
Set Graphs VI:
Logic Programming and Bisimulation ?

Agostino Dovier

University of Udine, DIMI

Abstract. We analyze the declarative encoding of the set-theoretic graph
property known as bisimulation. This notion is of central importance in
non-well founded set theory, semantics of concurrency, model checking,
and coinductive reasoning. From a modeling point of view, it is partic-
ularly interesting since it allows two alternative high-level characteriza-
tions. We analyze the encoding style of these modelings in various dialects
of Logic Programming. Moreover, the notion also admits a polynomial-
time maximum fix point procedure that we implemented in Prolog. Sim-
ilar graph problems which are NP hard or not yet perfectly classified
(e.g., graph isomorphism) can benefit from the encodings presented.

1 Introduction

Graph bisimulation is the key notion for stating equality in non well-founded-set
theory [1]. The notion is used extensively whenever cyclic properties need to be
checked (e.g., in conductive reasoning [16]), in the semantics of communicating
systems [12], as well as in minimizing graphs for hardware verification, and in
model checking in general [9]. The problem of establishing whether two graphs
are bisimilar (hence, the sets ‘represented’ by those graphs are equivalent) is
easily shown to be equivalent to the problem of finding a maximum bisimulation
of a graph into itself. This problem admits fast polynomial time algorithms that
optimize a naive maximum fix point algorithm [14, 7]. As far as we know, the
problem of establishing whether there exists or not a linear-time algorithm for
the general case is still open.

The maximum bisimulation problem has the beauty of having two (equiv-
alent) declarative formalizations. The first one is the definition of a particular
morhpism that is similar to the one used for defining other “NP” properties such
as graph/subgraph simulation or isomorphism. The second one is based on the
notion of coarsest stable partition which is itself similar to the property exploited
for computing the minimum deterministic finite automata for a given regular lan-
guage. The focus of the paper is the analysis of the programming style to be used
for modeling the maximum bisimulation problem in as much declarative way as
possible in some dialects of logic programming, namely, Prolog, Constraint Logic
Programming on Finite Domains, Answer Set Programming, the less known, but
developed for coinductive reasoning, Co-inductive Logic Programming, and the

? This research is partially supported by INdAM-GNCS.

14

set-based constraint logic programming language {log} (read setlog). The contri-
bution of this paper is not on the direction of improving existing polynomial time
algorithms; however, we also encode in Prolog a polynomial-time max fixpoint
algorithm.

The paper is inserted either in the series of papers on “Set Graphs” (e.g.,
[13]) or in the series of papers aimed at comparing relative expressiveness of logic
programming paradigms on families of problems (e.g., [4, 20]). Proposed models
can be slightly modified to address the other similar properties recalled above,
some of which are not believed to admit a fast implementation and, therefore,
they can exploit the declarative style of logic languages and the speed of their
implementations, in particular, in the case of ASP modeling.

2 Sets, Graphs, and Bisimulation

We assume the reader has some basic notions of set theory and of first-order
logic with equality. We add here a set of notions needed for understanding the
contribution of the paper; the reader is referred, e.g., to [1, 11], for details. Basic
knowledge of Logic Programming is also assumed.

Sets are made by elements. The extensionality principle (E) states that two
sets are equal if and only if they contain the same elements:

8z
✓

(z 2 x$ z 2 y)! x = y

◆

(E)

(the , apparently missing, direction is a consequence of equality). In “classical”
set theory sets are assumed to be well-founded; in particular the 2 relation fulfills
the so-called foundation axiom (FA):

8x
✓

x 6= ; ! (9y 2 x)(x \ y = ;)
◆

(FA)

that ensures that a set cannot contain an infinite descending chain x0 3 x1 3
x2 3 · · · of elements. In particular, let us observe that a set x such that x = {x}
can not exist since x is not empty, its unique element y is x itself, and x \ y =
{y} 6= ; contradicting the axiom.

On the other side, cyclic phenomena are rather common in our experience.
For instance in knowledge representation, argumentation theory, operating sys-
tems design, concurrency theory, and so on. Representing and reasoning on these
problems lead us in working on (cyclic) directed graphs with a distinguished en-
try point. Precisely, an accessible pointed graph (apg) hG, ⌫i is a directed graph
G = hN, Ei together with a distinguished node ⌫ 2 N (the point) such that all
the nodes in N are reachable from ⌫.

Intuitively, an edge a �! b means that the set “represented by b” is an
element of the set “represented by a”. The graph edge �! stands, in a sense, for
the Peano symbol 3.1 The above idea can be used to decorate an apg, namely,

1 Let us observe the morphing �! ���> �3 3, pointed out by Carla Piazza.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

15

assigning a (possibly non-well founded) set to each of the nodes. Sinks, i.e., nodes
without outgoing edges have no elements and are therefore decorated as the
empty set ;. In general, if the apg is acyclic, it represents a well-founded set and
it can be decorated uniquely starting from sinks and proceeding backward to the
point (theoretically, this follows from the Mostowski’s Collapsing Lemma [11]).
See Figure 1 for two examples; in particular observe that redundant nodes and
edges can occur in a graph.

