
Open Linked Widgets Mashup Platform

Tuan-Dat Trinh1, Peter Wetz1, Ba-Lam Do1, Amin Anjomshoaa1

Elmar Kiesling1, A Min Tjoa1

1Vienna University of Technology, Vienna, Austria

{tuan.trinh, peter.wetz, ba.do, anjomshoaa

 elmar.kiesling, amin}@tuwien.ac.at

Abstract. Since the emergence of the mashup concept on the web around 2005,

a large stream of academic research and industrial development resulted in nu-

merous architecture proposals, platforms and editing tools. This strong initial

interest in mashup technologies and promising use case demonstrations not-

withstanding, however, commercial platforms such as Microsoft Popfly, IBM

Mashup Center, and Google Mashup Editor failed to gain widespread adoption

by consumers and enterprises and were eventually discontinued. This failure

may be attributed to a number of common limitations of these platforms: (i)

they are each useful only for a single or a limited number of restricted problems

in specific domains; (ii) they are closed, i.e., developers cannot contribute and

share their widgets; (iii) widgets, which are crucial elements of any mashup

platform, are usually not modeled in sufficient semantic detail to support widget

search and composition features that facilitate reuse. This paper addresses these

limitations by introducing an open mashup platform based on semantic web

technologies. We present a novel architecture in which widgets equipped with a

semantic, graph-based model can cooperate with each other in a mashup created

by end users through simple drag and drop operations. Widgets created freely

by independent developers and hosted on arbitrary servers can be discovered

and combined easily through our introduced semantic search feature.

1 Introduction

Mashups are based on the idea of “using content from more than one source to create

a single new service displayed in a single graphical interface” [5], thereby making

existing data more useful. Mashup platforms aim to facilitate the effortless creation of

such mashups in an ad-hoc manner in order to allow users to solve a problem at hand,

e.g., a specific need for information without the need to acquire programming skills.

After commercial mashup development environments such as Microsoft Popfly,

Yahoo Pipes, or IBM Mashup Center were launched in 2006, both mashup research

and mashup tool development progressed rapidly. However, most of these tools - with

few exceptions such as Yahoo Pipes1 and Presto2 - are no longer available today.

1 http://pipes.yahoo.com/pipes/

Even though mashup ideas attracted significant academic and public interest initially,

end users did not widely adopt the available mashup platforms. Surveys of the

mashup literature [1, 2] have developed a number of evaluation criteria and identified

shortcomings of existing approaches. Some of these shortcomings have been ad-

dressed in more recent contributions, but others remain an open challenge. We ad-

dress the following three crucial limitations: (i) current platforms are too domain-

specific and are applicable only for a small set of limited problems; (ii) the input and

output data paths of widgets are not modeled clearly, which makes it hard for users to

quickly and effortlessly create a mashup when the number of widgets is large; (iii)

widgets, i.e., the fundamental elements of any mashup platform, are restricted in the

functionality they provide and cannot be extended externally by the community. Con-

sequently, users need to adopt and use multiple different mashup platforms for vari-

ous purposes, which results in a dissatisfaction mashup experience. Although we can-

not directly combine the advantages of different platforms because of the heterogene-

ous widget data models and architectures, it is possible to modify widgets of a plat-

form so that they can operate in another one. To this end, it is necessary that the target

platform is truly open. IBM Mashup Center3, for example, is a relatively open plat-

form since its widgets can be written in any language by developers. However, it

requires each enterprise or organization to deploy the platform on their own servers

with their own proprietary widgets. Furthermore, it is a commercial product that has

been discontinued.

To address these issues, this paper presents an open mashup platform based on se-

mantic web technologies. In this platform, a widget does not only solve a particular

problem for the developer who creates it, but may also serve as a reusable building

block that can be applied by other users for solving larger problems in future. This

approach does not neglect the importance of domain-specific mashups. Rather, users

can still implement arbitrary widgets for particular domains, and widgets from differ-

ent domains can be combined to solve cross-domain problems.

We introduce a Linked Widget Model, i.e., a framework for developing such widg-

ets and an architecture for their cooperation. A key advantage of our approach is that

widgets exchange data in JSON-LD4 format, which can be easily converted into RDF.

