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Libor Běhounek?

National Supercomputing Center IT4Innovations, Division University of Ostrava,
Institute for Research and Applications of Fuzzy Modeling

30. dubna 22, 701 03 Ostrava 1, Czech Republic
libor.behounek@osu.cz

Abstract. The problem of artificial precision demonstrates the inade-
quacy of näıve fuzzy semantics for vagueness. This problem is, neverthe-
less, satisfactorily remedied by fuzzy plurivaluationism; i.e., by taking a
class of fuzzy models (a fuzzy plurivaluation), instead of a single fuzzy
model, for the semantics of a vague concept. Such a fuzzy plurivaluation
in turn represents the class of models of a formal theory, preferably for-
mulated in first- or higher-order fuzzy logic, which formalizes the mean-
ing postulates of the vague concepts involved. The consequence relation
of formal fuzzy logic then corresponds to the (super)truth of proposi-
tions involving these vague concepts. An adequate formal treatment of
vague propositions by means of fuzzy logic thus consists in derivations
in the formal calculus of a suitable fuzzy logic, while the particular truth
degrees found in engineering applications actually pertain to artificially
precisified (so no longer vague) gradual notions.
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1 Fuzzy Semantics of Vagueness?

Fuzzy sets and fuzzy logic are often claimed (e.g., [5, 15, 6, 18]) to be suitable for
capturing the formal semantics of vagueness. Typically, a vague property P is
represented by a fuzzy set, i.e., a function P̃ : X → L from a fixed universe of dis-
course X to a structure L of truth degrees, usually the real unit interval [0, 1].
Similarly, n-ary vague relations are represented by n-ary fuzzy relations, i.e.,
functions R̃ : Xn → L. This representation is extensively used for dealing with
vague predicates in engineering fuzzy methods such as fuzzy control, decision
making, and knowledge representation under vagueness (see, e.g., [14, Part 2]
for an overview of applied fuzzy methods). In such applications, particular mem-
bership degrees from L are calculated, and an output is based on the resulting
membership degree (see, e.g., [14, Ch. 12–17]).

Fuzzy methods based on this approach are undeniably successful in a broad
range of real-life applications. The gradual change in the membership degrees

? This paper is an elaboration of a part of the short comment [1].
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from L accounts for the graduality of vague notions and thereby solves the sorites
paradox for gradable predicates in formal semantics. From the practical point of
view, the graduality of L provides a feedback mechanism in fuzzy control, which
is responsible for its successful applicability.

Nevertheless, fuzzy set theory and fuzzy logic have been criticized by philoso-
phers and linguists as an inadequate model of vagueness (e.g., [11, 20, 12]). Per-
haps the most convincing argument against the fuzzy semantics of vagueness is
the problem of artificial precision. As discussed below in Section 2, due to this
problem, näıve fuzzy models are ruled out as an adequate semantics of vague
predicates. Is then the claim of fuzzy logic’s suitability for dealing with vague-
ness to be revoked, or can the claim be salvaged through some refinement? In
this paper I argue for the latter, and sketch the way in which fuzzy logic can
be viewed as a viable apparatus for dealing with vagueness, albeit in a different
manner than employed in the prevailing engineering applications.

In particular, as has been demonstrated in detail by Smith [19], fuzzy plurival-
uationism, which takes a set of fuzzy models (rather than a single fuzzy model)
for the fuzzy semantics of a vague predicate, provides a satisfactory solution
to the problem of artificial precision; and since most philosophical objections
against the fuzzy semantics of vagueness turn out to be reducible to some aspect
of this central problem, it actually answers a large portion of the criticisms of the
degree-theoretical approach to vagueness. Here I will show that fuzzy plurivalu-
ations can be regarded as the classes of models of theories over fuzzy logic, and
consequently that the consequence relation of fuzzy logic captures the notion
of truth for vague concepts. An adequate knowledge representation of vague-
ness should therefore be based on deductions in formal systems of mathematical
fuzzy logic, rather than calculations of particular membership degrees. On that
account, even if traditional fuzzy methods work well in fuzzy control, strictly
speaking they only work with technical precisifications of vague notions rather
than vague notions themselves—accommodating the graduality, but neglecting
the indeterminacy aspect of vagueness.

