
Using Metalearning to Predict When Parameter
Optimization Is Likely to Improve Classification

Accuracy
Parker Ridd1 and Christophe Giraud-Carrier2

Abstract. Work on metalearning for algorithm selection has often
been criticized because it mostly considers only the default param-
eter settings of the candidate base learning algorithms. Many have
indeed argued that the choice of parameter values can have a signif-
icant impact on accuracy. Yet little empirical evidence exists to pro-
vide definitive support for that argument. Recent experiments do sug-
gest that parameter optimization may indeed have an impact. How-
ever, the distribution of performance differences has a long tail, sug-
gesting that in most cases parameter optimization has little effect on
accuracy. In this paper, we revisit some of these results and use met-
alearning to characterize the situations when parameter optimization
is likely to cause a significant increase in accuracy. In so doing, we
show that 1) a relatively simple and efficient landmarker carries sig-
nificant predictive power, and 2) metalearning for algorithm selection
should be effected in two phases, the first in which one determines
whether parameter optimization is likely to increase accuracy, and
the second in which algorithm selection actually takes place.

1 Introduction
The availability of a large number of classification learning algo-
rithms together with the No Free Lunch theorem for classification
present business users with a significant challenge, namely that of de-
ciding which algorithm is likely to induce the most accurate model
for their particular classification task. This selection process is fur-
ther compounded by the fact that many classification learning algo-
rithms include parameters, and the various possible settings of these
parameters may give rise to models whose accuracy on the target
classification task varies significantly. As a result, the algorithm se-
lection problem in machine learning consists not only in choosing
an algorithm, but rather in choosing an algorithm and an associated
parameter setting. Formally, let:

• L = {L1, L2, . . . , Ln} be a finite set of n classification learn-
ing algorithms (e.g., C4.5, Naı̈ve Bayes-NB, Backpropagation-BP,
Support Vector Machine-SVM).

• PLi = P 1
Li
× P 2

Li
× . . . P ki

Li
be the set of parameter settings

associated with Li, where each P k
Li

represents one of the param-
eters of Li (e.g., P 1

C4.5 =pruning indicator, P 2
C4.5 =splitting cri-

terion, . . ., P 1
BP =number of hidden layers, P 2

BP =learning rate,
P 3
BP =momentum term, . . .).

• T = X × Y be a training set for a classification task where X is
a set of features and Y is a finite set of labels.

1 Brigham Young University, USA, email: parker.ridd@byu.net
2 Brigham Young University, USA, email: cgc@cs.byu.edu

• I(L,P, T) be the model induced by algorithm L with parameter
setting P on some classification learning task T . Hence, I maps
objects in X to labels in Y .

• A(I) be the predictive accuracy of model I (typically measured
by cross-validation).

The classification learning algorithm selection problem can be for-
mulated as follows.

Classification Learning Algorithm Selection Given a training set
T for some classification learning task, find the pair (L∗, P ∗) where
L∗ ∈ L and P ∗ ∈ PL∗ , such that

∀(L,P) ∈ L × PL A(I(L,P, T)) ≤ A(I(L∗, P ∗, T)).

The above formulation is generic in that it says nothing about the
process used to search the combined spaces of classification learning
algorithms and parameter settings to find the optimal algorithm. Met-
alearning for classification learning algorithm selection is the specific
instance of that general problem wherein the search is effected by a
learning algorithm [6]. In other words, the past performance of clas-
sification learning algorithms on a variety of tasks is used to induce a
predictive model that takes as input a classification learning task and
produces as output a classification learning algorithm and its associ-
ated parameter setting.

