
Improving Decision Making in Software Product Lines
Product Plan Management

�

Pablo Trinidad, David Benavides, and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos
University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain�
trinidad,benavides, aruiz � @tdg.lsi.us.es

Abstract The increasing demand on developing Software Product Lines (SPL)
has given a lot of interest to software engineering researchers in improving and
also replacing, current methods and techniques applied to clasical sofware sys-
tems development.
In this paper, we introduce our first ideas within our proposal on improving the
decision making while SPL Product Plan Managing. The key points in our pro-
posal are originality and viability. We do not know any other proposal dealing
with the same problem so far, and our first impressions guide us to predict a high
viability.

Keywords: Production Plan, Feature Model, Software Product Lines, Cost Estimation,
Time Estimation.

1 Introduction and background

Software reuse is one of the main goals software engineers treat to achieve. Many ap-
proaches have been proposed during last decades following this purpose: libraries, ob-
jects and classes, components and nowadays Software Product Lines (SPL). Previous
approaches allowed to reuse in a higher or lower percentage depending on the effort
of software engineers, becoming software reuse an ad-hoc methodology. SPL system-
atizes software reusing by building products from existing assets, rather than developing
products one by one from scratch. SPL consist of a set of common and product specific
features so that products are built from one or more common features and their specific
features. Thus, software reuse comes from common features, also named core-assets,
shared by concrete products. In [4], it may be observed that the appliance of an SPL ap-
proach in real projects, has improved the reusability and therefore, final product liability
and time-to-market among many other attributes.

In SPL development, three main activities are distinguished [1]: core-asset devel-
opment or domain engineering, product development or application engineering and
management. The products are built from core-assets, but also core-assets may be built
from existing products. The synchronization between these two activities is arranged
by management.

�
This work was partially funded by the Spanish Ministry of Science and Technology under
grant TIC2003-02737-C02-01 (WEBMADE)



Figure 1. Essential Activities in Software Product Lines Practice

One of the main activities in SPL development is production planning, which de-
scribes how concrete products are built from core-assets in documents named Produc-
tion Plans (PP). There should be one product line PP and one PP for each concrete
product, which would be a particular case of product line PP. Core-asset developers
would be the responsible of developing the product line PP, and would communicate
the production strategy to product developers. Product developers would be in charge
of going into detail and infer one concrete product PP from the product line PP.

A PP may be made up of one or more of these issues:

– Core-asset development organization.
– Core-asset testing and maintenance.
– Dependencies among core-assets and concrete products.
– Change controlling and core-assets configuration.
– Cost and development time core-assets estimations.
– Core-asset development resources.

For each concrete product, product developers consider the same issues, taking as
reference the SPL Production Plan.

Considering previous issues, product plan should be built from products informa-
tion. Software engineers can build many possible PP, but decisions should be made to
build the best one. Examples of decisions may be: which assets should core-asset de-
velopers build? And what about product developers? Which are the products supplying
a quality level? Which is the product supplying some features that costs less than an
amount? How long would it take to develop it? How many product developers will be
needed in case of building some specific products?

Software engineers should obtain information to make decisions. Where do they
take this information from? It may be extracted from SPL definition following tra-
ditional methods, where each concrete product must be analysed in particular. This
method is not scalable because considering a huge set of assets forming an SPL, the



number of potential products increases exponentially. A method to model SPL com-
pactly would ease its representation. If extracting information from this model is feasi-
ble, it may be used to make decisions about PP building and managing.

We consider that feature modelling has these desirable qualities. Feature models
(FM)[9,2,7,8,6], are used to compactly define SPL in terms of features and relations
amongst them. A feature is a distinctive characteristic of a product, and it may refer
to a requirement, component or even a piece of code. FM allow to represent the SPL
variability points, using notations such as the one proposed by Czarnecki [2]. But, what
kind of information can we obtain from FM? In [3], a method to automatically extract
functional and extra-functional information from FM is proposed. Questions may be
asked to the model to obtain information. But, what kind of questions may be asked to
the model to obtain information to assist decision making? Does FM reasoning answer
all the questions software engineers ask?

In this paper, we deal with to automatically obtaining useful information from FM.
This information may assist decision making in SPL Production Plan. As far as we
know, the originality of this work is its key point, since the only proposal [5] we have
found about SPL Product Planning has no automatic support. In the other hand, our first
implementations of our ideas have given us a good feedback that helps us to predict a
high viability.