These theses will be explained and illustrated in the following sections on the
example of the vague predicate tall. Due to space restrictions, only a sketch of
the full argument is given here.

2 The Problem of Artificial Precision

In the traditional fuzzy approach to vagueness, the semantics of a given set

L = {P (ki)
i }i∈I of (possibly vague) predicates Pi of arities ki > 0, for i ∈ I,

is given by a fuzzy model M = 〈M, {‖Pi‖M}i∈I〉, where ‖Pi‖M : Mki → L
is a fuzzy set (if ki = 1) or a ki-ary fuzzy relation (if ki > 1) valued in a
suitable fixed structure L of degrees (usually on the real unit interval [0, 1]). The
function ‖Pi‖M is called the membership function of the predicate Pi, and the
value ‖Pi‖M(x) for x ∈ M is called the membership degree of the individual x
in the fuzzy set ‖Pi‖M (and similarly for fuzzy relations).
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In a fuzzy model, vague predicates are represented by particular member-
ship functions; particular individuals are thus assigned particular degrees of
vague properties. For instance, if we choose the membership function T̃ : h 7→
min(1,max(0, (h − 150)/50)), assigning the degree T̃ (h) ∈ [0, 1] to each height
h ∈ R+ measured in centimeters, to represent the semantics of the predicate tall,
then a man of height 186 cm is alleged to be tall to degree 0.72.

However, it can be observed that the choice of the membership function T̃
has been completely arbitrary: there is no convincing reason why this particular
linear function (rather than, e.g., some S-shaped function) should have been
chosen, or why the man of height 186 cm should be assigned the degree 0.72
rather than, e.g., 0.74. Instead of capturing a vague property, for which it is
indeterminate whether it applies to borderline cases or not, a fuzzy model yields
something much more precise: a particular real number, such as 0.3428. In view of
the arbitrariness of the choice of membership function, this precision, not present
in the original vague predicate, is artificial. Consequently, the fuzzy model does
not capture the vagueness of the predicate in a satisfactory manner. This is
the problem of artificial precision of fuzzy semantics of vagueness, and a serious
objection to its adequacy.

In engineering applications, the choice of a particular membership function is
guided by pragmatic considerations: e.g., a linear function may be preferred for
the reason of its efficient computability. The choice is legitimate iff the intended
real-world application works well. From the point of view of formal semantics,
however, the fuzzy model is not an adequate semantic representation of the
original vague notion, but is rather its technical precisification, suitable for the
particular engineering application in question. If we want to know which propo-
sitions are true about the original vague notion (e.g., whether all tall people from
a given sample are skinny), the use of the technical precisification may well yield
an answer which is an artifact of the choice of the membership function. Thus,
while fuzzy models are admittedly useful for applied methods in fuzzy control,
they are hardly an accurate representation of vague knowledge. Eventually, the
meaning of a vague predicate is determined by its usage in natural language;
however, one can hardly find any linguistic fact that would determine whether
a man of height 186 cm should be considered 0.72- or rather 0.73-tall.

3 Fuzzy Plurivaluationism

A remedy to the problem of artificial precision is offered by fuzzy plurivaluation-
ism [19]. Fuzzy plurivaluationism acknowledges that the meaning-determining
facts of natural language do not uniquely determine the values of membership
functions, and so do not narrow the set of admissible fuzzy models for a given
predicate down to a singleton set. Therefore, instead of a single fuzzy model,
fuzzy plurivaluationism assigns a set P of fuzzy models (as defined in Section 2)
as the semantics for a given list L of (possibly vague) predicates; let us call the
set P of fuzzy models a fuzzy plurivaluation for the language L.
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The set of admissible fuzzy models for a given language L does not consist
of all fuzzy models: rather, it has to reflect the meanings of the predicates in L.
Even though the meaning-determining facts do not pinpoint the exact values
of membership degrees, they do determine certain properties of membership
functions and their relationships. For instance, the membership function of the
predicate tall must in each admissible model be non-decreasing: it is part of the
meaning of the word tall that people of larger heights are not less tall than those
of lesser heights; those who do not acknowledge this property do not understand
the meaning of the word tall. These constraints on admissible fuzzy models can
be regarded as the meaning postulates of the vague predicates involved, i.e., their
semantic properties and relationships that would be acknowledged by competent
speakers, and which therefore have to be satisfied in each fuzzy model. In other
words, fuzzy plurivaluatistic semantics of a given vague language L is the set P
of those fuzzy models for the language L that satisfy the meaning postulates of
the predicates in L.1

In a formal semantics of natural language, these meaning postulates are
expected to be expressible in the rigorous language of mathematics and logic,
thereby comprising a formal theory T that constrains the set P of admissible
models. In typical cases, this is indeed so; let us illustrate it on the example of
the predicate tall.

