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Abstract. We investigate the notion of dilation of a propositional theory based
on neighbourhoods in a generalized approximation space. We take both a seman-
tic and a syntactic approach in order to define a suitable notion of theory dilation
in the context of approximate reasoning on the one hand, and a generalized no-
tion of forgetting in propositional logic on the other hand. We place our work in
the context of existing theories of approximation spaces and forgetting, and show
that neighbourhoods obtained by combining collective and selective dilation pro-
vide a suitable semantic framework within which to reason computationally with
uncertainty in a classical setting.
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1 Introduction

The formalization of resemblance between objects (or sets of objects) in rough set the-
ory [38, 40, 41] is based on the notion of an approximation space, defined by a partition
on, or covering of, object attributes. Knowledge about objects is granular, with the parti-
tion of equivalence classes or covering of neighbourhoods providing the only discerning
measure between objects and determining the granularity of object descriptions.

A related problem is that of information approximation in formal logic. Given a
knowledge base K, we ask when a sentence α follows from K, subject to some degree
of tolerance on a given subsignature S. This yields a parameterized supra-classical con-
sequence relation. On the one hand, the (atomic features described by) elements of S
may be considered collectively irrelevant. This case has been studied in depth in vari-
ous guises, such as forgetting [33] and rough set theory [40]. On the other hand, each
element of S may be deemed individually irrelevant. This case has also been studied
in rough set data analysis [53]. Variation between these two extremes gives rise to an
increasingly refined granularity of neighbourhoods, applicable to a range of problems
in knowledge representation, approximate pattern matching and information retrieval,
yet remaining discrete and qualitative in nature.

In this paper we first present a detailed account of selective propositional theory
dilation and its syntactic counterpart of selective forgetting. We then generalize and
internalize the notion of dilation, which gives rise to a logic of theory dilation. Seman-
tically, our approach is based on neighbourhoods in a generalized approximation space;
computationally, it is based on a generalization of the forgetting operator allowing for
both collective and selective dilation.
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Similarity and tolerance relations have been studied extensively in knowledge rep-
resentation, notably in knowledge base merging [3], where they are used as measures
to assist in dealing with inconsistencies [28, 43], in approximate reasoning about indis-
cernible information [42], and as an alternative to nonmonotonic reasoning [16, 17, 30].
More generally, they have been studied in the context of vagueness or incompleteness in
information theory [34, 41, 48]. Fuzzy rough information theory has also been studied
extensively in this context [45, 49]. (Pawlak and Skowron [41] give a broad overview
of rough set theory and applications, including an extensive list of references.)

Although we only consider the propositional case in the present paper, our aim is
to extend the work to more expressive knowledge representation formalisms such as
modal logics [13], as well as description logics [1] and fragments thereof, by building
upon existing modal perspectives on generalized rough sets [32, 50].

The remainder of the present text is structured as follows. In Section 2 we set up the
notation used in the paper, and give some background on rough set theory [40, 41] and
forgetting [33]. We then show how selective indiscernibility can be defined semantically
(Section 3), and syntactically (Section 4). This provides us with the handle needed to
define a logic to express dilation at the object level, which we present in Section 5. We
then present an outline of the generalization of our work to the infinite case (Section 6),
and conclude with a discussion and directions for future investigation.

2 Background

2.1 Formal Preliminaries

In what follows, we assume a classical propositional language L built up from at most
denumerably many variables (or atoms) P , the special constants⊥ and>, and the usual
connectives. We shall use p, q, . . . (possibly with subscripts) as meta-variables for the
atomic propositions, and α, β, . . . to denote the sentences of our language. Givenα ∈ L,
atm(α) denotes the set of propositional variables occurring in α. A literal is an atom
or the negation of an atom and is denoted by `. Given α ∈ L, lit(α) denotes the set of
literals occurring in α. A term (or diagrammatic sentence) is a conjunction of literals
and is denoted by π. A term π′ is a subterm of π if lit(π′) ⊆ lit(π).