Fig. 1. Two acyclic pointed graphs and their decoration with well-founded sets

If the graph contains cycles, interpreting edges as membership implies that
the set that decorates the graph is no longer well-founded. Non well-founded sets
are often referred to as hypersets. Anti Foundation Axiom (AFA) [1] states that
every apg has a unique decoration. Figure 2 reports some examples. In particular,
the leftmost and the central apgs both represent the hyperset ⌦ which is the
singleton set containing itself. Applying extensionality axiom (E) for verifying
their equality would lead to a circular argument.

Fig. 2. Three cyclic pointed graphs and their decoration with hypersets

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

16

2.1 The notion of Bisimulation

Each apg has a unique decoration. Therefore two apgs denote the same hyperset
if and only if their decoration is the same. The notion introduced to establish
formally this fact is the notion of bisimulation.

Let G1 = hN1, E1i and G2 = hN2, E2i be two graphs, a bisimulation between
G1 and G2 is a relation b ✓ N1 ⇥ N2 such that:

1. u1 b u2 ^ hu1, v1i 2 E1) 9v2 2 N2(v1 b v2 ^ hu2, v2i 2 E2)
2. u1 b u2 ^ hu2, v2i 2 E2) 9v1 2 N1(v1 b v2 ^ hu1, v1i 2 E1).

In case G1 and G2 are apgs pointed in ⌫1 and ⌫2, respectively, it is also required
that ⌫1 b ⌫2. If there is a bisimulation between G1 and G2 then the two graphs
are bisimilar.

Remark 1 (Bisimulation and Isomorphism). Let us observe that if b is required
to be a bijective function then it is a graph isomorphism. Establishing whether
two graphs are isomorphic is an NP-problem neither proved to be NP-complete
nor in P. Establishing whether G1 is isomorphic to a subgraph of G2 (subgraph
isomorphism) is NP-complete [15]. Establishing whether G1 is bisimilar to a
subgraph of G2 (subgraph bisimulation) is NP-complete [6]. Instead, establishing
whether G1 is bisimilar to G2 is in P (actually, O(|E1 +E2| log |N1 +N2|)—[14]).

In case G1 and G2 are the same graph G = hN, Ei, a bisimulation on G is a
bisimulation between G and G. It is immediate to see that there is a bisimulation
between two apg’s hG1, ⌫1i and hG2, ⌫2i if and only if there is a bisimulation b on
the graph G = h{⌫} [N1 [N2, {(⌫, ⌫1), (⌫, ⌫2)} [E1 [E2i such that ⌫1 b ⌫2 (see,
e.g., [7], for a proof). Therefore, we can focus on the bisimulations on a single
graph; among them, we are interested in computing the maximum bisimulation
(i.e., the one maximizing the number of pairs u b v). It can be shown that it is
unique, that is an equivalence relation, and that contains all other bisimulations
on G. Therefore, we might restrict our search to bisimulations on G that are
equivalence relations on N such that:

8u1, u2, v1 2 N
�

u1 b u2 ^ hu1, v1i 2 E) (9v2 2 N)(v1 b v2 ^ hu2, v2i 2 E)
�

(1)

The fact that we look for equivalence (hence, symmetric) relations makes the
case 2 of the definition of bisimulation superfluous. We will use the following
logical rewriting of (1) in some encodings:

¬9u1, u2, v1 2 N
⇣

u1bu2^hu1, v1i 2 E^¬
�

(9v2 2 N) (v1bv2^hu2, v2i 2 E)
�

⌘

(10)

The graph obtained by collapsing nodes according to the equivalence relation
is the one that allows to obtain the apg decoration, using the following procedure.

Let G = hhN, Ei, ⌫i be an apg. For each node i 2 N assign uniquely a
variable Xi, then add the equation Xi = {Xj : (i, j) 2 E}. The set of
equations obtained defines the set decorating G, that can be retrieved
as the solution of X⌫ .

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

17

Another characterization of the maximum bisimulation is based on the notion
of stability. Given a set N , a partition P of N is a collection of non-empty disjoint
sets (blocks) B1, B2, . . . such that

S

i Bi = N . Let E be a relation on the set N ,
with E�1 we denote its inverse relation.