This adds a semantic layer to the data and makes it machine-readable. Furthermore,

this allows the platform to present sample data for the models in JSON-LD format as

soon as developers have properly annotated a widget.

In developing this model, we address the following research challenges: (i) How

can users be supported in selecting and combining appropriate widgets for their

mashups?; and (ii) How can widgets cooperate in a mashup even though they are

unaware of each others’ existence? We tackle the first research question using a se-

mantic web approach outlined in Section 3. The later question will be addressed in

Section 5, which presents the underlying messaging protocol.

2 http://mdc.jackbe.com/enterprise-mashup
3 http://pic.dhe.ibm.com/infocenter/mashhelp/v3/index.jsp
4 http://www.w3.org/TR/json-ld/

 We illustrate the resulting platform via a prototypical web application.5 This open

platform is targeted at both developers and end users. Developers can implement

widgets in any client/server web programming language (e.g., HTML, JS, PHP, JSP

or ASP) and contribute them to the platform. In particular, widgets can be deployed

on arbitrary servers outside the platform, which makes maintenance economical and

scalable. Each widget and each mashup has its own URIs, which can be used for shar-

ing or publishing purposes. Anyone can create a mashup via this platform and publish

it on their personal websites and others may freely modify and republish them on their

own websites. In this context, the semantic description model makes the data more

meaningful and facilitates sharing and reusability.

The remainder of this paper is organized as follows. In Section 2, we introduce key

terms and outline the architecture of our proposed platform. Section 3 introduces ex-

ample use cases and the linked widget model; Section 4 illustrates the widget devel-

opment process; Section 5 is dedicated to the cooperation between widgets. The paper

concludes in Section 6, providing an outlook on future research.

2 Terms and Architecture

Before presenting the platform architecture, we define a set of basic terms and con-

cepts. A Widget, a basic component of a mashup, is an “interactive single purpose

application for displaying and/or updating local data or data on the Web, packaged

in a way to allow a single download and installation on a user’s machine or mobile

device”6. Such widgets have the potential to use the available web services and web

APIs and also access the existing open data such as Open Governmental Data (OGD)

and Linked Data. We introduce Linked Widgets [3] as the key concept of our open

mashup platform. Linked Widgets are standard widgets enhanced with a semantic

model following the Linked Data principles. The semantic model describes the data

input/output and other information such as provenance, license, etc. In particular, a

Linked Widget consists of four main components: (i) input terminals, (ii) output ter-

minals, (iii) options, and (iv) a processing function. Input/output terminals are used to

connect widgets in a mashup and represent the data flow. Options are HTML inputs

inside a widget. They provide a mechanism that allows users to control widgets be-

havior. Finally, the processing function defines how widgets receive input and return

their output.

We distinguish four basic types of widgets: data widget, processing widget,

presentation widget, and user interaction widget. Each widget can have more than

one type. A data widget retrieves data from a data source and provides the collected

data for others. Hence, it has no input terminals. A processing widget takes input data

from other widgets and handles the data before returning the results. It therefore has

both input and output terminals. A presentation widget has at least one input so that it

can receive and represent data from another widget visually.

5 http://linkedwidgets.org
6 http://www.w3.org/TR/widgets/

As an example, consider a mashup with three widgets A→B→C. Typically, when

the user triggers an action to run a Widget, e.g., C, this action requires all widgets that

provide input to this widget, i.e. A, and B, to run first since C needs the output from B

and B, in turn, need the output from A. Inversely, when an event is fired at A, e.g.,

mouse-clicked events, result of B and C must also be updated. In the latter case, A is a

user interaction widget for which developers can define user actions, e.g. item selec-

tion, as a trigger to update all widgets lying behind it in a mashup.

Mashup is the combination and interconnection of widgets. A mashup should con-

tain at least one data widget providing the data and one presentation widget to show

the final results.

Fig. 1 illustrates the architecture of the platform. Developers implement and deploy

their widgets on an arbitrary server. Then the widget URL is passed to the widget

annotator module, which adds semantic annotations. After the validation process, the

created widget model is stored permanently as linked data that can be accessed

through a SPARQL endpoint. The URIs can be dereferenced through tools such as

Pubby.7

Fig. 1. Linked Widgets platform architecture

The first step in creating a mashup solution is to search for available widgets. Any

terminal of a widget can be selected and queried to find compatible terminals from

other widgets. The list of compatible widgets will then be presented to users in order

to support them during the mashup creation. This is achieved by executing a SPARQL

query over the semantic data repository of widget models.