We denote propositional valuations (or interpretations, or worlds) by u, v, . . . :
P −→ {0, 1}, with 0 denoting falsity and 1 truth. We shall sometimes represent valua-
tions as sequences of 0s and 1s, and with the obvious implicit ordering of atoms. Thus,
for the logic generated from p and q, the valuation in which p is true and q is false will
be represented as 10. For a given α ∈ L, Mod(α) := {v | v  α} denotes the set of all
models of α, where v  α denotes the standard classical satisfaction of α by v. We say
that α is valid (denoted |= α) if v  α for every valuation v.

A theory is a (possibly infinite) set of sentences T ⊆ L. A knowledge base K
is a finite theory. Our primary focus in this paper is on knowledge bases, although
some of the definitions and results are also applicable to infinite theories (cf. Section 6).
We make the restriction to knowledge bases explicit in all cases. The set of variables
occurring in T is denoted atm(T ). T entails α, written T |= α, if and only if Mod(T ) ⊆
Mod(α). Theories T and T ′ are logically equivalent, written T ≡ T ′, if and only if
Mod(T ) = Mod(T ′).
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2.2 Indiscernibility

The basic building block of rough set theory is the notion of an approximation space of
the form 〈U , Θ〉, where U is a set of objects andΘ an equivalence relation on U . The in-
tuition is that elements of U can only be distinguished up to their respective equivalence
classes, while objects from the same equivalence class are indistinguishable.

Relaxation of the symmetry and transitivity conditions on Θ has been studied in a
number of different contexts, amongst which is the study of tolerance relations, which
may fail transitivity [36, 42, 44]. Our building blocks are now tolerance spaces of the
form 〈U , Ω〉, where U is a set and Ω is a reflexive and symmetric tolerance relation
on U . As before, the intuition is that elements of U can only be differentiated if they
are not Ω-related to each other. The set Ω(x) := {y | (x, y) ∈ Ω} is referred to as the
neighbourhood of x [48].

With each tolerance space 〈U , Ω〉 we associate two operators: If X ⊆ U , then
X := {x ∈ U | Ω(x) ∩X 6= ∅} is the dilation of X , and its erosion is X := {x ∈ U |
Ω(x) ⊆ X}. If Ω is also transitive, the dilation and erosion operators coincide with the
upper and lower approximation operators of an approximation space.

From now on, let U denote the set of all propositional valuations. It then immedi-
ately follows that, for any S ⊆ P and

ΘS := {(u, v) | u  p if and only if v  p, for all p ∈ P \ S},

〈U , ΘS〉 is an approximation space.
Not every tolerance (or approximation) space defines some theory T . In Section 3

we describe a class of tolerance spaces that do arise syntactically from some notion of
indiscernibility amongst atoms. We next present some background on an elegant way
to capture indiscernibility syntactically.

2.3 Forgetting and Irrelevance

Lin and Reiter [33] introduced the notion of forgetting a set of predicates in a first-
order theory in the context of cognitive robotics. We present a propositional version
of forgetting here, which has since been studied extensively, especially in the context
of modal logics [15, 51] and description logics [47]. Intuitively, the result of forgetting
a set of atoms S should be weaker than the original knowledge base, but still entail
the same set of sentences that are irrelevant to the signature S. As pointed out by Lin
and Reiter, the notions of forgetting, irrelevance, and equivalence of interpretations are
strongly related.

Definition 1. Let K be a knowledge base and S ⊆ P . Let 〈U , ΘS〉 be the approxima-
tion space with ΘS := {(u, v) | u  p if and only if v  p, for all p ∈ P \ S}. A
knowledge base K′ is a result of (conjunctively) forgetting about S in K if and only if

Mod(K′) = {w | Mod(K) ∩ΘS(w) 6= ∅}.

Hence the K′-models are all the worlds that are indistinguishable from some K-model
with respect to S.
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Theorem 1 (Lin & Reiter [33]). The result of forgetting always exists and is unique
modulo logical equivalence.

This result allows us to write ForgetS(K) for the semantically unique result of forgetting
all the atoms in S in the knowledge base K. If K is a singleton set, say K = {α}, we
write ForgetS(α) as shorthand for ForgetS({α}), some set of sentences that has the
intended set of models.