4 Example: the Predicate Tall

Let us present a (simplified) analysis of the meaning of the vague predicate tall.
One condition that the intended usage of the term tall (in any given context)
has to satisfy is the one mentioned earlier:

If a person of height x is tall and y ≥ x,

then a person of height y is tall as well. (1)

Further conditions on the predicate tall that are part of its meaning are, for
instance, those related to prototypical cases, e.g.:

A person of Michael J. Fox’s height is not tall, while (2)

a person of Christopher Lee’s height is tall. (3)

In the degree-theoretical framework of fuzzy plurivaluationism, these mean-
ing postulates for the predicate tall can be reformulated as conditions on its
membership function. Let the membership function of the vague unary predi-
cate tall, assigning degrees from [0, 1] to heights in centimeters, be denoted by

1 Since typical meaning postulates of vague concepts do not refer to truth degrees
(which are just part of our semantic modeling rather than linguistic usage), it is
no wonder that the membership functions are underdetermined by the meaning
postulates and that P is usually a non-singleton class of models.
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T̃ : R+ → [0, 1]. The meaning postulates (1)–(3) then correspond to the following
conditions:

(y ≥ x)→ (T̃ (y) ≥ T̃ (x)) (4)

T̃ (a) = 0 (5)

T̃ (b) = 1, (6)

where a and b are constants denoting the respective heights of Michael J. Fox
and Christopher Lee in cm (163 and 196, according to Google Search).

The fuzzy plurivaluation representing the meaning of the predicate tall ac-
cording to our analysis would therefore be the set P of all fuzzy models in which
the membership function T̃ of the predicate tall satisfies the constraints (4)–
(6), i.e., is non-decreasing in heights and assigning the full and zero degrees to
prototypical cases.2

The conditions (4)–(6), together with appropriate axioms for the ordering
of real numbers,3 can be regarded as a mathematical theory T , formalizable in
classical first-order logic. The set P of admissible fuzzy models for tall is then
the set of the models of the theory T ; i.e., P = {M |M |= T }.

Membership functions of predicates from L in a particular model M ∈ P are
(fuzzy) precisifications of the vague concepts from L. The condition that M |= T
for all M ∈ P ensures that the meaning postulates of all vague concepts Pi ∈ L
are jointly satisfied by their fuzzy precisifications in each model M ∈ P.

5 Supertruth

As mentioned in Section 2, a proposition ϕ about the predicates in the language
L that is true in only some, but not all, of the models M ∈ P, can be an arti-
fact of the choice of membership functions in these particular models. Only such
propositions that are true in all models M ∈ P, i.e., in all models satisfying
the meaning postulates of the predicates in L, are true independently of partic-
ular choices of membership functions in these models, and so can be regarded
as truths about the vague concepts from L. Since fuzzy plurivaluationism is a

2 In reality, the meaning postulates for the predicate tall are more complex than the
simplified version (1)–(3) discussed here. A more detailed analysis of the predicate
would have to include, inter alia, the meaning postulate that “imperceptible changes
in height correspond to negligible changes in the degree of tallness”, formalized as the
congruence of admissible membership functions of tall w.r.t. fuzzy indistinguishabil-
ity relations on heights and degrees of truth (i.e., a certain generalization of Lipschitz
continuity). The avoidance of the sorites paradox for prototypical cases might re-
quire that rather than postulating the degrees 0 and 1 for prototypical cases, only
a fuzzy indistinguishability from the full truth and full falsity be required. For the
sake of simplicity, we leave these refinements aside, as they are not central to the
thesis presented here.

3 Notice that the crisp predicate ≤ on heights is part of our language L, as it appears
in the meaning postulates of tall.
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(fuzzified) variant of supervaluationism (see, e.g., [4, 20, 13, 19]), let us call such
propositions ϕ that are true in all admissible fuzzy models M ∈ P (i.e., true in
all admissible fuzzy precisifications) supertrue.