The final result of the mashup is directly displayed on the platform. Alternatively,

it can also be displayed via the mashup publication module and be shared and pub-

lished on other websites. The mashup itself can also be saved as a new widget using

this module. This encourages users’ creativity by allowing them to create mashups

and reusing them in other mashups without programming skills.

In conclusion, the platform architecture is designed in a dynamic, flexible, and

scalable manner. It is open and can be extended with an arbitrary number of highly

versatile widgets. Maintaining this platform is economical since widgets can be stored

7 http://wifo5-03.informatik.uni-mannheim.de/pubby/

externally and both the data retrieval and data processing tasks take place in either the

client’s browser or on the widget server.

3 Linked Widget Model

Before being made accessible to users, a widget needs to be semantically annotated

by developers and validated by the platform manager. To this end, we enrich the

widget’s input and output data with semantic models. These semantic I/O models are

essential for the subsequent search and composition processes. Furthermore, they are

crucial for effective sharing of widgets as the usefulness of the platform would deteri-

orate quickly as the number of widgets in the platform increases without appropriate

semantic filtering mechanisms. For example, even when the number of widgets avail-

able is fairly limited (e.g. 43 for Yahoo Pipes and 300+ for Microsoft Popfly), finding

the appropriate widgets needed for building a mashup solution is already a difficult

task. Existing mashup platforms usually employ a text-based approach for widget

search, which is not very helpful for advanced widget exploration and widget compo-

sition tasks.

Fig. 2. A mashup example8

To deal with a potentially large number of widgets in future, we organize widgets

in a taxonomy and widget collections. Developers or end users create a widget collec-

tion by collecting a list of widgets capable of solving a certain class of problems, e.g.

a Vienna point of interest (POI) collection, a Berlin POI collection or a Flickr collec-

tion. Such collections make it much easier for other users to select appropriate widg-

ets for their mashup. Consider, for example, that a Vienna POI collection might in-

clude five widgets: (1) Google Map – displays points on the map, (2) Location – re-

turns list of POI, e.g. Park, Hospital, (3) Air Quality – calculates and filters air quality

for points, (4) Geo Merger – returns nearby points from two arrays of points, (5) Map

Pointer – creates a point on Google map. By combining these widgets in a mashup,

the collection can answer lots of different questions such as “find all parks in Vien-

na”, “find all parks near some swimming pool”, “find a combination of park, swim-

ming pool, museum near each other”, “find a park with good air quality and not more

8 More examples are available on http://linkedwidgets.org

than 500m far from a point in the map”, etc. The mashup for the last question is de-

picted in Fig. 2.

Fig. 3 presents a part of our ontology for the semantic modeling of Linked Widg-

ets. It also shows the detailed model of Geo Merger. The widget receives two arrays

of arbitrary objects containing the wgs84:location property. Its domain is the Point

class with two literal properties, i.e. lat and long. The widget output is a two-

dimensional array in which each row represents two objects from two input arrays,

respectively. Those objects have locations satisfying the distance filter of the Geo

Merger widget.

The input and output of Map Pointer, Google Map and Air Quality Filter can be

modeled in a similar way. To represent their data models as an “arbitrary” object, we

utilize the owl:Thing class. The data model of the Location widget is an instance of

the Place class with name, address and location properties.

To specify that this input is an array of objects, the literal property hasArrayDi-

mension is used (0: single element; n ≥ 1: n multi-dimensional array). In the example,

we need thing2 and cannot use thing1 as the data model of output1 because the out-

put’s dimension is 2. The Point, Place, location, lat and long resources here can be

obtained from any ontology. However, since a well-established ontology facilitates

the data exchange process between widgets, wgs84 was chosen. Generally, we collect

and recommend the most popular resources to developers in the model creation pro-

cess.