Definition 2. Let T ⊆ L and S ⊆ P . S is (collectively) irrelevant to T if and only if
there exists a theory T ′, logically equivalent to T , such that atm(T ′) ∩ S = ∅.

Theorem 2 (Lin & Reiter [33]). Let K be a knowledge base and S ⊆ P . Then

ForgetS(K) ≡ {α | K |= α and S is irrelevant to α}.

A closely related notion to irrelevance is that of essential atoms [39]. We say that
an atom p is essential to a theory T if and only if p ∈ atm(T ′) for every T ′ such
that T ≡ T ′. For instance, p is essential to T = {¬p,¬p ∨ q}. Given T , atm!(T )
denotes the set of essential atoms of T . (If T is not contingent, i.e., T is tautological or
contradictory, then atm!(T ) = ∅.)

Given a theory T , let T ! := {α | T |= α and atm(α) ⊆ atm!(T )}. Clearly,
atm(T !) = atm!(T !). Moreover, for every α ∈ L such that T ≡ α, atm!(T ) = atm!(α)
and T ! = {α}!.

Theorem 3 (Least Atom-Set Theorem [39]). Let T ⊆ L. Then T ≡ T !, and for every
α such that T ≡ {α}, atm(T !) ⊆ atm(α).

A proof of this theorem is given by Makinson [35]. Essentially, it establishes that, for
every theory T , there is a unique least set of elementary atoms such that T may be
expressed equivalently using only atoms from that set. Hence, T ≡ T !.

In general, theories may be infinite, and the semantic characterization of forgetting
of Definition 1 may therefore not be applicable. (See Section 6 for the infinite case.)
If T is finite, there are only finitely many atoms essential to T , and only these atoms
affect the result of forgetting S in T .

3 Selective Indiscernibility

We have seen that any set of atoms naturally yields an indiscernibility relation on val-
uations which is an equivalence relation. By weakening the transitivity condition, we
now replace the equivalence relation with a range of increasingly fine-grained neigh-
bourhood relations.

Definition 3. Let Ω be a reflexive and symmetric binary relation on U , and let Ω0 be
the identity relation on U . For n ≥ 1, the n-transitive closure of Ω is the smallest
relation Ωn such that

(i) Ω ⊆ Ωn, and
(ii) if (x0, x1), (x1, x2), . . . , (xn−1, xn) ∈ Ω, then (x0, xn) ∈ Ωn.
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Equivalently, Ωn :=
⋃
{Ψ∗ | Ψ ⊆ Ω and |Ψ | = n}, where Ψ∗ is the transitive clo-

sure of Ψ . From a morphological perspective [4], Ωn is a structuring element, which
can also be defined as a neighbourhood function Ωn : U −→ 2U based on the Man-
hattan distance measure, with Ωn(x) = {y | (x, y) ∈ Ωn} the image of x under the
relation Ωn.

The n-transitive closure of a reflexive and symmetric binary relation provides a
mechanism to describe neighbourhood-based rough sets whose upper and lower bounds
are determined by a tolerance relation that exhibits only a limited degree of transitivity.
As we shall see in Section 4, it also provides a semantic characterization for an operation
akin to forgetting.

We next show how a theory and a set of atoms give rise to a range of tolerance
spaces. First, we consider all functions CS picking out n elements from a given set S:

Definition 4. Let S ⊆ P , CS : {0, . . . , |S|} −→ 2S is a function such that CS(n) 7→
CnS , where CnS ⊆ S and |CnS | = n.

Lemma 1. Let S ⊆ P and 0 ≤ n ≤ |S|. For this fixed S and n, let

Ωn :=
⋃
CnS⊆S

{(u, v) | u  p if and only if v  p, for all p ∈ P \ CnS}.

Then 〈U , Ωn〉 is a tolerance space. Moreover, if n = 0, Ω0 is the identity relation on U ,
and for n ≥ 1, Ωn is the n-transitive closure of

Ω := {(u, v) | for some q ∈ S, u  p if and only if v  p, for all p ∈ P \ {q}}.

Corollary 1. If n = |S|, then Ωn is an equivalence relation.

