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Abstract. The capability of building a model that can be understood
and interpreted by humans is one of the main selling points of sym-
bolic machine learning algorithms, such as rule or decision tree learners.
However, those algorithms are most often optimized w.r.t. classification
accuracy, but not the understandability of the resulting model. In this
paper, we focus on a particular aspect of understandability, i.e., semantic
coherence. We introduce a variant of a separate-and-conquer rule learn-
ing algorithm using a WordNet-based heuristic to learn rules that are
semantically coherent. In an evaluation on di↵erent datasets, we show
that the approach learns rules that are significantly more semantically
coherent, without losing accuracy.

Keywords: Rule Learning, Semantic Coherence, Interpretability, Rule Learn-
ing Heuristics

1 Introduction

Symbolic machine learning approaches, such as rule or decision tree induction,
have the advantage of creating a model that can be understood and interpreted
by human domain experts – unlike statistical models such as Support Vector
Machines. In particular, rule learning is one of the oldest and most intensively
researched fields of machine learning [14].

Despite this advantage, the actual understandability of a learned model has
received only little attention so far. Most learning algorithms are optimized w.r.t.
the classification accuracy, but not understandability. Most often the latter is
measured rather naively by, e.g., the average number of rules and/or conditions
without paying any attention to the relation among them.

The understandability of a rule model comprises di↵erent dimensions. One
of those dimensions is semantic coherence, i.e., the semantic proximity of the
di↵erent conditions in a rule (or across the entire ruleset). Prior experiments
have shown that this coherence has a major impact on the reception of a rule
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model. This notion is similar to the notion of semantic coherence of texts, which
is a key factor to understanding those texts [20].

In a previous user study, we showed di↵erent rules describing the quality
of living in cities to users. The experiments showed that semantically coherent
rules – such as Cities with medium temperatures and low precipitation – are
favored over incoherent rules, such as Cities with medium temperatures where
many music albums have been recorded [27].

In this paper, we discuss how separate-and-conquer rule learning algorithms
[12] can be extended to support the learning of more coherent rules. We introduce
a new heuristic function that combines a standard heuristic (such as Accuracy
or m-Estimate) with a semantic one, and allows for adjusting the weight of
each component. With that weight, we are able to control the trade-o↵ between
classification accuracy and semantic coherence.

The rest of this paper is structured as follows. We begin by briefly introducing
separate-and-conquer rule learning. Next, our approach to learning semantically
coherent rules is detailed. In the following evaluation, we introduce the datasets
and show the results. Here, also some exemplary rules are given, indeed indicat-
ing semantic coherence between the conditions of the rules. After that, related
work is captured. Then, the paper is concluded and future work is shown.

2 Separate-and-Conquer Rule Learning

Separate-and-conquer rule learning is still amongst the most popular strategies
to induce a set of rules that can be used to classify unseen examples, i.e., correctly
map them on their respective classes. How exactly this strategy is implemented
varies among the di↵erent algorithms but most of them fit into the framework of
separate-and-conquer. This led to the development of the so-called SeCo suite
[18], a versatile framework that allows for most existing algorithms to be con-
figured properly. Based on the flexibility and the convenient way to implement
new functions or extensions, we chose this framework for our experiments.

In essence, a separate-and-conquer rule learner proceeds in two major steps:
First, a single rule, that fulfills certain quality criteria, is learned from the data
(this is called the conquer step of the algorithm). Then, all (positive) examples
that are covered by this rule are removed from the dataset (the separate step)
and the algorithm proceeds by learning the next rule until all examples are
covered.

Certainly, this strategy is only usable for binary data as a notion of positive
and negative example is mandatory but then, if desired, it can guarantee that
every positive example is covered (completeness) and no negative one is covered
(consistency). There are di↵erent strategies to convert multi-class datasets to
binary ones. However, in this paper we used an ordered binarization as imple-
mented in the SeCo framework. Therefore, the classes of the dataset are ordered
by their class-frequency and the smallest class is defined to be the positive one
whereas the other ones are treated as negative examples. After the necessary
number of rules to cover the smallest class is learned, all examples from it are
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removed and the next smallest one is defined to be positive while again the rest
of the examples are negative. The algorithm proceeds in this manner until all
classes expect the largest one are covered. The resulting ruleset is a so-called
decision list where for each example that is to be classified the rules are tested
from top to bottom and the first one that covers the example is used for predic-
tion. If, however, no rule covers the example, a default rule at the end of the list
assigns it to the largest class in the dataset.