Fig. 3. General Linked Widget model and Geo merger model

We have developed a GUI annotator tool that allows developers to rapidly create

the complex Linked Widget models that are crucial for widget search and composi-

tion features. With SPARQL queries, we, for example, can find a widget which re-

ceives/outputs an object containing geo information. Furthermore, from an input ter-

minal, e.g. the first input of Geo Merger, we can find all output terminals that can be

connected with it as the query shown in Fig. 4. The conditions for these terminals are

that they have the same type, the same array dimension and that their set of attributes

is a subset of that of the output terminal. In the Vienna POI collection, the outputs of

Location, Map Pointer and Air Quality satisfy this query.

Similarly, we can model a more complex widget. Its input and/or output have ob-

ject attributes and there can be relations between those objects. For example, when

modeling the Geo Merger, if required, we can present the nearby relation between

point1 and point2 as shown in Fig. 3.

Using semantic web technologies to describe mashups and their components is not

a new approach (cf. [6,7]). However, rather than following a service-based approach

like existing platforms, we use a graph-based approach [8, 9, 10] to clearly annotate

the input, output, their components and their relations. As the result, the graph-based

description can answer more complex questions such as “find all widgets containing

the nearby relation between two locations”.

Fig. 4. A SPARQL query for terminal matching

4 Widget Development

Widgets can be developed either through programming, or by end users without

programming skills by creating a mashup and saving it as a widget.

The data format for input/output is JSON-LD. There are three steps to program a

widget: (i) inject a JS file from the platform into the widget to equip it with the

capability of cooperating with others; (ii) define input/output configuration; (iii)

implement the JS run(data) function defining the way the widget processes input data.

The data object here is null if it has no input terminal. Otherwise, during runtime, the

platform collects data from all output terminals which connect with the widget’s input

terminals to build the data object and pass it as a parameter for the run function. An

efficient method for creating a widget is annotating the widget first so that the

PREFIX ifs: <http://ifs.tuwien.ac.at/>

SELECT DISTINCT ?oTerminalName ?oWidget WHERE {

 <http://ifs.tuwien.ac.at/WidgetGeoMerge> ifs:hasWidgetModel ?iWModel.

 ?iWModel ifs:hasInput [ifs:hasName "input1"^^xsd:string;

 ifs:hasDataModel ?iDataModel].

 ?iDataModel a ?type.

 ?iDataModel ifs:hasArrayDimension ?listLevel.

 ?oWidget ifs:hasWidgetModel ?oWModel.

 ?oWModel ifs:hasOutput [ifs:hasName ?oTerminalName;

 ifs:hasDataModel ?oDataModel]

 ?oDataModel a [rdfs:subClassOf ?type].

 ?oDataModel ifs:hasArrayDimension ?listLevel.

 FILTER NOT EXISTS{

 ?iDataModel ?property ?iValue.

 FILTER NOT EXISTS {?oDataModel ?property ?oValue.}

 }

}

platform can automatically generate the widget (and its sample input/output data in

form of JSON-LD). Developers can then implement the processing function.

5 Widget Cooperation

Widgets in a mashup collaborate with each other to form a processing flow, which

can be either a normal flow or a user interaction flow. In a normal flow, if a widget

needs to run, it first requests its input. Since this input is connected with the output of

other widgets, those widgets need to run, too. This process continues until the related

widgets have no input. Data are transferred between widgets in a successive process.

Because widgets do not know of each other, they have to communicate with the

platform to obtain their jobs. Fig. 5 shows all messages transferred between the plat-

form and widgets for the use case presented in Fig. 2. The first two messages are de-

livered when widgets are created for the mashup. The platform sets IDs for all widg-

ets and then receives their terminal configurations. Remaining messages are used

when Google Map runs, in a normal flow. They are all transparent to developers.

Fig. 5. An example of widget communication

A User interaction flow is similar to a normal flow, but with reversed direction.

The mashup must contain a user interaction widget, e.g. the Map Pointer in our ex-

ample. When an event is fired, e.g. users create a Point by clicking on the map, the

final result presented in Geo Merger needs to be updated. If Air Quality has run be-

fore and already has generated output, it is not necessary for it to run again. Only Geo

Merger and Google Map are required to rerun to update the final result.

The communication is taking place purely in the client’s browser since a Window

can send/receive messages to/from others. After the mashup has been created, the

platform server is no longer needed since the browser and the widget’s servers com-

pute the jobs. This process reduces the platform-server load and improves perfor-

mance and scalability. For big data and slow client devices, we are developing algo-

rithms to execute every job on the server side and return only the final result to end

users.

