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Abstract. The transformation of constraint logic programs (CLP pro-
grams) has been shown to be an effective methodology for verifying prop-
erties of imperative programs. By following this methodology, we encode
the negation of a partial correctness property of an imperative program
prog as a predicate incorrect defined by a CLP program P , and we
show that prog is correct by transforming P into the empty program
through the application of semantics preserving transformation rules.
Some of these rules perform replacements of constraints that encode
properties of the data structures manipulated by the program prog. In
this paper we show that Constraint Handling Rules (CHR) are a suit-
able formalism for representing and applying constraint replacements
during the transformation of CLP programs. In particular, we consider
programs that manipulate integer arrays and we present a CHR encod-
ing of a constraint replacement strategy based on the theory of arrays.
We also propose a novel generalization strategy for constraints on inte-
ger arrays that combines the CHR constraint replacement strategy with
various generalization operators for linear constraints, such as widening
and convex hull. Generalization is controlled by additional constraints
that relate the variable identifiers in the imperative program prog and
the CLP representation of their values. The method presented in this
paper has been implemented and we have demonstrated its effectiveness
on a set of benchmark programs taken from the literature.

1 Introduction

It has long been recognized that Constraint Logic Programming (CLP) is a for-
malism that provides very suitable inference mechanisms for the verification of
properties of imperative programs. The landmark paper [41] has shown that:
(i) the operational semantics of imperative programs can easily be formalized
as an interpreter written in CLP, and (ii) by specializing that interpreter with
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respect to a given imperative program, sayprog, one can derive a new CLP pro-
gram, sayVC , representing the veriÞcation conditions forprog in purely logical
form. In particular, in the specialized CLP program VC there are no references
to the imperative constructs of prog. Relevant properties of the execution ofprog
(such as its loop invariants) can then be inferred by analyzing the program VC .

Many veriÞcation methods within the CLP paradigm have been developed.
Some methods, directly following the approach presented in[41], are based on
abstract interpretation [8] and compute an overapproximation of the least model
of the CLP program under consideration by a bottom-up evaluation of an ab-
straction of the program [2, 28, 39]. Other methods use goal directed evaluation
of CLP programs combined with other symbolic techniques such as interpola-
tion [17, 20, 31, 30]. Some other methods, like the ones presentedin [5, 25, 43, 45],
combine CLP (also calledconstrained Horn clauses in those papers) with dif-
ferent reasoning techniques developed in the areas of Software Model Checking
and Automated Theorem Proving, such as CounterExample-Guided Abstraction
ReÞnement (CEGAR) and Satisfiability Modulo Theory (SMT).

In this paper we follow the approach based on transformations of CLP pro-
grams presented in [12, 13]. We encode the negation of a partial correctness
property of an imperative program prog as a predicateincorrect deÞned by a
CLP program P. Similarly to [41], we generate a CLP programVC representing
the veriÞcation conditions for prog, by specializing P with respect to the CLP
representation ofprog. However, at this point the transformation-based method
departs from the ones considered above. Indeed, it continues by applying further
equivalence preserving transformations toVC with the objective of deriving ei-
ther (i) the empty CLP program, hence proving that incorrect does not hold
and prog is correct, or (ii) a CLP program containing the fact incorrect , hence
proving that prog is incorrect. Due to the undecidability of partial correctn ess, it
may be the case that we derive a CLP program containing one or more clauses
of the form incorrect :- G , where G is a non-empty conjunction, and we are
able to conclude neither that prog is correct nor that prog is incorrect.

Thus, CLP program transformation provides a uniform framework for reason-
ing about the correctness of imperative programs in which, as we have explained,
one can generate the veriÞcation conditions and also check their validity. More-
over, that framework is parametric with respect to the syntax and the semantics
of the programs to be veriÞed, and optimizing transformations considered in
the literature [42] can be applied to improve the e!ciency of the veriÞcation
method. Finally, transformations can easily be composed together into a se-
quence of transformations, so as to derive very sophisticated veriÞcation meth-
ods. For instance, in [15] it is shown that theiteration of program specialization
can signiÞcantly improve the precision of our program veriÞcation method and
indeed, by implementing Iterated Specialization the VeriMAP system [14] is com-
petitive with state-of-the-art CLP-based veriÞers such asARMC [43], HSF [25],
and TRACER [30].

The main contributions of this paper are the following.
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(1) We consider imperative programs that manipulate integers and integer
arrays, and we generate veriÞcation conditions where read and write operations
on arrays are represented as constraints. Then we show that Constraint Handling
Rules (CHR) are a suitable formalism for manipulating constraints during the
transformation of the CLP veriÞcation conditions. In parti cular, we present CHR
rules based on the theory of arrays [7, 23, 37] and we show how they can be
combined with unfold/fold transformation rules for CLP programs [18] with the
objective of proving properties of the given imperative programs.

(2) We propose a powerful transformation strategy that guides the applica-
tion of both the CHR and the unfold/fold transformation rule s. In particular, we
design a novelarray constraint generalization strategy that automatically intro-
duces, during CLP transformation, the new predicate deÞnitions (corresponding
to program invariants) required for the veriÞcation of the properties of interest.
Our generalization strategy combines CHR manipulation of array constraints
with the widening and convex hull operators for linear constraints considered in
the Þeld ofabstract interpretation [10]. Generalization is controlled by means of
additional constraints that relate the variable identiÞers in the given imperative
programs and the CLP representations of their values.

(3) Finally, we present an implementation of the method in the VeriMAP
system [14], and we demonstrate its e!ectiveness on a set of benchmark programs
taken from the literature.

2 The Transformation-Based VeriÞcation Method

In this section we introduce a class of Constraint Logic Programs with constraints
on integers and integer arrays, and we show how partial correctness properties
of imperative programs can be encoded as programs of that class.

First we need the following deÞnitions. Anatomic integer constraint is either
p1 = p2, or p1 �p2, or p1 >p2, where p1 and p2 are linear polynomials with inte-
ger variables and coe"cients (sum and multiplication are denoted by + and *,
respectively). An atomic array constraint is either dim(a, n) denoting that the
dimension of the array a is n, or read(a, i , v) denoting that the i -th element of
the array a is the integer v, or write (a, i , v, b) denoting that the array b is equal
to the array a, except that its i -th element is v. The read and write constraints
satisfy the following axioms [7, 23], where variables are universally quantiÞed at
the front:

(A1) I = J, read(A, I , U), read(A, J, V) ! U= V (array congruence)
(A2) I = J, write (A, I , U, B), read(B, J, V) ! U= V (read-over-write:case= )
(A3) I 6= J, write (A, I , U, B), read(B, J, V) ! read(A, J, V)(read-over-write:case6= )

A constraint is either true, or an atomic (integer or array) constraint, or a
conjunction of constraints. An atom is a formula of the form p(t 1,...,t m), where
p is a predicate symbol not in {= , �, >, dim, read , write } and t 1, . . . , t m are
terms constructed out of variables, constants, and function symbols di!erent
from + and *. A CLP program is a Þnite set of clauses of the formA :- c, B,
whereA is an atom, c is a constraint, and B is a (possibly empty) conjunction of
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atoms. Given a clause A :- c, B, the atom A is called the head, and c, B is called
the body. We assume that in every clause all integer arguments in its head are
distinct variables. A clause A :- c is called a constrained fact. If c is true, then
it is omitted and the constrained fact is called a fact. A CLP program is said to
be linear if all its clauses are of the form A :- c, B, where B consists of at most
one atom.

