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Abstract. The success of machine learning on a given task dependaork has begun to consider them in tandem. For example, Auto-

on, among other things, which learning algorithm is sekbeted its
associated hyperparameters. Selecting an appropriatenigaalgo-
rithm and setting its hyperparameters for a given data seteaa
challenging task, especially for users who are not expertssachine
learning. Previous work has examined using meta-featorpeetict
which learning algorithm and hyperparameters should be. uisaw-

ever, choosing a set of meta-features that are predictiaggofithm
performance is difficult. Here, we propose to apply collalbige fil-

tering techniques to learning algorithm and hyperparamsdéec-
tion, and find that doing so avoids determining which metdtfees
to use and outperforms traditional meta-learning appresghmany
cases.

1

Most previous meta-learning work has focused on selectiegrma-
ing algorithm or a set of hyperparameters based on metarésat
used to characterize datasets [5]. As such, it can be viewed a
form of content-based filtering, a technique commonly-useatc-
ommender systems that captures a set of measured chatcgeri
of an item and/or user to recommend items with similar charac
istics. On the other hand, collaborative filtering (CF)oalsed by
some recommender systems, predicts the rating or prefetbata

Introduction

WEKA simultaneously chooses a learning algorithm and dsts i
hyperparameters using Bayesian optimization over a treetared
representation of the combined space of learning algosittama their
hyperparameters [16]. All of these approaches face theudlifithal-
lenge of determining a set of meta-features that captuezaet and
predictive characteristics of datasets. By contrast, MGEsdcon-
sider both algorithm selection and hyperparameter setttngnce,
but alleviates the problem of meta-feature selection bgrieying in-
formation from previous experiments through collaboafiltering.

Our results suggest that using MCF for learning algo-
rithm/hyperparameter setting recommendation is a progidirec-
tion. Using MCF for algorithm recommendation has some diffe
ences from the traditional CF used for human ratings. Fomeia,
CF for humans may have to deal with concept drift, where a'siser
taste may change over time; working with learning algorihand
hyperparameter settings is deterministic.

2 Empirical Evaluation

For MCF, we examine several CF techniques implemented in the
Waffles toolkit [6]: baseline (predict the mean of the prexgly seen
results), Fuzzy K-Means (FKM) [11], Matrix Factorizatiod) [9],
Nonlinear PCA (NLPCA) [13], and Unsupervised Backpropamat

user would give to an item, based on the past behavior of afset QuUBP) [7].

users, characterized by ratings assigned by users to aisainsf[9].
The underlying assumption of CF is that if usetsand B agree on
some issues, then uséris more likely to have the same opinion
on a new issueX as userB than another randomly chosen user. A
key advantage of CF is that it does not rely on directly mestser
characteristics of the items. Thus, it is capable of modetimmplex
items without actually understanding the items themselves

Here, we proposeneta-CF (MCF) a novel approach to meta-
learning that applies CF in the context of algorithm and/gppér-
parameter selection. MCF differs from most previous metating
techniques in that it does not rely on meta-features. IdstseCF
considers the similarity of the performance of the learmilyprithms
with their associated hyperparameter settings from ptevaxperi-
ments. In this sense, the approach is more similar to larkdntal 2]
and active testing [10] since both also use the performaeselts
from previous experiments to determine similarity amon@gdets.

While algorithm selection and hyperparameter optimizatiave
been mostly studied in isolation (e.g., see [12, 4, 1, 2, B, t&cent
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To establish a baseline, we first calculate the accuracy @t a s
of 125 data sets and 9 diverse learning algorithms (see [r4a f
discussion on diversity) with default parameters as set ékaN8].
The set of learning algorithms is composed of backpropagdBP),
C4.5,kNN, locally weight learning (LWL), naive Bayes (NB), near-
est neighbor with generalization (NNge), random forest)(RiEor
(Rid), and RIPPER (RIP). We select the accuracy from thenlegr
algorithm that produces the highest classification acguiius rep-
resents algorithm selection with perfect recall. We alsorese the
hyperparameter optimized accuracies for each learnirgittign us-
ing random hyperparameter optimization [3]. The resuléssirown
in Table 1, where the accuracy from each learning algorithitiné
average hyperparameter optimized accuracy for each datdDse
fault” refers to the best accuracy from the learning aldnitvith its
default parameters, “ALL" refers to the accuracy from thetbbearn-
ing algorithm and hyperparameter setting, and “AW” referghe
results from running Auto-WEKA. For Auto-WEKA, each datase
was allowed to run as long as the longest algorithm took toomn
the dataset when doing the random hyperparameter optionizéts
Auto-WEKA is a random algorithm, we ran 4 runs each time with a
different seed and chose the seed with highest accuracy.céhibe
seen as equivalent to allowing a user to run on average 1Gihgar
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to meta-learning where a learning algorithm recommendaraileg

algorithm based on a set of meta-features.

Table2. Average accuracy from the best of the top 4 recommended
learning algorithm and hyperparameter settings from MCF.
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Overall, MF achieves the highest accuracy values. The teféec
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ing the meta-features to predict which learning algoritimd hyper-
parameters to use. On average, MCF and Auto-WEKA achieve sim
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learning algorithm and its associated hyperparameters.
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not explore unknown spaces at all. One way to overcome thigali
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content-based filtering and MCF.
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