6 Conclusion and Future Work

This paper presents an overview of an open mashup platform that is scalable, generic,

and sharable. It is also simple enough to be used effectively by end users, who have

no knowledge about semantic web technologies or programming. Because there are

no restrictions on the number of widgets, widget developers and their chosen lan-

guages, the platform can solve various problems. It is the first mashup platform that

utilizes JSON-LD to exchange linked data between widgets. With the Linked Widget

model, the inputs and outputs are clearly modeled, enabling users to combine and

search widgets based on defined semantics rather than a text-based only search ap-

proach.

Since this platform is still in its early stages, we want to shortly discuss the larger

vision and direction we are pursuing. In future, this system should serve as a data

platform for the people. The Open Linked Widgets Platform shall bring together

both mashup developers and mashup users. For each of them it should be as easy as

possible to create, use, reuse, modify and execute available or newly created mashups.

As a consequence, citizens will be enabled to work with all different kinds of data

sources, e.g. government data, financial data, environmental data, and data types, e.g.

open data, linked data, tabular data, without having to worry about any related barri-

ers. On top of that, new knowledge can be deduced and created by enabling creative

(re)combination of different data. Therefore, from a data perspective, the vision is to

provide a means to support people in their everyday decision-making.

From a more technical perspective, we aim at providing a best practice semantic

web platform in the area of mashups. The goal is to fulfill the semantic web vision

by implementing the system based on the well-known and defined semantic web prin-

ciples. We also want to push these ideas one step further by transferring non-semantic

data on a semantic level and provide it via our platform in an automated manner. This

approach shall enable full utilization of the data’s potential.

Future research will focus on using the semantic models, especially for the widget

composition feature. The model-matching algorithm also needs to be improved by

utilizing ontology alignment techniques, since two models can use different resources

from different ontologies. Another interesting field is the automatic creation of new

widgets, which are able to handle dynamic web data as an input source.

References

1. Aghaee, S., Pautasso, C.: An Evaluation of Mashup Tools Based on Support for Heteroge-

neous Mashup Components. In: Harth, A. and Koch, N. (eds.) Current Trends in Web Engi-

neering. Springer Berlin Heidelberg (2012) 1–12

2. Grammel, L., Storey, M.-A.: A Survey of Mashup Development Environments. In: Chignell,

M. et al. (eds.) The Smart Internet. Springer Berlin Heidelberg (2010) 137–151

3. Trinh, T.D. et al.: Linked Widgets-An Approach to Exploit Open Government Data. Pro-

ceedings of the 15th International Conference on Information Integration and Web-based

Applications & Services. ACM (2013) 438–442

4. Yu, J. et al.: Understanding Mashup Development. IEEE Internet Computing vol. 12, issue 5

(2008) 44-52

5. Nicole, C.E., Jenny, L.: Library Mashups-Exploring New Ways to Deliver Library Data

(2009)

6. Pietschmann, S., Radeck, C., Meißner, K.: Semantics-based discovery, selection and media-

tion for presentation-oriented mashups. Proceedings of the 5th International Workshop on

Web APIs and Service Mashups. ACM, New York (2011) 7:1–7:8

7. Ngu, A. H. H., Carlson, M. P., Sheng, Q. Z., Paik, H.-y.: Semantic based mashup of compo-

site applications. IEEE Transactions on Services Computing, vol. 3, no. 1 (2010) 2–15

8. Mohsen, T., Craig, A. K., Pedro, S., Jose L. A.: Rapidly Integrating Services into the Linked

Data Cloud. Lecture Notes in Computer Science, Vol. 7649. Springer Berlin Heidelberg

(2012) 559–574

9. Mohsen, T., Craig, A. K., Pedro, S., Jose L. A.: A Graph-Based Approach to Learn Seman-

tic Descriptions of Data Sources. Lecture Notes in Computer Science, Vol. 8218. Springer

Berlin Heidelberg (2013) 607–623

10. Verborgh, R.; Steiner, T.; Deursen, D.V.; Van de Walle, R.; Valles, J.G.: Efficient runtime

service discovery and consumption with hyperlinked RESTdesc. Proceedings of the 7th In-

ternational Conference on Next Generation Web Services Practices (NWeSP) (2011) 373–

379

