
A Dual Tableau-based Decision Procedure for a
Relational Logic with the Universal Relation

Domenico Cantone1, Marianna Nicolosi-Asmundo1, and
Ewa Or lowska2

1 Università di Catania, Dipartimento di Matematica e Informatica
email: cantone@dmi.unict.it, nicolosi@dmi.unict.it

2 National Institute of Telecommunications, Warsaw, Poland
email: orlowska@itl.waw.pl

Abstract. We present a first result towards the use of entailment inside
relational dual tableau-based decision procedures. To this end, we intro-
duce a fragment of RL(1), called ({1, [, \} ;), which admits a restricted
form of composition. We prove the decidability of the ({1, [, \} ;)-
fragment by defining a dual tableau-based decision procedure with a
suitable blocking mechanism and where the decomposition rules for com-
positional formulae are modified so as to deal with the constant 1 while
preserving termination.
The ({1, [, \} ;)-fragment properly includes the logics presented in pre-
vious work and, therefore, it allows one to express, among others, the
multi-modal logic K with union and intersection of accessibility relations
and the description logic ALC with union and intersection of roles.

1 Introduction

The relational representation of various non-classical propositional logics has
been systematically analyzed in the last decades [16]. A uniform relational frame-
work based on the logic of binary relations RL(1), presented in [15] and called
relational dual tableau, showed to be an e↵ective logical means to represent in a
modular way three fundamental components of a formal system: its syntax, se-
mantics, and deduction system. Relational systems have been defined for modal
and intuitionistic logics, for relevant and many-valued logics, for reasoning in
logics of information and data analysis, for reasoning about time and space, etc.

The formalization of non-classical logics in RL(1) is based on the fact that
once the Kripke-style semantics of the logic under consideration is known, for-
mulae can be treated as relations. In particular, since in Kripke-style semantics
formulae are interpreted as collections of objects, in their relational representa-
tion they are seen as right ideal relations. In the case of binary relations this
means that (R ; 1) = R is satisfied, where ‘;’ is the composition operation on
binary relations and ‘1’ is the universal relation.

One of the most useful features of the relational methodology is that, given a
logic with a relational formalization, we can construct its relational dual tableau
in a systematic and modular way.

194

Though the relational logic RL(1) is undecidable, it contains several decidable
fragments. In many cases, however, dual tableau proof systems are not decision
procedures for decidable fragments of RL(1). This is mainly due to the way
decomposition and specific rules are defined and also to the strategy of proof
construction.

Over the years, great e↵orts have been spent to construct dual tableau proof
systems for various logics known to be decidable; little care has been taken,
however, to design dual tableau-based decision procedures for them. On the other
hand, it is well known that when a proof system is designed and implemented, it
is important to have decision procedures for decidable logics. In [10], for example,
an optimized relational dual tableau for RL(1), based on Binary Decision Graphs,
has been implemented. However, such an implementation turns out not to be
e↵ective for decidable fragments.

As far as we know, relational dual tableau-based decision procedures can be
found in [16] for fragments of RL(1) corresponding to the class of first-order
formulae in prenex normal form with universal quantifiers only; in [12, 13] for
the relational logic corresponding to the modal logic K; in [4, 5] for fragments of
RL characterized by some restrictions in terms of type (R ; S); in [11] for a class
of relational logics admitting a single relational constant with the properties of
reflexivity, transitivity, and heredity; and in [3] for a class of relational fragments
extending the ones introduced in [11] by allowing a countable infinity of relational
constants with the properties of reflexivity, transitivity, and heredity.

Throughout the paper terms of type (R ; S) will be referred to as composi-
tional terms. Similarly, formulae with compositional terms will be referred to as
compositional formulae.

In some cases, like in [11] and in [3], fragments with relational constants
satisfying some fixed properties are considered. Therefore, dual tableau-based
decision procedures are endowed with specific rules to treat relational constants
and their properties. The design of specific rules often needs much care in order
to guarantee termination of the related proof procedure. This task is delicate
especially when the proof system provides several specific rules for di↵erent re-
lational constants, and when the relational constants are related to one another.

An alternative way to treat properties of relational constants and variables,
and of relations between them, is to use relational entailment. Relational entail-
ment can be formalized in the logic RL(1) as follows. Given relations R, R1, . . . , Rn,
with n � 1, one has that R1=1, . . . , Rn=1 imply R=1 in a model if and only if
(1;(–(R1 \ . . .\Rn)) ;1)[R=1 holds. It means that entailment is expressible as
a term of the language of logic RL(1) and, as a consequence, any validity checker
for RL(1) can also be applied to entailment verification.

Introduction of entailment inside relational proof systems allows one to elim-
inate specific rules and, consequently, to keep the set of decomposition rules
small. This approach can be convenient in implementations of automated theo-
rem provers provided that decomposition rules and their application strategy are
designed in a suitable way. In its relational formalization, however, entailment
involves the universal constant 1 on the left hand side and on the right hand side

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

195

of compositional terms. Thus, the design of a relational dual tableau-based deci-
sion procedure where entailment is admitted is a challenging task that requires
special care.

In this paper we present a first result towards the use of entailment inside
relational dual tableau-based decision procedures. To this purpose, we introduce
a fragment of RL(1), called ({1, [, \} ;), admitting a restricted form of compo-
sition where the left subterm R of any term of type (R ;S) is allowed to be either
the constant 1 or any term constructed from the relational variables by applying
only the operators of relational intersection and union. Similarly, terms of type
(R ; 1) are admitted only if R is a Boolean term involving relational variables
and the operators of intersection and union.