A single rule is learned in a top-down fashion meaning that it is initialized
as an empty rule and conditions are greedily added one by one until no more
negative examples are covered. Then, the best rule encountered during this pro-
cess is heuristically determined and returned as best rule. Note that this has
not to be the last rule covering no negative example, i.e., consistency due to
reasons of overfitting is not assured. A heuristic, in one way or another, maxi-
mizes the covered positive examples while trying to cover as few negative ones as
possible. The literature shows a wide variety of di↵erent heuristics [13]. For the
experiments conducted in this paper we had to make a selection and chose three
well known heuristics namely Accuracy, Laplace Estimate, and the m-Estimate,
as defined later. We are aware of the restrictions that come with our selection
but we are confident that our findings regarding the semantic coherence are not
subject to a certain type of heuristic but rather are universally valid.

To keep it simple, we used the default algorithm implemented in the SeCo

framework. Namely, the configuration uses a top-down hill-climbing search (a
beam size of one) that refines a rule as long as negative examples are covered.
The learning of rules stops when the best rule covers more negative than positive
examples and the conditions of a rule test for equality (nominal conditions) or
use < and � for numerical conditions. No special pruning or post-processing
of rules is employed. For the m-Estimate, the parameter was set to 22.466 as
suggested in [17].

3 Enabling Semantic Coherence

The key idea of this paper is to enrich the heuristic used for finding the best
condition with a semantic component that additionally to the goal of maximizing
positive examples while minimizing negatives, will incorporate that the selected
condition will also be as semantically coherent as possible. In essence, we have
two components now:

– The classic heuristic (selects conditions based on statistical properties of the
data) and

– the semantic heuristic (selects conditions based on their semantic coherence
with previous conditions).

Hence, the new heuristic WH o↵ers the possibility to trade-o↵ between sta-
tistical validity (the classic heuristic CH ) and the semantic part (a semantic
heuristic SH ). This is enabled by a parameter ↵ that weights the two objectives:
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WH (Rule) = ↵ · SH (Rule) + (1 � ↵) · CH (Rule), ↵ 2 [0, 1] (1)

A higher value ↵ gives more weight to semantic coherence, while a value of
↵ = 0 is equivalent to classic rule learning using only the standard heuristic. We
expect that higher values of ↵ lead to a decrease in predictive accuracy because
the rule learning algorithm focuses less on the quality of the rule and more on
choosing conditions that are semantically coherent (which are likely not to have
a strong correlation with the rule’s accuracy). At the same time, higher values
of ↵ should lead to more coherent rules.

When learning rules, the first condition is selected by using the classic heuris-
tic CH only (since a rule with only one condition is always coherent in itself).
Then, while growing the rule, the WH heuristic is used, which leads to condi-
tions being added that result in both a coherent and an accurate rule according
to the trade-o↵ specified by ↵.

3.1 WordNet Similarity

There are di↵erent possibilities to measure the semantic relatedness between two
conditions. In this paper, we use an external source of linguistic information, i.e.,
WordNet [8]. WordNet organizes words in so-called synsets, i.e., sets of synonym
words. Those synsets are linked by homonym and hyperonym relations, among
others. Using those relations, the semantic distance between words in di↵erent
synsets can be computed.

In the first step, we map each feature that can be used in a rule to one or
more synsets in WordNet4. To do so, we search WordNet for the feature name.
In the following, we will consider the case of measuring the semantic coherence
of two features named smartphone vendor and desktop.

The search for synsets returns a list of synsets, ordered by relevance. The
search result for smartphone vendor is empty {}, the search result for desktop is
{desktop#n#1 , desktop#n#2} where desktop#n#1 describes a tabletop and
desktop#n#2 describes a desktop computer.5

If the list is not empty, we add it to the attribute label’s list of synset lists.
If otherwise the list is empty, we check whether the attribute label is a com-
pound of multiple tokens and restart the search for each of the individual to-
kens. We then add all non-empty synset lists that are returned to the list of
synset lists of the attribute label. The result for smartphone vendor is then
{{smartphone#n#1}, {vendor#n#1}} while the result for desktop is
{{desktop#n#1 , desktop#n#2}}.

