
Recommending Learning Algorithms and
Their Associated Hyperparameters

Michael R. Smith1 and Logan Mitchell2 and Christophe Giraud-Carrier3 and Tony Martinez4

Abstract. The success of machine learning on a given task depends
on, among other things, which learning algorithm is selected and its
associated hyperparameters. Selecting an appropriate learning algo-
rithm and setting its hyperparameters for a given data set can be a
challenging task, especially for users who are not experts in machine
learning. Previous work has examined using meta-features to predict
which learning algorithm and hyperparameters should be used. How-
ever, choosing a set of meta-features that are predictive ofalgorithm
performance is difficult. Here, we propose to apply collaborative fil-
tering techniques to learning algorithm and hyperparameter selec-
tion, and find that doing so avoids determining which meta-features
to use and outperforms traditional meta-learning approaches in many
cases.

1 Introduction

Most previous meta-learning work has focused on selecting alearn-
ing algorithm or a set of hyperparameters based on meta-features
used to characterize datasets [5]. As such, it can be viewed as a
form of content-based filtering, a technique commonly-usedin rec-
ommender systems that captures a set of measured characteristics
of an item and/or user to recommend items with similar character-
istics. On the other hand, collaborative filtering (CF), also used by
some recommender systems, predicts the rating or preference that a
user would give to an item, based on the past behavior of a set of
users, characterized by ratings assigned by users to a set ofitems [9].
The underlying assumption of CF is that if usersA andB agree on
some issues, then userA is more likely to have the same opinion
on a new issueX as userB than another randomly chosen user. A
key advantage of CF is that it does not rely on directly measurable
characteristics of the items. Thus, it is capable of modeling complex
items without actually understanding the items themselves.

Here, we proposemeta-CF (MCF) a novel approach to meta-
learning that applies CF in the context of algorithm and/or hyper-
parameter selection. MCF differs from most previous meta-learning
techniques in that it does not rely on meta-features. Instead, MCF
considers the similarity of the performance of the learningalgorithms
with their associated hyperparameter settings from previous experi-
ments. In this sense, the approach is more similar to landmarking [12]
and active testing [10] since both also use the performance results
from previous experiments to determine similarity among data sets.

While algorithm selection and hyperparameter optimization have
been mostly studied in isolation (e.g., see [12, 4, 1, 2, 3, 15]), recent

1 Brigham Young University, USA, email: msmith@axon.cs.byu.edu
2 Brigham Young University, USA, email: mitchlam711@gmail.com
3 Brigham Young University, USA, email: cgc@cs.byu.edu
4 Brigham Young University, USA, email: martinez@cs.byu.edu

work has begun to consider them in tandem. For example, Auto-
WEKA simultaneously chooses a learning algorithm and sets its
hyperparameters using Bayesian optimization over a tree-structured
representation of the combined space of learning algorithms and their
hyperparameters [16]. All of these approaches face the difficult chal-
lenge of determining a set of meta-features that capture relevant and
predictive characteristics of datasets. By contrast, MCF does con-
sider both algorithm selection and hyperparameter settingat once,
but alleviates the problem of meta-feature selection by leveraging in-
formation from previous experiments through collaborative filtering.

Our results suggest that using MCF for learning algo-
rithm/hyperparameter setting recommendation is a promising direc-
tion. Using MCF for algorithm recommendation has some differ-
ences from the traditional CF used for human ratings. For example,
CF for humans may have to deal with concept drift, where a user’s
taste may change over time; working with learning algorithms and
hyperparameter settings is deterministic.

2 Empirical Evaluation

For MCF, we examine several CF techniques implemented in the
Waffles toolkit [6]: baseline (predict the mean of the previously seen
results), Fuzzy K-Means (FKM) [11], Matrix Factorization (MF) [9],
Nonlinear PCA (NLPCA) [13], and Unsupervised Backpropagation
(UBP) [7].