We prove that the ({1, [, \} ;)-fragment is decidable by defining a dual
tableau-based decision procedure where a suitable blocking mechanism has been
introduced and rules for compositional and complemented compositional formu-
lae have been appropriately modified to deal with the constant 1 while preserving
termination.

Such fragment properly includes the logics presented in [4] and, therefore, it
can express the multi-modal logic K with union and intersection of accessibility
relations and the description logic ALC with union and intersection of roles.
Furthemore it can also express, via entailment, properties of the form ‘r ✓ –(s

1

[
s
2

)’ and ‘(s
1

[s
2

) ✓ – r’, where r, s
1

, and s
2

are relational variables.
The rest of the paper is organized as follows. In Sect. 2 we briefly review the

syntax and semantics of the relational logic RL(1) together with its dual tableau
and in Sect. 3 we introduce some useful notions which will be used throughout
the paper. Then in Sect. 4 we present the ({1, [, \} ;)-fragment and its dual
tableau-based decision procedure. Finally, in Sect. 5, we draw our conclusions
and give some hints for future work.

2 The Relational Logic RL(1) and its Dual Tableau

In this section we review the logic RL(1) and its dual tableau in full extent (see
also [5] and [16]).

Let RV be a countably infinite set of relational variables p, q, r, s, . . . and let
1 be a relational constant. Then, the set RT of relational terms of RL(1) is the
smallest set of terms (with respect to inclusion) built from relational variables
and the relational constant 1 with the relational operators ‘\’, ‘[’, ‘;’ (binary)
and ‘–’, ‘ `’ (unary).

Let OV be a countably infinite set of object (individual) variables x, y, z, w,
Then, RL(1)-formulae have the form xRy, where x, y 2 OV and R 2 RT. RL(1)-
formulae of type x1y and xry, with r 2 RV, are called atomic RL(1)-formulae.
A literal is either an atomic formula or its complementation (namely a formula
of type x(– 1)y or x(– r)y). For a relational operator ‘]’ other than ‘–’, by a (])-
term we mean a relational term whose lead operator is ‘]’, and by a (–])-term
we denote a complemented (])-term. For example, the term (r1 [s) \ (– r2 ; s)
is a (\)-term and has ‘\’ as its lead operator, whereas –((r1 [s) \ (– r2 ; s)) is

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

196

a (– \)-term. A (])-formula (resp., (–])-formula) is a formula whose relational
term is a (])-term (resp., (–])-term). A Boolean term is a relational term built
from relational variables with the Boolean operators ‘–’, ‘[’, and ‘\’. A positive
Boolean term is a Boolean term in which the operator – does not occur.

RL(1)-formulae are interpreted in RL(1)-models. An RL(1)-model is a struc-
ture M = (U, m), where U is a nonempty universe and m : RV ! }(U ⇥ U) is
a given map which is homomorphically extended to the whole collection RT of
relational terms as follows:

– m(1) = U ⇥ U ; m(– R) = (U ⇥ U) \ m(R);
– m(R [S) = m(R) [m(S); m(R \ S) = m(R) \ m(S);
– m(R ; S) = m(R) ; m(S)

= {(a, b)2U⇥U : (a, c)2m(R) and (c, b)2m(S), for some c 2 U};
– m(R`) = (m(R))` = {(b, a) 2 U ⇥ U : (a, b)2m(R)}.

Let M = (U, m) be an RL(1)-model. A valuation in M is any function v :
OV ! U . An RL(1)-formula xRy is satisfied by an RL(1)-model M = (U, m)
and by a valuation v in M (in which case we write M, v |= xRy) provided that
(v(x), v(y)) 2 m(R). An RL(1)-formula xRy is (a) true in a model M = (U, m),
if M, v |= xRy, for every valuation v in M; (b) valid, if it is true in all RL(1)-
models; (c) falsified by a model M = (U, m) and by a valuation v in M, if
M, v 6|= xRy; (d) falsifiable, if there exist a model M and a valuation v in
M such that M, v 6|= xRy. An RL(1)-set is a finite set {'1, . . . , 'n} of RL(1)-
formulae such that, for every RL(1)-model M and for every valuation v in M,
we have M, v |= 'i, for some i 2 {1, . . . , n}. Clearly, the first-order disjunction
of the formulae in an RL(1)-set is valid in first-order logic.

Proof development in dual tableaux proceeds by systematically decomposing
the (disjunction of the) formula(e) to be proved till a validity condition is de-
tected, expressed in terms of axiomatic sets (see below). The method originated
in [17] (see also [18]). Such an analytic approach is similar to Beth’s tableau
method [1], with the di↵erence that the two systems work in a dual manner.
Duality between tableaux and dual tableaux has been analyzed in depth in [14].

RL(1)-dual tableaux consist of decomposition rules, which allow one to an-
alyze the structure of the formula to be proved valid, and of axiomatic sets,
which specify closure conditions. The decomposition rules for RL(1) are listed in
Table 1. In these rules, ‘,’ and ‘|’ are interpreted respectively as disjunction and
conjunction. A rule is RL(1)-correct provided that its premise is an RL(1)-set if
and only if each of its consequents is an RL(1)-set. The rules presented in Table
1 have been proved RL(1)-correct in [16].

An RL(1)-axiomatic set is any set of RL(1)-formulae containing a subset of
one of the following two forms: (Ax 1){xRy, x(–R)y}, (Ax 2) {x1y}.