The reminder of this paper is structured as follows: First, we present Feature Models
and how to extract information from them, in Section 2; In Section 3 answers to some
questions that may assist decision making are given.

2 Feature Modeling in Software Product Lines

Feature Modeling is a technique which allows to model and organize the differences
and commonalities among products in a SPL. The result is a compact representation
of all the potential products within a SPL. To achieve this, product features and rela-
tions among them are determined. A feature is a distinctive characteristic of a product.
Depending on the development stage, it may refer to a requirement (if products are
requirement documents), a component in an architecture (if products are component
architectures) or even to pieces of code (if products are binary code). There are many
notations to specify feature models. We found Czarnecki’s notation [2] as the most
comprehensive and flexible one, and also one of the most cited.

Czarnecki’s notation distinguishes four kinds of relations: mandatory, optional, al-
ternative and or-relation. These are relations between a parent feature and one child
feature (in mandatory and optional cases) or among a parent feature and one or more
child features (in alternative and or-relation cases).

Figure 2 depicts a feature model representing a Home Integration System (HIS)
SPL using Czarnecki’s notation. This example is partially inspired by [8]. It represents
a product line which controls and manages a collection of devices to maintain security
and safety of a building or a house. Optional features such as appliances control and
flood control may be included in more advanced products.

Then, The first objective of compactly representing the feature model is achieved.
But is it possible to ask questions to the model and extract information? In [3], a method



Figure 2. Home-Integrated System Feature Model

to reason on a SPL based on Constraint Programming is proposed. The next step would
consist of trying to extract useful information from FM. But feature models only allow
to model features that deal with characteristics related to the functionality offered by
a SPL (functional features). However, the remainder characteristics, also called extra-
functional features cannot be modeled in Czarnecki’s notation.

[3] deals with this problem and introduces a method to model functional and extra-
functional features extending Czarnecki’s notation, as seen in Figure 3. Moreover, an
holistic reasoning on SPL is also possible using both features at the same time.

Figure 3. Extended Feature Model considering extra-functional features

Next section, we are dealing with answering some typical questions that may assist
decision making on PP managing and building.



3 Our proposal

Taking in account the reasoning and information extracting capability on FM, the next
step would be obtaining useful information to assist decision making on PP managing.
In particular, we deal with the decisions presented in Section 1.

3.1 Decision Assistance with core-asset developers

The first issue we are considering in PP building is which assets would core-asset devel-
opers build. In order to assist decision making on this issue, we should ask the model
which are the core features in feature model. The question to be asked to the model
is: Which is the set of mandatory features in the model? Applying this question to the
example in Figure 2 the result would be:

������������	�

��������������������������

�������
��������� �"!"
#������

����$%�#&'�)(+*��)��	�

������,

Thus, core-asset developers should build this set of core-assets.

3.2 Decision Assistance with product developers

Next question to be considered is which assets should product developers build. Let
us remind that product developers are in charge of building products integrating core-
assets. Then, product developers need to know which are the core-assets to be integrated
and which new features they should build.

Feature model represents all the possible products that can be build within the SPL
definition. The assets product developers build, would depend on the products to be
built. Therefore, we should know which are the features each product is formed by. Two
questions should be asked in order to know the product developers work in a concrete
product development: Which are the core-assets to be used in products development?
Which are the features that composes products supplying some functional and/or extra-
functional features?

First question is already answered in the previous subsection. Second question can
be obtained from feature model applying a filter [3]. Filter acts as a limitation for po-
tential products of the model. Then product developers should integrate core features
and build those features in the product that are not part of the set of core-assets.

3.3 Decision Assistance with extra-functional features

Many times, the extra-functional features in a product are a key issue. Products may
differ not only in its functional features nor in its extra-functional features. For example,
two different products may exist in the FM depicted in Figure 3 with the same functional
features. This would happen if bandwidth of ADSL can be 128 Kbps and 256 Kbps.
Then, reasoning on extra-functional features is important in decision making assistance.
As introduced before, reasoning on FM is feasible using extra-functional features. Thus,
this kind of questions may be asked to the FM.



3.4 Decision Assistance with Cost

In order to know products cost, we should be able to estimate it a priori for each
feature. These may be estimated using any of the existing methodologies to estimate
cost and time. Let us consider we are able to obtain such estimations precisely. Cost
and development time can be treated as extra-functional features, therefore they may be
modelled within the FM, as you can see in Figure 3. This way, may questions be asked
about cost?