Example 1. Let P = {p, q, r, s} and let S = {p, q, r}. Then C0S = ∅, C1S is one of
the singleton sets {p}, {q} or {r}, C2S is one of the sets {p, q}, {p, r} or {q, r}, and
C3S = {p, q, r}. Ω0 is the identity relation on U , Ω1 is the set of all those pairs of
valuations that agree everywhere except on at most one element of S, Ω2 is the set of
all those pairs of valuations that agree everywhere except on at most two elements of
S, and Ω3 is the set of all those pairs of valuations that agree on the proposition s. Note
that Ω0 and Ω3 are equivalence relations, but that Ω1 and Ω2 are not.

4 Selective Forgetting

Forgetting, as traditionally studied in the literature, is conjunctive, in the sense that
all the elements of a given set of atoms are forgotten, or deemed irrelevant. Syntacti-
cally, forgetting S from K yields a knowledge base in which none of the atoms from S
occur. Semantically, forgetting S yields an approximation space with indiscernibility
relation ΘS as outlined in Section 2.2.

We now define the more general problem of forgetting any n atoms from S in K,
and show that this describes the syntactic counterpart of tolerance spaces in the same
way as standard forgetting is the syntactic counterpart of approximation spaces. The
term ‘forgetting’ is not really appropriate here, since our aim is not to forget atoms but
rather to dilate theories semantically, but we retain it because of the computational link
with forgetting that we shall establish.
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Definition 5. Let K be a knowledge base, S ⊆ P and 0 ≤ n ≤ |S|. Let 〈U , Ωn〉 be the
tolerance space with

Ωn =
⋃
CnS⊆S

{(u, v) | u  p if and only if v  p, for all p ∈ P \ CnS}.

A knowledge base K′ is a result of selective forgetting at most n atoms from S in K iff

Mod(K′) = {w | Mod(K) ∩Ωn(w) 6= ∅},

where Ωn(w) denotes the image of w under Ωn.

We are now ready to state the most important result of this section.

Theorem 4. The result of selective forgetting always exists and is unique modulo logi-
cal equivalence.

Proof. We know that, for a fixed S and 0 ≤ n ≤ |S|, Mod(ForgetCnS (K)) = {w |
Mod(K)∩ΘCnS (w) 6= ∅} from Definition 1. On the lefthand side of this equality, letting
CnS range over all possible choices from S , we obtain

∨
CnS⊆S

∧
ForgetCnS (K) syntacti-

cally, while on the righthand side, we obtain {w | Mod(K) ∩ Ωn(w) 6= ∅} for some
CnS ⊆ S semantically. Therefore, let K′ := {

∨
CnS⊆S

∧
ForgetCnS (K)}. Then it follows

that Mod(K′) = {w | Mod(K) ∩Ωn(w) 6= ∅}. ut

This result allows us to write SForgetnS(K) for the (semantically unique) result
of selective forgetting any n atoms from S in K. It then follows from Lemma 1 that
SForgetnS(K) arises from a tolerance space 〈U , Ωn〉 in which Ωn has a particular struc-
ture, namely, it is the n-transitive closure of the tolerance relation associated with
SForget1S(K).

Corollary 2. Let 〈U , Ωn〉 be the tolerance space with Ωn as in Definition 5. Then
Mod(SForgetnS(K)) = Mod(K).

The semantic intuition of selective forgetting is that Mod(K) represents the weak-
est knowledge base resembling K, with indiscernibility determined by a given set of
atoms S and degree of transitivity n.

As in the case of forgetting, we obtain a syntactic characterization of selective for-
getting when K is written as a single sentence τ :

Corollary 3. Let τ ∈ L, S ⊆ P and 0 ≤ n ≤ |S|. SForgetnS(τ) can be characterized

as the singleton set SForgetnS(τ) :=
{∨
CnS⊆S

∧
ForgetCnS (τ)

}
.

With this result, together with Theorem 5 below, we obtain a method to compute
selective forgetting via disjunctive normal form (DNF). Although computing the DNF
of a sentence is itself computationally expensive, once preprocessing has been done, it
provides an attractive alternative to computing forgetting directly.