Clearly, an RL(1)-axiomatic set is also an RL(1)-set.
An RL(1)-proof tree for an RL(1)-formula xPy is an ordered tree whose nodes

are labelled by disjunctive sets of formulae such that the following properties are
satisfied:

– the root is labelled with {xPy};

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

197

Table 1. RL(1) decomposition rules.

([)
x(R [S)y
xRy, xSy

(–[)
x(–(R [S))y

x(–R)y | x(– S)y

(\)
x(R \ S)y
xRy|xSy

(–\)
x(–(R \ S))y

x(–R)y, x(– S)y

(– –)
x(– –R)y

xRy

(`)
x(R`)y

yRx
(– `)

x(–(R`))y
y(–R)x

(;)
x(R ; S)y

xRz, x(R ; S)y | zSy, x(R ; S)y
(– ;)

x(–(R ; S))y
x(– R)z, z(–S)y

(z is any object variable) (z is a new object variable)

– each node, except the root, is obtained from its predecessor node by applying
a decomposition rule in Table 1 to one of the formulae labelling it;

– a node does not have successors (i.e., it is a leaf node) whenever its set of
formulae is an axiomatic set or none of the rules of Table 1 can be applied
to its set of formulae.

A branch ✓ of a proof tree is any of its maximal paths; we denote with
S

✓ the set
of all the formulae contained in the nodes of ✓, and with W✓ the collection of the
object variables occurring in the formulae contained in the nodes of ✓. A node
of an RL(1)-proof tree is closed if its associated set of formulae is an axiomatic
set. A branch is closed if one of its nodes is closed. A proof tree is closed if all of
its branches are closed. An RL(1)-formula is RL(1)-provable if there is a closed
RL(1)-proof tree for it, referred to as an RL(1)-proof.

A node of an RL(1)-proof tree is falsified by a model M = (U, m) and a
valuation v in M if every formula xRy in its set of formulae is falsified by M
and v. A node is falsifiable if there exist a model M and a valuation v in M
which falsify it.

Correctness and completeness of the RL(1)-dual tableau are proved in [16].
However, the logic RL(1) is undecidable. This follows from the undecidability of
the equational theory of representable relation algebras discussed in [19].

3 Useful Notions and Properties

We introduce some useful notions and properties which are needed for the pre-
sentation of the results of the paper.
Let P be any relational term in RL(1). The following identities hold:

(1 [P) ⌘ (P [1) ⌘ 1 ((– 1) [P) ⌘ (P [(– 1)) ⌘ P
(1 \ P) ⌘ (P \ 1) ⌘ P ((– 1) \ P) ⌘ (P \ (– 1)) ⌘ (– 1)
(–(– 1)) ⌘ 1

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

198

Let H be a relational term in RL(1) and let H 0 be obtained from H by system-
atically simplifying H by means of the above identities. If the simplification is
carried out in an inside-out way, the computational complexity of the transfor-
mation of H into H 0 is linear in the length of H . Moreover, the following lemma
holds (proof of Lemma 1 can be found in [6]).

Lemma 1. Let H be a relational term and let H 0 be constructed as outlined
above. Then every Boolean subterm P of H 0 either is equal to 1, or is equal to
–1, or it does not contain 1.

It is easy to check that m(H) = m(H 0) holds for every RL(1)-model M = (U, m)
and for every H 2 RL(1). Therefore we can restrict ourselves to relational terms
simplified as described above.

Parsing trees. It is possible to associate a parsing tree SP to each relational
term P of RL(1), as with formulae of standard first-order logic (see [9] and [8]
for details on the construction of parsing trees in first-order logic). Let SP be
the parsing tree for P , and let ⌫ be a node of SP . We say that a relational term
Q occurs within P at position ⌫ if the subtree of SP rooted at ⌫ is identical to
SQ. In this case we refer to ⌫ as an occurrence of Q in P and to the path from
the root of SP to ⌫ as its occurrence path.

An occurrence of a relational term Q within a relational term P is positive if
its occurrence path deprived of its last node contains an even number of nodes
labelled with {–}. Otherwise, the occurrence is said to be negative.

Normal forms and term components. Next we introduce the notion of
complement normal form for Boolean relational terms, the notions of BoolN -
formula, of Bool-construction from N , where N is a set of formulae, and of set
of components of a relational term.

The complement normal form of a term R is a term nf–(R) obtained by
successive applications of the De Morgan laws and of the law of double negation
to R.

A term is said to be in complement normal form whenever each occurrence
of the complement operator in it acts only on relational variables or constants.

Clearly, for every Boolean relational term R, the formulae xR y and x nf–(R) y
are logically equivalent, that is M, v |= xRy if and only if M, v |= x nf–(R)y, for
every model M = (U, m) and every valuation v in M.

Let N be a set of formulae, and let R, S be two Boolean relational terms.
We define the notion of BoolN -formulae as follows:

– every literal xRy in N is a BoolN -formula;
– every formula of the form x(R\S)y is a BoolN -formula, provided that either

xRy is a BoolN -formula and S is in complement normal form, or xSy is a
BoolN -formula and R is in complement normal form;

– every formula of the form x(R [S)y is a BoolN -formula if both xRy and
xSy are BoolN -formulae.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

199

Clearly, if xSy is a BoolN -formula, then xSy is syntactically equal to x nf–(S) y
and we write xSy = x nf–(S) y. We say that a formula xRy has a Bool-
construction from N if x nf–(R) y is a BoolN -formula.