In practice, one has access to a set T = {T1, T2, . . . , Tm} of m
training sets (corresponding to m classification learning tasks). For
each Tj , the learning algorithms in L, together with their parameter
settings, are used one at a time to induce a model on Tj . The pair
of classification learning algorithm and parameter setting that max-
imizes A(I(L,P, Tj)) is recorded. Each Tj with its corresponding
winning pair becomes a training example for a (meta)learning algo-
rithm. Since storing complete learning tasks is unfeasible and likely
undesirable, one uses instead some characterization of learning tasks
by meta-features. Meta-features may be drawn from basic statistics
and information-theoretic measures (e.g., ratio of nominal features,
skewness, class entropy) [14, 7, 22], landmarking measures (i.e., per-
formances of simple learners that serve as signpost for more com-
plex ones) [2, 17, 8], and model-based measures (e.g., properties of
induced decision trees) [1, 3, 16]. Given a training set T for some
classification learning task, let C(T) be the characterization of T by
some set of meta-features.

One can now take a number of classification tasks, characterize
them via the function C, and record the corresponding meta-features
together with the accuracy of the best learning algorithm and asso-
ciated parameter setting. The classification learning algorithm selec-

tion problem, as solved by metalearning, can then be reformulated as
follows.3

Metalearning for Classification Learning Algorithm Selection
Given a set T m = {(C(T), argmaxL∈L,P∈PL

A(I(L,P, T))} of
past classification learning episodes, together with a classification
learning algorithm Lm, which may belong to L, and an associated
parameter setting PLm :

1. ConstructM = I(Lm, PLm , T m).
2. For any training set T ′, (L∗, P ∗) =M(T ′).

By convention, let P 0
Li

denote the default parameter setting of Li,
as determined by the implementation of Li under consideration (e.g.,
Weka, IBM SPSS Modeler). Most of the work in metalearning so far
has addressed the above problem with the further assumption that for
all learning algorithms the parameter setting is fixed to its default.
This, of course, creates a much restricted, yet also greatly simplified,
version of the selection problem, since the large, possibly infinite,
space of parameter settings need not be considered at all. However,
that restriction has also been the source of much criticism, and some-
times dismissal, by a part of the machine learning community, who
has maintained that:

Parameter Optimization Claim Parameter setting has a significant
impact (for the better) on the predictive accuracy of classification
learning algorithms.

It would seem that most metalearning researchers, and indeed
most machine learning researchers, have taken this claim to be well
founded, and considered ways to address it. There have been two
main approaches.

• Two-stage Metalearning. Some metalearning researchers have
adopted a two-stage approach to metalearning, wherein they
continue to use the restricted form of the Metalearning for
Classification Learning Algorithm Selection problem to choose
a learning algorithm, but then follow up with an optimization
phase to find the best set of parameter values for the selected
algorithm.4 The problem in this case, however, is that one may
reach a suboptimal solution. Indeed, let L1 and L2 be two clas-
sification learning algorithms, such that, for some classification
task T ′, M(T ′) = (L1, P

0
L1

). Then, L1 would be selected
and its parameter setting optimized to P ∗L1

. Yet, despite the
fact that A(I(L1, P

0
L1

, T ′)) > A(I(L2, P
0
L2

, T ′)) (assuming
the metalearner is accurate), it is entirely possible that there
exists some parameter setting P k

L2
of algorithm L2 such that

A(I(L1, P
∗
L1

, T ′)) < A(I(L2, P
k
L2

, T ′)). In other words, the
early greedy commitment to L1 makes it impossible to explore
other parts of the combined spaces of learning algorithms and
parameter settings.

• Unrestricted Metalearning. Other metalearning researchers have
lifted the traditional restriction, and recently begun to design solu-
tions from the unrestricted Metalearning for Classification Learn-
ing Algorithm Selection problem. Their systems seek to select

3 We recognize that it is possible to use metalearning to predict rankings of
learning algorithms (e.g., see [5, 23]), or even the actual performance of
learning algorithms via regression (e.g., see [4, 10, 20]). We restrict our
attention here to the prediction of a single best algorithm although much of
the discussion extends naturally to these settings.

4 Some have also simply picked a classification learning algorithm manually,
and used metalearning to choose the best parameter setting (e.g., see [9,
19]).

both a learning algorithm an associated parameter setting (e.g.,
see [13, 24, 21]).