An A-interpretation I is a set D , together with a function f in D n !D for
each function symbol f of arity n, and a relation p on D n for each predicate
symbol p of arity n, such that: (i) the set D is the Herbrand universe [36] con-
structed out of the set Z of the integers, the constants, and the function symbols
different from + and (ii) I assigns to the symbols +, *, =, >, > the usual meaning
in Z, (iii) for all sequences a0 . . . an! 1, for all integers d, dim(a0 . . . an! 1, d) is true
in I iff d= n, (iv) for all sequences a0 . . . an! 1 and b0 . . .bm! 1 of integers, for all
integers i and v, read(a0 . . . an! 1, i, v) is true in I iff 0in�1 and v= ai , and
write(a0 . . .an! 1, i, v, b0 . . . bm! 1) is true in I iff 0in�1, n= m, bi = v, and
for j= 0, . . . , n�1, if j 6= i then aj = bj , (v) I is an Herbrand interpretation [36]
for function and predicate symbols different from +, *, =, >, >, dim, read, and
write.

We can identify an A-interpretation I with the set of all ground atoms that
are true in I , and hence A-interpretations are partially ordered by set inclusion.
A constraint c is said to be satisfiable if A |= 9(c), where in general, for every
formula ! , 9(! ) denotes the existential closure of ! . We say that I is an A-model
of ! if ! is true in I . We write A |= ! if every A-interpretation is an A-model of
! . In particular, every A-interpretation is an A-model of Axioms (A1)–(A3). A
constraint c entails a constraint d, denoted c v d, if A |= 8(c ! d). By vars(! )
we denote the free variables of ! . The semantics of a CLP program P is the least
A-model of P , denoted M (P) and constructed as usual for CLP programs [29].

We consider imperative programs with integer and array variables. Every
program has a single halt command whose execution causes the program to
terminate. The semantics of programs is defined in terms of a transition rela-
tion, denoted =), between configurations. A configuration is a pair hhc, "ii of a
labeled command c and an environment " that maps: (i) every integer variable
identifier x to its value v, and (ii) every integer array identifier a to a finite
sequence a0 . . .an ! 1 of integers, where n is the dimension of the array a. The
transition relation specifies the ‘small step’ operational semantics and its defini-
tion is similar to that in [44] and is omitted. An environment " is said to satisfy
a formula ! (z1, . . . , zr ) iff ! (" (z1), . . . , " (zr )) holds.

Given two formulas ! init and ! error that are disjunctions of constraints with
free variables z1, . . . , zr , we say that program prog is incorrect with respect to
these formulas iff there exist two environments " init and "h such that: (i) " init

satisfies ! init , (ii) hh#0:c0, " init ii =)" hh#h :halt, "h ii, and (iii) "h satisfies ! error ,
where #0 :c0 is the first labeled command of prog and #h : halt is the unique
halt command of prog. A program is said to be correct if it is not incorrect.
(In [11] the reader may find an extension of these definitions where ! init and
! error are predicates defined by any CLP program.) Our notion of correctness
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is equivalent to the Hoare notion of partial correctness speciÞed by the triple
{ ! init } prog {Â ! error } .

We translate the problem of checking whether or not the program prog is
incorrect into the problem of checking whether or not the atom incorrect is a
consequence of the following CLP programT:

incorrect :- errorConf (X), reach(X).
reach(Y) :- tr (X, Y), reach(X).
reach(Y) :- initConf (Y).

where initConf(X) , errorConf(X) , and tr (X, Y) are deÞned by CLP clauses so
that the following conditions hold. For all conÞgurations Xand Y, (i) initConf(X)
holds i! X is an initial conÞguration , that is, a conÞguration of the form !! "0 :
c0, #init "" and #init satisÞes! init , (ii) errorConf(X) holds i! X is an error conÞg-
uration , that is, a conÞguration of the form !! "h:halt , #h "" and #h satisÞes! error ,
and (iii) tr (X, Y) holds i! X=# Y holds.
reach(Y) holds i! the conÞguration Y can be reached from a conÞgurationX
whose environment satisÞes! init . Program prog is correct with respect to ! init

and ! error i! incorrect $%M (T).
Our veriÞcation method applies unfold/fold rules to the initial program T and

consists of following two steps [13]. (i)VCGen: the Generation of the VeriÞcation
Conditions, and (ii) VCTransf : the SatisÞability Checking of the VeriÞcation
Conditions. The soundness of our method follows from the fact that for each
program U obtained from T by applying the unfold/fold rules, incorrect %
M (T) i! incorrect %M (U).

VCGen performs a specialization of program T with respect to the given tr
(which depends onprog), initConf , and errorConf predicates, thereby deriving
a new programT1, whose clauses are said to be theveriÞcation conditions for
prog, such that tr does not occur inT1 (for this reason this step is also called
the removal of the interpreter). During this specialization step all occurrences
of the dim predicate are replaced by suitable constraints on the indexes of the
arrays. We say that veriÞcation conditions aresatisÞablei! incorrect $%M (T1),
and thus their satisÞability guarantees that prog is correct with respect to ! init

and ! error . VCTransf , which will be described in detail in Section 3, checks the
satisÞability of the veriÞcation conditions generated at the end ofVCGen.

Before starting the specialization,VCGen adds to the initial program T some
additional constraints that are needed for controlling the generalization strategy
described in Section 3.3. These constraints use the predicate val that relates
some of the variable identiÞers occurring in the imperativeprogram prog and
the CLP representation of their values. The meaning of theval constraints is
as follows: for every variable identiÞeri of the program prog, for every value I ,
the constraint val (i , I ) (where i is a constant uniquely associated withi ) holds
i! there exists a conÞguration whose environment# maps i to I . These val
constraints will be used by our generalization strategy to distinguish among dif-
ferent read constraints, thereby making the strategy more e!ective as conÞrmed
by the experimental results reported in Section 4. For instance, the constraint
Ôval (i , I ), val (j , J), read(A, I , U), read(A, J, V)Õ expresses the property that the
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Þrst read gets the array element at indexi and the secondread gets the array
element at indexj , while without the val constraints, Ôread(A, I , U), read(A, J, V)Õ
does not express this property.