A partition P of N is said to be stable with respect to E if and only if

(8B1 2 P)(8B2 2 P)(B1 ✓ E�1(B2) _ B1 \ E�1(B2) = ;) (2)

which is in turn equivalent to state that there do not exist two blocks B1 2 P
and B2 2 P such that:

(9x 2 B1)(9y 2 B1) (x 2 E�1(B2) ^ y /2 E�1(B2)) (20)

We say that a partition P refines a partition Q if each block (i.e., class) of
P is contained in a block of Q. A class B2 of P splits a class B1 of P if B1

is replaced in P by C1 = B1 \ E�1(B2) and C2 = B1 \ E�1(B2); if C1 or C2

is empty, it is not added in P . The split operation produces a refinement of a
partition P ; if P is stable with respect to E, no split operations changes P .

It can be shown that given a graph G = hN, Ei, starting from the partition
P = {N}, after at most |N | � 1 split operations a procedure halts determining
the coarsest stable partition (CSP) w.r.t. E. Namely, the partition is stable and
any other stable partition is a refinement of it. Moreover, and this is relevant
to our task, the CSP corresponds to the partition induced by the maximum
bisimulation, hence this algorithm can be employed to compute it in polynomial
time. Paige and Tarjan showed us the way for fast implementations in [14].

3 Logic Programming Encoding of Bisimulation

We first focus on the logic programming encoding or the definition of bisim-
ulation (1) or (10) and of the part needed to look for the maximum bisim-
ulation on a input apg. We impose the relation is symmetric and reflexive.
In the remaining part of the paper we assume that apg’s are represented by
facts node(1). node(2). node(3). ... for enumerating the nodes, and facts
edge(u,v). where u and v are nodes, for enumerating the edges. For the sake
of simplicity, we also assume that node 1 is the point of the apg.2

3.1 Prolog

The programming style used in the Prolog encoding is generate & test. The core
of the encoding is reported in Figure 3. A bisimulation is represented by a list of
pairs of nodes (U, V). Assuming a “guessed” bisimulation is given as input, for
every guessed pair the morphism property (1) is checked. As usual in Prolog, the
“for all” property is implemented by a recursive predicate (although a slightly

2 Complete codes are available at http://clp.dimi.uniud.it

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

18

more compact foreach statement is available in most Prolog systems and will
be used in successive encodings).

bis/1 is called by a predicate that guesses a bisimulation of size at least k
between nodes, itself called by a meta predicate that increases the value of k
until no solution is found. The guess predicate forces all identities, all the pairs
between nodes without outgoing edges, and imposes symmetries; this extra part
of the code is rather boring and we have omitted the code. As a (weak) search
strategy, the guess predicate tries first to insert as much pairs as possible: this
will explain the di↵erence of computational times on di↵erent benchmarks of the
same size.

3.2 CLP(FD)

The programming style is constraint & generate. In this case the bisimulation
is stored in matrix, say B, of Boolean variables. B[i, j] = 1 means that i b j
(B[i, j] = 0 means that ¬(i b j)). We omit the definitions of the reflexivity
predicate that sets B[i, i] = 1 for all nodes i and of the symmetry predicate
that sets B[i, j] = B[j, i] for all pair of nodes i and j. Let us focus on the
morphism requirements (1). morphism/2 collects all edges and calls morphism/3.
This predicate scans each edge (U, V) and then each node U1 and adds the
property that if B[U, U1] = 1 then

P

(U1,V 1)2E B[V, V 1] = 1. Let us observe
that O(|E||N |) of these constraints are generated. We omit the definitions of
some auxiliary predicates, such as access(X,Y,B,N,BXY) that simply sets BXY
= B[X,Y]. The whole encoding is longer and perhaps less intuitive than the
Prolog one. However, the search of the maximum bisimulation is not delegated
to a meta predicate as in Prolog but it is encoded directly into the maximize
option of the labeling primitive. The “down” search strategy, trying to assign 1
first, is similar to the strategy used in the Prolog code.

3.3 ASP

ASP encodings allow to define explicitly the bisimulation relation. Two rules are
added for forcing symmetry and reflexivity. Then a non-deterministic choice is
added to each pair of nodes. The great declarative advantage of ASP in this case
is the availability of constraint rules that allows to express universal quantifica-
tion (negation of existential quantification). The morphism requirement (10) can
be therefore encoded as it is, with the unique addition of the node predicates
needed for grounding (Figure 5). Then we define the notion of representative
nodes (the nodes of smaller index among the nodes equivalent to it) and mini-
mize the number of them. This has proven to be much more e�cient that max-
imizing the size of bis. A final remark on the expected size of the grounding.
Both the constraint and the definition of one son bis ranges over all edges and
another free node: this generates a grounding of size O(|E||N |).

