. Massive quantities of data are processed on large distributed
clusters consisting of commodity machines. New technologies and storage mech-
anisms are required to manage the complexity for storage, analyzing and pro-
cessing high volumes of data. Some of these technologies provide the use of
computing as utility – cloud computing – and define new models of parallel and
distributed computations. Parallel computing frameworks enable and manage
data allocation in data centers that are the physical layer of cloud comput-
ing implementation and provide the hardware the cloud runs on. One of the
most known framework is MapReduce. Developed at Google Research [1] it has
been adopted by many industrial players due to its properties of scalability and
suitability for data-intensive processing. The main feature of MapReduce with
respect to other existing parallel computational model is the sequential and par-
allel computation interleaving. MapReduce computations are performed with
the support of data storage Google File System (GFS). MapReduce and GFS
are at the basis of an open-source implementation Hadoop1 adopted by many
cloud infrastructures as Google, Yahoo, Amazon, Facebook.

1 http://hadoop.apache.org

335

In this paper we propose a formal approach to model the MapReduce frame-
work using model checking and tempora l logics to verify some relevant properties
as reliability, load balancing, lack of deadlock of the MapReduce job flow. To
the best of our knowledge only two works have combined MapReduce and model
checking with a different aim from ours: in [2] MapReduce is adopted to com-
pute distributed CTL algorithms and in [6] MapReduce is modeled using CSP
formalism. The remaining of the paper is organized as follows. In Section 2 we
recall basics of model checking and temporal logics, the formalism used to define
and simulate our model. Section 3 provides a brief overview of the main features
of MapReduce. Section 4 proposes our formal model of job flow in Mapreduce
computation while Section 5 proposes an analytical model in the Uppaal model
checker language with properties to be checked. Conclusion and future works are
drawn in the last section.

2 Model Checking and Temporal Logics

The logical language we use for the model checking task is the Computation
Tree Logic (CTL), a propositional, branching, temporal logic [5].

The syntax of the formulae can be defined, using Backus-Naur form, as fol-
lows (where p is an atomic proposition): φ, ψ ::= p | φ ∧ ψ | φ ∨ ψ | ¬φ | φ →
ψ | φ ↔ ψ | EFφ | EXφ | EGφ | E(φUψ) | AGφ | AFφ | AXφ | A(φUψ). An
atomic proposition is the formula true or a ground atom CTL formulae can also
contain path quantifiers followed by temporal operators. The path quantifier E
specifies some path from the current state, while the path quantifier A specifies
all paths from the current state. The temporal operators are X, the neXt-state
operator; U , the Until operator; G, the Globally operator; and F the Future
operator. The symbols X, U , G, F cannot occur without being preceded by the
quantifiers E and A.

The semantics of the language is defined through a Kripke structure as the
triple (S,→, L) where S is a collection of states,→ is a binary relation on S×S,
stating that the system can move from state to state. Associated with each state
s, the interpretation function L provides the set of atomic propositions L(s) that
are true at that particular state [3]. The semantics of boolean connectives is as
usual. The semantics for temporal connectives is as follows: Xφ specifies that
φ holds in the next state along the path. φUψ specifies that φ holds on every
state along the path until ψ is true. Gφ specifies that φ holds on every state
along the path. Fφ specifies that there is at least one state along the path in
which φ is true. The semantics of formulae is defined as follows: EXφ: φ holds
in some next state; EFφ: a path exists such that φ holds in some Future state ;
EGφ: a path exists such that φ holds Globally along the path; E(φUψ): a path
exists such that φ Untilψ holds on it; AXφ: φ holds in every next state; AFφ:
for All paths there will be some Future state where φ holds; AGφ: for All paths
the property φ holds Globally; A(φUψ): All paths satisfy φ Until ψ. The model
checking problem is the following: Given a model M , an initial state s and a CTL
formula φ, check whether M, s |= φ. M |= φ ehen the formula must be checked
for every state of M .

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

336

3 MapReduce Overview and proposed model

MapReduce is a software framework for solving large-scale computing problems
over large data-sets and data-intensive computing. It has grown to be the pro-
gramming model for current distributed systems, i.e. cloud computing. It also
forms the basis of the data-center software stack [4].