Thus, those and only those propositions ϕ which are supertrue represent
truths about the vague concepts from L regardless of a chosen precisification.
Like in supervaluationism, it is only supertruth that matters, rather than truth
in a particular model.

Mathematically, ϕ is supertrue iff M |= ϕ for all models M ∈ P, i.e., for
all models M such that M |= T ; that is, iff T |= ϕ. Thus, supertruths about
vague predicates are exactly the logical consequences of their meaning postu-
lates.4 If T is formulated in classical first-order logic, then due to the strong
completeness theorem, supertruths are also exactly those ϕ that can be formally
derived from T , i.e., ϕ is supertrue iff T ` ϕ.

It can be observed, however, that the formalization of the meaning postulates
in first-order classical logic is not completely straightforward. In particular, vague
predicates from L are represented by functions, which is a type mismatch that has
to be handled by the formalization: consequently, logical connectives occurring
in the meaning postulates have to be represented by certain operations on truth
degrees. For instance, in our toy example of Section 4, compare the meaning
postulate (1), whose logical form is ϕ & ψ → ξ, with its formalization (4) of a
rather different logical form; or the postulate (2) with (5), where the negation
(“is not tall”) changed into equality with 0. It would certainly be preferable if
the theory T could be formalized in a more straightforward way which preserves
the logical form of the meaning postulates, rendering predicates as predicates
(rather than functions) and connectives as connectives (rather than operations,
inequalities, or equalities). This is exactly what mathematical fuzzy logic aims
for, and where it enters the picture.

6 Mathematical Fuzzy Logic

Fuzzy logics form a well-developed family of many-valued and substructural
logics [3]. For a detailed information on mathematical fuzzy logic we refer the
reader to [2]. Here we shall just briefly introduce the perhaps best known system
of formal fuzzy logic, namely (infinite-valued)  Lukasiewicz logic.

The syntax of  Lukasiewicz first-order logic is the same as that of classical
first-order logic. Let us take ¬ and→ for the primitive connectives. The standard
semantics of  Lukasiewicz logic employs the real unit interval [0, 1] as the set of
truth degrees. Let L be a non-empty set of predicate symbols and individual
constants.5 The value ‖t‖M,v of a term (i.e., a variable or constant) t under

4 Let us note that the meaning postulates correspond to what in supervaluationism is
called the penumbral connections; see, e.g., [4, 20, 13, 19].

5 Further on we expand the definition of fuzzy models (see Section 2) by interpreta-
tions ‖c‖M ∈ M of individual constants c ∈ L. Function symbols can be added to
 Lukasiewicz logic as well (see [2]); we leave them aside here, as they are not needed
in the present paper.
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a valuation v of individual variables in a fuzzy model M for L is the element
‖c‖M ∈ M if t is a constant c ∈ L or the element v(x) ∈ M if t is a variable x.
The truth degree ‖ϕ‖M,v of a formula ϕ in the language L under a valuation v
in a fuzzy model M for L is defined by the following recursive Tarski conditions:

‖P (t1, . . . , tn)‖M,v = ‖P‖M(‖t1‖M,v, . . . , ‖tn‖M,v) (7)

‖¬ϕ‖M,v = 1− ‖ϕ‖M,v (8)

‖ϕ→ ψ‖M,v = min(1− ‖ϕ‖M,v + ‖ψ‖M,v, 1) (9)

‖(∀x)ϕ‖M,v = infa∈M ‖ϕ‖M,vx:a (10)

‖(∃x)ϕ‖M,v = supa∈M ‖ϕ‖M,vx:a , (11)

where vx:a(x) = a and vx:a(y) = v(y) for each variable y different from x. Further
propositional connectives of  Lukasiewicz logic are defined as follows:6

ϕ& ψ ≡df ¬(ϕ→ ¬ψ) (12)

ϕ ∨ ψ ≡df (ϕ→ ψ)→ ψ (13)

ϕ↔ ψ ≡df (ϕ→ ψ) & (ψ → ϕ) (14)

Consequently we obtain ‖ϕ&ψ‖M,v = max(‖ϕ‖M,v+‖ψ‖M,v−1, 0), and similarly
for other defined connectives.