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

19

bis(B) :- bis(B,B). % Recursively analyze B

bis([],_).
bis([(U1,U2) |RB],B) :- %%% if U1 bis U2

successors(U1,SU1), %%% Collect the successors SU1 of U1
successors(U2,SU2), %%% Collect the successors SU2 of U2
allbis(SU1,SU2,B), %%% Then recursively consider SU1
bis(RB,B).

allbis([],_,_).
allbis([V1 | SU1],SU2,B) :- %%% If V1 is a successor of U1

member(V2,SU2), %%% there is a V2 successor of U2
member((V1,V2),B), %%% such that V1 bis V2
allbis(SU1,SU2,B).

successors(X,SX) :- findall(Y,edge(X,Y),SX).

Fig. 3. Prolog encoding of the bisimulation definition. Maximization code is omitted.

bis :- size(N), M is N*N, %%% Define the N * N Boolean
length(B,M), domain(B,0,1), %%% Matrix B
constraint(B,N), Max #= sum(B), %%% Max is the number of pairs
labeling([maximize(Max),ffc,down],B). %%% in the bisimulation

constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).

morphism(N,B) :-
findall((X,Y),edge(X,Y),EDGES),
foreach(E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).

morphismcheck((U1,V1),U2,N,B) :-
access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)
successors(U2, SuccU2), % Collect all edges (U2,V2)
collectlist(SuccU2,V1,N,B,BLIST),% BLIST contains all possible flags BV1V2
BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)

Fig. 4. Portion of the CLP(FD) encoding of the bisimulation definition

%% Reflexivity and Symmetry
bis(I,I) :- node(I).
bis(I,J) :- node(I;J), bis(J,I).
%%% Nondeterministic choice
{bis(I,J)} :- node(I;J).
%%% Morphism requirement (1’)
:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).
one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).

%% Minimization (max bisimulation)
non_rep_node(A) :- node(A), bis(A,B), B < A.
rep_node(A) :- node(A), not non_rep_node(A).
rep_nodes(N) :- N=#sum[rep_node(A)].
#minimize [rep_nodes(N)=N].

Fig. 5. ASP encoding of the bisimulation definition

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

20

3.4 co-LP

In this section we exploit a less standard logic programming dialect. Coinduc-
tive Logic Programming (briefly co-LP) was introduced by Gupta et al. [17] and
recently presented in a concise way in [2], where computability results and a
working SWI interpreter are provided. The same syntax of pure Prolog should
be used. The di↵erences lay in the semantics: the maximum fix point of a con-
ductive predicate is looked for, as opposite to the least fix point of classical logic
programming. Although this can easily lead to a non recursively enumerable se-
mantics, the finiteness of the graphs makes this option available for this problem.
As a matter of fact, the piece of code reported in Figure 6 encodes the prob-
lem and, by looking for the maximum fix point, the maximum bisimulation is
computed without the need of additional minimization/maximization directives.
bis and allbis are declared as coinductive. The definition of successors is the
same as in Figure 3 and declared as inductive, as well as the member predicate.

bis(U,V) :- successors(U,SU), successors(V,SV),
allbis(SU,SV), allbis(SV,SU).

allbis([],_).
allbis([U|R],SV) :- member(V,SV), bis(U,V), allbis(R,SV).

Fig. 6. co-LP (complete) encoding of the definition of Bisimulation

4 Logic Programming Encoding of CSP

We focus first on the encoding of the definition of stable partition (2) and finally
on the (less declarative) computation of the CSP.

4.1 Prolog

The programming style is generate & test. A partition is a list of non-empty
lists of nodes (blocks). Sink nodes (if any) are deterministically set in the first
block. Possible partitions of increasing size are non-deterministically generated
until the first stable one is found. Once the partition is guessed the verify part is
made by a double selection of blocks within the list of blocks. The main predicate
that encodes property (2) is the following:

stablecond(B1,B2) :- edgeinv(B2,InvB2),
(subseteq(B1,InvB2) ; emptyintersection(B1,InvB2)).

where edgeinv collects the nodes that enter into B2 (definable as findall(X,
(edge(X,Y), member(Y,B)), REVB)) while the two set-theoretic predicates are
defined through list operations.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

21

4.2 CLP(FD)

In this case the data structure used is a mapping from nodes to blocks indexes,
stored as a list of finite domain variables. The set inclusion and empty inter-
section requirement of (2) are not naturally implemented by a constraint &
generate style. As in the encoding 3.2 maximization is forced by a parameter of
the labeling; some symmetry breaking is encoded (e.g.. sink nodes are determin-
istically forced to stay in partition number one). We only report the excerpt of
the encoding, where we made use of the foreach built-in. With a rough analysis,
the number of constraints needed is O(|N |3) but each constraint generated by
alledge can be of size |N | itself.