MapReduce framework was developed at Google Research as a parallel pro-
gramming model with an associated implementation. The framework is highly
scalable and location independent. It is used for the generation of data for
Google’s production web search service, for sorting, for data-intensive appli-
cations, for optimizing parallel jobs performance in data-intensive clusters. The
most relevant feature of MapReduce processing is that computation runs on a
large cluster of commodity machines [1]; while the main feature with respect
to other existing parallel computational models is the sequential and parallel
computation interleaving.

The MapReduce model is made up of the Map and Reduce functions, which
are borrowed from functional languages such as Lisp [1]. Users’ computations are
written as Map and Reduce functions. The Map function processes a key/value
pair to generate a set of intermediate key/value pairs. The Reduce function
merges all intermediate values associated with the same intermediate key. In-
termediate functions of Shuffle and Sorting are useful to split and sort the data
chunks to be given in input to the Reduce function. We now define the computa-
tional model for MapReduce framework. We model jobs and tasks in MapReduce
using the flow description as shown in Figure 1.

Definition 1 (MapReduce Graph (MRG)). A MapReduce Graph (MRG) is
a Direct Acyclic Graph G = {N,E}, where nodes N in the computation graph are
the tasks of computation – N = M∪S∪SR∪R (M = map,S = shuffle,SR =
sort,R = reduce) – and edges e ∈ E are such that:

1. E ⊆ (M× S) ∪ (S× SR) ∪ (SR×R), i.e. “edges connect map with shuffle,
shuffle with sort and sort with reduce tasks”;

2. e ∈M× S breaks input into tokens;
e ∈ S× SR sorts input tokens by type;
e ∈ SR×R gives sort tokens to reducer.

3. Reduce sends input data for cluster allocation to the file system

Definition 2 (MapReduce Task). A MapReduce task t is a token of compu-
tation such that t ∈ (M ∪ S ∪ SR ∪R).

Definition 3 (MapReduce Job). A MapReduce Job is the sequence t1 →
t2 . . .→ tn of MapReduce tasks where

t1j = (Mi, ..,Mi+p)→ t2j = Sk → t3j = SRk → t4j = Rk

with Mi ∈M, i = 1 . . . n, Sj ∈ S, SRj ∈ SR, Rj ∈ R, j = 1 . . .m.

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

337

Fig. 1. MapReduce job flow model

4 Uppaal simulation model

In this Section we briefly describe the implemented model in the Uppaal2 model
checker’s formalism. Uppaal model is described in XML data format of model
checker description language and shown in the graphical interface of the tool as
a graph model.

The analytical model is made up of three templates: job, mapper and Google
File System (GFS). Figure 2 shows only the Uppaal graph model of the job
described using the statechart notation. Main states of the job template are Map,
Shuffle, Sort and Reduce as defined in the theoretical model in Section 3. Other
states manage the flow of the job: Starvation models the state in which the task
waits for unavailable resource, Middle state manages exceptions, receiving input
and receiving keyval manage data during job flow. Finally medium level checks
input data for the Shuffle state. Mapper template is made up of states: Prevision
that checks the behavior of the mappers working for the given job. The Prevision
state is followed by Error and out of order state in case of wrong behavior of
the mapper, or Work state in case of correct behavior of the mapper. Finally
the GFS template only manages the job execution.

To test the validity of the approach we simulated the model by instantiating a
given number of jobs with relative mappers. We checked the two main properties
of MapReduce framework, i.e. load balancing and fault tolerance.

Load Balancing. This property checks that the load of the Job J will be
distributed to all tasks of the Mapper Mi with given map and reduce tasks.
Hence when the job enters the state Map all the previson state of the mapper
are veryfied, this means that the load is balanced between all the mappers.

EG(J.Map) ∧AG(Mi.P revision)

Fault Tolerance. If the Mi map is out of service the job mapper schedules
an alternative task to perform the missed function that belongs to remaining

2 http://www.uppaal.org/

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

338

Fig. 2. Uppaal simulation model

Mi. In the simulation model, mappercount is the counter of the total number of
mappers and mappersched is the variable that counts the scheduled mappers.
The assigned value, m is the number of mappers.

EF (M.Out of order) ∧AG(mapper count = m ∧mapper sched = m)

From the simulation results we checked that the model ensures load balancing
and fault tolerance.