Now, let us see our veriÞcation method in action on a simple example. Let
us consider the following program that, given the array a[0 .. (n ! 1)] and any
i " { 0, . . . , n! 1} places ina[n! i ! 1] the maximum value of the leftmost portion
a[0 .. (n! i ! 1)] by iteratively swapping adjacent elements.
bubblesort-inner: for (j =0; j <n ! i ! 1; j ++) {

if (a[j ]>a [j+1]) { tmp = a[j ]; a[j ]= a[j+1]; a[j+1]= tmp; } }

Let us also consider the two properties! init (i, n, a ) # 0$ i<n !! dim(a,n) and
! error (i,j,n,a ) # %k%x%y0$ i<n !! 0$ k<j !! j =n! i! 1!! read(a,k,x) !! read(a,j,y )!! x>y .

These two properties are expressed in CLP as follows:
phiInit (I , N, A) :- 0! I , I < N, dim(A, N).
phiError (I , J, N, A) :- 0! I , I < N, 0! K, K< J, J = N" I " 1, X> Y, read(A,K,X), read(A,J,Y),

val (k, K), val (j , J).

Note the two val constraints that relate the index variables k and j to their
values K and J, respectively. At the end of VCGen we get the following CLP
program T1 that expresses the veriÞcation conditions for the programbubblesort-
inner :
1. incorrect :- 0! I , 0! K, K! J, J = N" I " 1, X> Y,

read(A, K, X), read(A, J, Y), val (k, K), val (j , J), new1(I , J, N, A,Tmp, K).
2. new1(I ,J1,N,A2,W,K) :- J1= 1+ J, J < N" I " 1, J # 0, J < N" 1, X> Y,

read(A, J, X), read(A, J1, Y), read(A, J, W), read(A, J1, Z), write (A, J, Z, A1),
write (A1, J1, W, A2), val (j , J1), val (j , J), val (k, K), new1(I , J, N, A,Tmp, K).

3. new1(I , J1, N, A, Tmp, K) :- J1= J+ 1, J < N" I " 1, J # 0, J < N" 1, X! Y,
read(A, J, X), read(A, J1, Y), val (j , J1), val (j , J), val (k, K), new1(I , J, N, A,Tmp, K).

4. new1(I , J, N, A, Tmp, K) :- 0! I , I < N, J = 0, val (j , J), val (k, K).

wherenew1is a new predicate symbol introduced during program specialization
by VCGen. The deÞnition of the predicatenew1is associated with thefor -loop
of the bubblesort-inner program and consists of clauses 2Ð4 that represent the
execution of the for statement. In particular, we have that (see the underlined
constraints): (i) clauses 1 and 4 represent the exit and the entry of the for -loop,
respectively, and (ii) clauses 2 and 3 represent the execution of the conditional
in the a[j ]>a [j +1] case and in thea[j ]$ a[j +1] case, respectively.

3 A Transformation Strategy for VeriÞcation

The VCTransf step of our veriÞcation method transforms the CLP programT1
derived at the end of VCGen to a program T2 such that incorrect " M (T1)
i! incorrect " M (T2). This transformation makes use oftransformation rules
that preserve the leastA-model semantics of CLP programs. In particular, we
apply the following rules, that are collectively called unfold/fold rules: unfolding,
constraint replacement, clause removal, deÞnition, and folding. These rules are an
adaptation to CLP programs of the unfold/fold rules for general CLP programs
(see, for instance, [18]).
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VCTransf applies the unfold/fold rules according to a strategy that performs
the propagation of the constraints of the error property phiError in a backward
way from the error conÞguration towards the initial conÞguration, so as to derive
a program T2 where the predicate incorrect is deÞned by either (i) the fact
incorrect (in which case the imperative programprog is incorrect), or (ii) the
empty set of clauses (in which caseprog is correct). In the case where neither (i)
nor (ii) holds, that is, in program T2 the predicate incorrect is deÞned by a
non-empty set of clauses not containing the factincorrect , we cannot conclude
anything about the correctness ofprog. However, similarly to what has been
proposed in [12], in this case we can perform againVCTransf by propagating
the initial property phiInit , and continue alternating the propagation of the
error and initial properties in the hope of deriving a program where either (i)
or (ii) holds. Obviously, due to the undecidability of progr am correctness, it may
be the case that this process does not terminate.

3.1 The Transformation Strategy

VCTransf is performed by applying the unfold/fold transformation ru les ac-
cording to the Transform strategy shown in Figure 1. Let us brießy describe the
various rules used by theTransform strategy.
¥ The Unfolding rule performs one step of backward propagation of the error
property phiError .
¥ The Constraint Replacement rule infers new constraints on the variables
of the single atom that occurs in the body of each clause obtained by Unfold-
ing . Constraint Replacement makes use of a functionRepl that, given a
clauseC of the form H:- c0, B, returns a set { H:- c1, B, . . . , H:- cn, B} of clauses
(with n ! 0), where c1, . . . , cn are constraints such that A |= " ((#X0 c0) $
(#X1 c1 !! . . . !! #Xn cn)) holds, and for i =0 , . . . , n, we have that Xi = vars(ci )%
vars(H, B). In particular, if c0 is unsatisÞable, thenn=0 and clauseC is removed.
The function Repl is implemented by a CHR program as described in Section 3.2.
¥ The rules of Removal of Useless Clauses and Removal of Subsumed
Clauses remove clauses that do not contribute to the least model of the CLP
program at hand.
¥ The Definition rule introduces new predicate deÞnitions by suitable general-
izations of the constraints. Generalization is performed by using a function Gen
such that, for any given clauseE of the form H :- e(V,X), p(X) and set Defs of
predicate deÞnitions,Gen(E, Defs) is a clause of the formnewq(X) :- gen(X), p(X) ,
where: (i) newqis a new predicate symbol, and (ii)gen(X) is a constraint such
that e(V,X) & gen(X) .
¥ The Folding rule replaces the clauseH:-e(V,X), p(X) by the clauseH:-e(V,X),
newq(X).

Note that the input program T1 of the Transform strategy is a linear CLP
program. Indeed, during VCGen the atoms di!erent from reach are unfolded
and hence a linear program is generated.

The new predicates introduced by theDefinition rule can be understood
asover-approximations of the sets of conÞgurations that are backward-reachable
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from the error conÞguration. Note, however, that the folding rule preserves
equivalence, ase(V,X), p(X) is equivalent to e(V,X), newq(X) . In Section 3.3 we
present a generalization function that guarantees the termination of Transform
and, at the same time, allows us to prove the correctness of non-trivial programs.

Input : A linear CLP program T1.
Output : Program T2 such that incorrect ! M (T1) i! incorrect ! M (T2).