Interestingly, and somewhat surprisingly, very few researchers
have bothered to check the validity of the Parameter Optimization
Claim. Yet, to the best of our knowledge —and as presented by most,
it is just that: a claim. We have been hard-pressed to find any system-
atic study in the literature that addresses the impact of parameter set-
tings over a wide variety of classification learning algorithms. What
if the Parameter Optimization Claim does not hold in general? What
if it only holds in some specific cases? Would it not be useful to
know what these cases are? And what about using metalearning to
characterize when the claim holds? We address these questions here.

2 Impact of Parameter Optimization on
Classification Learning Algorithm Performance

There is one exception to our statement that the literature contains no
systematic study of the impact of parameter optimization on the per-
formance of classification learning algorithms, found in [23]. In that
paper, the authors considered 466 datasets and for each, computed
the difference in accuracy between their default parameter setting
and the best possible parameter setting after optimization. The opti-
mization procedure is based on particle swarm optimization (PSO),
wherein the authors specify which parameters should be optimized
(e.g., kernel function and complexity constant for SVM) and the
range of values that PSO should consider. We obtained the data from
the authors and reproduced their results, with two small exceptions:
1) we found that one of the datasets in the list was redundant, so we
removed it; and 2) our dataset characterization tool (see below) did
not terminate on two of the datasets after several days so we stopped
it, and omitted the corresponding datasets from our study. Hence, the
results here are for 463 datasets. For each dataset, Figure 1 shows the
percentage of improvement of the best AUC score among 20 clas-
sification learning algorithms after parameter optimization over the
best AUC score among the same classification learning algorithms
with their default parameter setting. The data is ordered by increas-
ing value of improvement.

0 100 200 300 400

0
5

10
15

20

%
 Im

pr
ov

em
en

t

Figure 1. Impact of Parameter Optimization on 463 Datasets

Figure 1 makes it clear that the impact of parameter optimization

is highly variable across datasets, and seems to be rather small for
a large number of them. We are a little surprised that with such a
skewed distribution, the authors of [23] concluded that “the result
demonstrates the benefit of using the performances of optimised al-
gorithms for generating algorithm rankings”, and thus carried on
with a blanket application of their combined classification learning
algorithm / parameter setting selection approach.

To make the relationship even clearer, consider Figure 2 that shows
the cumulative distribution of the same datasets, where each succes-
sive bar represents the proportion of datasets for which the improve-
ment in AUC due to parameter optimization is less than or equal to
the value indicated on the x-axis in increments of 1%.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
20

40
60

80
10

0

Figure 2. Cumulative Distribution of the Impact of Parameter
Optimization on 463 Datasets

According to Figure 2, for 19% of the datasets considered parame-
ter optimization offers no gain in performance. The ascent is actually
very steep, as shown by the shaded portion of the distribution, reach-
ing 80% of the datasets for an improvement in performance of no
more than 5%. From 0% to 5%, the relationship is virtually linear
(r=0.999) with a slope of 12. These results seem robust as an inde-
pendent analysis of 129 datasets and 9 classification learning algo-
rithms reveals that there is no gain in performance with optimization
for about 15% of the datasets and 96% of the datasets exhibit less
than 5% improvement.5

We note that the above analysis was not performed on a per-
algorithm basis. As stated, the differences in performance are com-
puted from among the best in 20 algorithms, which means that the
best optimized version could be obtained with algorithm A, while
the best default version for the same dataset would be obtained with
algorithm B. It is possible, however, that some classification learn-
ing algorithms are more sensitive to parameter settings and may thus
be more likely to exhibit significant differences with parameter op-
timization. It may be worthwhile in a future study to consider such
algorithm-level variation. In spite of this limitation, several conclu-
sions seem inescapable from the foregoing analysis:

1. Parameter optimization does not improve performance uniformly
across datasets.

5 There may be some overlap in the datasets used in this study and those used
in [23], although the datasets were not transformed into binary classification
tasks in the former as they were in the latter.

2. For many datasets, parameter optimization yields very little im-
provement and may be viewed as computational overkill.