4.3 ASP

Also in this case ASP allows a concise encoding (Figure 8). The assignment is
implemented defining the function inblock/2. The possibility of reasoning “a
posteriori” and the availability of the constraint rule allows to naturally encode
the property (20). The remaining part of the code is devoted to symmetry break-
ing and minimization of the number of blocks. The bottleneck for the grounding
stage is the constraint rule that might generate O(|N |4) ground instantiations.

4.4 {log}
The CLP language {log}, originally presented in [5], populated with several
set-based constraints such as the disjoint constraint (disj—imposing empty in-
tersection) in [8] and later augmented with Finite Domain constraints in [3] is a
set-based extension of Prolog (and a particular case of constraint logic program-
ming language). Encoding the set-theoretic stable property (2) is rather natural
in this case. We report the definition in Figure 9. subset, disj, in are built-in
constraints. Similarly, restricted universal quantifiers (forall(X in S, Goal))
and intensional set formers ({X : Goal(X)}) are accepted.

4.5 Computing the coarsest stable partition

We have implemented the maximum fixpoint procedure for computing the coars-
est stable partition in Prolog. Initially nodes are split into (at most) two classes:
internal and non internal nodes. For each node U , a list of pairs U -I is computed
by stating that U is assigned to block I. Then a possible splitter is found and, in
case, a split is executed. The procedure terminates in at most n � 1 steps where
n is the number of nodes. The Prolog code is reported in Appendix (Figure 12).

5 Experiments

Although the focus of this work is on the expressivity of the declarative en-
coding (being this problem solved by fast algorithms in literature, such as [14,

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

22

stability(B,N) :-
foreach(I in 1..N, J in 1..N, stability_cond(I,J,B,N)).

stability_cond(I,J,B,N) :- % Blocks BI and BJ are considered
inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed
emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified
Cincl + Cempty #> 0. % OR condition

inclusion(X,N,_,_,_, 1) :- X>N,!.
inclusion(X,N,I,J,B, Cout) :- % Node X is considered

alledges(X,B,J,Flags), % Flags stores existence of edge (X,Y) with Y in BJ
LocFlag #= ((B[X] #= I) #=> (Flags #> 0)), %% Inclusion check:
X1 is X+1, % If X in BI then X in E-1(BJ)
inclusion(X1,N,I,J,B,Ctemp), % Recursive call
Cout #= Ctemp*LocFlag. % AND condition (forall nodes it should hold)

alledges(X,B,J,Flags) :- % Collect the successors of X
successors(X,OutgoingX), % And use them for assigning the Flags var
alledgesaux(OutgoingX,B,J,Flags).

alledgesaux([],_,_,0).
alledgesaux([Y|R],B,J,Flags) :- % The Flags variable is created

alledgesaux(R,B,J,F1), % Recursive call.
Flags #= (B[Y] #= J) + F1. % Add "1" iff there is edge (X,Y) and BY = J

Fig. 7. Excerpt of the CLP(FD) encoding of the stable partition property

blk(I) :- node(I).
%%% Function assigning nodes to blocks
1{inblock(A,B):blk(B)}1 :- node(A).
%%% STABILITY (2’)
:- blk(B1;B2), node(X;Y), X != Y, inblock(X,B1), inblock(Y,B1),

connected(X,B2), not connected(Y,B2).
connected(Y,B) :- edge(Y,Z),blk(B),inblock(Z,B).
%% Basic symmetry-breaking rules (optional)
:- node(A), internal(A), inblock(A,1).
internal(X) :- edge(X,Y).
leaf(X) :-node(X), not internal(X).
non_empty_block(B) :- node(A), blk(B), inblock(A,B).
empty_block(B) :- blk(B), not non_empty_block(B).
:- blk(B1;B2), 1 < B1, B1 < B2, empty_block(B1), non_empty_block(B2).
%% Minimization
number_blocks(N) :- N=#sum[non_empty_block(B)].
#minimize [number_blocks(N)=N].

Fig. 8. ASP complete encoding of the stable partition property

stable(P) :-
forall(B1 in P, forall(B2 in P, stablecond(B1,B2))).

stablecond(B1,B2) :-
edgeinv(B2,InvB2) &
(subset(B1,InvB2) or disj(B1,InvB2)).

edgeinv(A,B) :-
B = {X : exists(Y,(Y in A & edge(X,Y)))}.

Fig. 9. {log} encoding of the stable partition property

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

23

Fig. 10. From left to right, the graphs G1, G2 (n odd), G2 (n even), G3, and G5 used
in the experiments. G4 is the complete graph (not reported).