To establish a baseline, we first calculate the accuracy on a set
of 125 data sets and 9 diverse learning algorithms (see [14] for a
discussion on diversity) with default parameters as set in Weka [8].
The set of learning algorithms is composed of backpropagation (BP),
C4.5,kNN, locally weight learning (LWL), naı̈ve Bayes (NB), near-
est neighbor with generalization (NNge), random forest (RF), ridor
(Rid), and RIPPER (RIP). We select the accuracy from the learning
algorithm that produces the highest classification accuracy. This rep-
resents algorithm selection with perfect recall. We also estimate the
hyperparameter optimized accuracies for each learning algorithm us-
ing random hyperparameter optimization [3]. The results are shown
in Table 1, where the accuracy from each learning algorithm is the
average hyperparameter optimized accuracy for each data set, “De-
fault” refers to the best accuracy from the learning algorithm with its
default parameters, “ALL” refers to the accuracy from the best learn-
ing algorithm and hyperparameter setting, and “AW” refers to the
results from running Auto-WEKA. For Auto-WEKA, each dataset
was allowed to run as long as the longest algorithm took to runon
the dataset when doing the random hyperparameter optimization. As
Auto-WEKA is a random algorithm, we ran 4 runs each time with a
different seed and chose the seed with highest accuracy. This can be
seen as equivalent to allowing a user to run on average 16 learning



algorithm and hyperparameter combinations on a data set.

Table 1. Average accuracy for the best hyperparameter setting for each
learning algorithm, algorithm selection (Default), both algorithm selection

and hyperparameter optimization (ALL), and Auto-WEKA (AW).
BP C4.5 kNN LWL NB NNge

79.89 79.22 78.05 77.48 76.04 76.80

RF Rid RIP Default ALL AW

79.58 71.48 77.31 81.93 83.00 82.00

For MCF, we compiled the results from hyperparameter optimiza-
tion. We randomly removed 10% to 90% of the results by increments
of 10% and then used MCF to fill in the missing values. The top
4 learning algorithm/hyperparameter configurations are returned by
the CF technique and the accuracy from the configuration thatreturns
the highest classification accuracy is used. This process was repeated
10 times. A summary of the average results for MCF are provided in
Table 2. The columns “Best”, “Median”, and “Average” refer to the
accuracies averaged across all of the sparsity levels for the hyperpa-
rameter setting for the CF technique that provided the results. The
columns 0.1 to 0.9 refer to the percentage of the results usedfor CF
averaged over the hyperparameter settings. The row “Content” refers
to meta-learning where a learning algorithm recommends a learning
algorithm based on a set of meta-features.

Table 2. Average accuracy from the best of the top 4 recommended
learning algorithm and hyperparameter settings from MCF.

Best Med Ave 0.1 0.3 0.5 0.7 0.9

Baseline 81.11 81.11 81.11 80.49 80.91 81.12 81.33 81.54
FKM 81.52 81.04 81.29 80.13 80.65 81.07 81.45 81.88
MF 82.12 82.06 81.95 80.49 81.63 82.12 82.44 82.65
NLPCA 81.73 81.33 81.33 79.98 80.58 81.43 82.08 82.61
UBP 81.73 81.27 81.31 80.05 80.51 81.34 82.05 82.61

Content 81.35 80.47 78.91 - - - - -

Overall, MF achieves the highest accuracy values. The effective-
ness of MCF increases as the percentage of the results increases.
MCF significantly increases the classification accuracy compared
with both hyperparameter optimization for a given learningalgo-
rithm and model selection with their default parameters as well as us-
ing the meta-features to predict which learning algorithm and hyper-
parameters to use. On average, MCF and Auto-WEKA achieve sim-
ilar accuracy, which highlights the importance of considering both
algorithm selection and hyperparameter optimization. However, pro-
vided one has access to a database of experiments, such as theEx-
perimentDB [17], MCF only requires the time to run a number of
algorithms (often ran in parallel), and retraining the collaborative fil-
ter. In the current implementation, retraining takes less than 10 sec-
onds. Thus, MCF presents an efficient method for recommending a
learning algorithm and its associated hyperparameters.