For example, given the set of formulae N = {x(– r)z, xsz, x(– p)y, z(p [s)y},
we have that the formula x(((– r)[s)\q)z is a BoolN -formula because x((– r)[s)z
is a BoolN -formula and xqz is in complement normal form. On the other hand
the formula x(s \ (–(q [p)))z is not a BoolN -formula because although xsz is a
BoolN -formula, x(–(q \ p))z is not in complement normal form. Both formulae,
however, have a Bool-construction from N because x(((– r)[s)\q)z is a BoolN -
formula and x nf–(s \ (–(q [p)))z = x(s \ ((– q) \ (– p)))z is a BoolN -formula.
In this latter case, specifically, xsz is a BoolN -formula and x((– q) \ (– p))z is in
complement normal form, although it is not a BoolN -formula.

Given a term R in RT, an object variable x, and a set N of formulae, we define
V (R, x, N) as the set of object variables z such that xRz has a Bool-construction
from N .

Let P be a term in RT. We define recursively the set cp(P) of the components
of the term P as follows:

– if P is the relational constant 1, or a relational variable, or their comple-
ments, then cp(P) = {P};

– if P = –– B, then cp(P) = {P} [cp(B);
– if P = B`, then cp(P) = {P} [cp(B);
– if P = B]C (resp., P = –(B]C)), then cp(P) = {P}[cp(B)[cp(C) (resp.,

cp(P) = {P} [cp(– B) [cp(– C)), for every binary relational operator].

Clearly cp(P) is finite, for any relational term P .

4 The Fragment ({1,[,\} ;) and its Decision Procedure

4.1 The Fragment ({1,[,\} ;)

Formulae of the fragment ({1, [, \} ;) of RL(1) are characterized by the fact
that the left subterm R of any term of type (R ; S) in them is only allowed to
be either the constant 1 or a term constructed from the relational variables of
RV by applying only the ‘[’ and ‘\’ operators, whereas the right subterm S of
(R ;S) can involve all the relational operators of RL(1) but the converse operator
‘ `’.

Formally, the set RT({1,[,\};) of the terms allowed in ({1, [, \} ;)-formulae
is the smallest set of terms containing the constant 1 and the variables in RV,
and such that if P, Q, B, H 2 RT({1,[,\};) and S 2 {H,1}, with

– B a Boolean term containing neither 1 nor the complement operator, and
– H containing the constant 1 only inside terms of type (B ; 1),

then (– P), (P [Q), (P \ Q), (B ; S), (1 ; S) 2 RT({1,[,\};).
Examples of formulae of the ({1, [, \} ;)-fragment are: x(–((r1 [s) ; (p ; 1)))y,
x(1 ; ((r1 [s) ; –(((q [p) \ r1) ; 1)))y, and x(1 ; (((r1 [s) \ r2) ; 1))y. The latter
formula can be rewritten as x(1 ; (–(–(r1 [s)[– r2) ; 1))y, where (–(r1 [s)[– r2)
is a relational term formalizing the property ‘(r1 [s) ✓ – r2’.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

200

Table 2. Decomposition rules proper of the ({1, [, \} ;)-fragment.

(;)a
x(B ; S)y

zSy, x(B ; S)y,
(;)b

x(1 ; S)y
zSy, x(1 ; S)y

(z is an object variable in V (– B, x,N)) (z is any object variable)

(– ;)a
x –(B ; 1)y

x(– B)z
(– ;)b

x –(1 ; S)y
z(–S)y

(z is a new object variable) (z is a new object variable)

4.2 A Dual Tableau Calculus for ({1,[,\} ;)

The decomposition rules for Boolean formulae of our dual tableau-based calculus
are just the ones in Table 1. Concerning the decomposition rule for (;)-formulae,
it is convenient to distinguish between (;)-formulae of type x(B ;S)y and of type
x(1 ; S)y. The rule for (;)-formulae of type x(B ; S)y is the (;)a -rule of Table 2.
There, z is an object variable belonging to V (– B, x, N), where N stands for the
current node. Notice that if S = 1, the node resulting from the decomposition
step is axiomatic. In case of (;)-formulae of type x(1 ; S)y, we apply the rule
(;)b in Table 2. The variable z used in rule (;)b is any variable on the current
node, provided that the current branch does not already contain the formula
zSy. Otherwise, x(1 ; S)y cannot be decomposed with z. If S = 1, the same
remark made for rule (;)a , for the node resulting from the decomposition step,
holds here as well.

Concerning (– ;)-formulae, we consider first the case of formulae of type
x –(B ; S)y. If S 6= 1, such formulae are decomposed by means of the (– ;)-
rule in Table 1. Otherwise, when S = 1, we use the rule (– ;)a of Table 2. In
the case of formulae of type x –(1 ; S)y, with S 6= 1, we use instead the rule
(– ;)b of Table 2, with z an object variable new to the current node. The rule
can be applied provided that the current branch does not contain any formula
of the form z0(– S)y, for any ‘new’ variable z0 (otherwise, the formula x –(1 ;S)y
cannot be decomposed). The formula x(–(1 ; 1))y is not decomposed.

Some remarks on the rules (;)a , (;)b , (– ;)a , and (– ;)b in Table 2 are in
order. The idea behind the definition of the side condition of the rule (;)a takes
inspiration from the side condition of expansion rules for universally quantified
formulae present in various well known tableau-based proof systems (see for
instance [2]). The introduction of the set V (–B, x, N) is motivated by the fact
that our relational fragment admits compositional terms (B ; S), where B may
be a compound term. Observe that for every RL(1)-model M = (U, m), m(1) =
U ⇥ U so that, M, v |= x1z and M, v 6|= x(– 1)z hold, for every valuation v
and object variables x and z. Thus, we shall assume without loss of generality
that each node of any dual tableau for formulae of the ({1, [, \} ;)-fragment
contains implicitly all literals of type x(– 1)z. This accounts for the fact that
the decomposition rules (– ;)a and (– ;)b do not introduce z(–1)y and x0(– 1)z,
respectively, on the new node, and rule (;)b restricts z to be any variable on the

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

201

current node, rather than any possible variable. At any rate, we shall prove that
such a restriction preserves the completeness of the procedure.