In the second step, we calculate the distance between two synsets using the
LIN [21] metric. We chose this metric as it performs well in comparison with
other metrics [3], and it outputs a score normalized to [0, 1].

4 Note that at the moment, we only use the names of the features to measure semantic
coherence, but not the nominal or numeric feature values that are used to build a
condition.

5 The ’n’ indicates that the synsets are describing nouns.

52 A. Gabriel, H. Paulheim and F. Janssen



The LIN metric is based on the Information Content (IC ) metric [29], a
measure for the particularity of a concept. The IC of a concept c is calculated
as the negative of the log likelihood, simpler put: the negative of the logarithm
of the probability to encounter concept c:

IC (c) = � log p(c) (2)

Higher values denote less abstract, more general concepts, while lower values
denote more abstract, less general concepts. The body of text used for the cal-
culation of the p(c) values in this work is the SemCor [23] corpus, a collection
of 100 passages from the Brown corpus which were semantically tagged “based
on the WordNet word sense definition” and thus provide the exact frequency
distribution of each synset, which covers roughly 25% of the synsets in WordNet
[19].

The LIN metric is calculated by dividing the Information Content (IC ) of
the least common synset of the two synsets by the sum of their Information
Content, and multiplying the result with two:6

lin(syn1 , syn2 ) = 2 · IC (lcs)

IC (syn1 ) + IC (syn2 )
(3)

Information Content. For each pair of synsets associated with two attributes,
we calculate the LIN metric. In our example, the corresponding values are

lin(smartphone#n#1 , desktop#n#1 ) = 0.0,
lin(smartphone#n#1 , desktop#n#2 ) = 0.5,

lin(vendor#n#1 , desktop#n#1 ) = 0.0, and
lin(vendor#n#1 , desktop#n#2 ) = 0.0.

In the third step, we choose the maximum value for each pair of synset lists
(syn) so that we end up with the maximum similarity value per pair of tokens.
The overall semantic similarity of two attributes (att) is then computed as the
mean of those similarities across the tokens t:

SH (att1, att2) = avg

8t12att1
8t22att2

max

8syn12t1
8syn22t2

lin(syn1 , syn2 ) (4)

This assigns each word pair the similarity value of the synset combination
that is most similar among all the synset combinations that arise from the two
lists of possible synsets for the two words. Thus, in our example, the SH value
assigned to smartphone vendor and desktop would be 0.25.

To compute the semantic coherence of a rule given the pairwise SH scores
for the attributes used in the rule, we use the mean of those pairwise scores to
assign a final score to the rule.7

6 This metric limits the similarity calculation to synsets of the same POS and works
only with nouns and verbs. Our implementation returns a similarity value of 0 in all
other cases.

7 All experiments were carried out with minimum and maximum as well, but using
the mean turned out to give the best results.
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Table 1. Datasets used in the experiments

Dataset #Attributes Found in WordNet
hepatitis 19 68%
primary-tumor 17 71%
bridges2 11 73%
zoo 17 94%
flag 27 100%
auto-mpg 7 100%
balloons 4 100%
glass 9 100%

4 Evaluation

We have conducted experiments with di↵erent classic heuristics on a number of
datasets from the UCI machine learning repository8 shown in Table 1. The table
depicts the overall number of attributes and the percentage of attributes for
which at least one matching synset was found in WordNet. For classic heuristics
CH , we chose Accuracy , m-Estimate, and Laplace Estimate, which are defined
as follows:

Accuracy := p � n ⌘ p + (N � n)

P + N

(5)

Laplace Estimate :=
p + 1

p + n + 2
(6)

m-Estimate :=
p + m · P

P+N

p + n + m

(7)

where p, n denote the positive/negative examples covered by the rule and
P , N stand for the total positive/negative examples. Please see [17] for more
details on these heuristics.

In addition, we used the semantic heuristic SH based on WordNet as defined
above. For each experiment, we report the accuracy (single run of a ten fold cross
validation) and the average semantic coherence of all the rules in the ruleset
(measured by SH ), as well as the average rule length and the overall number of
conditions and rules in the ruleset.