While our results show that MCF is a viable technique for rec-
ommending learning algorithmsand hyperparameters, some work
remains to be done. Future work for MCF includes addressing the
cold-start problem which occurs when a data set is presentedand no
learning algorithm has been ran on it. MCF is adept at exploiting the
space that has already been explored, but (like active testing) it does
not explore unknown spaces at all. One way to overcome this limita-
tion would be to use a hybrid recommendation system that combines
content-based filtering and MCF.

REFERENCES
[1] S. Ali and K.A. Smith, ‘On Learning Algorithm Selection for Classifi-

cation’, Applied Soft Computing, 62, 119–138, (2006).
[2] S. Ali and K.A. Smith-Miles, ‘A Meta-learning Approach to Automatic

Kernel Selection for Support Vector Machines’,Neurocomputing, 70,
173–186, (2006).

[3] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter op-
timization’, Journal of Machine Learning Research, 13, 281–305,
(2012).

[4] P. B. Brazdil, C. Soares, and J. Pinto Da Costa, ‘Ranking learning al-
gorithms: Using IBL and meta-learning on accuracy and time results’,
Machine Learning, 50(3), 251–277, (2003).

[5] P. Brazdil and C. Giraud-Carrier and C. Soares and R. Vilalta, ‘Met-
alearning: Applications to Data Mining’, Springer, (2009).

[6] M. S. Gashler, ‘Waffles: A machine learning toolkit’,Journal of Ma-
chine Learning Research, MLOSS 12, 2383–2387, (July 2011).

[7] M. S. Gashler, M. R. Smith, R. Morris, and T. Martinez, ‘Missing value
imputation with unsupervised backpropagation’,Computational Intel-
ligence, Accepted, (2014).

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, ‘The weka data mining software: an update’,SIGKDD Explo-
rations Newsletter, 11(1), 10–18, (2009).

[9] Y. Koren, R. Bell, and C. Volinsky, ‘Matrix factorization techniques for
recommender systems’,Computer, 42(8), 30–37, (2009).

[10] R. Leite, P. Brazdil, and J. Vanschoren, ‘Selecting classification algo-
rithms with active testing’, inMachine Learning and Data Mining in
Pattern Recognition, ed., Petra Perner, volume 7376 ofLecture Notes
in Computer Science, 117–131, Springer Berlin / Heidelberg, (2012).

[11] D. Li, J. Deogun, W. Spaulding, and B. Shuart, ‘Towards missing data
imputation: A study of fuzzy k-means clustering method’, inRough
Sets and Current Trends in Computing, volume 3066 ofLecture Notes
in Computer Science, 573–579, Springer Berlin / Heidelberg, (2004).

[12] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier, ‘Meta-learning
by landmarking various learning algorithms’, inProceedings of the
17th International Conference on Machine Learning, pp. 743–750, San
Francisco, CA, USA, (2000). Morgan Kaufmann Publishers Inc.

[13] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, ‘Non-linear
pca: a missing data approach’,Bioinformatics, 21(20), 3887–3895,
(2005).

[14] M. R. Smith, T. Martinez, and C. Giraud-Carrier, ‘An instance level
analysis of data complexity’,Machine Learning, 95(2), 225–256,
(2014).

[15] J. Snoek, H. Larochelle, and R. Adams, ‘Practical bayesian optimiza-
tion of machine learning algorithms’, inAdvances in Neural Informa-
tion Processing Systems 25, eds., F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, 2951–2959, (2012).

[16] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown,‘Auto-weka:
combined selection and hyperparameter optimization of classification
algorithms’, in proceedings of the 19th International Conference on
Knowledge Discovery and Data Mining, pp. 847–855, (2013).

[17] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes, ‘Experiment
databases - a new way to share, organize and learn from experiments’,
Machine Learning, 87(2), 127–158, (2012).