Definition 6. Let π be a term and let S ⊆ P . Then π−S :=
∧
`∈lit(π),atm(`)/∈S `.
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Let α[p/⊥] and α[p/>] denote the sentences obtained from α by replacing the
atom p with ⊥ and >, respectively.

Lemma 2 (Lang et al. [31]). Let π be a consistent term and let p ∈ P . Then π−{p} ≡
π[p/>] ∨ π[p/⊥].

Let DNF(τ) denote (some) DNF representation of τ as a set of terms. The proof of
the theorem below then follows from iterative applications of Lemma 2.

Theorem 5 (Lang et al. [31]). ForgetS(τ) ≡
{∨

π∈DNF(τ) π
−
S

}
.

Corollary 4. Let τ ∈ L, S ⊆ P and 0 ≤ n ≤ |S|. Then

SForgetnS(τ) ≡
{∨
CnS⊆S

∨
π∈DNF(τ) π

−
CnS

}
.

If τ has been pre-compiled as a disjunction of its prime implicants [37], the size of
SForgetnS(τ) is at most |S|n times the size of τ . Some post-processing may be required
to remove redundant clauses to rewrite the result as a disjunction of prime implicants,
but it is not hard to see that this does not affect the overall complexity of computation.

As an example, we consider the special case where n = 1. Given a knowledge
base K and a set of atoms S, our aim is to define K′, first semantically and then syntac-
tically, obtained from K by non-deterministically disregarding one atom from S. The
semantic characterization of K′ follows directly from Definition 5. The tolerance space
induced by S is 〈U , Ω〉, with Ω the set of all pairs of valuations that differ on at most
one atom from S. The upper approximation of Mod(K) is Mod(K′):

Mod(K) = Mod(K′) =
⋃
{Ω(w) | Ω(w) ∩Mod(K) 6= ∅}.

Finally, if K = {τ}, then K′ may be characterized syntactically as follows:

SForget1S(τ) :=
{∨

p∈S τ [p/⊥] ∨ τ [p/>]
}
.

We illustrate these relationships in a simple concrete example:

Example 2. LetP = K = {p, q, r, s} and S = {p, q, r}. ForgetS(K) = SForget3S(K) =
{s}, SForget2S(K) = {p∨ q∨ r, s}, SForget1S(K) = {(p∧ q)∨ (p∧ r)∨ (q∧ r), s}, and
SForget0S(K) = {p, q, r, s}. Clearly, selective forgetting does not eliminate the atoms
that are forgotten syntactically from a knowledge base. Its effect is best thought of se-
mantically: In our example, Mod(K) = {1111}. To obtain Mod(SForget1S(K)), add all
worlds that differ from 1111 in at most one atom, which must be from S. This gives
Mod(SForget1S(K)) = {1111, 1101, 1011, 0111}. Similarly, to get Mod(SForget2S(K)),
add all worlds that differ from 1111 in at most two atoms, which must be from S, and
to obtain Mod(ForgetS(K)), add all worlds that differ from 1111 only on S.
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5 A Neighbourhood Semantics for a Logic of Dilation

Both standard forgetting and selective forgetting are operators at the meta-level in the
sense that we cannot refer to or explicitly use them in the logical language. In this
section we turn our attention to internalizing the notion of dilation in the object level,
which gives rise to a logic within which one can explicitly express and reason about
dilation. (Our motivation is similar to that of internalizing belief revision [21] in modal
logic [46] or the notions of typicality [5, 6, 20] and relative normality [2, 7, 9, 11, 12] in
nonmonotonic reasoning.)

We have seen in the previous sections that dilation is carried out relative to a given
set of atoms and that these can be considered either collectively or selectively. Hence,
operators internalizing the notion of dilation should be parameterized by a given signa-
ture and in this way inform the operation. Moreover, they should also allow for more
complex operations involving both collective and selective dilation, as in e.g. “dilate a
theory by p and q or by r and s”.