Initialization :
Let InDefs be the set of all clauses ofT1 whose head is the atomincorrect ;
T2:= " ; Defs:= InDefs ;

while in InDefs there is a clauseC of the form H:- c,A do
Unfolding : Let { Ki :- c i ,B i | i = 1 , . . . , m} be the set of the (renamed apart)

clauses ofT1 such that, for i =1 , . . . , m, A is uniÞable with Ki via the most
general uniÞer ! i .
Then TransfC := { (H :- c,c i ,B i ) ! i | i = 1 , . . . , m} ;

Constraint Replacement : TransfC := # D ! TransfC Repl(D );

Removal of Subsumed Clauses : Remove from TransfC every clauseH :- d,B
such that there exists a distinct clause H :- e in TransfC with d $ e;

Definition & Folding :
while in TransfC there is a clauseE of the form H :- e(V,X), p(X) , where e(V,X)
is a constraint and p is a predicate deÞned inT1 do

if in Defs there is a clauseD of the form newp(X) :- c(X), p(X) , where c(X)
is a constraint such that e(V,X) $ c(X)

then TransfC := ( TransfC % {E } ) # { H :- e(V,X), newp(X) } ;

else let Gen(E, Defs) be newq(X) :- gen(X), p(X) ;
Defs := Defs # { Gen(E, Defs)} ;
InDefs := ( InDefs % {C} ) # { Gen(E, Defs)} ;
TransfC := ( TransfC % {E } ) # { H :- e(V,X), newq(X) }

end-while;
T2 := T2 # TransfC

end-while;

Removal of Useless Clauses :
Remove from T2 all clauses with head predicate p, if in T2 there is no constrained fact
q(. . .) :- c where q is either p or a predicate on which p depends.

Fig. 1. The Transform strategy.

We assume that the setDefs is structured as a tree of clauses where, with
reference to Figure 1, clauseC is said to be the parent of clauseGen(E, Defs),
and the ancestor relation is deÞned as the reßexive, transitive closure of the
parent relation.

3.2 Constraint Replacement via CHR

In this section we show how Constraint Handling Rules with disjunction can
be used to realize in a very natural way the constraint rewritings based on Ax-
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ioms (A1)Ð(A3) for array operations, which allow us to apply the Constraint
Replacement rule during the Transform strategy.

CHR is a committed-choice language based on rewriting rules. It was specif-
ically designed for building custom constraint solvers [22]. A CHR program con-
sists of a set of guarded rules that rewrite multisets of constraints. Constraint
predicates are of two di!erent kinds: (i) built-in constraints , whose entailment is
checked by using a domain-speciÞc constraint solver, and (ii) user-deÞned con-
straints, which are rewritten as speciÞed by the CHR program. We assume that
the set of built-in constraints contains the constraints true , false , and syntac-
tic equalities. Built-in constraints and user-deÞned constraints are closed under
conjunction. A constraint goal is either a (built-in or user-deÞned) constraint, or
a conjunction of constraint goals, or a disjunction of constraint goals.

CHR rules are of the form: r @ H1 \ H2 ! G | B, where the @ symbol
separates the optional rule identiÞerr from the rest of the rule, the user-deÞned
constraints H1 and H2 are the kept headand the removed head, respectively, the
built-in constraint Gis the guard, and B is a constraint goal. Either H1 or H2 is a
non-empty conjunction. If H2 is empty then the rule is called apropagation rule
and can be written as follows:H1 " G| B. The logical meaning of the CHR rule
H1 \ H2 ! G | B is the guarded equivalence#(G $ ((H1 %H2) & (H1 % ' Y B))) ,
where Y is the set of variables occurring inB and not in the rest of the rule.

The operational semantics of CHR is formally deÞned in termsof a transition
relation between CHR statesas described in [1]. A CHR state is a triple(g, u, b),
where g is a constraint goal, u is a user-deÞned constraint andb is a built-in
constraint. An initial state is a state of the form (g, true , true ). Starting from
an initial state, constraints are rewritten as long as possible by applying CHR
rules. A Þnal state is a state from which no transition is applicable. A Þnal
state is failed if it is of the form (g, u, false ). Note that, since constraint goals
may contain disjunctions, the transition relation is nondeterministic, and thus
it generates a tree of computations whose leaves correspondto the Þnal states.
A terminating CHR program is one for which there is no inÞnite sequence of
transitions, that is, the tree of computations is Þnite.

The CHR program Arr used for constraint replacement in the Transform
strategy consists of the following rules:
ac @read(A1, I , X)\ read(A2, J, Y) ! A1== A2, I = J | X= Y.
cac @read(A1, I , X), read(A2, J, Y) " A1== A2, X<> Y | I <> J.

row @write (A1, I , X, A2)\ read(A3, J, Y) ! A2== A3 | (I = J, X= Y); ( I <> J, read(A1,J,Y)) .

These rules encode the axioms (A1)Ð(A3) presented in Section 2. Rulesac and
cac encode the array congruence axiom (A1) and its contrapositive version,
respectively, and rulerow encodes the two so-called read-over-write axioms (A2)
and (A3). The symbol Ô==Õ denotes syntactic equality, while Ô=Õ and Ô<>Õ denote
integer equality and inequality, respectively. Note that we use the semicolon Ô; Õ
for denoting disjunction in the right-hand side of the rule row.

If we adopt an operational semantics that prevents trivial non-termination
cases by applying a propagation rule at most once to the same constraints [1],
then it can be shown that the CHR program Arr terminates for all constraint
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goals generated during the application of our transformation strategy. Indeed,
the only rule that may lead to a non-terminating behavior is row. By using this
rule, a constraint containing

(g1) write(U,I,X,V) , write(V,I,H,U), read(V,J,Y)

could be rewritten as a constraint containing

(g2) write(U,I,X,V) , write(V,I,H,U), read(U,J,Y)

and then, by interchanging the roles of the two write constraints in the ap-
plication of the row rule, a constraint containing (g2) could be rewritten to a
constraint containing (g1), thereby giving rise to an inÞnite branch in the tree
of computation. However, it can be shown that a constraint goal of the form
(g1) cannot be generated by theUnfolding rule during the application of the
Transform strategy. Informally, in every clause, the constraints canbe ordered
from left to right following the order of execution of the correspondingread and
write operations, and hence a variableV occurring in a constraint of the form
write (U, I , X, V), does not occur to the left of that constraint. This argument
is formalized by considering the transitive closure! + of the following relation
between the variables of a clause:U! V i! the constraint write (U, I , X, V) occurs
in the clause. It can be shown that in every clause derived by the Unfolding
rule during the application of the Transform strategy, ! + is irreßexive. Thus,
the termination of Arr follows from the fact that an application of the row rule
will replace a constraint of the form read(V,J,Y) by a constraint of the form
read(U,J,Y) with U! V.

Given a clauseD of the form H:- d, B, derived by the Unfolding rule, let
{" g1, u1, b1#, . . . , "gn, un, bn#} be the set of all non-failed Þnal states computed
from the initial state "d, true , true #. Let di be the conjunction "gi , ui , bi #. We
assume that, for i = 1, . . . , n, the variables occurring in di and not in d are
fresh, and thus they occur neither in H nor in B. By the soundness of CHR
we have that A |= $(d % (&X1 d1 !! . . . !! &Xn dn)) where, for i = 1, . . . , n, Xi =
vars(di ) ' vars(d). Thus, the applicability conditions of the Constraint Re-
placement rule are satisÞed, and in theTransform strategy we deÞneRepl(D )
to be { H:- d1, B, . . . , H:- dn, B} .