We say that a formula ϕ is true in M, written M |= ϕ, if ‖ϕ‖M,v = 1
for all valuations v in M. A fuzzy model M is a model of a theory (i.e., a set
of formulae) T , written M |= T , if M |= ϕ for each ϕ ∈ T . Let the class
{M |M |= T } of models of T be denoted by Mod(T ). A formula ϕ is a logical
consequence of T , written T |= ϕ, if M |= ϕ for all M ∈ Mod(T ).

The axiomatic system for first-order  Lukasiewicz logic consists of the follow-
ing axiom schemata, where the term t is substitutable for x in ϕ and ν does not
contain free x:

(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

ϕ→ (ψ → ϕ)

(¬ψ → ¬ϕ)→ (ϕ→ ψ)

((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

(∀x)ϕ(x)→ ϕ(t)

(∀x)(ν → ϕ)→ (ν → (∀x)ϕ),

plus the derivation rules of modus ponens (from ϕ and ϕ → ψ derive ψ) and
generalization (from ϕ derive (∀x)ϕ). The notions of proof and provability in a
theory (written T ` ϕ) are defined as in classical logic.

6 Usually (see [2]), an additional conjunctive connective ϕ ∧ ψ ≡df ϕ & (ϕ → ψ), an
additional disjunctive connective ϕ ⊕ ψ ≡df ¬(ϕ → ¬ψ), and optionally, the unary
connective 4ϕ (“determinately ϕ”, with the standard semantics ‖4ϕ‖M,v = 1 if
‖ϕ‖M,v = 1, otherwise ‖4ϕ‖M,v = 0) are introduced in  Lukasiewicz logic. However,
we will not need these connectives in the present exposition.
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The completeness of the above axiomatic system with respect to  Lukasiewicz
first-order logic is somewhat tricky. To obtain the completeness theorem (T |= ϕ
iff T ` ϕ) for the standard [0, 1]-valued semantics described above, an additional
infinitary derivation rule has to be added [10]. Nevertheless, the axiomatic system
is sound and complete if more general algebras of truth degrees (besides the
standard algebra on [0, 1]) are admitted in fuzzy models.7

A similar situation is found in other systems of formal fuzzy logic, which differ
from  Lukasiewicz logic mainly in the choice of algebraic operations in the Tarski
conditions (8)–(9) for propositional connectives and the ensuing modification of
the axiomatic system.8

7 Formalization of Vague Predicates in Fuzzy Logic

Let us return to our toy example of Section 4. The straightforward formalization
of the meaning postulates (1)–(3) of tall in  Lukasiewicz fuzzy logic is given by
the following axioms:9

Tx & (y ≥ x)→ Ty (15)

¬Ta (16)

Tb. (17)

Using a few simple observations on Tarski conditions (8)–(9) for  Lukasiewicz
logic, such as that ‖ϕ→ ψ‖M,v = 1 iff ‖ϕ‖M,v ≤ ‖ψ‖M,v, and that ‖¬ϕ‖M,v = 0
iff ‖ϕ‖M,v = 1, which are actually true in all t-norm-based fuzzy logics, one can
easily verify that the formulae (15)–(17) are true in a fuzzy model M iff the
membership function T̃ = ‖T‖M satisfies the conditions (4)–(6). In other words,
the class Mod(T ) of models of the theory T = {(15), (16), (17)} in  Lukasiewicz
logic is exactly the class P of fuzzy models identified in Section 4 as the pluri-
valuationistic meaning of the vague predicate tall.

The semantics of  Lukasiewicz fuzzy logic thus captures the plurivaluationistic
meaning of tall if its meaning postulates (1)–(3) are straightforwardly formalized
as (15)–(17) in  Lukasiewicz logic. Moreover, it can be observed that the formal-
ization in  Lukasiewicz logic does not suffer from the type mismatch pointed out

7 In particular, the axiomatic system is sound and complete with respect to safe (i.e.,
such that all suprema and infima required by the Tarski conditions exist) fuzzy
models over the algebras of truth degrees for which the propositional fragment of
 Lukasiewicz logic is sound (these are called MV-algebras; it is sufficient to consider
linearly ordered ones). See [2] for more details.