7]), we have reported the excerpt of the running times of the various proposed
encodings on some families of graphs, parametric on their number of nodes (Fig-
ure 10). Results can give us some additional information on the possibilities and
on the intrinsic limits of the logic programming dialects analyzed. All experi-
ments are made on a laptop 2.4GHz Intel Core i7, 8GB memory 1600MHz DDR3,
OSX 10.9.2. Systems used are B-Prolog Version 7.8#5 [19], clingo 3.0.5 (clasp
1.3.10) [10], and SWI Prolog Version 6.4.1 [18]. In particular, SWI Prolog has
been used in the co-LP tests, thanks to its rational terms handling. On the other
Prolog encodings B-Prolog proved to be from 2 to 3 times faster than SWI and
it has been therefore used. Speed-up increased still further using tabling for the
predicate edge but we have exploited this additional feature in the experiments
in Table 5 only. We tested the codes on five families of graphs G1–G5 parametric
on the number of nodes n (see Figure 10).

– Graph G1 is an acyclic graph with n � 1 edges, where n classes are needed.
– G2 is a cyclic graph with n nodes and edges. If n is even, just two classes are

su�cient; if n is odd, n+1
2 classes are needed. This is why in some experiments

we have two columns with this family of graphs.
– G3 is a binary tree populated following a breadth-first visit, with n�1 edges.
– G4 is, in a sense, symmetrical w.r.t. G1: it is a complete graph with n2 edges

but just one class is su�cient.
– G5 is a multilevel (cyclic) graph.

The results on the encoding of the bisimulation definition 1 are reported
in Tables 1–3. From a quick view one might notice that the ASP encoding is a
clear winner. Prolog generate & Test and the co-LP interpreter run in reasonable
time on very small graphs only (Prolog is used without tabling, tabling the edge
predicate allows a speed-up of roughly 4 times). The CLP approach becomes
unpractical soon in the case for the complete graph G4 where the n2 edges
generate too many constraints for the stack size when n � 50 (as reported
in Section 3.2, O(|E||N |) constraints are added: in this case they are O(n5);
moreover each of those constraints includes a sum of n elements in this case).
Let us observe that the complete graph G4 produces the highest grounding

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

24

times in the ASP case. As reported in Section 3.3 grounding size is expected
O(|E||N |) = O(n3) in this case. This has been verified experimentally (table not
reported); in particular, for G4, n = 200 the grounded file (obtained with the
option -t) is of size 275MB. Moreover, by a simple regression analysis of Table 3,
the time needed for grounding is shown to be proportional to n6 for graph G4.

The results on the enconding of the coarsest stable partition definition 2 are
reported in Table 4. Also in this case ASP is a clear winner, although in this
case smaller graphs can be handled by all approaches. We have omitted the {log}
running times. This system proved to be definitely the slowest; just to have an
idea, for G1, n = 5 the computation took roughly 5 hours.

We conclude with the testing of the encoding of the polynomial time proce-
dure of coarsest stable partition computation by maximum fixpoint and splits.
In graphs G⇤

2 and G3 tabling the edge predicate improved the running time
of two orders of magnitude (reported times are those using tabling). As a fur-
ther consideration, we started finding stack overflow for n = 5000. Moreover,
the experimental complexity detected by a regression analysis on table 5 is
O(|N |3) in all columns, which is rather good, considering the purely declara-
tive nature of the encoding (fast solvers such as [7] run in O(|N |) in acyclic
graphs such as G1 and G3, and in the cyclic multi-level graph G5, while they
run in O(|E| log |N |) = O(|N |2 log |N |) in the other cases. By the way, complete
graph G4 could be solved in time O(1) with a simple preprocessing).

6 Conclusions

We have encoded the two properties characterizing the bisimulation definition,
and in particular, solving the maximum bisimulation problem, using some di-
alects of Logic Programming. As a general remark, the guess & verify style of
Prolog (and of ASP) allows to define the characterizing properties to be verified
‘a posteriori’, on ground atoms. In CLP instead, those properties are added as
constraints to lists of values that are currently non instantiated and this makes
things much more involved, and has a negative impact on code readability. The
expressive power of the constraint rule of ASP allows a natural and compact
encoding of “for all” properties and this improved the conciseness of the en-
coding (and readability in general); recursion should be used instead for it in
Prolog and CLP. co-LP (resp., {log}) allows to write excellent code for property
(1) (resp., property (2)). However, since they are implemented using meta in-
terpreters (naive in the case of co-LP) their execution times are prohibitive for
being used in practice.