To see how the CHR programArr works, let us consider again thebubblesort-
inner example of Section 3. By applying theunfolding rule to clause 1 the
Transform strategy derives a set of clauses including the following one:

new2(I , J1, N, A2, W, K) :- J1= 1+ J, J < N! I ! 1, K" J, Z< W, I # 0, K# 0, J # N! I ! 3, X> Y,
write (A, J, Z, A1), write (A1, J1, W, A2), read(A, J, W), read(A, J1, Z),
read(A2, K, X), read(A2, J1, Y), val (j , J1), val (k, K), val (j , J), new1(I , J, N, A, Tmp, K).

The CHR program Arr rewrites the constraint occurring in the above clauses
and the Constraint Replacement rule derives the following clause:

new2(I , J1, N, A2, W, K) :- J1= 1+ J, J < N! I ! 1, K" J, Z< W, I # 0, K# 0, J # N! I ! 3, X> Y,
write (A, J, Z, A1), write (A1, J1, W, A2), read(A, J, Y), read(A, J1, Z),
read(A, K, X), Y= W, J > K, J1> K, val (j , J1), val (k, K), val (j , J), new1(I , J, N, A, Tmp, K).
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where (i) by row, the constraint read(A2, J1, Y) has been replaced by the equality
constraint Y= W(ii) by row, in the constraint read(A2, K, X), the variable A2,
denoting the array a after the write operation, has been replaced by the variable
A, denoting the array a before the write operation, and (iii) the constraint
ÔJ> K, J1> KÕ has been added by the built-in solver on linear constraints.

3.3 Generalization Strategy

The most critical step of the Transform strategy is the introduction of new pred-
icates during Definition & Folding . Indeed, it should guaranteed that a Þnite
number of new predicates is introduced, to avoid the non-termination of Trans-
form. For this reason, as usual in many program transformation techniques [19],
we collect in the set Defs all predicate deÞnitions introduced by the strategy,
and before introducing a new predicate deÞnitionD , we match it against the
ones already inDefs. If D is ÔsimilarÕ to a deÞnitionA in Defs (formalized via
the embeddingrelation deÞned below), then the functionGen introduces a new
deÞnition which is a generalization ofA and D, instead of D . The function Gen
deÞned in this section, makes use of operators for generalizing array constraints
that ensure that no inÞnite number of distinct generalizations can be obtained,
and hence a Þnite number of new predicates is introduced during the Transform
strategy. The embedding relation and the generalization strategy take into con-
sideration the val constraints between the integer CLP variables occurring in
read constraints and the identiÞers of the imperative program with which they
are associated. By doing so we will be able to identify similarities between deÞ-
nitions that go beyond syntactic variance, hence improvingthe level of precision
of the veriÞcation technique.

In the following we will denote constraints as conjunctionsof the form i , r , w, v,
wherei is an integer constraint, andr , w, and v are conjunctions ofread, write ,
and val constraints, respectively. We assume that all integer variables in read
constraints are distinct and do not occur in any (non constraint) atom of the
clause at hand (this condition can always be satisÞed by adding some integer
equalities).

Given a clauseD of the form H:- i , r , w, v, B, for every integer variable I
occurring in a read atom in r we compute the setids(I ) of identiÞers id such
that an atom val (id , J) occurs in v and the constraint I = J is entailed by i .
We deÞne theclause identiÞer set of D , denoted ids(D), as the set of pairs
(ids(I ), ids(U)) such that a constraint of the form read(A, I , U) occurs in r . For
example, if the constraint occurring in the body of clauseD is

M= 0, N> M, V= 0, read(A, M, U), read(A, N, V), val (m, M), val (n, N), val (v, V)
then we have that ids(D) = { ({ m, v} , {} ), ({ n} , { m, v} )} .

Given two clause identiÞer setsR1 and R2, we say that R1 is embeddedinto R2

via the set relation rel i! for each pair (I 1, U1) in R1 there exists a pair (I 2, U2)
in R2 such that (i) rel (I 1, I 2) and rel (U1, U2) hold and (ii) R1 ! { (I 1, U1)} is
embedded into R2 ! { (I 2, U2)} via rel . In our experiments we have considered
two embedding relations based on the following deÞnitions of rel (s1, s2): (1)
s1 " s2 (subset relation), and (2) s1 ! s2 deÞned as(s1 = s2 = #) $ (s1 %s2 &= #).
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We say that a clauseD1 is embedded into a clauseD2 via the relation rel i!
ids(D1) is embedded inids(D2) via rel .

Given a clauseE of the form H :- e(V,X), p(X) and a setDefs of deÞnitions,
the generalization function Gen computes a deÞnitionnewq(X) :- gen(X), p(X) ,
where newq is a new predicate symbol andgen(X) is a constraint such that
e(V,X) ! gen(X) , which is constructed as follows. Lete(V, X) be of the form
i , r , w, v and let newq(X) :- i X, r X, vX, p(X) be the candidate deÞnition clause for
E , where: (i) r X is the conjunction of the read(A, I , V) constraints in r such
that A occurs in X and, for someval (j , J) in v we have that J occurs in X and
either I = J or V = J is entailed by i , (ii) i X is the constraint obtained from
i by projecting away the variables not occurring in X or r X, and (iii) vX is the
conjunction of the val (j , J) constraints in v such that J occurs in X.

Suppose that clauseE has been derived from clauseC at the end of the
Removal of Subsumed Clauses step. Gen(E, Defs) is deÞned as follows.
If in Defs there is an ancestorA of C of the form H0 :- i 0, r 0, v0, p(X), such that

r 0 is a subconjunction ofr X, and A is embedded intonewq(X) :- i X, r X, vX, p(X),
Then let i 1 be the constraint obtained from i X by projecting away the variables

not occurring in X or r 0; compute a generalizationg of the constraints
i 1 and i 0 such that i 1 ! g, by using a generalization operator for linear
constraints. DeÞne the constraintgen(X) as g, r 0, v0;

Else deÞne the constraintgen(X) as i X, r X, vX.
For the projection and generalization operations we apply the usual operators
for linear constraints on the reals (and in particular the widening and convex
hull generalization operators deÞned in [10, 19, 40]). These operators are correct
because they guarantee thati ! g.

To see an example of application of the generalization strategy let us con-
sider the clause that was derived in Section 3.2 by applying the Constraint
Replacement rule. The candidate deÞnition for that clause is:

new4(I , J, N, A, Tmp, K) :- J < N! I ! 1, I " 0, K" 0, J " N! I ! 3, X> W, J > K,
read(A, J, W), read(A, K, X), val (k, K), val (j , J), new1(I , J, N, A, Tmp, K).

and Defs contains the following ancestor deÞnition:

new2(I , J, N, A, Tmp, K) :- J < N! I ! 1, I " 0, K" 0, J " N! I ! 2, X> W, J > K,
read(A, J, W), read(A, K, X), val (k, K), val (j , J), new1(I , J, N, A, Tmp, K).