3. For a few datasets, parameter optimization makes a significant dif-
ference and should thus be performed.

From a practitioner’s standpoint, the last two conclusions are par-
ticularly relevant. If no improvement is to be expected from parame-
ter optimization, then one would gladly save the extra computational
time required to effect it. Conversely, if a significant improvement
can be expected and one is focused on maximizing predictive accu-
racy, then one would be willing to bear the extra cost. The question
then, for such practitioners, is: Will the predictive accuracy on the
classification learning task I am considering be improved by param-
eter optimization?

It should be obvious to machine learning researchers that if one
labels the datasets falling under conclusion 2 above as no advantage
and the datasets falling under conclusion 3 as advantage, one obtains
a training dataset for a classification learning task. We propose to
do exactly that and essentially take our own medicine, by applying
machine learning to the problem of distinguishing between datasets
that may benefit from parameter optimization and datasets that would
not. Because our data consists of information about the performance
of learning algorithms, this is an instance of metalearning.

3 Metalearning the Impact of Parameter
Optimization

As per standard metalearning practice, we build our training meta-
data by characterizing each of our 463 datasets by a set of meta-
features. However, because smaller datasets may produce unreliable
meta-features, we remove from the analysis all of the datasets con-
taining less than 100 instances. This leaves us with 326 datasets.

We use an existing R script that, for each dataset, creates a meta-
feature vector by extracting over 68 meta-features, including statis-
tical and information-theoretic meta-features, landmarkers, model-
based meta-features, and timing information [18]. Prior to our exper-
iments, we manually remove a number of meta-features that carry
little information in this context (e.g., timing data, model-based
meta-features, redundant meta-features). In each experiment, we also
use correlation-based feature subset selection (CFS) [11], as imple-
mented by the function CfsSubsetEval in Weka [12], to further
reduce the number of meta-features.

The metalearning task consists in distinguishing datasets where
parameter optimization is deemed to offer no advantage (class 0)
from datasets where parameter optimization is likely to yield a per-
formance advantage (class 1). Each meta-feature vector is labeled
appropriately based on the observed difference in performance over
its corresponding dataset. We use various threshold values to separate
class 1 from class 0, as shown below.

There are two types of error our (meta)models can make. A false
positive (FP) error is made when the model considers a class 0 dataset
but labels it as class 1. When this happens, there is wasted effort in
performing parameter optimization when no significant gain will be
achieved by such optimization. Conversely, a false negative (FN) er-
ror is made when the model considers a class 1 dataset but labels
it as class 0. When this happens, valuable parameter optimization is
omitted and there is a resulting loss in predictive accuracy in the clas-
sification task under consideration. Assuming that a practitioner’s ul-
timate goal is to get the best accuracy possible on their specific clas-
sification task, one can argue that FN errors are more costly than FP
errors, and thus should be minimized. This is, of course, is equiva-
lent to maximizing recall, R = TP

TP+FN
(where TP is the number of

true positive classifications). Yet, one must be careful as it is trivial
to maximize R by simply assigning all classification tasks to class 1.
Clearly, this would defeat the purpose of the model and is unaccept-
able due to the unnecessary computational burden it places on the
system. Hence, we focus on obtaining models with high recall, but
also good precision, P = TP

TP+FP
.

We are faced at the metalevel with the same challenge of select-
ing a (meta)learning algorithm adequate for the task at hand. We are
guided here by a desire for comprehensibility of the induced model
and the results of preliminary experiments. Hence, we use for our
metalearner, a decision tree learning algorithm, specifically Weka’s
J48, and implement the training and testing processes in Rapid-
Miner [15]. Interestingly, J48 also resulted in higher accuracy than
other algorithms such as SVM and Random Forest.

3.1 Threshold = 1.5
We begin by setting the threshold relatively low, assuming that there
is an advantage to parameter optimization if the performance im-
provement exceeds 1.5%.

The default accuracy in this case is 61.96%, obtained by predict-
ing class 1 uniformly. This, of course, produces maximum recall,
R=100%, but very poor precision, P=61.96%.