To be able to ask questions about cost, the concept of a product development cost
should firstly be defined. For the example depicted in Figure 3, cost would be considered
the sum of each feature cost plus a constant value ��� . Any other expression may be
accepted, since it were supported by this model.

Consider we would like to know which are the products supplying some features
that cost less than an amount. Two filters should exist in order to obtain such an infor-
mation. One filter that limits the functional features in resultant products; and another
filter that considers a maximum cost. For example, taking in account that the necessary
functional features in a product, are Fire, Intrusion, Light Control, Temperature, Wire-
less y Appliances control considering a maximum cost of 1650� , the potential products
would be:

– Product 1:
�
Fire, Intrusion, Wireless, Light Control, Temperature, Appliances,1550 � ,

– Product 2:
�
Fire, Intrusion, Video, Wireless, Light Control, Temperature, Appli-

ances, 1625� ,

In conclusion, reasoning on cost is feasible in feature models, whenever develop-
ment cost concept is defined.

3.5 Decision Assistance with Development Time and resources

Task assignment to resources and scheduling are two key activities on PP managing.
Decisions like the how many product developers will be needed in case of building
some specific product, or how long a product development would take considering a
concrete number of resources are very difficult to made. Assistance in these issues are
more than desirable. In order to ask questions to the FM about time and resources, these
concepts should be defined at first.

In case of being only one resource at our disposal for the whole SPL development,
a concrete product development time would consist of the sum of each product feature
development time. However, this is an infrequent case. Usually, several resources are
available. These may work at the same time and independently. Moreover, dependencies
among features can exist, since a feature development could depend on another to be
available. Therefore, to be able to reason on development time, we should express at
first all this information relating available resources, each feature development time
and their dependencies in FM.

In [3], reasoning on FM is based on Constraint Programming, representing FM as
a Constraint Satisfaction Problem (CSP). W.Nuijten’s thesis [10], exposes a representa-
tion of development time and resources assignment information, as a Time and Resource



Constrained Scheduling Problem(TRCSP), a particular case of CSP. Thus, it is possible
to represent this information as a CSP, and consequently, it is possible to automatically
reason on FM.

Once the information may be modelled, questions about development time and re-
sources may be asked to FM.

3.6 Final considerations

Many other questions may be considered apart from the ones considered in this section.
As seen before, the only limit we have found in Benavides’ model is the ability of
representing within the FM, the information to be extracted.

4 Conclusion and Further Work

In this paper we introduce our first applications of feature modelling to product plan-
ning. The ability of reasoning on feature models, based on Constraint Programming is
very promising. Constraint Programming is widely supported by commercial products.
Our first implementations, (check them on http://www.tdg-seville.info/topics/spl) solve
some problems exposed in section 3 in fair times. The extension of our work is twofold:
First, keep on finding new decisions to make in production planning and improving
the ones considered in this paper; Secondly, check our ideas in an industrial environ-
ment, devoloping a tool which supports to assemble the previous ideas and the visual
definition of SPL via feature modelling.

References

1. P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series
in Software Engineering. Addison-Wesley, August 2001.

2. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison–Wesley, May 2000.

3. D. Benavides, A. Ruiz–Cortes, and Pablo Trinidad. Coping with automatic reasoning on
software product lines. In Second Groningen Workshop on Software Variability Management,
December 2004.

4. G. Chastek, P.Donohoe and J. D. McGregor. A study of product production in software
product lines. IEEE/ANSI Standard CMU/SEI-2004-TN-012, Carnegie Mellon Software
Engineering Institute, March 2004.

5. J. Lee, K.C. Kang, S. Kim. A feature-based approach to product line production planning. In
To appear in the Proc. of the Third Software Product Line Conference (SPLC2004), Septem-
ber 2004.

6. J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software prod-
uct lines. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), pages 45–54. IEEE Computer Society, 2001.

7. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–oriented domain anala-
ysis (foda) feasibility study. IEEE/ANSI Standard CMU/SEI-90-TR-21, Carnegie Mellon
Software Engineering Institute, November 1990.

8. K.C. Kang, J. Lee, and P. Donohoe. Feature–oriented product line engineering. IEEE Soft-
ware, 19(4):58–65, July/August 2002.



9. M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the rseb. In
Journal of Computing and Information Technology, volume 10, pages 76–85, 2002.

10. W. Nuijten. Time and Resource Constrained Scheduling : a Constraint Satisfaction Ap-
proach. Phd thesis, Technische Universiteit Eindhoven, 1994.