8 Incidentally, the plurivaluationistically perhaps best justified fuzzy logic MTL (see
Section 9) does enjoy the completeness with respect to [0, 1]-valued fuzzy models;
thus in MTL it is sufficient to consider just [0, 1] as the system of truth degrees.

9 Recall that our predicate tall takes heights in cm for arguments, so Tx is interpreted
as “a person of height x cm is tall”. Again, a and b are the constants denoting the
heights of the two actors appearing in (2)–(3), i.e., the numbers 163 and 196. Note
that the axioms (15)–(17) are required to be true in admissible fuzzy models: i.e.,
we only claim the equivalence of (4)–(6) to the full truth of (15)–(17).
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at the end of Section 5: in (15)–(17), the vague predicate tall is indeed formal-
ized as a predicate symbol T of  Lukasiewicz logic, while its interpretation by
the membership function T̃ in admissible fuzzy models M ∈ P is hidden in the
semantics of  Lukasiewicz first-order logic.

A similar situation is found in the plurivaluationistic semantics for other
vague predicates besides our example of tall: typically, the class of admissible
fuzzy models P can be defined as the class Mod(T ) of models of a theory T in
 Lukasiewicz (or another suitable) first-order fuzzy logic, where T is a straight-
forward formalization of the meaning postulates in this fuzzy logic. This is, of
course, no coincidence:  Lukasiewicz and other fuzzy logics have been designed
to straightforwardly formalize typical (i.e., relational and quantificational) con-
ditions between truth degrees of gradual notions.

8 Supertruth as Entailment in Fuzzy Logic

The utility of formal fuzzy logic in fuzzy plurivaluationistic semantic of vague-
ness goes beyond the delimitation of fuzzy plurivaluations by means of theories
over fuzzy logic. Recall from Section 5 that genuine truths about vague pred-
icates (i.e., truths which are not artifacts of particular choices of membership
functions) are those propositions which are true in all admissible fuzzy models
for the vague language L; i.e., those propositions which are supertrue in the fuzzy
plurivaluation P = Mod(T ), where T is the theory over fuzzy logic formalizing
the meaning postulates for L. Now observe that by definition, a formula ϕ of
 Lukasiewicz fuzzy logic in the language L is true in all models M ∈ P = Mod(T )
iff T |= ϕ in  Lukasiewicz fuzzy logic; in other words, if ϕ is entailed by the
meaning postulates of L in  Lukasiewicz logic (or another fuzzy logic chosen for
formalization of the meaning postulates for L).

Supertruths about vague predicates thus coincide with fuzzy-logical conse-
quences of their meaning postulates. The completeness theorems for fuzzy logics
further translate10 the latter into the provability from T in fuzzy logic. Su-
pertruths thus can be found by axiomatic derivation in fuzzy logic.

This is in fact the way which formal fuzzy logicians (unlike most designers of
applied fuzzy methods, who tend to employ single fuzzy models) have implicitly
used for more than a decade in modeling vagueness: cf., e.g., the way in which the
vague predicate small is treated in [9]—namely by first axiomatizing its basic
properties and, subsequently, deriving theorems from these axioms in formal
fuzzy logic. The same approach has been employed in the formal modeling of
vague linguistic hedges [7, 16], vague evaluative linguistic expressions [16], and
vague quantifiers [17].

10 Modulo the provisos of Section 6 on the preconditions of the completeness
theorems—namely, adding infinitary derivation rules or admitting more general sys-
tems of truth degrees than [0, 1]—for some fuzzy logics (including  Lukasiewicz logic;
for the fundamental fuzzy logic MTL mentioned below, however, these preconditions
are not needed).
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9 The Plurality of Fuzzy Logics

On top of that, mathematical fuzzy logic applies the same fuzzy plurivaluation-
istic approach to propositional connectives, too. In Section 6 the reader might
rightly have wondered what justified the particular truth functions in the Tarski
conditions (8)–(9) for the connectives of  Lukasiewicz logic (namely, 1 − x for
negation and min(1−x+y, 1) for implication): why not, for instance, 1−x2 and
max(1− x, y), or any other choice? Which linguistic facts justify our particular
choice of truth functions for these connectives? Is it not an arbitrary choice, too,
similar to the choice of particular membership functions for vague predicates?