Applying CFS selects the following mixed set of meta-features:
attributes, kurtosis, joint entropy, NB, LDA and NN1.
Further experimentation shows that performance can be improved
still by using only joint entropy, NB and NN1. The confusion
matrix is as follows.

Predicted
0 1

Actual 0 84 40
1 28 174

This yields an accuracy of 79.17%, significantly above default,
with both high recall R=86.14% and high precision P=81.31%. The
decision tree is shown below.

nn_1 <= 0.902439
| joint_entropy <= 0.606044: 0 (14.0/2.0)
| joint_entropy > 0.606044
| | naive_bayes <= 0.952: 1 (208.0/30.0)
| | naive_bayes > 0.952
| | | nn_1 <= 0.71134
| | | | joint_entropy <= 2.08461: 0 (2.0)
| | | | joint_entropy > 2.08461: 1 (5.0)
| | | nn_1 > 0.71134: 0 (12.0/2.0)
nn_1 > 0.902439: 0 (85.0/15.0)

To further test the metamodel, we collected 42 independent
datasets with more than 100 instances each. It is possible that some
of these correspond to some of the tasks used in the training data.
However, all 463 training tasks have been binarized [23], while these
were left untouched. Hence, we are training on 2-class datasets and
testing on n-class datasets, which may be somewhat unfair, but still
interesting.

We extracted the meta-features of the 42 datasets, and ran the cor-
responding meta-feature vectors against the metamodel.6 The accu-
racy on the test datasets is 54.76%, which is rather poor given a de-
fault accuracy of 73.81%. However, the default is obtained by pre-
dicting class 0 uniformly. While the test accuracy is not very good,

6 As the results for the test datasets were obtained with a different set of
classification learning algorithms and a different parameter optimization
procedure, we are not entirely sure the comparison is fair. Yet, we feel there
is value in including these results.

recall is very high at R=90.91% (compared to R=0 for the default),
with 10 of the 11 datasets of class 1 being predicted in class 1. This
suggests that the model has picked up useful information to identify
learning tasks where parameter optimization would be advantageous
(i.e., expected improvement greater than 1.5%).

In addition to its own performance at the metalevel, we consider
how the metamodel affects performance at the base level. To do so,
we compare maxImp, the total amount of possible improvement
due to parameter optimization to predImp, the amount of improve-
ment one would obtain by using the metamodel. For each dataset d,
let ld be d’s label, pd be d’s predicted class, and Id be the improve-
ment one would experience if parameter optimization were used with
d. Then,

maxImp =
∑
d

Id

i.e., maxImp is the sum of the individual improvement values across
all of our 326 datasets. Here, maxImp = 949.26. Similarly,

predImp =
∑
d

{
Id if (pd = ld) ∧ (ld = 1)
0 otherwise

i.e., predImp is the sum of the improvement values for all datasets
where the metamodel makes the correct class 1 prediction. We do
not include correct class 0 predictions as these would artificially in-
flate the results. Here, predImp = 789.92. Hence, the metamodel
would allow us to claim 83.21% of the total performance improve-
ment available at the base level.

3.2 Threshold=2.5
We next raise the threshold, assuming that there is an advantage
to parameter optimization if the performance improvement exceeds
2.5%.

The default accuracy in this case is 50.31%, obtained by predicting
class 1 uniformly. This, again, produces maximum recall, R=100%,
but very poor precision, P=50.31%.

Applying CFS selects the following mixed set of meta-features:
kurtosis prep, normalized attribute entropy,
joint entropy, NB, LDA, stump min gain and NN1. Fur-
ther experimentation shows that performance can be improved still
by using only kurtosis prep, normalized attribute
entropy, joint entropy, NB and NN1. The confusion matrix
is as follows.