We first define the grammar of the dilation operators. Below, ε denotes the empty
string and p ∈ P . With · and + we denote, respectively, collective and selective dilation
as motivated above.

o ::= ε | p | (o · o) | (o + o)

Assuming P = {p, q, r}, examples of dilation operators generated by the above
grammar are (p · (q + p)) and ((p · p) + (q · (p + r))). (For the sake of readability,
in what follows we shall assume that · has precedence over + and therefore we shall
omit some unnecessary parentheses. We shall also omit the outermost parentheses in
operators.) We shall use o, %, σ, . . . to denote operators generated by the grammar. With
O we denote the operator language generated as above. Given p ∈ P and o ∈ O, with
p ∈ o we denote the fact that p appears in (is a symbol of) the operator o.

An atomic dilation operator in O is either an atom p ∈ P or it is ε. A primitive
collective dilation operator is any operator of the form %1 · . . . ·%k, k ≥ 1, where each %i
is an atomic dilation operator. A dilation operator is in dilation normal form if it has the
form σ1 + . . .+ σn, n ≥ 1, where each σi is a primitive collective dilation operator.

Given the set of all dilation operatorsO as defined above, we can extend our under-
lying propositional language in the following way:

α ::= p | ¬α | α ∧ α | αo

All the other Boolean truth-functional connectives (∨,→,↔, . . . ) are defined in terms
of ¬ and ∧ in the usual way. We use > as an abbreviation for p ∨ ¬p and ⊥ as an
abbreviation for p∧¬p, for some p ∈ P . With LO we denote the set of all sentences of
our extended language.

A sentence of the form αo is read “the dilation of α by o”. The semantics of sen-
tences of LO is in terms of neighbourhoods, which we define more precisely below.

Definition 7. The neighbourhood space of LO is a mapping Ω : O −→ 2U×U s.t.:

– Ωε = {(v, v) | v ∈ U};
– Ωp = {(v, w) | v(q) = w(q) for all q ∈ P \ {p}};
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– Ω%·σ = (Ω% ∪Ωσ)∗, the reflexive transitive closure of Ω% ∪Ωσ;
– Ω%+σ = Ω% ∪Ωσ .

Given o ∈ O, we abbreviate Ω(o) by Ωo as in Definition 7. Also, given w ∈ U , Ωo

defines (by a slight abuse of notation) a neighbourhood function Ωo : U −→ 2U , with
Ωo(w) the image of w under Ωo. The following properties of Ω are worthy of mention:

– Ω%·σ = Ωσ·% and Ω%+σ = Ωσ+% (Commutativity)
– Ωo·(%·σ) = Ω(o·%)·σ and Ωo+(%+σ) = Ω(o+%)+σ (Associativity)

It is not hard to see that distributivity of · over + and of + over · do not hold in general.
However, we have the following additional properties:

Lemma 3 (Normal Form).

– For every %, σ ∈ O, there exists some primitive collective dilation operator o such
that Ω%·σ = Ωo;

– For every % ∈ O there exists σ ∈ O in dilation normal form such that Ω% = Ωσ .

Armed with the notion of neighbourhood functions we can give a precise and ele-
gant semantics to the sentences of LO:

Definition 8 (Satisfaction). Given w ∈ U:

– w  p if and only if w(p) = 1;
– w  ¬α if and only if w 6 α;
– w  α ∧ β if and only if w  α and w  β;
– w  αo if and only if, for some v ∈ U , v  α and w ∈ Ωo(v).

Given α ∈ LO, we say that α is valid if Mod(α) = U and we denote it |=o α.
The next lemma shows that our neighbourhood semantics preserves the validity of all
propositional tautologies.

Lemma 4. Let α ∈ L (i.e., α is a propositional sentence). Then |= α iff |=o α.

From the perspective of knowledge representation and reasoning, it becomes im-
portant to address the question of what it means for a sentence α (or a theory T ) to
entail a sentence β. For now we suffice with a standard (Tarskian) definition of logical
consequence (at the end of the present section we shall define an alternative notion of
entailment for LO): given α, β ∈ LO, α entails β (denoted α |=LO β) if and only if
Mod(α) ⊆ Mod(β). (This notion of entailment can be extended to theories in the usual
way.) We shall use α ≡LO β as an abbreviation for α |=LO β and β |=LO α. It then
follows that, for every %, σ ∈ O, (α%)σ ≡LO α%·σ .

