Workshop Report: Energy Efficient Systems

Usman Wajid
University of Manchester
United Kingdom
usman.wajid@manchester.ac.uk

Abstract— The workshop on Energy Efficient Systems (EES), in its second year, was organized by the EC (FP7) ECO₂Clouds project. EES primarily focuses on energy efficiency in ICT systems with the extended scope of systems or technological solutions that may be supported by ICTs. The purpose of EES is to bring together research and industrial efforts focusing on achieving energy efficiency and to discuss ways innovative ideas of mutual interest. This year the workshop on EES was collocated with the 2nd International Conference on ICT for Sustainability. This report presents an overview of the workshop, the paper presented and the discussions that took place during the workshop.

Index Terms—energy efficiency, cloud, ECO2Clouds,

I. INTRODUCTION

Recently energy consumption and environmental implications of ICT are getting more and more attention with the CO₂ footprint of ICT estimated to be touching 4% of EU's total CO₂ emissions. This brings ICT in line with the airline industry in terms of volume of CO₂ emissions. The transparency in measuring ICT's energy consumption and the pursuit for energy efficient technological solutions can enable users to make informed choices when using digital technologies and consequently deliver huge impact on lowering the energy consumption and environmental implications of using ICT-based solutions. In this respect, there is an ever increasing need for innovative solutions to address the issues concerning energy consumption and CO₂ emissions at different levels of ICT. Some of the areas where the above issues can be addressed include CO₂ awareness at application design and deployment phases, development of energy and CO₂ aware monitoring tools and mechanisms, energy aware modelling and management of ICT resources and increased transparency of energy mix that goes into the underlying ICT infrastructure.

In this background, the Workshop on Energy Efficient Systems at International Conference on ICT for Sustainability (ICT4S) (Stockholm, August 2014) provided participants from academia and industry an opportunity to present and discuss

Copyright © Usman Wajid. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

current initiatives targeting energy efficiency and CO_2 emissions in the cloud as well as in the wider ICT domain Cloud computing gets special attention here because the sheer size of cloud infrastructures and datacentres makes them the biggest stakeholders in the ICT domain. The workshop was organised by the European Commission (EC) funded ECO_2 Clouds (Experimental Awareness of CO_2 in Federated Cloud Sourcing) project. ECO_2 Clouds aims to develop a CO_2 aware solution for the deployment and management of workloads on cloud infrastructure that can ensure best energy-performance ratios. The project particularly focuses on federated cloud infrastructure where applications may span over different cloud sites making it relatively difficult to track their energy consumption and CO_2 footprint as compared to when they are deployed at one cloud site.

This workshop report presents the overview of 5 research papers presented in the workshop on Energy Efficient Systems along with the summary of discussions that took place during the session.

II. OVERVIEW OF PAPERS

The papers presented in the workshop on Energy Efficient Systems addressed energy efficiency and CO_2 issues in different areas of ICT with particular focus on cloud computing.

The paper Eco-efficient Cloud Resource Monitoring and Analysis presented an approach for saving energy and reducing the Carbon footprint of cloud infrastructure. The resource monitoring and analysis approach, implemented in the ECO₂Clouds project, enables specification and collection of specific metrics at physical infrastructure (testbed and hosts) and virtualization (VM) levels. The metrics currently implemented in ECO₂Clouds enable quantification of energy consumption and Carbon footprint at the above mentioned two levels. The data collected by the monitoring approach is stored in a database for later use. The paper also provides an overview of a Data Mining service that uses the stored data to perform analytical operations that may help in the application deployment or resource utilization decision making.

The paper *Eco-reports in Clouds* provides an overview of a reporting mechanism for cloud computing. The reporting mechanism enables presenting to the user the information about the environmental impact of their cloud applications. The

reporting mechanism also supports the goal of informing users about different operations that may have been performed during the execution of their cloud application to satisfy their non-functional requirements and to optimize their energy consumption and Carbon footprint.

The paper Load Balancing to Save Energy in Cloud Computing introduces two algorithms for efficient resource utilization in cloud computing. The algorithms aim to minimize the wastage of cloud resources as a result of under-utilization of some resources, and minimize lengthy response times as a result of over utilization, where both cases contribute towards excess energy consumption by the underlying resources. The experimental evaluation of the two algorithms reveals their strengths and weaknesses as one might be performing better than the other in any given context.

The paper Energy Efficiency Embedded Service Lifecycle: Towards an Energy Efficient Cloud Computing Architecture argues the need to provide novel methods and tools to support software developers aiming to optimise energy efficiency and minimise the carbon footprint resulting from designing, developing, deploying and running software in clouds. Based on the ongoing work in the EC funded ASCETIC (Adapting Service lifecycle towards Efficient Clouds) project, the paper provides an overview of a cloud architecture that can support energy efficiency at service construction, deployment and operations. The cloud architecture enables adequate support for energy efficiency at different layers such as IaaS, PaaS and SaaS.

The paper A Look at Energy Efficient System Opportunities with Community Network Clouds describes community networking as an emerging model of shared communication infrastructure that can support interconnection interoperation of shared resources within different communities. The introduction of cloud computing in community networks is the focus of Clommunity project, described in the paper. In this respect, community clouds can be seen as a set of federated micro-clouds that can be composed of diverse resource pool ranging from desktops to small data canters interlinked within a specific (community) cloud framework. The heterogeneity of resources in community cloud offers greater choices for the allocation of suitable (e.g. energy efficient) resources to user application based on an energy model of available resources. In this respect, the paper discusses different options to enable energy efficiency in community clouds in order to realise support for energy efficient systems in community clouds and to foster collaboration with other related initiatives.