5 Conclusion and future work

We proposed a formal model of MapReduce framework for data-intensive and
computing-intensive environment. The model introduces the definition of MapRe-
duce graph and MapReduce job and task. At this stage of the work we imple-
mented and simulated the model with Uppaal model checker to verify basics
properties of its computation as fault tolerance, load balancing and lack of dead-
lock. We are currently modeling other relevant features as scalability, data lo-
cality and extending the model with advanced job management activities such
as job folding and job chaining.

We acknowledge support of project “A Knowledge based Holistic Integrated
Research Approach” (KHIRA - PON 02 00563 3446857).

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

339

References

1. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters, OSDI04: Sixth symposium on operating system design and implementation,
san francisco, ca, december, 2004. S. Dill, R. Kumar, K. McCurley, S. Rajagopalan,
D. Sivakumar, ad A. Tomkins, Self-similarity in the Web, Proc VLDB, 2001.

2. Feng Guo, Guang Wei, Mengmeng Deng, and Wanlin Shi. Ctl model checking
algorithm using mapreduce. In Emerging Technologies for Information Systems,
Computing, and Management, pages 341–348. Springer, 2013.

3. M.R.A. Huth and M.D. Ryan. Logic in Computer Science. Cambridge University
Press, 1999.

4. Krishna Kant. Data center evolution: A tutorial on state of the art, issues, and
challenges. Computer Networks, 53(17):2939–2965, 2009.

5. Edmund M.Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. Cam-
bridge, Massachusetts, USA: MIT press., 1999.

6. Fan Yang, Wen Su, Huibiao Zhu, and Qin Li. Formalizing mapreduce with csp.
In Engineering of Computer Based Systems (ECBS), 2010 17th IEEE International
Conference and Workshops on, pages 358–367. IEEE, 2010.

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

340

Hyper-extensionality and one-node elimination
on membership graphs

E. Omodeo1, C. Piazza2, A. Policriti2, and A. I. Tomescu3

1 University of Trieste
2 University of Udine

3 University of Helsinki

Abstract. A (hereditarily finite) set/hyperset S can be completely de-
picted by a (finite pointed) graph GS—dubbed its membership graph—
in which every node represents an element of the transitive closure of
{S} and every arc represents a membership relation holding between its
source and its target. In a membership graph different nodes must have
different sets of successors and, more generally, if the graph is cyclic no
bisimilar nodes are admitted. We call such graphs hyper-extensional.
Therefore, the elimination of even a single node in a membership graph
can cause different nodes to “collapse” (becoming representatives of the
same set/hyperset) and the graph to loose hyper-extensionality and its
original membership character.
In this note we discuss the following problem: given S is it always possible
to find a node s in GS whose deletion does not cause any collapse?
Keywords: Hereditarily Finite Sets, Hypersets, Bisimulation, Member-
ship Graphs.

Introduction

Two sets are equal if and only if they have the same elements. This principle—
the so-called axiom of Extensionality—goes at the very heart of the notion of set,
as it states that given s and s′, the condition of them having the same elements
is sufficient to guarantee that s and s′ are the same thing. As a matter of fact,
extensionality not only was among the postulates of the first axiomatisation
of Set Theory—i.e. the Zermelo-Fraenkel axiomatic set theory ZF—but is also
undisputedly present in any subsequent axiomatic presentation of sets.

Being able to establish equality by extensionality only, however, presupposes
that membership is acyclic. In fact, admitting the possibility to have a cyclic
membership relation, imagine two objects a and b satisfying the following simple
set-theoretic equation x = {x}. In this case, in order to establish wether a is equal
to b using extensionality, we must rely on our ability of establishing equality
between their elements. That is equality between ... a and b. Our argument (as
the underlying membership relation) becomes cyclic!

Since the 1980s, the elegant notion of bisimilarity has been extensively
used to sensibly extend the notion of set-theoretic equality to the case in which
we drop the assumption that the membership relation must be acyclic. The

341

notion of bisimilarity was introduced (almost at the same time) in many different
fields. Aczel, in particular, set up a graph-theoretic view on sets and hypersets,
according to which the consequences of dropping acyclicity of ∈ was rendered
cleanly in its anti-foundation axiom (AFA [Acz88], see also [BM96]), stated in
terms of bisimilarity.

