Determining a proper initial configuration
of Red-Black planning by machine learning

Otakar Trunda and Roman Bartak !

1 INTRODUCTION

Planning deals with finding a sequence of actions that transforms
the world from a given initial state to a state that satisfies a certain
goal condition [8]. For the purposes of this paper we can define a
planning problem simply as a state-transition system where states are
the world states and transitions correspond to application of actions.
States are defined by values of state variables. Let X be the set of
state variables, each variable xz; has a finite domain D; of its possible
values. Then state s is a mapping from X to J, Di. s : X — |J, Ds,
where Vi, s(x;) € D;.

The state space has a form of the Cartesian product of variables’
domains. Space = [D; Every state s € Space has assigned a
(possibly empty) set of its successor states designed succ(s), ev-
ery t € succ(s) is labeled by the action that transforms s to ¢ (i.e.
performing actions changes values of state variables). The task is to
find a path p in this state-transition system that leads from a given
initial state to some state satisfying a goal condition (a goal state).
p = {so0, $1,...,5n}, Where sq is the initial state, s, is some goal
state and VO < i < m : Si+1 € succ(s;). Such a path is called a
solution plan. The goal is to reach a state where some variables have
specified values.

One of the most promising approaches to solve the planning prob-
lem (based on the results of several International Planning Compe-
titions [2]) is heuristic-guided forward search. (Mostly in a form of
A* or a hill-climbing). These approaches make use of a heuristic es-
timation during search and the accuracy of the heuristic estimator has
a great impact on the performance. Hence designing a powerful and
easy-to-compute heuristic is of paramount importance.

Heuristics are usually based on relaxations of the problem. When
estimating the quality of the best solution, we relax the problem by
ignoring some constraints (making the problem easier), then solve
the relaxed problem and use the quality of that solution as a lower
bound on the quality of the best solution to the original problem. In
planning, this principle is represented by the well known delete re-
laxation heuristic and its variants [8, 3, 4]. Heuristics based on this
principle often work well, but in some situations they greatly under-
estimate the real value making them inaccurate (see [6] for example).

Delete relaxation allows the state variables to hold several values
simultaneously, so the relaxed state subsumes several ordinary states.
Furthermore, performing actions (i.e. making transitions) only adds
new elements to the set of values that each variable currently holds
(never removes any value). Hence the set of ordinary states that the
relaxed state subsumes monotonically increases on every path. A
path is a relaxed solution plan if it leads to a relaxed state which

L Charles University in Prague, Faculty of Mathematics and Physics,
email: otakar.trunda@mff.cuni.cz, roman.bartak @ mff.cuni.cz

subsumes some goal state. The length of relaxed plan is then used to
estimate the length of the real plan.

2 RED-BLACK PLANNING

Red-Black planning is a new approach to heuristics design which
generalizes the delete relaxation and compensates for many of its
shortcomings with a reasonable computational effort [7, 6, 5]. It di-
vides the set of state variables into two disjoint subsets - Red and
Black, which are treated differently during the planning. The Red
variables are treated as in the delete relaxation while the Black vari-
ables are not relaxed. If all variables are Red then the heuristic works
same as the delete relaxation.

The authors showed that by the proper selection of Red variables,
we can reduce the underestimation (in most cases) and still keep the
method polynomial. They also observed that the selection of Red
variables has a great impact on the overall performance. While proper
selection leads to good performance, with poor selection the perfor-
mance degrades. Selecting the proper variables, however, appears to
be a hard problem.

The authors performed several tests with intuitive and counter-
intuitive variable selection methods (where intuitive relaxes the least
important variables, while the counter-intuitive method relaxes the
most important variables). It turned out that the counter-intuitive
method often beats the infuitive one (with respect to the time re-
quired for solving the problem) which makes the problem quite un-
predictable. This led the authors to hypothesize that no simple and
efficient method for selecting the variables can be found.

3 OUR METHOD

We believe that different domains require different ways of selecting
the variables. We propose a method based on machine learning that
works as follows: first it creates a set of small sub-problems of the
original problem and then it determines the proper variable selection
for these sub-problems (by enumerating all possibilities). Finally, it
uses the solutions of sub-problems to derive the solution to the orig-
inal problem.

3.1 Creating samples

We create the sub-problems by selecting small subsets of variables
and restricting the original problem to these variables only. The re-
striction has a form of projection which preserves the paths - i.e. if
there is a path from s to ¢ in the original state-transition system, then
there is a path from restriction(s) to restriction(t) in the new
system. Of course, new paths may emerge during the restriction that
were not present before.

Formally, let A be a planning problem as defined earlier, X its
state variables, and Space = [] D; its state space. Then for every
P C X called pattern and every state s € Space we define a restric-
tionof sto Pas s’ : P+ U D;, where Vx; € P, sP(xi) = s(x;).
A restriction of A to a pattern P is a planning problem A" with
state variables P, state space Space’ = HM%EP} D;, and for

s,t € Space®” : s € succ(t) if and only if there exist u, v € Space
such that s = u”,¢t = v* and u € succ(v). The initial state and
goal states of the restricted problem are restrictions of the originals.

In each sub-problem induced by a pattern, we create samples by
enumerating all ways of selecting the Red variables. A sample then
consists of a pair (pattern, selected Red variables).