III. DISCUSSIONS

After the paper presentations, the workshop participants were given time to discuss their point of view concerning the state of energy efficient systems and what lies ahead in the future. The discussions that took place during the workshop on Energy Efficient Systems were focused on the following four main topics:

Energy efficient systems – target domains and potential impact: The workshop participants expressed diverse opinion

about the target domains and the scope of potential energy efficient systems. Target areas for achieving energy efficiency were narrowed down to buildings and cloud computing infrastructure. Due to the growing number of datacentres maximizing green energy utilization in this area can make a substantial impact both financially and in terms of environmental implications. Also the location and design of building can impact on the energy consumption of a datacentre e.g. reduced cooling overhead of physical servers. Another aspect discussed was the consumer behaviour concerning the use of different devises for performing ICT operations e.g. from desktops, laptops to tablets and smartphones. Rapid technological advances mean the lifespan of these devices is getting smaller; however their CO₂ footprint in terms of R&D, manufacturing, logistics and recycling operations stays the same. Hence somehow increasing the lifespan of these devices can also contribute towards lowering the CO₂ footprint in the ICT domain. Furthermore, the potential impact of energy efficiency efforts in the above areas can result not only in financial gains but also open the way for technological innovations e.g. sensors for energy and CO2 measurements at micro level and new ways for machines to community within buildings. Lastly, monitoring of energy consumption and environmental impact was deemed quite important since the development of effective monitoring techniques and mechanisms can have second order effect on any other system.

Energy efficiency motives — cost, environment and/or efficiency: The motives for energy efficiency can be different at developer (of technological solutions) level and at organization level. The discussions in the workshop unanimously concluded that at organization level cost is the most important factor or motive for achieving energy efficiency and environmental concerns can follow from that. On the other hand, for technology developers efficiency is the top priority and as a consequence it can translate to energy saving and other benefits. However, some participants placed less emphasis on efficiency and linked it to the second order effect of quality assurance. Environmental aspects are currently only reserved to a limited section of society and therefore depended on individual commitments or enforcement by regulatory authorities.

State of art - what's new, What's missing: Here the workshop participants had a lot to say about what's currently missing e.g. the discussions revealed that based on the low levels of awareness about environmental implications, lack of standardisation and best practices the commercial drive for ecofriendliness is currently not there to realise full commercialisation potential of energy efficiency systems at large. In this respect, establishment of new regulatory and standardization measures and code of conduct can be an important step. In terms of new developments, distributed resource utilization and ease of access enabled by cloud computing is a step forward from traditional networking topologies and grid. This new connectivity and access model can allow investigation of new ideas and techniques for service delivery while considering different aspects such as energy efficiency and, cost reductions.

ECO₂Clouds Usefulness – new or innovative ideas, future potential: Finally, this topic was focused on gathering general opinion about the ECO₂Clouds project based on the three paper presentations highlighting various aspects of the project earlier in the workshop. The participants discussed the different features of ECO₂Clouds project particularly the CO₂ measurements at different levels of cloud infrastructure. For participants new ideas developed in ECO₂Clouds also included the awareness of energy mix and its utilization in the decision making model and control mechanisms. In terms of future potential of ECO₂Clouds ideas, the discussions raised the various issues that can hold back any technological advancements in the area of energy efficiency these included varying level of support and regulatory measures concerning CO₂ emissions e.g. dynamic energy mix information is not available in Germany and in France the regulations are in place for CO₂ audit of companies but there are no penalties yet. However, the advancements made in the project were deemed a step in the right direction.

Further, the workshop participants noticed that the research in the area of energy efficiency was making its way towards mainstream technologies and influencing different sects of industrial solutions e.g. some cloud service providers are pitching the use of green energy sources as their main marketing messages. However, further research, standardisation and clarity of existing regulatory measures can help boost the awareness about energy efficient solutions and ensure transparency across different levels of the market.

IV. SUMMARY

With rapid expansion of ICT infrastructures and increasing popularity of cloud computing the topic of energy efficiency and CO₂ emissions has been getting profound attention owing firstly to the growing financial pressure on infrastructure providers to reduce energy related costs and secondly due to the environmental policies and 'green' measures from governments and other regulatory authorities (such as European Commission) that impose levies on CO₂ emissions from corporate infrastructures. With this upbeat of environmental concerns at different levels; for datacentre and cloud infrastructure providers addressing energy efficiency and CO₂ footprint concerns will become as bigger challenge as quality-of-service. Furthermore, competitive and volatile market consumer awareness also plays a key role in shifting market orientation. Thus environmental awareness and pressure by regulatory authorities (such as EC) can influence consumers' selection criteria for ICT services, adding more pressures for datacentres and cloud service providers to do more!

In this respect, the workshop on Energy Efficient Systems in the ICT4S conference provided a unique opportunity to bring together different stakeholders at a single platform. The overview of the accepted papers from the workshop shows a focus on the important issues in the ICT domain and also on

the innovative techniques and prospective ideas to address these issues. Finally, interested researchers and practitioners are invited to look at the workshop papers in the ICT4S workshop proceedings at http://ceur-ws.org.

V. ACKNOWLEDGEMENT

The workshop on Energy Efficiency Systems at ICT4S conference has been supported by the ECO₂Clouds project (http://eco2clouds.eu/) and has been partly funded by the European Commission's IST activity of the 7th Framework Program under contract number 318048.