Since the ancestor deÞnition is embedded into the candidatedeÞnition via " or !
(indeed, the two clauses have the same clause identiÞer set{ ({ j } , {} ), ({ k} , {} )} ),
we obtain a generalization of the candidate deÞnition by applying the widening
operator between the linear constraints, hence dropping the constraint J# N$ I $ 2
of the ancestor deÞnition, and we introduce the following generalized deÞnition:

new4(I , J, N, A, Tmp, K) :- J< N$ I $ 1, I # 0, K# 0, X> W, J> K,
read(A, J, W), read(A, K, X), val (k, K), val (j , J), new1(I , J, N, A, Tmp, K).

The correctness of theTransform strategy with respect to the least A-model
semantics follows from the correctness results for the unfold/fold rules proved
in [18].
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The termination of the Transform strategy is based on the following facts:
(i) Constraint satisÞability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform ).
(ii) The CHR program Arr implementing Constraint Replacement termi-
nates. (iii) The set of new clauses that, during the execution of the Transform
strategy, can be introduced byDefinition & Folding steps is Þnite. Indeed, by
construction, they are all of the form H:- i , r , v, p(X), where: (1) X is a tuple of
variables, (2) i is an integer constraint, (3) r is a conjunction of array constraints
of the form read(A, I , V), where A is a variable in X and the variables I and V
occur in i only, (4) the set of identiÞers of the imperative program is Þnite, and
hence the embedding relation is athin well-quasi ordering [19] (this property
guarantees that generalization is eventually triggered, and that a deÞnition can
be generalized a Þnite number of times only), (5) the cardinality of r is bounded,
because if inDefs there exists a clauseA of the form H0 :- i 0, r 0, vX, p(X), then
generalization does not introduce a descendant deÞnition clause D of the form
newp(X) :- i X, r 0, r 1, vX, p(X) such that A is embedded into D , (6) we assume
that the generalization operator on linear constraints hasthe following Þnite-
nessproperty: only Þnite chains of generalizations of any givenconstraint can
be generated by applying the operator. The already mentioned generalization
operators presented in [10, 19, 40] satisfy this Þniteness property. Thus, we have
the following result.

Theorem 1. (i) The Transform strategy terminates. (ii) Let program T2 be the
output of Transform applied to the input program T1. Then, incorrect ! M (T1)
i! incorrect ! M (T2).

Let us now conclude ourbubblesort-inner example. After a few iterations,
the outermost while-loop of the Transform strategy terminates and produces
the following set T2 of clauses (which we list as they have been automatically
generated):
incorrect :- A= ! 1+ B! C, D= ! 1+ B! C, E! F " ! 1, G# 0, C# 0, B! G! C# 2,

read(H, D, E), read(H, G, F), val (j , A), val (k, G), new1(C, A, B, H, I , G).
new1(A, B, C, D, E, F) :- G# F+ 1, H# F+ 1, A = ! 2+ C! G, B = 1+ G, I = 1+ G, H= 1+ G,

J = 1+ G, K= 1+ G, F! G" 0, L! E " ! 1, F # 0, C! G# 2, M! E # 1,
read(N, F, M), read(N, K, L), read(N, G, E), write (O, H, E, D), write (N, G, L, O),
val (j , G), val (k, F), val (j , B), new2(A, G, C, N, P, F).

new1(A, B, C, D, E, F) :- G# F+ 1, A = ! 2+ C! G, B = 1+ G, H= 1+ G, I = 1+ G, F! G" 0,
F # 0, C! G# 2, J! K # 1, K! L # 0, read(D, G, L), read(D, F, J), read(D, H, K),
val (j , G), val (k, F), val (j , B), new2(A, G, C, D, E, F).

new2(A, B, C, D, E, F) :- G# F+ 1, H# F+ 1, B = 1+ G, I = 1+ G, H= 1+ G, J = 1+ G,
K= 1+ G, A! C+ G" ! 2, F! G" 0, L! E " ! 1, A # 0, F # 0, A! C+ G#! 3, M! E # 1,
read(N, F, M), read(N, K, L), read(N, G, E), write (O, H, E, D), write (N, G, L, O),
val (j , G), val (k, F), val (j , B), new4(A, G, C, N, P, F).

new2(A, B, C, D, E, F) :- G# F+ 1, B = 1+ G, H= 1+ G, I = 1+ G, A! C+ G" ! 2, F! G" 0,
A# 0, F # 0, A! C+ G#! 3, J! K # 1, K! L # 0, read(D, G, L), read(D, F, J),
read(D, H, K), val (j , G), val (k, F), val (j , B), new4(A, G, C, D, E, F).

new4(A, B, C, D, E, F) :- G# F+ 1, H# F+ 1, B = 1+ G, I = 1+ G, H= 1+ G, J = 1+ G,
K= 1+ G, A! C+ G" ! 2, F! G" 0, L! E " ! 1, A# 0, F # 0, M! E # 1, read(N, F, M),
read(N, K, L), read(N, G, E), write (O, H, E, D), write (N, G, L, O),
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val (j , G), val (k, F), val (j , B), new4(A, G, C, N, P, F).
new4(A, B, C, D, E, F) :- G! F+ 1, B = 1+ G, H= 1+ G, I = 1+ G, A" C+ G#" 2, F" G# 0,

A ! 0, F ! 0, J" K ! 1, K" L ! 0, read(D, G, L), read(D, F, J), read(D, H, K),
val (j , G), val (k, F), val (j , B), new4(A, G, C, D, E, F).

Since this set contains no constrained facts, byRemoval of Useless Clauses
we remove all clauses fromT2 and the Transform strategy outputs the empty
program. Thus, incorrect !" M (T2) and we conclude that the programbubblesort-
inner is correct with respect to the given ! init and ! error properties.

4 Experimental Evaluation
We have implemented our veriÞcation method as a module of theVeriMAP soft-
ware model checker [14] (available athttp://map.uniroma2.it/VeriMAP ) and
we have performed an experimental evaluation of our method on a benchmark
set of programs taken from the literature [6, 9, 16, 27, 35] (the source code is
available at http://map.uniroma2.it/smc/array-chr ).

We have applied theTransform strategy presented in Section 3 using di!erent
generalization strategies that combine the widening and convex hull operators
together with various embedding relations. Di!erent embedding relations are
obtained: (i) by selecting di!erent sets of variable identiÞers for the introduction
of the val constraints, and (ii) by using di!erent relations to compar e sets of
identiÞers (see Section 3.3). In particular, we have considered the following gen-
eralization strategies:GenW ,I ,! , GenH,V ,! , GenH,V ,! , GenH ,I ,! , and GenH,I ,! ,
where the subscripts should be interpreted as follows. The Þrst subscript denotes
the generalization operator:W stands for the widening operator, andH stands
for the widening-and-convex-hull operator. The second subscript denotes the se-
lected set of identiÞers:I stands for the set of variable identiÞers associated with
the second argument (that is, the index) of the read constraints, and V stands
for the set of identiÞers associated with the third argument(that is, the value)
of the read constraints. The third subscript denotes the relation rel " {# , ! }
that is used for comparing the sets of identiÞers.