Indeed it is. The standard account of  Lukasiewicz logic is actually somewhat
simplified: mathematical fuzzy logic in fact takes an axiomatic approach even
to propositional connectives, constraining them only by certain properties which
can be viewed as embodying their meaning postulates. The most common ap-
proach (originating in [6]) posits that conjunction is commutative, associative,
monotone, neutral w.r.t. determinate truth, and continuous in degrees. These
constraints represent the meaning postulates on and, namely that ϕ and ψ is as
true as ψ and ϕ, etc. Similar constraints are imposed on other connectives and
their mutual interplay. Within these constraints, the truth functions of connec-
tives are allowed to vary across admissible models, analogously to the indetermi-
nacy of membership functions in fuzzy plurivaluations—precisely because their
(accepted, reasonable) meaning postulates fail to narrow them down to single
truth functions.

Particular systems of fuzzy logic (of which there are many—see [2]) differ
from each other by making different choices regarding the requisite properties
of propositional connectives, i.e., their stipulated meaning postulates. E.g., the
above constraints on conjunction lead to the fuzzy logic BL, while slightly weaker
requirements produce the (arguably more fundamental) fuzzy logic MTL. In
these logics, the set of admissible truth functions for conjunction is only narrowed
down to the (still rather broad) class of so-called (left-)continuous t-norms.

In some contexts, additional constraints on connectives are appropriate, lead-
ing to stronger fuzzy logics: for instance, adding the law of double negation
(which formalizes a meaning postulate for not, namely: “not not ϕ is as true
as ϕ”) to BL yields  Lukasiewicz logic. Some of such more specialized fuzzy logic
(including  Lukasiewicz) can be shown to be sound and complete with respect
to fuzzy models with a fixed standard choice of truth functions for connectives;
e.g., in  Lukasiewicz logic, the functions 1− x for negation and min(1− x+ y, 1)
for implication. In such logics, even if the constraints on connectives admit truth
functions other than the single standard ones, fuzzy models with non-standard
truth functions happen to be irrelevant for the consequence relation. In such
logics, then, logical consequence is fully determined by evaluating by means of
the single standard truth functions, and so we can pretend that the standard
truth functions are the only admissible ones (as we did in (8)–(9)). In general,
though, all fuzzy logics admit variable truth functions of propositional connec-
tives across their general models (within the constraints based on their meaning
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postulates chosen for the given logic).11 Thus, in effect, mathematical fuzzy
logic treats both vague predicates and fuzzy propositional connectives plurival-
uationistically, regarding them as underdetermined by their defining meaning
postulates.

10 Fuzzy Logic as a Model of Vagueness

Fuzzy plurivaluationism de facto characterizes vagueness as a combination of
two phenomena: the graduality of vague concepts, by which we are forced to
use fuzzy, rather than classical, models (to avoid the sorites paradox), and the
indeterminacy of meaning, by which we are forced to use sets of fuzzy models
rather than single fuzzy models (to avoid the problem of artificial precision).

The graduality component of fuzzy plurivaluationism acknowledges that most
vague predicates apply to some individuals more than to others; this is modeled
by means of truth degrees (the “fuzzy” aspect). The indeterminacy component
acknowledges that the meaning-determining facts do not narrow down the mean-
ings of vague concepts to single fuzzy models, and leave the membership func-
tions of vague predicates (as well as the truth functions of fuzzy connectives)
underdetermined; this is modeled by letting the membership and truth functions
vary across admissible fuzzy models, constrained only by the meaning postulates
of the vague concepts involved (the “plurivaluationistic” aspect).

Application-oriented fuzzy methods do reflect the graduality component of
vagueness, by using fuzzy models; however, they neglect the semantic indeter-
minacy of vague predicates and rather work with their fuzzy precisifications in a
single fuzzy model. As a result, they are able to compute particular membership
degrees of these gradual precisifications (and act accordingly to the degree, e.g.,
in fuzzy control). However, the results can be artifacts of the choice of the par-
ticular fuzzy model; their correctness is assessed on pragmatic grounds (namely,
whether the application works well or not).