The ASP encoding is also the winner from the e�ciency point of view, as far
as a purely declarative encoding of the NP property is concerned. This would
suggest the reader that this is the best dialect to be used to encode graph
properties if a polynomial time algorithm is not yet available (or it does not
exist at all). This is not the case of the maximum bisimulation problem where
polynomial time algorithms for computing the coarsest stable partition can be

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

25

n G1 G2 G3 G4

BP co-LP BP co-LP BP co-LP BP co-LP

4 1 2 1 3 1 1 0 45382
5 18 3 16 6 14 47 1 so
6 508 8 179 33 441 496 1 so
7 33252 14 8240 20 6340 91272 1 so
8 4303576 28 203191 118 884614 47 8 so

Table 1. Property (1). Running time (ms) for the Prolog (BP) and the co-LP encoding
on very small graphs. so=stack overflow. G5 is not considered for these values of n,
since its structure requires at least 11 nodes. Let us observe that G3 is a tree of height
3 for n = 7 and of height 4 for n = 8. This explain the strange behavior of co-LP.

n G1 G2 G3 G4 G⇤
5

C S C S C S C S C S
10 1 0 1 0 1 0 17 1 3 0
20 5 0 7 1 6 0 529 14 21 0
30 22 0 31 3 29 2 6001 423 69 0
40 59 0 64 6 68 5 33751 3574 202 1
50 147 0 141 12 141 8 so 438 2
60 240 0 277 38 259 18 so 896 2
70 428 0 492 41 460 34 so 1662 2
80 705 0 810 61 762 58 so 2756 3
90 1119 0 1463 99 1179 98 so 4441 4
100 1703 0 1913 158 1803 143 so 6798 4

Table 2. Property (1). Running time (ms) for clp(fd) on small graphs (C=constraint,
S=search). so=stack overflow. For G5 nodes are n + 1

n G1 G2 G3 G4 G⇤
5

G S G S G S G S G S
100 670 50 650 100 620 110 998 140 250 20
110 880 80 830 170 820 170 15010 170 330 30
120 1180 100 1090 170 1090 210 23810 240 390 30
130 1510 130 1340 300 1440 280 30860 370 470 30
140 1890 150 1670 290 1690 360 43710 370 560 50
150 2270 180 2030 430 2120 210 55330 460 650 50
160 2740 230 2510 440 2590 260 74030 570 780 50
170 3310 240 2960 760 3120 330 99200 650 860 70
180 3930 280 3520 690 3600 350 123440 810 960 80
190 4600 320 4090 1130 4250 400 151550 950 1110 90
200 5350 350 4910 1140 4850 440 195790 1080 1240 110

Table 3. Property (1). Running time (ms) for clingo on medium graphs
(G=grounding+preprocessing, S=search). For G5 nodes are n + 1

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

26

G1 G2 G3 G4

Prolog and CLP(FD)
n BP C S BP C S BP C S BP C S
5 3 11 4 2 13 2 0 13 1 0 129 10
6 26 31 58 0 38 1 0 32 5 0 230 8
7 351 78 146 15 79 12 0 79 5 0 372 19
8 5057 115 1257 1 232 8 3 119 11 0 803 47
9 76044 145 29507 196 384 197 5 151 33 0 1895 104
10 1338632 179 222047 1 198 5 8 355 139 0 5352 143

Clingo
G S G S G S G S

10 20 990 10 0 10 0 20 0
11 20 9980 20 40 10 0 40 0
12 40 103700 0 0 20 0 60 0
13 90 1077220 50 370 30 0 90 0
14 110 12714900 50 0 70 0 120 0

Table 4. Property (2). Running time (ms) for the Prolog (BP) and CLP(FD)
(C=constraints, S=search) and ASP (G=grounding+preprocessing, S=search) encod-
ings on very small graphs.

n G1 G⇤
2 G2 G3 G4 G⇤

5

100 24 38 22 15 40 34
200 137 208 87 54 253 244
400 885 968 324 204 1659 1458
600 2769 2804 697 463 5613 4553
800 6544 6169 1365 809 12895 10735
1000 12639 11650 2145 1210 24462 20069

Table 5. Running time (ms) of the B-Prolog encoding of the fixpoint procedure for
computing the Coarsest Stable Partition on large graphs. ⇤ indicates that in those
columns the number of nodes is n + 1.

Fig. 11. An overall picture on the computational results on graph G2. Encoding (1)—
left, encoding (2)—right. Logarithmic scales for axis have been used.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

27

employed. The one implemented in Prolog and reported in Appendix proved also
to be the fastest approach presented in this paper.

References

1. Aczel, P. Non-well-founded sets. CSLI Lecture Notes, 14. Stanford University,
Center for the Study of Language and Information, 1988.

2. Ancona, D., and Dovier, A. co-LP: Back to the Roots. TPLP 13, 4-5-Online-
Supplement (2013).

3. Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. Integrating finite
domain constraints and clp with sets. In PPDP (2003), ACM, pp. 219–229.

4. Dovier, A., Formisano, A., and Pontelli, E. An empirical study of con-
straint logic programming and answer set programming solutions of combinatorial
problems. J. Exp. Theor. Artif. Intell. 21, 2 (2009), 79–121.

5. Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. {log}: A Logic
Programming Language with Finite Sets. In Proc of ICLP (1991), K. Furukawa,
Ed., The MIT Press, pp. 111–124.