As datasets, we had to pick some that have attribute labels that carry se-
mantics, i.e., the attributes have to have speaking names instead of, e.g., names
from att1 to att20 (which unfortunately is the case for the majority of datasets
in the UCI repository). We searched for datasets where we could map at least
two thirds of the attributes to at least one synset WordNet. This led to the eight
datasets used for the experiments in this paper which are listed in Table 1.
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Table 2. Macro average accuracy of the learned rulesets on the eight datasets. Statis-
tically significant deviations (p > 0.05) from ↵ = 0 are marked in bold.

Classic ↵

Heuristic 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy 0.649 0.667 0.668 0.668 0.669 0.669 0.668 0.668 0.668 0.668 0.465
m-Estimate 0.670 0.673 0.672 0.671 0.671 0.670 0.670 0.673 0.673 0.674 0.474
Laplace 0.673 0.680 0.679 0.682 0.681 0.680 0.681 0.679 0.679 0.681 0.476

Table 3. Average semantic coherence of the learned rulesets on the eight datasets.
Statistically significant deviations (p > 0.05) from ↵ = 0 are marked in bold.

Classic ↵

Heuristic 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy 0.146 0.212 0.222 0.241 0.235 0.235 0.237 0.239 0.233 0.233 –
m-Estimate 0.165 0.195 0.199 0.204 0.207 0.209 0.211 0.217 0.222 0.232 –
Laplace 0.156 0.206 0.223 0.228 0.231 0.228 0.227 0.227 0.227 0.226 –

4.1 Results of the Experiments

Table 2 shows the macro average accuracy across the eight datasets for di↵erent
values of ↵. It can be observed that, except for ↵ = 1, the accuracy does not
change significantly. This is an encouraging result, as it shows that a weight
of up to 0.9 can be assigned to the semantic heuristic without the learning
model losing much accuracy. How much exactly the coherence can be enforced
has to be examined by a more detailed inspection of the parameter values in
between 0.9 and 1.0. Interestingly, the trade-o↵ between coherence and accuracy
seems to occur rather at the edge at high parameter values. Clearly, a study of
these parameters would yield more insights, but, however, ensuring such high
coherence without a noticeable e↵ect on accuracy already is a remarkable e↵ect
and seems to be su�cient for our purposes. Only when assigning all weight to
the semantic heuristic (and none to the classic heuristic), the accuracy drops
significantly, which is the expected result. In most of these cases, no rules are
learned at all, but only a default rule is created, assigning all examples to the
majority class.

In Table 3, we report the macro average semantic coherence of the learned
rulesets across the eight datasets. The results have to be seen in context with
Table 2 as our primary goal was to increase semantic coherence while not losing
too much accuracy. Clearly, the higher the values of ↵ will be, the more seman-
tic coherence will be achieved anyway. This is because the heuristic component
uses the same measure for semantic coherence as is reported in the evaluation
in Table 3. However, as confirmation, it can be observed that the semantic co-
herence is indeed increased in all cases, whereas, when using m-Estimate as a
classic heuristic, the increase is not statistically significant. As stated above, no

8 http://archive.ics.uci.edu/ml/
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Table 4. Two rules learned for primary-tumor

↵ = 0.0 peritoneum = yes, skin = yes, histologic-type = adeno ! class = ovary
↵ = 0.8 peritoneum = yes, skin = yes, pleura = no, brain = no ! class = ovary
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Fig. 1. Detailed results on the primary-tumor dataset, using Accuracy as a classic
heuristic

rules are learned in many cases for ↵ = 1, so the semantic coherence cannot be
computed there.

These results support our main claim, i.e., that it is possible to learn more
coherent rules without losing classification accuracy. What is surprising is that
even for ↵ = 0.9, the accuracy does not drop. This may be explained by the
selection of the first condition in a rule, which is picked according only to the
classic heuristic and thus leads to growing a rule that has at least a moderate
accuracy. Furthermore, in many cases, there may be a larger number of possible
variants for growing a rule the learning algorithm can choose from, each leading
to a comparable value according to the classic heuristic, so adding weight to the
semantic heuristic still can lead to a reasonable rule.

4.2 Analysis of the Models

The two rules learned for the primary-tumor dataset shown in Table 4 illus-
trate the di↵erence between rules with and without semantic coherence. Both
rules cover two positive and no negative example, i.e., according to any classic
heuristic, they are equally good. However, the second one can be considered to
be semantically more coherent, since three out of four attributes refer to body
parts (skin, pleura, and brain), and are thus semantically related.