On the other hand, supervaluationism—a rival theory of vagueness to degree-
theoretical ones—can be cast as a bivalent version of fuzzy plurivaluationism,
representing vague predicates by sets of classical, bivalent models.12 This reflects
the indeterminacy aspect of vagueness, but neglects the graduality of most vague
notions. The supervaluationistic representation of vagueness is therefore subject

11 The admittance of different sets of truth degrees across fuzzy models (cf. footnote 7)
is an effect of the same principle: the system of truth degrees is only determined by
the postulates on connectives, rather than given in advance, and the postulates do
not narrow it down to algebras with isomorphic universes. In only a few fuzzy logics
(such as MTL or Gödel logic, see [2]), the real-valued completeness theorem holds,
entailing that we can ignore all the non-[0, 1]-valued algebras.

12 Smith [19] makes a subtle distinction between two variants of supervaluationism that
occur in the literature, using the terms ‘supervaluationism’ and ‘plurivaluationism’.
The distinction is not important in our context, therefore we use the more established
term ‘supervaluationism’ for both variants.
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to several problems exposing its insufficiency (most prominently, the ‘jolt prob-
lem’, instantiated, e.g., by the fact that it is supertrue that there is the least
large natural number; see [19]).

Fuzzy plurivaluationism combines both detected aspects of vagueness; and
as we have seen in Section 8, the consequence relation of fuzzy logic describes
its notion of supertruth, identifying it with fuzzy-logical consequences of the
meaning postulates for the vague notions. In this sense, fuzzy logic is the logic
underlying the fuzzy plurivaluationistic semantics of vagueness. Consequently,
fuzzy logic as the consequence relation can be regarded as the logic of vagueness
(fuzzy-plurivaluationistically modeled).

On the other hand, particular semantic models of fuzzy logic (with fixed
membership functions) are insufficient for capturing vagueness, as exposed by
the problem of artificial precision described in Section 2, as well as various fur-
ther objections raised by philosophers of vagueness (summarized, e.g., in [20, 12,
19]).13 This answers the question of whether or not, or in which sense, fuzzy logic
can be regarded as a logic suitable for the formal semantics of vagueness: the
answer is yes for fuzzy logic in the sense of the consequence relation (provided
we accept the fuzzy plurivaluationistic model of vagueness), and no for fuzzy
logic in the sense of particular fuzzy models.

The practical problem with this answer is that fuzzy plurivaluationistic se-
mantics, or fuzzy logic qua consequence relation, does not make it possible to
calculate any truth degrees or membership functions, as they vary across the ad-
missible fuzzy models. Thus it is hardly imaginable that we could construct, for
instance, a fuzzy controller based on the fuzzy-logical consequence: for such ap-
plications, the method of artificial precisification (retaining graduality to ensure
a feedback mechanism for the controlled process, while eliminating indetermi-
nacy in order to be able to calculate values for controlling) is obviously superior.
Nevertheless, the more adequate representation of vagueness by fuzzy plurival-
uations and consequence-based fuzzy logic may open the way to another kind
of applications in which the indeterminacy aspect of vagueness matters, such
as in linguistic modeling, knowledge representation, or logical inference (e.g., in
answering database queries) under vagueness. Imaginably, for instance, logical
programming aimed at accommodating genuinely vague notions (as opposed to
the current practice of fuzzy logical programming employing particular truth
degrees) might be achieved by replacing the inference rules of classical logic by
suitable derivation rules of formal fuzzy logic. An area with practical applications
where steps towards employing consequence-based fuzzy logic has already been
made (starting with [8]) is fuzzy description logic. However, the applicability of
consequence-based formal fuzzy logic to practical problems (rather than just as

13 It is worth noting that most philosophical criticisms of fuzzy logic as the logic of
vagueness assume fixed membership functions, and thus do not apply to fuzzy pluri-
valuationism nor fuzzy logic as consequence relation. The fuzzy-plurivaluationistic
analysis agrees with these objections against the näıve fuzzy semantics of fixed mem-
bership functions, and explains the problems as stemming from its failure to address
the indeterminacy aspect of vagueness.
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a theoretical background of fuzzy methods with fixed membership functions) is
still a matter of future research.
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1. Běhounek, L.: Comments on “Fuzzy logic and higher-order vagueness” by Nicholas
J.J. Smith. In: Cintula, P., Fermüller, C., Godo, L., Hájek, P. (eds.) Understanding
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