It is convenient to introduce the notion of deduction tree for RL(1)-formulae
to give a step-by-step description of the proof tree construction process.

As proof trees, deduction trees are ordered trees whose nodes are labelled
with disjunctive sets. However, deduction trees may have some leaf nodes that
do not contain any axiomatic set and such that decomposition rules can still
be applied to them. As will be clarified below, deduction trees can be seen as
“approximations” of proof trees with the property that they can be completed
to proof trees.

Definition 1. Let xPy be a ({1, [, \} ;)-formula. A deduction tree T for xPy
is recursively defined as follows:

(a) the tree with only one node labelled with {xPy} is a deduction tree for xPy
(initial deduction tree);

(b) let T be a deduction tree for xPy and let ✓ be a branch of T whose leaf
node N does not contain an axiomatic set.3 The tree obtained from T by
applying to N either one of the decomposition rules in Table 1 (for Boolean
formulae and for (– ;)-formulae of type x0 –(B ; S)y, with S 6= 1), or one of
the decomposition rules in Table 2 (for (;)-formulae and for (– ;)-formulae
of type x0 –(B ; 1)y and of type x –(1 ;S)y) is a deduction tree for xPy. More
precisely, rules applications are described as follows:

• if a formula x0Qy occurs in N and a rule with a single conclusion set of
formulae � (resp., a branching rule with the conclusion sets �1 and �2)
is applicable to x0Qy, then we append the node N 0 = (N \ {x0Qy}) [�
as the successor of N in ✓ (resp., the node N 0

1 = (N \ {x0Qy}) [�1 as
the left successor of N and the node N 0

2 = (N \ {x0Qy})[�2 as the right
successor of N in ✓).

Given a branch ✓ of a deduction tree, each object variable in W✓ \ {x, y} is
generated by an application of a (– ;)-decomposition rule. We say that a variable
w is an ancestor of degree n of a variable z 2 W✓ \ {x, y} if there is a sequence
z1, . . . , zn of variables in W✓ \ {x, y}, with zn = z and n � 1, such that z1 is
generated by a (– ;)-formula w(–(B0 ; S0))y, z2 is generated by a (– ;)-formula
z1(–(B1;S1))y,..., zn is generated by a (– ;)-formula zn�1(–(Bn�1;Sn�1))y, where
w(–(B0 ; S0))y, z1(–(B1 ; S1))y,..., zn�1(–(Bn�1 ; Sn�1))y are formulae of ✓. In
such a case, we say that z1 is a descendant of degree 1 of w and that zn = z is
a descendant of degree n of w.

It is useful to define a total order <✓ among variables in W✓ such that:

– x <✓ w, for every w 2 W✓ \ {x},
– x1 <✓ x2, for every x1, x2 2 W✓ \ {x, y}, with x1 introduced in ✓ before x2,
– y <✓ z, for every z descendant of y,
– w <✓ y, for every w that is not a descendant of y.

3 From now on, we identify nodes with the (disjunctive) sets labelling them.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

202

Remark 1. Notice that the relationship ancestor/descendant is based on the lit-
erals of type x0(– r)z that are generated by applying either the (– ;)-rule of Table
1 or the (– ;)a -rule of Table 2, and, possibly, the Boolean decomposition rules.

Remark 2. By the construction of RT({1,[,\};), a deduction tree for a formula
xPy may contain formulae of type x(1;S1)y and of type x(–(1;S2))y only if their
left variable is x. This is motivated by the fact that each of these formulae can
be obtained only by the Boolean decomposition of xPy. Any variable z resulting
from the decomposition of a (– ;)-formula of type x(–(1;S))y is not a descendant
of x. However, according to the definition of the order <✓, x <✓ z holds.

The following notions will be used in the next section to turn our tableau calculus
for ({1, [, \} ;) into a terminating proof tree construction procedure.

Let ✓ be a branch of a deduction tree, and let z(–(B ; S))y and z0(–(B ; S))y
be two (– ;)-formulae occurring in ✓. We say that z0(–(B ;S))y blocks z(–(B ;S))y
(and that z(–(B ; S))y is blocked by z0(–(B ; S))y), if the following conditions
are satisfied:

– z(–(B ; S))y and z0(–(B ; S))y are identical with the exception of the left
object variable,

– z0(–(B ; S))y has been already decomposed in ✓ using the variable w,
– for every (;)-formula z(B1 ;Q)y occurring in ✓ such that z(–B1)w has a Bool-

construction from the set of literals resulting from the Boolean decomposition
of z(–B)w, the (;)-formula z0(B1 ; Q)y occurs in ✓ as well.

4.3 A Proof Tree Construction Procedure for ({1,[,\} ;)

Starting with an initial deduction tree T0 for a given formula xPy, the following
procedure constructs a proof tree for xPy.