In order to further investigate the influence of the semantic heuristic on
general properties of the learned ruleset, we also looked at the average rule
length, the total number of rules, and the total number of conditions in a ruleset.
The results are depicted in Tables 5 and 6.

In Table 5 we observe a mostly constant and sometimes increasing number
of rules for all but the last three datasets. This exception to the overall trend is
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Table 5. An overview of the number of rules and conditions in the learned rulesets for
selected values of ↵ for all datasets. Datasets where a drop occurred are shown at the
end of the table.

Dataset Accuracy m-Estimate Laplace Estimate
↵ # rules # conditions # rules # conditions # rules # conditions

auto-mpg
0.0 47 120 14 50 48 114
0.5 48 127 14 46 47 110
0.9 48 127 14 46 48 110

balloons
0.0 2 4 2 4 4 12
0.5 2 4 2 4 4 12
0.9 2 4 2 4 4 12

bridges2
0.0 27 59 10 25 30 65
0.5 27 61 10 25 29 65
0.9 27 61 10 25 29 65

flag
0.0 24 78 21 51 52 106
0.5 38 90 24 63 54 113
0.9 38 90 24 63 54 113

zoo
0.0 12 14 11 15 19 19
0.5 16 18 12 16 19 19
0.9 16 18 13 19 19 19

glass
0.0 40 90 16 52 50 102
0.5 35 82 17 55 36 74
0.9 35 82 17 55 36 74

hepatitis
0.0 10 22 6 22 13 26
0.5 3 6 6 18 5 8
0.9 3 6 6 18 5 8

primary-tumor
0.0 70 246 26 119 81 324
0.5 10 35 12 56 75 331
0.9 11 39 11 46 16 68

analyzed more closely in case of the primary-tumor dataset. The values for this
dataset are depicted in Fig. 1.

When looking at the rulesets learned on the primary-tumor dataset, it can
be observed that many very special rules for small classes, covering only a few
examples, are missing when increasing the value for ↵. A possible explanation
is that as long as there are many examples for a class, there are enough degrees
of freedom for the rule learner to respect semantic coherence. If, on the other
hand, the number of examples drops (e.g., for small classes), it becomes harder
to learn meaningful semantic rules, which leads the rule learner to ignore those
small example sets. Since only a small number of examples is concerned by this,
the accuracy remains stable – or it even rises slightly, as ignoring those small
sets may eventually reduce the risk of overfitting.

Note that a similar trend could be observed for the other two datasets (hep-
atitis and glass, depicted at the lower part of Table 5). While the changes are
not so intense for the m-Estimate, certainly those for the other two heuristics are
significant. Interestingly, most often the rules in the beginning of the decision list
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Table 6. Average rule length of the learned rulesets on the eight datasets. Statistically
significant deviations (p > 0.05) from ↵ = 0 are marked in bold.

Classic ↵

Heuristic 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy 2.270 2.295 2.296 2.296 2.281 2.281 2.310 2.321 2.288 2.288 0.250
m-Estimate 2.329 2.295 2.304 2.334 2.348 2.342 2.356 2.337 2.365 2.322 0.250
Laplace 2.920 2.851 2.862 2.811 2.811 2.833 2.828 2.821 2.796 2.788 0.375

are similar and at a certain point, no rules are learned any more. Thus, similar
to the e↵ect noticeable at the dataset primary-tumor, the following low coverage
rules are not induced any more.

However, when looking at the average rule length (cf. Table 6), the only
significant change occurs when all weight is given to the semantic component.
The reason is that most often no rule is learned at all in this case.

4.3 Semantic Coherent Rules in Relation to Characteristic Rules

When we inspected the rule sets and the behavior of our separate-and-conquer
learner in more detail, we found that semantically coherent rules interestingly
have a connection to so-called characteristic rules [22, 4]. Where a discriminant
rule tries to use as few conditions as possible with the goal of separating the
example(s) of a certain class versus all the other ones, a characteristic rule has
as much as possible conditions that actually describe the example(s) at hand.
For instance, if the example to be described would be an elephant, a discriminant
rule would concentrate on the single attribute(s) an elephant has and no other
animal shows such as, e.g., its trunk, its gray color, or its huge ears. Instead, a
characteristic rule would list all attributes that indicate an elephant such as four
legs, a tail, thick skin etc. In essence, a discriminant rule has only conditions
that discriminate elephants from all other animals whereas a characteristic rule
rather describes the elephant without the need to be discriminant, i.e., to use
only features no other animal has.