Predicted
0 1

Actual 0 105 57
1 26 138

This yields an accuracy of 74.52%, significantly above default,
with both high recall R=84.15% and high precision P=70.77%. The
decision tree is shown below.
nn_1 <= 0.857143
| joint_entropy <= 0.606044
| | joint_entropy <= 0.508598
| | | kurtosis_prep <= 26.479217: 1 (2.0)
| | | kurtosis_prep > 26.479217: 0 (2.0)
| | joint_entropy > 0.508598: 0 (8.0)
| joint_entropy > 0.606044
| | naive_bayes <= 0.969466: 1 (194.0/49.0)
| | naive_bayes > 0.969466
| | | normalized_attribute_entropy <= 0.84991
| | | | kurtosis_prep <= 45.518635: 0 (2.0)
| | | | kurtosis_prep > 45.518635: 1 (2.0)
| | | normalized_attribute_entropy > 0.84991: 0 (7.0)
nn_1 > 0.857143: 0 (109.0/15.0)

As with the threshold value of 1.5, using the metamodel against
the test datasets produces poor accuracy (35.71% for a default of
88.10%), but recall is significantly better with R=60% (3 of the 5
datasets in class 1 are predicted correctly) against a default of R=0.

Considering performance at the base level, we have here
predImp = 698.61, so that the metamodel would allow us to still
claim 73.60% of the total performance improvement available.

3.3 Larger Threshold Values

Based on the distribution of performance improvements, raising the
threshold will cause the majority class to shift to 0 and result in far
fewer class 1 datasets. On the other hand, while fewer, correctly iden-
tifying these datasets offers the highest benefit to the practitioner as
the expected improvement in accuracy with parameter optimization
is rather significant. However, the metalearning task is also more dif-
ficult as the class distribution of the training data is rather skewed.

Setting the threshold to 5.0% results in a default accuracy of
83.44% with a model that predicts class 0 uniformly. While it was
not possible in this case to improve on the default accuracy with
the available set of meta-features, recall rose to R=25.94% (10 of
the 54 datasets in class 1 are predicted correctly). Interestingly, CFS
selected LDA and NN1, and while the tree induced without feature
selection is a little larger than the previous ones, it also splits on NN1
at the root node. Using the metamodel against the test datasets pro-
duces reasonable accuracy (76.19%) but only because the test data is
skewed in favor of class 0. Only two datasets belong to class 1 and
neither is predicted correctly.

Setting the threshold to 10.0% results in a default accuracy of
96.93% again with a model that predicts class 0 uniformly. Only 10
datasets belong to class 1, making for a very imbalanced class dis-
tribution. Using all the meta-features, the induced decision tree has a
slightly improved accuracy (97.85%), with recall R=30%. The root
of the tree is mutual information. There are no datasets in our
test set for which the improvement with parameter optimization ex-
ceeds 10%.

4 Discussion

As mentioned previously, one of the biggest issues with parameter
optimization is the amount of time it takes to optimize the param-
eters. In [24], it took 6,000 single core CPU hours to optimize the
parameters of all their datasets, which means that it took on average
about 13 hours per dataset. For obvious reasons, a practitioner would
probably not wish to wait for that amount of time when it may result
in little or no improvement from the models baseline performance.

What this short study demonstrates is that it is possible to predict,
with good recall value, whether parameter optimization will signifi-
cantly increase a classification learning models accuracy by using the
metafeatures of any particular dataset, which are less computation-
ally intensive than the parameter optimization procedure. Of course,
as the threshold increases, or as the expected performance improve-
ment gets larger, the prediction becomes less accurate. Nevertheless,
it is better than default.

One of the unexpected findings of our study, valid across almost
all metamodels, is that the root node of the decision tree is NN1. In
other words, a dataset’s performance on NN1 is indicative of whether
parameter optimization will significantly improve the performance
of learning algorithms trained against it. There are at least two in-
teresting things about this finding. First, it confirms prior work on

metalearning that suggest that landmarking meta-features are gen-
erally better than other meta-features, especially NN1 and NB [20].
Second, and significantly more valuable, is that NN1 is a very ef-
ficient algorithm, suggesting that it would be very fast to determine
whether parameter optimization is likely to improve accuracy for any
dataset.

To further test the predictive power of NN1, we ran Weka’s linear
regression on our dataset, without CFS, and with the target set to the
actual percentage of accuracy improvement (Imp) observed for each
dataset. The resulting model is shown below.