In this note we study a simple-looking problem that can be stated on the
graph-theoretic representation of sets and hypersets. The problem can be, infor-
mally, given as follows: given a set S and its membership graph GS—a graph
representing the transitive closure of S—, does there always exist a node in GS

(i.e. a set in the transitive closure of S) whose elimination from GS will cause no
pair of nodes to become bisimilar? In other words, is it always possible to find
a way to reduce a graph-theoretic representation of a hyperset by one element,
without losing any inequality among the remaining hypersets in the transitive
closure of S?

Notice that we pose and study the question in the hereditarily finite case.
That is, not only we play with pure sets (i.e. sets whose only elements are
themselves sets), but also on an entirely finite “chessboard”.

The question has an easy and positive answer for well-founded sets using the
notion of rank. However, as the guidance for choosing which node to delete is
exactly the feature we cannot count on when dealing with hypersets (that is the
notion of rank) the case in which ∈ can be cyclic becomes quickly more inter-
esting. We present here a few partial and initial observations that, incidentally,
suggest that probably the problem should be studied as a graph-theoretic one.

In the concluding remarks we briefly discuss a problem that, among others,
brought us to get interested in the above mentioned question.

1 Basics

Below we schematically recall some basic definitions. See [Jec78] and [Lev79] for
detailed definitions. For a given well-founded set x we say that x is hereditarily
finite if it is finite and all its elements are hereditarily finite as well. In formulae:
HF(x) ⇔ Def Is finite(x) ∧ ∀ y ∈ x HF(y). Moreover, we define the rank and
the transitive closure of x as follows4 : rk(x) =Def sup{ rk(y) + 1 : y ∈ x }, with
rk(∅) = 0, and trCl(x) =Def x ∪

⋃ { trCl(y) : y ∈ x }.
If, as we do here, we do not assume ∈ to be necessarily well-founded, a few

words are in order to reasonably extend the notion of hereditarily finite set and of
transitive closure. In fact, also the notion of rank can be redesigned for the non-
well-founded arena5. In order to state the anti-foundation axiom and capture
more clearly the notion of hyperset, we need to specify the above mentioned
extension of the principle of extensionality.

4 These definitions can be fully formally given by induction on ∈, by exploiting any
sensible notion of finiteness.

5 Actually, this can be done in many different ways, but the real power of any such
extension remains rather mysterious (see [PP04,DPP04]).

E. Omodeo et al. Hyper-extensionality and one-node elimination on membership graphs

342

To introduce hereditarily finite hypersets we need the definition of bisimu-
lation relation. This definition is first given for graphs—as follows—and then is
used as an equality criterion to introduce the world of hypersets. This last step
is done exploiting the fact that both sets and hypersets are naturally understood
as membership graphs.

Definition 1. A bisimulation on (V,E) is a relation [⊆ V × V that satisfies

1) to every child v0 of u0 there corresponds at least one child v1 of u1 such that
v0 [v1 holds, and

2) to every child v1 of u1 there corresponds at least one child v0 of u0 such that
v0 [v1 holds.

At this point we can define bisimilarity to be the relation ≡(V,E) (or simply ≡)
defined between nodes u, v ∈ V as: u≡(V,E)v iff u[v holds for some bisimulation [
on (V,E). It plainly turns out that ≡(V,E) is a bisimulation (actually, the largest
of all bisimulations) on (V,E); moreover, it is an equivalence relation over V .
The following definitions (given following [Acz88]) establish the bridge between
graphs and sets.

Definition 2. A pointed graph G = (G, v) is a graph G = (V,E) with a dis-
tinguished node v ∈ V (its point) from which every node in V is E-reachable.

Definition 3. Given a set S, its membership graph GS is the pointed graph
(GS , S), where GS = (trCl({S}), ES) with

ES = {〈v, w〉 : v ∈ trCl({S}) ∧ w ∈ trCl({S}) ∧ w ∈ v}

With a slight abuse of terminology we will say that graph G (not pointed) is
a membership graph if there exists a node s in the graph G such that (G, s) is
isomorphic to a membership graph. An acyclic membership graph corresponds
to the transitive closure of a well-founded set. Below we give two simple results
implying that bisimulation is, in fact, coherent with the extensionality principle.