1. For every non-axiomatic branch ✓ of the current deduction tree,
2. while ✓ is non-axiomatic and is further expandable, let z be the smallest

variable w.r.t. <✓ such that formulae on ✓ with left variable z have not
been decomposed in ✓. Apply to the formulae on ✓ having left variable z
the decomposition rules in the following order: Boolean rules, (– ;)-rules,
rule (;)a , and then apply rule (;)b to decompose the (;)-formulae of type
x(1 ; S)y in ✓ with the variable z in a systematic way under the following
restrictions:
a. all the rules can be applied at most once with the same premise;
b. every formula of type (– ;), z(–(B ;S))y is not decomposed provided that

it is blocked by a (– ;)-formula z0(–(B ; S))y occurring in ✓.
If z0(–(B ; S))y was decomposed in ✓ with the variable w, then for ev-
ery literal z0(– r)w 2

S

✓ (obtained from the application of the Boolean
rules to z0(– B)w) we store the literal z(– r)w in Lit (– ;), a set (empty at
the beginning of the execution of the procedure) collecting literals not
explicitly occurring in ✓ that are needed to construct M✓ (see step 4).

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

203

3. If the branch ✓ is axiomatic and all the other branches on the current deduc-
tion tree are axiomatic, then the current deduction tree is a proof tree for
xPy and we terminate. Otherwise, if the branch ✓ is axiomatic and there are
still non-axiomatic branches on the current deduction tree, return to step 1.

4. Otherwise, if ✓ is non-axiomatic, namely it is a non-axiomatic not further
expandable branch, we construct from ✓ the model M✓ = (U✓, m✓) defined
as follows. We put U✓ = W✓. Next, let Lit✓ be the set of all literals occurring
in ✓, and let Lit (– ;) be defined as in step 2. We define the interpretation
M✓ by putting (x0, y0) /2 m✓(R) if and only if x0Ry0 2 (Lit✓ [Lit (– ;)). Let
v✓ : OV ! U✓ be a valuation such that v✓(x) =Def x, for every x 2 U✓. We
terminate returning ✓, M✓, and v✓.

The next lemma states two useful properties of the formulae occurring on
the deduction trees constructed by the proof procedure above. Its proof can be
carried out by induction on proof construction and by case distinction on the
structure of x0Rx00.

Lemma 2. Let T be a deduction tree for xPy constructed by an execution of
the procedure described above. If x0Rx00 is a formula of a branch ✓ of T , then (i)
R 2 cp(P), and (ii) if R contains the composition operator, then x00 = y.

Termination of the procedure. Let T be a proof tree for a formula xPy of
the ({1, [, \} ;)-fragment constructed according to our proof-tree construction
procedure. To prove that our procedure always terminates, we show that any
branch of T can be constructed in a finite number of steps. We mainly focus on
non-axiomatic not further expandable branches, since in the case of axiomatic
branches the proof is straightforward. To begin with, we characterize a non-
axiomatic not further expandable branch ✓ of T as a non-axiomatic branch such
that all the rules applicable to the formulas occurring on its nodes have been
applied following the steps of the given decision procedure.

Next we state some preliminary lemmas and remarks useful to show that
✓ contains a finite number of formulae. Lemma 3 is a technical lemma used to
prove Lemmas 4 and 5 which, in their turn, are used in Lemma 6 to show that
(;)-formulae, the only formulae that can be decomposed more than once, are
decomposed a finite number of times. Lemma 4 is proved by showing that the
set V (– B, w, N) is finite, where N is the leaf node of ✓. The proof of Lemma 5
uses the fact that cp(P) is finite (Lemma 2), the fact that for every x0 2 W✓,

S

✓
contains a finite number of formulae of type x0Rx00 (Lemma 3), and the blocking
mechanism introduced in Sect. 4.2. The interested reader may find the proofs of
Lemmas 3, 4, and 5 in [6].

Lemma 3. Let ✓ be a non-axiomatic not further expandable branch of a proof
tree T for a formula xPy. Then, for every x0 2 W✓,

S

✓ contains a finite number
of formulae of type x0Rx00.

Remark 3. Variables generated by (– ;)-formulae with left variable y are finitely
many because (– ;)-formulae of type y(–(B ;S))y are finitely many too. Moreover

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

204

these variables are distinct from all the variables generated by the other (– ;)-
formulae because each application of the (– ;)-rule introduces a new variable.

Remark 4. If a variable w is generated by a (– ;)-formula x0(–(B ; S))y with
x0 6= y, then no literal of the form y(– r)w is in ✓. In fact, by Lemma 3 we
know that literals of type y(– r)z, with z 6= y, are introduced in ✓ only after the
decomposition of a (– ;)-formula with left variable y. But then z cannot be the
same variable introduced by a (– ;)-formula x0(–(B ; S))y with x0 6= y.

Remark 5. Every (;)-formula w(B ;S)y is decomposed only with the variables in-
troduced by the decomposition of (– ;)-formulae with left variable w and possibly
with the variable y.

Lemma 4. Every formula w(B ;S)y in ✓ is decomposed a finite number of times.

Lemma 5. W✓ is finite.

Next, we define recursively the weight of a term by putting:

– weight(r) = weight(– r) = weight(1) = weight(–1) = 0;
– weight(A] P) = weight(A) + weight(P) + 1, for] 2 {[, \, ;};
– weight(–(A] P)) = weight(–A) + weight(– P) + 1, for] 2 {[, \, ;};
– weight(– –P) = weight(P) + 1.