Imp =
11.4405 * class_prob_min +
0.1626 * skewness_prep +

-0.0051 * kurtosis_prep +
-2.003 * cancor_1 +
-6.3391 * class_entropy +
-8.2398 * mutual_information +
-0.0008 * noise_signal_ratio +
-0.5321 * attribute_mean +
-5.7852 * stump_min +
-4.8382 * stump_max +
13.3081 * stump_mean +
8.4397 * stump_sd +
3.3769 * stump_min_gain +

-7.5918 * nn_1 +
6.4233

The correlation coefficient of the model is 0.40, and the relatively
large multiplicative factor associated with NN1 in the model suggests
its influence on the value of Imp. Furthermore, if we regress Imp on
NN1 alone, we obtain the following very simple model.

Imp =
-8.3476 * nn_1 +
9.3173

The correlation coefficient of this simpler model is 0.44. There is
still error in this model, and it will be interesting to see whether using
only the NN1 metafeature could in general reasonably predict the
datasets improvement if classification learning algorithm parameters
are optimized.

5 Conclusion
We have showed that the observed improvement in performance
due to parameter optimization in classification learning has a rather
skewed distribution, with most datasets seeing none or very little im-
provement. However, there remains a portion of datasets for which
parameter optimization has a significant impact. We have used met-
alearning to build a model capable of predicting whether parameter
optimization can be expected to improve classification accuracy. As
a result, it would seem that both current approaches to metalearn-
ing, the one that ignores parameter optimization and considers only
default settings, and the other that applies parameter optimization in
all cases, are misinformed. Instead, a two-phase approach where one
first determines whether parameter optimization is likely to produce
an improvement, and then if so applies it, is more appropriate.

Furthermore, one unexpected and very interesting side effect of
our metalearning study is that our results show that good recall can be
achieved at the metalevel, and that, with a very small set of efficient
meta-features. In particular, it would appear that NN1 may serve as a
great landmarker in this context.

For future work, it may be valuable to revisit error costs. In par-
ticular, we have argued here that FN errors were more costly than
FP errors on the basis that practitioners are likely to wish to obtain
the highest possible accuracy on their classification tasks. This is cer-
tainly also true when the computational cost of parameter optimiza-
tion is prohibitive. Were computational cost not to matter, the best
decision would be to always perform parameter optimization, and

there would consequently be no need for a metamodel. In practice,
however, it is well-known that parameter optimization is computa-
tionally intensive. As a result, FP errors may actually be rather costly,
and possibly even more so than FN errors. In any case, there would
seem to exist a range of operating conditions between these extremes,
or different cost-benefits between FN and FP associated with param-
eter optimization. It may be interesting to perform a cost-sensitive
analysis at the metalevel, for example, relating expected gain in per-
formance (or threshold) and incurred cost. We cannot do this with
the data available since we only have final performance improvement
(after some fixed search time). We would need to re-run experiments
to gather information about improvement over time allowed for opti-
mization.

REFERENCES
[1] Bensusan, H. (1998). Odd Bites into Bananas Don’t Make You Blind:

Learning about Simplicity and Attribute Addition. In Proceedings of
the ECML’98 Workshop on Upgrading Learning to the Meta-level:
Model Selection and Data Transformation, 30-42.

[2] Bensusan, H. and Giraud-Carrier, C. (2000). Discovering Task Neigh-
bourhoods through Landmark Learning Performances. In Proceedings
of the Fourth European Conference on Principles and Practice of
Knowledge Discovery in Databases, LNAI 1910, 325-330.

[3] Bensusan, H., Giraud-Carrier, C. and Kennedy, C. (2000). A Higher-
order Approach to Meta-learning. In Proceedings of the ECML-2000
Workshop on Meta-learning: Building Automatic Advice Strategies for
Model Selection and Method Combination, 109-118.

[4] Bensusan, H. and Kalousis, A. (2001). Estimating the Predictive Accu-
racy of a Classifier. In Proceedings of the Twelfth European Conference
on Machine Learning (LNCS 2167), 25-36.