Proposition 1. The membership graph of any hereditarily finite set has the
identity relation as its only bisimulation.

Any finite, acyclic, pointed graph having identity as its only bisimulation is
isomorphic to the membership graph of a hereditarily finite set.

On the basis of the above proposition, one can identify HF (i.e. the collection of
x’s such that HF(x)) with the collection of those finite, acyclic, pointed graphs
whose only bisimulation is the identity —which, in turn, is the collection of
those finite acyclic pointed graphs in which no two different nodes have the
same successor set. We can now proceed to define hypersets simply by dropping
the acyclicity requirement and using bisimulation as equality criterion.

Definition 4. A hyperset is (the isomorphism class of) a pointed graph on
which identity is the only bisimulation. Such an entity is said to be hereditar-
ily finite when it has finitely many nodes.

E. Omodeo et al. Hyper-extensionality and one-node elimination on membership graphs

343

Recalling that the subgraph issuing from w in a graph G is the subgraph,
pointed in w, that consists of all nodes which are reachable from w in G, we can
readily introduce the membership relation between hypersets as follows.

Definition 5. Given two hypersets h and h′ = (G, v), with G = (V,E) as usual,
we say that h ∈ h′ if h is (isomorphic to) the pointed subgraph of G issuing from
a node w with 〈v, w〉 ∈ E.

The class of hereditarily finite hypersets includes the class of hereditarily
finite sets. From now on we will identify any hypersets S (possibly well-founded)
with its membership graph GS—that is, with a representative of its isomorphism
class. Moreover, we will say that a graph (not necessarily a membership graph)
is hyper-extensional if its only bisimulation is the identity.

2 One-element elimination

Consider a hyperset S and recall that, by definition, GS is hyper-extensional. For
any given s ∈ trCl({S}), we denote by GS − s the graph obtained from GS by
eliminating s together with all the arcs incident to s. Notice that it is possible
that GS − s is not a membership graph (e.g., the case in which s = S). As we
said in the introduction, the question we want to discuss in this note is whether,
given a hyperset S, it is always possible to find s ∈ trCl({S}) such that GS−s is
hyper-extensional. Clearly, if GS is acyclic the question has a positive answer, as
GS − S is undoubtedly hyper-extensional. However, at least in the well-founded
case, it is always possible to maintain (hyper-)extensionality even eliminating a
node s ∈ trCl(S) in such a way that GS − s remains a membership graph.

Proposition 2. Given a hereditarily finite set S there exists an s ∈ trCl(S) such
that (GS − s, S) is (isomorphic to) a membership graph.

Proof. (Sketch) We can determine s as follows: if there exist two elements of the
same rank in the transitive closure of S, let r be the maximum such rank and
take s to be any element in the transitive closure of S of rank r. Otherwise take
s as the empty set.

The general case in which GS is cyclic is more challenging. First of all, we
observe that we can produce a scenario in which the only possible eliminable s
is in fact the point S.

Example 1. Consider the hyperset satisfying the following system of set-theoretic equa-
tions: S = {T}, T = {U, S}, U = {T, ∅}. In the above case the only eliminable element
in GS is its point S.

The above example marks a difference between the well-founded and the
non well-founded case, as it tells us that the generalisation of Proposition 2 to
the cyclic case does not hold. However, it leaves the question open as whether,
possibly by permitting the elimination of the point, it is always possible to delete
a node from GS having the remaining graph hyper-extensional.

E. Omodeo et al. Hyper-extensionality and one-node elimination on membership graphs

344

Definition 6. Let Gscc
S be the graph having scc’s of GS as nodes, and an arc

between A and B if and only if there exist an arc in GS having source in A and
target in B.

Proposition 3. For any membership graph GS, the graph Gscc
S is acyclic and

has at most two sinks.

Even though—as we said—it is not easy to chose a notion of rank for non well-
founded sets, let the rank of A of GS to be the length of the longest simple
path in GS from A. We do not know if, given a membership graph GS , a node
whose elimination does not disrupt hyper-extensionality always exists. However,
if this is the case, one such node is not necessarily of maximal rank and it is not
necessarily of maximal rank in the highest strongly connected component. See
the following two examples.