Not surprisingly, a semantically coherent rule tends to show the same prop-
erties. Often the induced rules consist of conditions that are not necessarily
important to discriminate the examples, but rather are semantically coherent
with the conditions located at earlier positions in these rules. This becomes ob-
vious when we take a look at the above example of the two rules where the rule
without semantic influence has a condition less albeit both of them have the
same coverage.

However, the number of rules is strongly dependent on the attribute’s se-
mantics. For most of the datasets where actually less rules are induced with our
approach, semantic coherence is hard to measure. The glass database contains of
descriptions of chemicals, in the hepatitis dataset biochemical components are
used as features and in primary-tumor we have simply considerably more classes.
A detailed examination of this phenomenon remains subject to future work.
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5 Related Work

Most of the work concerned with the trade-o↵ between interpretability and ac-
curacy stems from the fuzzy rules community. Here, this trade-o↵ is well-known
and there are a number of papers that addressed this problem [30]. There are
several ways to deal with it, either by using (evolutionary) multiobjective opti-
mization [16], context adaptation, hierarchical fuzzy modeling as well as fuzzy
partitioning, membership functions, rules, rule bases or similar. However, most
often comprehensibility of fuzzy rules is measured by means such as the trans-
parency of the fuzzy partitions, the number of fuzzy rules and conditions or the
complexity of reasoning, i.e., defuzzification and inference mechanisms. As we
use classification rules in this paper, most of these techniques are not applicable.

There are also some papers about comprehensibility in general. For example,
[33] deals with the means of dimensionality reduction and with presenting sta-
tistical models in a way that the user can grasp them better, e.g., with the help
of graphical representations or similar. The interpretability of di↵erent model
classes is discussed in [10]. The advantages and disadvantages of decision trees,
classification rules, decision tables, nearest neighbor, and Bayesian networks are
shown. Arguments are given why using model size on its own for measuring
comprehensibility is not the best choice and directives are demonstrated how
user-given constraints such as monotonicity constraints can be incorporated into
the classification model. For a general discussion of comprehensibility this is very
interesting, however, as single conditions of a rule are not compared against each
other, the scope is somewhat di↵erent than in our work.

A lot of papers try to induce a ruleset that has high accuracy as well as good
comprehensibility by employing genetic, evolutionary, or ant colony optimization
algorithms. Given the right measure for relating single conditions of a rule or
even whole rules in a complete ruleset, this seems to be a promising direction.
Unfortunately, most of the fitness functions do not take this into account. For
example, in [25] an extension of a ant colony algorithm was derived to induce
unordered rulesets. They introduced a new measure for comprehensibility of
rules, namely the prediction-explanation size. In essence this measure is oriented
more strongly on the actual prediction hence the average number of conditions
that have to be checked for predicting the class value. Therefore, not the total
number of conditions or rules is measured as usual measures often do but for an
unordered ruleset exactly those that are actually used for classifying the example
at hand. For ordered rulesets also rules are counted that are before the classifying
rule in the decision list as they have to be also checked at prediction time. Other
algorithms are capable of multi-target learning [24] and define interestingness
as those rules that cover example of infrequent classes in the dataset. Also,
some papers deal with interpretability rather as a side e↵ect [2], while here no
optimization of this objective is done during learning time. In contrast, [7] uses
a simple combination of accuracy maximization and size minimization in the
fitness function of the genetic algorithm.

Some research is focused on specific problems where consequently rather
unique properties are taken into account [31]. In this bioinformatic domain, only
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the presence of an attribute (value) is of interest whereas the absence is of no
concern. The contribution are two new versions of CN2 [6] and Ant-Miner [26]
which are able to incorporate this constraint.

Another thread is concerned with the measures themselves. For example, [9]
surveyed objective measures (data-driven) for interestingness and defined a new
objective, namely attribute surprisingness AttSurp, i.e., by arguing that a user
is mostly interested in a rule that has high prediction performance but many
single attributes with a low information gain, the authors define AttSurp as
one divided by the information gain of all attributes in the rule. In [11] it is
argued that small disjuncts (i.e., rules that cover only a very small number of
positive examples) are indeed surprising while most often not unfolding good
generalization or predictive quality. Here, also AttSurp is used which is di↵erent
to most other interestingness measures in the sense that not the whole rule body
is taken into account but single attributes which one can also see as a property of
our algorithm. Interestingly, surprisingness also is related to Simpson’s Paradox.