Then the weight of a formula xPy is defined as the weight of its term P and the
weight of a node N is defined as the sum of the weights of the formulae in N . In
particular, the weight of every (;)-formula and the weight of every (– ;)-formula
that cannot be decomposed in N , according to the decomposition rules and, in
particular, to the conditions on rules application stated in step 2, is set to 0. It
can be checked that the weight of a node N is 0 if and only if it contains only
literals and formulae of types (;) and (– ;) that cannot be further decomposed,
according to the definition of the decomposition rules and of the requirements
on rules application in step 2 of our proof-tree construction procedure. Thus, a
branch with leaf node of weight 0 is not further expandable.

Lemma 6. After a finite number of decomposition steps, a branch ✓ of a de-
duction tree for xPy is prolonged to a branch which can be either axiomatic or
non-axiomatic and whose leaf node has weight equal to 0.

Proof. Let ✓ = ✓1, ✓2, . . . be such that ✓i+1 is obtained from ✓i by an application
of a decomposition rule to the leaf node Ni of ✓i, for i = 1, If ✓i happens
to be an axiomatic branch, then the thesis immediately follows. Otherwise, we
reason as shown next. For every (;)-formula ' of Ni, of both types x0(B ; S)y
and x(1 ; S)y, let dec(', Ni) be the number of times ' has been decomposed on
the branch to which Ni belongs. If ' = x(1 ; S)y, then dec(', Ni) |W✓|. By
Lemma 5, |W✓| is finite and once dec(x(1 ; S)y, Ni) reaches it, weight(x(1 ; S)y)
is set to 0. If ' = x0(B ; S)y, then dec(', Ni) is bounded as stated in Lemma 4.
It turns out that, at each decomposition step, we have either

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

205

1. weight(Ni) > weight(Ni+1), or
2. ⌃'2N

i

dec(', Ni) < ⌃'2N
i+1dec(', Ni+1).

The first condition holds when the decomposition rule applied to ✓i to produce
✓i+1 is di↵erent from the (;)-rule. In fact the decomposed formula is not intro-
duced in the new node and the components have smaller weights. Moreover,
each (– ;)-formula that is blocked gets weight 0. The second condition, on the
other hand, holds when the (;)-rule is used. In this case, since the decomposed
(;)-formula ' is introduced in the new node, the weight of the new node does
not decrease (it could increase), but dec(', Ni) increases and since it is bounded,
after a finite number of steps ' is not decomposed anymore getting weight 0.

Since each node contains a finite number of formulae, after a finite number of
steps we obtain a branch ✓n whose leaf node has weight 0. This means that ✓n is
not further expandable. Moreover, if ✓n is not closed, then it is a non-axiomatic
not further expandable branch. In fact, all the Boolean formulae in ✓n have
been decomposed, and, in view of the conditions of step 2 all the (– ;)-formulae
either have been decomposed into formulae of smaller weight or have not been
decomposed and their weight has been set to 0. Finally, all the (;)-formulae in
✓n have been decomposed, each finitely many times according to condition (a)
of step 2. ut

Considering that our proof-tree construction procedure constructs any axiomatic
branch and any non-axiomatic not further expandable branch of a proof tree for
xPy in a finite number of decomposition steps and that each decomposition rule
is finitely branching, we can state the following theorem.

Theorem 1 (Termination). The dual tableau procedure for the ({1, [, \} ;)-
fragment always terminates.

Soundness and completeness. Correctness of our proof-tree construction
procedure is proved by showing that when the input formula xPy is valid, the
procedure yields a closed (axiomatic) dual tableau for xPy, whereas if xPy is
not valid, the procedure yields a non-axiomatic not further expandable branch
✓ of a dual tableau for xPy and a model M✓ that falsifies every formula on ✓
(thus, in particular, xPy itself).

Lemma 7, stated below, is used in the proof of Theorem 2 to establish the
first half of the correctness proof, and also later, in the proof of Theorem 3.

Lemma 7. Let T be a deduction tree for a formula xPy of the ({1, [, \} ;)-
fragment, constructed as described in our proof-tree construction procedure. If the
procedure terminates at step 4 yielding a non-axiomatic not further expandable
branch ✓, a model M✓ = (U✓, m✓), and a valuation v✓, then M✓ and v✓ falsify
✓.

Theorem 2. If xPy is a valid formula of the ({1, [, \} ;)-fragment of RL(1),
then our proof-tree construction procedure yields a closed proof tree for xPy.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

206

Lemma 8, presented next, states that each decomposition step performed
by our proof-tree construction procedure preserves falsifiability. This result is
needed later in the proof of Theorem 3, to establish the second half of the
correctness proof. Proofs of Lemmas 7 and 8 and of Theorems 2 and 3 can be
found in [6].

Lemma 8. Let ✓ be a branch of a deduction tree for a formula xPy of the
({1, [, \} ;)-fragment that is being constructed by our proof-tree construction
procedure, and let ✓0 be obtained from ✓ by a decomposition step performed by
the decision procedure. If ✓ is a falsifiable branch, then ✓0 is falsifiable too.

Theorem 3. Let xPy be a non valid relational formula of the ({1, [, \} ;)-
fragment. Then our proof-tree construction procedure yields a non-axiomatic not
further expandable branch ✓ of a dual tableau for xPy and a model M✓ that
falsifies every formula on ✓ and, therefore, xPy itself.

Summing up, Theorems 2 and 3 yield the following result.

Theorem 4. The ({1, [, \} ;)-fragment has a decidable validity problem.

5 Conclusions and Future Work

Relational entailment allows one to deal with properties of relational constants
and of relational variables in dual tableau proofs without adding any specific rule
to the basic set of decomposition rules. Using entailment in dual tableau-based
decision procedures, however, can be tricky because the constant 1 occurs both
on the left-hand side and on the right-hand side of composition.