Example 2. The following is an example of hyperset in which the element of maxi-
mum rank (defined as the element source of the longest simple path and indicated in
parenthesis) cannot be eliminated without causing a collapse.

a(3)

v(2) w(2)
u(4)

b(3)

c(1)

∅

Example 3. The following is an example of hyperset in which the element of maximum
rank in the highest strongly connected component cannot be eliminated without causing
a collapse.

v(4) w(4) a(5)

b(1)

∅

On the one hand, a reasonable point of view could be that a choice for an
eliminable node should be strictly tied with a definition of some notion of rank
compatible with cyclic structures. On the other hand, one could argue that on
cyclic graphs an eliminable node must be characterised by two different features:
a maximal rank—captured by the maximality of the strongly connected com-
ponent where the node must be chosen—, and a different—unknown—feature,
related with the cyclic character of the graph and guiding in the choice within
the strongly connected component.

E. Omodeo et al. Hyper-extensionality and one-node elimination on membership graphs

345

Concluding remarks

We consider that the problem presented here is simple and elegant enough to de-
serve a (computationally well characterised) answer without any further consid-
eration. However, let us conclude by mentioning a context in which the question
tackled here was raised, and for which a (positive) answer would be beneficial.

In [PT13] the problem of generating uniformly and at random a set with a
given number of elements in its transitive closure was studied. The proposed so-
lution was based on generating extensional acyclic digraphs with a given number
of labeled vertices (since all of the n! labelings of the vertices of an extensional
acyclic digraph, or of a hyper-extensional digraph on n vertices, lead to non-
isomorphic labelled digraphs). The results in [PT13] are based on a Markov
chain Monte Carlo-based algorithm, initially proposed for generating acyclic di-
graphs [MDBM01,MP04]. The key fact needed in order to show that the Markov
chain converges to the uniform distribution were the irreducibility, aperiodicity,
and symmetry of the chain. The idea exploited in the construction of the Markov
chain was to show that a pair of elementary operations on graphs (implemented
as basic transition rules of the Markov chain, akin to the elimination of a node)
could be used to transform any graph G into another graph G′ within the same
family. Even though this problem was later solved in [RT13] by a deterministic
algorithm based on a combinatorial decomposition (and a resulting counting re-
currence), as mentioned above, we are far from having such a counter-part for
hyper-extensional digraphs. However, a positive answer to the question posed in
this note would allow one to extend the Markov chain Monte Carlo technique to
the realm of hypersets, which would be the first result of its kind.

References

[Acz88] P. Aczel, Non-well-founded sets, vol. 14 of CSLI Lecture Notes, CSLI, Stan-
ford, CA, 1988.

[BM96] J. Barwise and L. S. Moss, Vicious circles, CSLI Lecture Notes, Stanford,
CA, 1996.

[DPP04] A. Dovier, C. Piazza, and A. Policriti, An efficient algorithm for computing
bisimulation equivalence, Theor. Comput. Sci. 311 (2004), no. 1-3, 221–256.

[Jec78] T. Jech, Set Theory, Academic Press, New York, 1978.
[Lev79] A. Levy, Basic Set Theory, Springer, Berlin, 1979.
[MDBM01] G. Melançon, I. Dutour, and M. Bousquet-Mélou, Random generation of

directed acyclic graphs, Comb01, Euroconference on Combinatorics, Graph
Theory and Applications (J. Nesetril, M. Noy, and O. Serra, eds.), Elec-
tronic Notes in Discrete Mathematics, vol. 10, 2001, pp. 202–207.

[MP04] G. Melançon and F. Philippe, Generating connected acyclic digraphs uni-
formly at random, Information Processing Letters (2004), no. 90, 209–213.

[PP04] Carla Piazza and Alberto Policriti, Ackermann encoding, bisimulations,
and OBDDs, TPLP 4 (2004), no. 5-6, 695–718.

[PT13] Alberto Policriti and Alexandru I. Tomescu, Markov chain algorithms for
generating sets uniformly at random, Ars Mathematica Contemporanea 6
(2013), no. 1, 57–68.

E. Omodeo et al. Hyper-extensionality and one-node elimination on membership graphs

346