6 Conclusions and Future Work

In this paper, we have examined an approach to increase the understandability
of a rule model by learning rules that are in themselves semantically coherent.
To do so, we have introduced a method for combining classic heuristics, tailored
at learning correct rule models, with semantic heuristics, tailored at learning
coherent rules. While we have only looked at the coherence of single rules, adding
means to control the coherence across a set of rules would be an interesting
extension for future work.

An experiment with eight datasets from the UCI repository has shown that
it is possible to learn rules that are significantly more coherent, while not being
significantly less accurate. In fact, the accuracy of the learned model has stayed
constant in all cases, even if adjusting the influence of the semantic heuristic to
90% of the overall heuristic. These results show that, even at a very preliminary
stage, the proposed approach actually works.

Furthermore, we have observed that in some cases, adding the semantic
heuristic may lead to more compact rule sets, which are still as accurate as
the original ones. Although we have a possible explanation, i.e., that it is di�-
cult for semantically enhanced heuristics to learn rules for small sets of examples,
we do not have statistically significant results here. An evaluation with synthetic
datasets may lead to more insights into the characteristics of datasets for which
this property holds, and help us to confirm or reject that hypothesis.

Although we have evidence from previous research that semantically coher-
ent rules are perceived to be better understandable, e.g. in [27], we would like to
strengthen that argument by additional user studies. These may also help reveal-
ing other characteristics a ruleset should have beyond coherence, e.g., minimum
or maximum length. For example, the experiments in [27] have indicated that
less accurate rules (e.g., Countries with a high HDI are less corrupt) are pre-
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ferred over more accurate ones (e.g., Countries with a HDI higher than 6.243
are less corrupt).

In this paper, we have only looked into one method of measuring semantic
coherence, i.e., a similarity metric based on WordNet. There are more possible
WordNet-based metrics, e.g., the LESK [1] and the HSO [15] metrics, which
both work with adjectives and adverbs in addition to nouns and verbs and they
support arbitrary pairing of the POS classes. Furthermore, there is a number
of alternatives beyond WordNet, e.g., the use of Wikipedia [32] or a web search
engine [5]. Furthermore, in the realm of Linked Open Data, there are various
means to determine the relatedness of two concepts [28].

The approach so far only uses the classical heuristic to select the first rule,
which sometimes lead to rules that are not too coherent w.r.t. that attribute, e.g.,
if there are no other attributes that match the first one well semantically. Here,
it may help to introduce a semantic part in the selection of the first condition
as well, e.g., the average semantic distance of all other attributes to the one
selected. However, the impact of that variation on accuracy has to be carefully
investigated.

Another possible point for improvement is the selection of the final rule from
one refinement process. So far, we use the same combined heuristic for the re-
finement and the selection, but it might make sense to use a di↵erent weight
here, or even entirely remove the semantic heuristic from that step, since the
coherence has already been assured by the selection of the conditions.

In summary, we have introduced an approach that is able to explicitly trade
o↵ semantic coherence and accuracy in rule learning, and we have shown that
it is possible to learn more coherent rules without losing accuracy. However, it
remains an open question whether or not our results are generalizable to other
types of rule learning algorithms that do not rely on a separate-and-conquer
strategy. We will inspect the impact on other rule learners in the near future.

References

1. Banerjee, S., Pedersen, T.: An Adapted Lesk Algorithm for Word Sense Disam-
biguation Using WordNet. In: Computational linguistics and intelligent text pro-
cessing, pp. 136–145. Springer Berlin Heidelberg (2002)

2. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Discovering comprehensible classifi-
cation rules by using genetic programming: a case study in a medical domain.
In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M.,
Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Con-
ference. vol. 2, pp. 953–958. Morgan Kaufmann, Orlando, Florida, USA (1999)

3. Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic
Relatedness. Computational Linguistics 32(1), 13–47 (2006)

4. Cai, Y., Cercone, N., Han, J.: Attribute-oriented induction in relational databases.
In: Knowledge Discovery in Databases, pp. 213–228. AAAI/MIT Press (1991)
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