[5] Brazdil, P., Soares, C. and Pinto da Costa, J. (2003). Ranking Learn-
ing Algorithms: Using IBL and Meta-Learning on Accuracy and Time
Results. Machine Learning, 50(3):251-277.

[6] Brazdil, P., Giraud-Carrier, C., Soares, C. and Vilalta, R. (2009). Met-
alearning: Applications to Data Mining, Springer.

[7] Engels, R. and Theusinger, C. (1998). Using a Data Metric for Offering
Preprocessing Advice in Data-mining Applications. In Proceedings of
the Thirteenth European Conference on Artificial Intelligence, 430-434.

[8] Fuernkranz, J. and Petrak, J. (2001). An Evaluation of Landmarking
Variants. In Proceedings of the ECML/PKDD-01 Workshop on Inte-
grating Aspects of Data Mining, Decision Support and Meta-learning,
57-68.

[9] Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D. and Car-
valho, A. (2012). Combining Meta-learning and Search Techniques to
Select Parameters for Support Vector Machines. Neurocomputing, 75:3-
13.

[10] Guerra, S.B., Prudêncio, R.B.C. and Ludermir, T.B. (2008). Predicting
the Performance of Learning Algorithms Using Support Vector Ma-
chines as Meta-regressors. In Proceedings of the Eighteenth Interna-
tional Conference on Artificial Neural Networks (LNCS 5163), 523-
532.

[11] Hall, M.A. (1999). Correlation-based Feature Subset Selection for Ma-
chine Learning. PhD Thesis, Department of Computer Science, The
University of Waikato, Hamilton, New Zealand.

[12] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and
Witten, I.H. (2009). The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1):10-18.

[13] Leite, R., Brazdil, P. and Vanschoren, J. (2012). Selecting Classification
Algorithms with Active Testing. In Proceedings of the Eighth Interna-
tional Conference on Machine Learning and Data Mining in Pattern
Recognition (LNCS 7376), 117-131.

[14] Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (1994). Machine Learn-
ing, Neural and Statistical Classification, Ellis Horwood.

[15] North, M. (2012). Data Mining for the Masses, Global Textbook
Project.

[16] Peng, Y., Flach, P.A., Brazdil, P. and Soares, C. (2002). Improved Data
Set Characterisation for Meta-learning. In Proceedings of the Fifth In-
ternational Conference on Discovery Science, 141-152.

[17] Pfahringer, B., Bensusan, H. and Giraud-Carrier, C. (2000). Meta-
learning by Landmarking Various Learning Algorithms. In Proceed-

ings of the Seventeenth International Conference on Machine Learning,
743-750.

[18] Reif, M. (2012). A Comprehensive Dataset for Evaluating Approaches
of various Meta-Learning Tasks. In Proceedings of the First Interna-
tional Conference on Pattern Recognition Applications and Methods,
273-276.

[19] Reif, M., Shafait, F. and Dengel, A. (2012). Meta-learning for Evo-
lutionary Parameter Optimization of Classifiers. Machine Learning,
87(3):357-380.

[20] Reif, M., Shafait, F., Goldstein, M., Breuel, T. and Dengel, A. (2014).
Automatic Classifier Selection for Non-experts. Pattern Analysis & Ap-
plications, 17(1):83-96.

[21] Smith, M.R., Mitchell, L., Giraud-Carrier, C. and Martinez, T. (2014).
Recommending Learning Algorithms and Their Associated Hyperpa-
rameters. Submitted.

[22] Sohn, S.Y. (1999). Meta Analysis of Classification Algorithms for Pat-
tern Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1137-1144.

[23] Sun, Q. and Pfahringer, B. (2013). Pairwise Meta-rules for Better Meta-
learning-based Algorithm Ranking. Machine Learning, 93(1):141-161.

[24] Thornton, C., Hutter, F., Hoos, H.H. and Leyton-Brown, K. (2013).
Auto-WEKA: Combined Selection and Hyperparameter Optimization
of Classification Algorithms. In Proceedings of the Nineteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 847-855.