We have presented a dual tableau-based decision procedure for a fragment of
the logic RL(1) which can express simple forms of inclusion between relations.
Specifically, we admit inside entailment only positive occurrences of Boolean
terms and thus we can express inclusion properties of the form ‘(r1 [s) ✓ – r2’.

We plan to extend the expressibility of our relational fragment in order to
make entailment widely applicable in dual tableau-based decision procedures. As
a first step, we intend to include negative occurrences of Boolean terms inside
entailment. In this way we will be able to formulate terms of type 1 ; (–(–(r1 [
s) [r2) ; 1) expressing the (positive) inclusion property ‘(r1 [s) ✓ r2’.

Our further aim is to add, inside entailment, some restricted forms of com-
position so as to be able to express terms of type 1;(–(–(s ; s)[s) ; 1) and of type
1;(–(–(r;r;r)[r);1), stating, respectively, that the relational variables s and r are
transitive (i.e., ‘(s ; s) ✓ s’) and three-transitive (i.e., ‘(r ; r ; r) ✓ r’), respectively.
Expressing these properties is important if one wants to use our dual tableau
decision procedure with various non-classical logics such as, for instance, modal
logics to reason with incomplete information [7].

We also intend to introduce the converse relation ‘`’ and the identity relation
‘10’ inside entailment for the purpose of dealing with properties such as symmetry
and reflexivity.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

207

Acknowledgments. Thanks are due to three anonymous referees for their help-
ful suggestions. This work was supported by Indam-GNCS, Progetto di ricerca
“Automi Reattivi e loro Simulazione nell’Ambito del Non-Standard Secure Text
Processing”.

References

1. W. E. Beth. Semantic entailment and formal derivability. Mededelingen van de
Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde,
N.R. Vol 18, no 13, 1955, pp 30942. Reprinted in Jaakko Hintikka (ed.) The Phi-
losophy of Mathematics, Oxford University Press, 1969.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. Patel-Schneider. The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

3. D. Cantone, J. Golińska-Pilarek, M. Nicolosi-Asmundo. A Relational Dual Tableau
Decision Procedure for Multimodal and Description Logics. To appear in: Proceed-
ings of the 9th International Conference on Hybrid Artificial Intelligence Systems,
Salamanca, Spain, 11th - 13th June 2014.

4. D. Cantone, M. Nicolosi Asmundo, E. Or lowska. Dual tableau-based decision
procedures for some relational logics. In: Proceedings of the 25th Italian Conference
on Computational Logic, Rende, Italy, July 7-9, 2010, pp. 1–16. CEUR Workshop
Proceedings vol. 598.

5. D. Cantone, M. Nicolosi Asmundo, E. Or lowska. Dual tableau-based decision
procedures for relational logics with restricted composition operator. Journal of
Applied Non-classical Logics 21, No 2, 2011, 177-200.

6. D. Cantone, M. Nicolosi-Asmundo, E. Or lowska. A Dual Tableau-based Decision
Procedure for a Relational Logic with the Universal Relation (extended version).
Available at http://www.dmi.unict.it/⇠nicolosi/CNOCILC14ext.pdf, 2014.

7. S. Demri, E. Orlowska, D. Vakarelov. Indiscernibility and complementarity rela-
tions in information systems. In: J. Gerbrandy, M. Marx, M. de Rijke and Y.
Venema (eds) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of
his 50th Birthday, Amsterdam University Press, 1999.

8. N. Dershowitz, J.-P. Jouannaud. Rewrite Systems. Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics (B). Elsevier. pp. 243-320,
1990.

9. M.C. Fitting. First-Order Logic and Automated Theorem Proving. Second edition.
Graduate Texts in Computer Science. Springer-Verlag. New York, 1996.

10. A. Formisano and M. Nicolosi Asmundo. An e�cient relational deductive system
for propositional non-classical logics. Journal of Applied Non-Classical Logics, vol.
16(3-4), pp. 367-408 (2006).

11. J. Golińska-Pilarek, T. Huuskonen, E. Munoz-Velasco, Relational dual tableau de-
cision procedures and their applications to modal and intuitionistic logics. Annals
of Pure and Applied Logics vol. 165 (2), pp. 409-427 (2014).

12. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. Implementing a relational
theorem prover for modal logic K. International Journal of Computer Mathematics,
88(9):1869–1884, 2011.

13. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. A new deduction system for
deciding validity in modal logic K. Logic Journal of IGPL 19(2):425–434, 2011.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

208

14. J. Golińska-Pilarek, E. Or lowska. Tableaux and dual tableaux: Transformation of
proofs. Studia Logica, 85(3):283-302, 2007.

15. E. Or lowska. Relational interpretation of modal logics. In: H. Andreka, D.
Monk, and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos
Bolyai, vol. 54, pp. 443–471, North Holland, 1988.

16. E. Or lowska, J. Golińska-Pilarek. Dual Tableaux: Foundations, Methodology, Case
Studies. Trends in Logic vol. 36, Springer, 2011.

17. H. Rasiowa, R. Sikorski. On Gentzen theorem. Fundamenta mathematicae 48, 57-
69, 1960.

18. H. Rasiowa, R. Sikorski. Mathematics of Metamathematics, Polish Scientific Pub-
lishers PWN, Warsaw 1963.

19. A. Tarski, S. Givant. A Formalization of Set Theory without Variables. American
Mathematical Society Colloquium Publications, Providence, Rhode Island, 1987.

D. Cantone et al. A Dual Tableau-based Decision Procedure for a Relational Logic with the Universal Relation

209