The results of our experiments are summarized in Table 1. Theexperiments
have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of
memory under GNU/Linux OS. We have that the strategies basedon GenH,I ,rel

are more precise than those based onGenH ,V ,rel , for any rel " {# , ! } . Simi-
larly, the strategies based onGenH ,S,! are more precise than those based on
GenH,S,! , for any S " {I , V} . Note that by generalizing the constraints, the
Transform strategy may get an empty set of identiÞers associated with agiven
variable, thereby making the generalizations based on the operator # less useful
that those based on the operator! . The best trade-o! between precision and
performance is obtained byGenH,I ,! that allowed us to prove all programs we
have considered. Note also that thebubblesort-innerprogram can be proved only
by generalizations based onGenW, I ,! or GenH, I ,! .

5 Related Work and Conclusions
The technique presented in this paper is an extension of the one presented in [13].
The novel contributions of this paper are the following. (1) We have formalized
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Program GenW ,I , ! GenH ,V ,! GenH ,V ,! GenH ,I , ! GenH ,I , !

bubblesort-inner 0.9 unknown unknown unknown 1.52
copy-partial unknown unknown 3.52 3.51 3.54
copy-reverse unknown unknown 5.25 unknown 5.23
copy unknown unknown 5.00 4.88 4.90
Þnd-Þrst-non-null 0.14 0.66 0.64 0.28 0.27
Þnd 1.04 6.53 2.35 2.33 2.29
Þrst-not-null 0.11 0.22 0.22 0.22 0.22
init-backward unknown 1.04 1.04 1.03 1.04
init-non-constant unknown 2.51 2.51 2.47 2.47
init-partial unknown 0.9 0.89 0.9 0.89
init-sequence unknown 4.38 4.33 4.41 4.29
init unknown 1.00 0.97 0.98 0.98
insertionsort-inner 0.58 2.41 2.4 2.38 2.37
max unknown unknown 0.8 0.81 0.82
partition 0.84 1.77 1.78 1.76 1.76
rearrange-in-situ unknown unknown 3.06 3.01 3.03
selectionsort-inner unknown time-out unknown 2.84 2.83
precision 6 10 15 15 17
total time 3.61 21.42 34.76 31.81 38.45
average time 0.60 2.14 2.31 2.12 2.26

Table 1. VeriÞcation results using VeriMAP. Time is in seconds. By ÔunknownÕ we
indicate that VeriMAP terminates without being able to prov e correctness or incor-
rectness. By Ôtime-out Õ we indicate that VeriMAP is unable to provide an answer with in
5 minutes.

constraint replacement as a CHR program representing the Theory of Arrays,
whereas in [13] constraint replacement was implemented directly in CLP. We
have shown that the approach based on CHR allows a very elegant combina-
tion of constraint manipulation with transformations based on unfold/fold rules.
(2) We have presented a novel strategy that controls the generalization of array
constraints during CLP transformation by taking into accou nt the information
relating the variable identiÞers in the imperative program and the CLP rep-
resentation of their values. We have shown that our generalization strategy is
e!ective on several examples taken from the literature.

In the Introduction we mentioned some CLP-based program veriÞcation
methods. Here we brießy recall other methods, not based on CLP, for the veri-
Þcation of array programs.

Some of these methods useabstract interpretation. In [27], which builds
upon [24], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach is
followed in [9] where a scalable framework for the automaticanalysis of array
programs is introduced. In [21, 34] a predicate abstractionfor inferring univer-
sally quantiÞed properties of array elements is presented,and in [26] the authors
present a similar technique which uses template-based quantiÞed abstract do-
mains. In [46] a backward reachability analysis based on predicate abstraction
and abstraction reÞnement is used for verifying assertionswhich are universally
quantiÞed over array indexes.
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The methods based on abstract interpretation construct over-approximations,
that is, invariants implied by the program executions. These methods have the
advantage of being quite e!cient because they Þx in advance aÞnite set of ba-
sic assertions from which the invariants can be constructed. However, for the
same reason, these methods may lack ßexibility as the abstraction should be
re-designed when veriÞcation fails.

Also theorem provershave been applied for discovering invariants and prov-
ing veriÞcation conditions generated from the programs. Inparticular, in [7] a
satisÞability decision procedure for a decidable fragmentof a theory of arrays
is presented. That fragment is expressive enough to prove properties such as
sortedness of arrays. In [32, 33, 38] the authors present some techniques that use
theorem proving for generating array invariants. Some theorem proving tech-
niques for program veriÞcation are based onSatisÞability Modulo Theory (SMT)
(see, for instance, [3, 4, 35]). The approaches based on theorem proving and SMT
are more ßexible with respect to those based on abstract interpretation because
no Þnite set of assertions is Þxed in advance and, instead, the suitable assertions
needed for the proofs can be generated on demand.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it o"ers a higher degree of ßexibility and parametricity.
Indeed, the transformation-based method for the generation of the veriÞcation
conditions and their proof, is to a large extent independentof the imperative
program and the property to be veriÞed.

The use of CHR further enhances the ßexibility of our transformation-based
approach because CHR manipulate the constraints that represent operations on
the data structures (such as the read and write operations inthe case of arrays),
while the unfold/fold rules manipulate the non-constraint atoms of the CLP
programs. The experimental results we have reported in thispaper demonstrate
that the combination of the two kind of rules, those for constraints and those for
non-constraint atoms, is a promising, powerful technique for proving program
properties.

As future work we plan to extend our transformation-based method to the
veriÞcation of programs which manipulatedynamic data structures such as lists
or heaps. To this aim we may combine the CHR axiomatization ofheaps proposed
by [17] with the generalization strategies based on widening and convex-hull
considered in this paper.

References

1. S. Abdennadher and H. SchŸtz. CHR! : A ßexible query language. Proc. FQAS Õ98,
LNCS 1495, pages 1Ð14. Springer, 1998.

2. E. Albert, M. G—mez-Zamalloa, L. Hubert, and G. Puebla. VeriÞcation of Java
bytecode using analysis and transformation of logic programs. Proc. PADL Õ07,
LNCS 4354, pages 124Ð139. Springer, 2007.

3. F. Alberti, S. Ghilardi, and N. Sharygina. SAFARI: SMT-ba sed abstraction for
arrays with interpolants. Proc. CAV Õ12, LNCS 7358, pages 679Ð685. Springer,
2012.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

129



4. F. Alberti, S. Ghilardi, and N. Sharygina. Decision proce dures for ßat array prop-
erties. Proc. TACAS Õ14, LNCS 8413, pages 15Ð30. Springer, 2014.