6. Dovier, A., and Piazza, C. The subgraph bisimulation problem. IEEE Trans.
Knowl. Data Eng. 15, 4 (2003), 1055–1056.

7. Dovier, A., Piazza, C., and Policriti, A. An e�cient algorithm for computing
bisimulation equivalence. Theoretical Computer Science 311, 1-3 (2004), 221–256.

8. Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. Sets and constraint logic
programming. ACM Trans. Program. Lang. Syst. 22, 5 (2000), 861–931.

9. Fisler, K., and Vardi, M. Y. Bisimulation and model checking. In CHARME
(1999), L. Pierre and T. Kropf, Eds., vol. 1703 of Lecture Notes in Computer
Science, Springer, pp. 338–341.

10. Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. clasp : A conflict-
driven answer set solver. In LPNMR (2007), C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483 of Lecture Notes in Computer Science, Springer, pp. 260–265.

11. Kunen, K. Set Theory. North Holland, 1980.
12. Milner, R. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in

Computer Science. Springer, 1980.
13. Omodeo, E. G., and Tomescu, A. I. Set Graphs. III. Proof Pearl: Claw-Free

Graphs Mirrored into Transitive Hereditarily Finite Sets. J. Autom. Reasoning 52,
1 (2014), 1–29.

14. Paige, R., and Tarjan, R. E. Three partition refinement algorithms. SIAM J.
Comput. 16, 6 (1987), 973–989.

15. Papadimitriou, C. H. Computational complexity. Academic Internet Publ., 2007.
16. Sangiorgi, D. On the origins of bisimulation and coinduction. ACM Trans.

Program. Lang. Syst. 31, 4 (2009).
17. Simon, L., Mallya, A., Bansal, A., and Gupta, G. Coinductive logic program-

ming. In ICLP (2006), S. Etalle and M. Truszczynski, Eds., vol. 4079 of Lecture
Notes in Computer Science, Springer, pp. 330–345.

18. Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. SWI-Prolog.
TPLP 12, 1-2 (2012), 67–96.

19. Zhou, N.-F. The language features and architecture of b-prolog. TPLP 12, 1-2
(2012), 189–218.

20. Zhou, N.-F., and Dovier, A. A tabled prolog program for solving sokoban.
Fundam. Inform. 124, 4 (2013), 561–575.

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

28

Appendix

stable_comp(Final, Nclasses) :-
findall(X,node(X),Nodes),
initialize(Nodes, Initial),
maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"

%%% maxfixpoint procedure. If possible, split, else stop.
maxfixpoint(AssIn, I, AssOut, C) :-

split(I,AssIn,AssMid),!,
I1 is I+1,
maxfixpoint(AssMid, I1, AssOut, C).

%%% When stop, simply compute the number of classes used
maxfixpoint(Stable,C,Stable,C1) :-

count_classes(C,Stable,C1).
%%% Split operation.
%%% First locate a block that can be split. Then find the splitter
split(MaxBlock,AssIn,AssMid) :-

between(1,MaxBlock,I),
findall(X,member(X-I,AssIn),BI),
BI = [_, _ | _], %% BI might be split (not empty, not singleton)
%%% Find potential splitters BJ (and remove duplicates)
findall(Q,(member(V-Q,AssIn),edge(W,V),member(W,BI)),SP),
sort(SP,SPS), member(J,SPS),
findall(Z,(member(Y-J,AssIn),edge(Z,Y)),BJinv),
my_delete(BI,BJinv,[D|ELTA]), %%% The difference is computed when not empty
MaxBlock1 is MaxBlock + 1,
update(AssIn,AssMid,MaxBlock1,[D|ELTA]).

%% Initial partition: Sinks -> B1; Internal -> B2
initialize([],[]).
initialize([A|R], [A-B|Ass]) :- (internal(A), !, B=2; B=1), initialize(R,Ass).

%%% AUXILIARY
count_classes(C,Stable,C1) :- (C > 3, !, C1 = C;

C =< 2, member(_-1,Stable),member(_-2,Stable),!,C1=2; C1 = 1).

my_delete([],_,[]).
my_delete([A|R],DEL,S) :- select(A,DEL,DEL1),!, my_delete(R,DEL1,S).
my_delete([A|R],DEL,[A|S]) :- my_delete(R,DEL,S).

update([],[],_,_).
update([X-_|R],[X-I|S],I,D) :- select(X,D,D1),!, update(R,S,I,D1).
update([X-J|R],[X-J|S],I,D) :- update(R,S,I,D).

internal(X) :- edge(X,_).

Fig. 12. Prolog computation of the CSP as a maxfixpoint procedure (complete code)

A. Dovier. Set Graphs VI: Logic Programming and Bisimulation

29