3.2 Evaluating samples

Let X be the set of state variables of the original planning problem. A
sample g is given in a form ¢ = (P,, Rq), where P, is the pattern and
R, is the set of selected red variables, R, C P, C X. To evaluate
the sample g, we chose the following procedure:

1. Restrict the original problem to the pattern P,

2. Solve the restricted problem by A* with the Red-Black heuristic
using R, as a set of red variables.

3. Measure the time required to perform step 2 in seconds and use it
to evaluate the sample. (Val(q) denotes the value of a sample g.)

We decided to use the run-time to evaluate the sample rather than
other characteristics like heuristic calls or expanded nodes. We be-
lieve that using such characteristics would bias the selection in favor
of large patterns and small Red sets, since such combination would
lead to a very accurate heuristic. However, such heuristic might take
a long time to compute and probably wouldn’t be the best alternative.
Since run-time of the whole process is the criterion we want to
optimize, it seems appropriate to use it to evaluate samples.

3.3 Learning from samples

After evaluating enough samples, we have to select the red variables
for the original problem. In our preliminary experiments, we used the
following simple procedure, but we believe that this phase can yet be
perfected by using more sophisticated approach.

1. Given the set of samples @, a sample ¢ = (Py, R;), divide the
samples to groups by the pattern they use. Qp = {¢ € Q | P, =
P}

2. Select the best sample in each group Qp (one with the lowest
evaluation), and denote its Red set as Best?.

3. For each state variable count how many times it appears in some
Best set. val(z;) = |{BestP | z; € BestPH

4. Select variables with the highest evaluation.

In step four, the number of variables to select can be a fixed con-
stant or a fixed ratio, but we chose a different approach. Suppose
there are n state variables. We sort the variables nonincreasingly by
their evaluation: {1, x2, ...,z }, where val(z;) > val(z;1+1). We
add the first variable and then keep adding more until val(z;) —
val(xig1) > M This stopping criterion should find
the gap between the good variables and the bad variables. We intend
to test other selection policies as well.

Step three can be generalized by introducing weights to the
Best sets. Currently, each Best set has a weight of 1, but larger
patterns give us more information since they are closer to the

original problem. Step three can be modified to val(z;) =
Z{BestmeBest} w(Best), where w is a weight function. We used
w(Best) = | Best|, but different functions are also possible.

Finally, step two can be modified to work with more samples than
just the best one. Imagine that there might be a variable which is
rarely in the best sample, but often in the second best one. This would
still be a good candidate to pick. In step three we would then average
the evaluation of all samples that contain the variable x;, possibly
weighted according to the size of the pattern they use. This modifi-
cation should lead to more accurate results, but it takes more time to
compute. Therefore it is not yet clear whether or not it will improve
the overall performance.

4 CONCLUSIONS AND FUTURE WORK

We present the parameter learning method in a very simple form,
many issues remain unresolved. Preliminary experiments show
promising results, but the method still needs to be adjusted and prop-
erly tested on a larger set of planning domains.

One part we didn’t address yet is the selection of patterns dur-
ing the creation of samples. Unlike typical machine learning appli-
cations, here we can decide what samples we use for the learning.
Patterns should be selected iteratively and the selection should be
based on previous results and should support both exploration and
exploitation. We intend to make use of some Monte-Carlo technique,
possibly Monte-Carlo Tree Search [1]. The method is guaranteed to
converge to optimal solution if patterns are chosen incrementally (as
the size of the pattern grows, the sub-problem converges to the orig-
inal problem). The speed of convergence, however, needs yet to be
determined for various domains.

The proposed method of learning from pattern-induced sub-
problems is not bound to the Red-Black planning heuristic only, but
can be used to gain information about other features of the planning
problem as well. Such information might then help to improve vari-
ous search methods.

ACKNOWLEDGEMENTS

The research is supported by the Grant Agency of Charles University
under contract no. 390214 and it is also supported by SVV project
number 260 104.

REFERENCES

[1] C.B.Browne et al., ‘A survey of monte carlo tree search methods’, Com-
putational Intelligence and Al in Games, IEEE Transactions on, 4(1),
1-43, (March 2012).

[2] ICAPS Competitions. http://ipc.icaps-conference.org, June 2014.

[3] Jorg Hoffmann, ‘Where “ignoring delete lists” works: Local search
topology in planning benchmarks’, J. Artif. Int. Res., 24(1), 685-758,
(November 2005).

[4] Jorg Hoffmann, ‘Where Ignoring Delete Lists Works, Part II: Causal
Graphs’, in 21st International Conference on Automated Planning and
Scheduling, Freiburg, Allemagne, (2011).

[5] Michael Katz and Jorg Hoffmann, ‘Red-black relaxed plan heuristics
reloaded.’, in SOCS, eds., Malte Helmert and Gabriele Rger. AAAI
Press, (2013).

[6] Michael Katz, Jorg Hoffmann, and Carmel Domshlak, ‘Red-black re-
laxed plan heuristics’, in AAAI’13, (2013).

[71 Michael Katz, J6rg Hoffmann, and Carmel Domshlak. Who said we need
to relax all variables?, 2013.

[8] Dana Nau, Malik Ghallab, and Paolo Traverso, Automated Planning:
Theory & Practice, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004.