5. N. Bj¿rner, K. McMillan, and A. Rybalchenko. Program veri Þcation as satisÞability
modulo theories. Proc. SMT-COMP Õ12, pages 3Ð11, 2012.

6. N. Bj¿rner, K. McMillan, and A. Rybalchenko. On solving un iversally quantiÞed
Horn clauses. Proc. SAS Õ13, LNCS 7935, pages 105Ð125. Springer, 2013.

7. A. R. Bradley, Z. Manna, and H. B. Sipma. WhatÕs decidable about arrays? Proc.
VMCAI Õ06, volume LNCS 3855, pages 427Ð442. Springer, 2006.

8. P. Cousot and R. Cousot. Abstract interpretation: A uniÞe d lattice model
for static analysis of programs by construction of approxim ation of Þxpoints.
Proc. POPL Õ77, pages 238Ð252. ACM, 1977.

9. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. Proc. POPL Õ11, pages 105Ð118.
ACM, 2011.

10. P. Cousot and N. Halbwachs. Automatic discovery of linea r restraints among
variables of a program. Proc. POPL Õ78, pages 84Ð96. ACM, 1978.

11. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proie tti. VeriÞcation of im-
perative programs by constraint logic program transformat ion. Proc. SAIRP Õ13,
EPTCS 129, pages 186Ð210, 2013.

12. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proie tti. Verifying programs
via iterated specialization. Proc. PEPM Õ13, pages 43Ð52. ACM, 2013.

13. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proie tti. Verifying array pro-
grams by transforming veriÞcation conditions. Proc. VMCAI Õ14, LNCS 8318,
pages 182Ð202. Springer, 2014.

14. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proie tti. VeriMAP: A tool for
verifying programs through transformations. Proc. TACAS Õ14, LNCS 8413, pages
568Ð574. Springer, 2014.

15. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proie tti. Program veriÞcation
via iterated specialization. Science of Computer Programming, 2014 (to appear).

16. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
Proc. ESOP Õ10, LNCS 6012, pages 246Ð266. Springer, 2010.

17. G. J. Duck, J. Ja!ar, and N. C. H. Koh. Constraint-based pr ogram reasoning with
heaps and separation. Proc. CP Õ13, LNCS 8124, pages 282Ð298. Springer, 2013.

18. S. Etalle and M. Gabbrielli. Transformations of CLP modu les. Theoretical Com-
puter Science, 166:101Ð146, 1996.

19. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies
for the veriÞcation of inÞnite state systems. Theory and Practice of Logic Pro-
gramming, 13(2):175Ð199, 2013.

20. C. Flanagan. Automatic software model checking via constraint logic. Science of
Computer Programming , 50(1Ð3):253Ð270, 2004.

21. C. Flanagan and S. Qadeer. Predicate abstraction for software veriÞcation. Proc.
POPL Õ02, pages 191Ð202. ACM, 2002. ACM.

22. T. FrŸhwirth. Theory and practice of constraint handlin g rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programmin g, pages 95Ð138, Oc-
tober 1998.

23. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. De cision procedures for ex-
tensions of the theory of arrays. Ann. Math. Artif. Intell. , 50(3-4):231Ð254, 2007.

24. D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array
operations. Proc. POPL Õ05, pages 338Ð350. ACM, 2005.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

130



25. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A software veriÞer based on Horn clauses. Proc. TACAS Õ12, LNCS
7214, pages 549Ð551. Springer, 2012.

26. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajam ani. Automatically
reÞning abstract interpretations. Proc. TACAS Õ08, LNCS 4963, pages 443Ð458.
Springer, 2008.

27. N. Halbwachs and M. PŽron. Discovering properties about arrays in simple pro-
grams. Proc. PLDI Õ08, pages 339Ð348. ACM, 2008.

28. K. S. Henriksen and J. P. Gallagher. Abstract interpreta tion of PIC programs
through logic programming. Proc. SCAM Õ06, pages 103Ð179, 2006.

29. J. Ja!ar, M. Maher, K. Marriott, and P. Stuckey. The seman tics of constraint logic
programming. Journal of Logic Programming , 37:1Ð46, 1998.

30. J. Ja!ar, J. A. Navas, and A. E. Santosa. TRACER: A symboli c execution tool
for veriÞcation. http://paella.d1.comp.nus.edu.sg/tra cer/, 2012.

31. J. Ja!ar, A. Santosa, and R. Voicu. An interpolation meth od for CLP traversal.
Proc. CP Õ09, LNCS 5732, pages 454Ð469. Springer, 2009.

32. R. Jhala and K. L. McMillan. Array abstractions from proo fs. Proc. CAV Õ07,
LNCS 4590, pages 193Ð206. Springer, 2007.

33. L. Kov‡cs and A. Voronkov. Finding loop invariants for pr ograms over arrays using
a theorem prover. Proc. FASE Õ09, LNCS 5503, pages 470Ð485. Springer, 2009.

34. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log. , 9(1), 2007.

35. D. Larraz, E. Rodr’guez-Carbonell, and A. Rubio. SMT-ba sed array invariant
generation. Proc. VMCAI Õ13, LNCS 7737, pages 169Ð188. Springer, 2013.

36. J. W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987.
Second edition.

37. J. McCarthy. Towards a mathematical science of computat ion. Proc. IFIP 1962 ,
pages 21Ð28. North Holland, 1963.

38. K. L. McMillan. QuantiÞed invariant generation using an interpolating saturation
prover. Proc. TACAS Õ08, LNCS 4963, pages 413Ð427. Springer, 2008.

39. M. MŽndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A ßex ible, (C)LP-based
approach to the analysis of object-oriented programs. Proc. LOPSTR Õ07, LNCS
4915, pages 154Ð168. Springer, 2008.

40. J. C. Peralta and J. P. Gallagher. Convex hull abstractio ns in specialization of
CLP programs. Proc. LOPSTR Õ02, LNCS 2664, pages 90Ð108. Springer, 2003.

41. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs
through analysis of constraint logic programs. Proc. SAS Õ98, LNCS 1503, pages
246Ð261. Springer, 1998.

42. A. Pettorossi and M. Proietti. Transformation of logic p rograms: Foundations and
techniques. Journal of Logic Programming , 19,20:261Ð320, 1994.

43. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction reÞnement. Proc. PADL Õ07, LNCS 4354, pages 245Ð259.
Springer, 2007.

44. C. J. Reynolds. Theories of programming languages. Cambridge University Press,
1998.

45. P. RŸmmer, H. Hojjat, and V. Kuncak. Disjunctive interpo lants for Horn-clause
veriÞcation. Proc. CAV Õ13, LNCS 8044, pages 347Ð363. Springer, 2013.

46. M. N. Seghir, A. Podelski, and T. Wies. Abstraction reÞne ment for quantiÞed
array assertions. Proc. SAS Õ09, LNCS 5673, pages 3Ð18. Springer, 2009.

E. De Angelis et al. Program Verification using Constraint Handling Rules and Array Constraint Generalizations

131