The following result generalizes Theorem 4, and its proof is similar:

Theorem 6. Let α ∈ L and o ∈ O be in dilation normal form, with o = π1+ . . .+πn,
n ≥ 1. Then αo ≡LO

∨
1≤i≤n Forget{p|p∈πi}(α).
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Theorem 6 establishes that reasoning with LO can be reduced to reasoning in clas-
sical propositional logic together with the standard forgetting operator. From this it then
becomes easy to analyze the complexity of reasoning within LO.

Conversely, both standard and selective forgetting can be captured in the extended
language LO presented above. For example, let S = {p, q, r}. Then ForgetS(τ) ≡LO

τpqr, SForget1S(τ) ≡LO τp+q+r and SForget2S(τ) ≡LO τpq+pr+qr. However, the new
language allows us to express dilations directly in the language, and it allows us to
express more — the sentence τp+qr can, for example, not be expressed using the meta-
language of selective forgetting.

Thus far, we have only considered the neighbourhoods defined in terms of collec-
tive and selective dilation. The grammar can in principle be extended to allow for the
construction of erosion, opening and closing operators, to name a few [4].

We shall now turn our attention to an alternative notion of entailment for the ex-
tended language LO. We start by observing that the dilation operation is a uniform
weakening operator in the sense of Britz et al. [10]. That is, given α, β ∈ L and o ∈ O,
the following properties are satisfied:

– α |=LO αo (Weakening)
– If α |=LO β, then αo |=LO βo (Uniformity)

It then follows that, given o ∈ O, the operator CnLO : LO −→ 2L
O

, defined
by CnLO (α) 7→ {β ∈ LO | α |=LO βo}, is a parameterized supra-classical Tarskian
consequence operator. We extend CnLO to a consequence operation on knowledge bases
in the standard way.

Given o ∈ O, CnLO defines a tolerant entailment relation |∼, allowing pairs K |∼ α
for which K 6|= α, and applicable in approximate reasoning where additional conse-
quences that do not follow classically, but which resemble some classical consequences,
are sought. (Note that |∼ is a monotonic consequence relation.) Given a knowledge
base K and α ∈ LO, entailment checking of K |∼ α can then be reduced to standard
forgetting, courtesy of Theorem 6 above.

6 Weak Selective Forgetting

We now turn to the syntactic characterization of weak selective forgetting in infinite
theories. Of course, the finite characterization of selective forgetting then collapses.
Nor does syntactic irrelevance suffice as vehicle for its representation, as in the case of
forgetting [33].

The following alternative syntactic characterization of forgetting suggests a possible
course of action. It holds for finite as well as infinite theories, and can therefore be
used to obtain a syntactic representation of weak forgetting as proposed by Zhang and
Zhou [52]:

Lemma 5. Let T ⊆ L and p ∈ P . Let T1 = {α | T |= α and p is irrelevant to α} and
T2 = {α[p/⊥] ∨ β[p/>] | α, β ∈ T }. Then T1 ≡ T2.

Proof. Routine, using compactness to deal with the infinite case. ut
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Definition 9. Let T ⊆ L, and S ⊆ P be a finite set of atoms. Define TS recursively as
follows:

(i) T∅ = T ;
(ii) TS0∪{p} = {α[p/⊥] ∨ β[p/>] | α, β ∈ TS0}, for S0 ⊂ S.

Theorem 7. Let T ⊆ L, S ⊆ P a finite set of atoms, and TS as in Definition 9. If T is
finite, then TS ≡ ForgetS(T ). If T is infinite, then

TS ≡ {α | T |= α and S is irrelevant to α}.

Proof. From Lemma 5 and Theorem 2. ut

The result above warrants us to call TS the result of weakly forgetting S in T , or
WForgetS(T ) in the terminology of Zhang and Zhou [52]. We use this to define weak
selective forgetting as a generalization of weak forgetting in the power set algebra as-
sociated with the propositional language L. Brink [8] gives a general account of power
structures in the context of logic.

Definition 10. Let f : An −→ A be an n-ary operation on the setA and letX1, . . . , Xn ⊆
A. Then f+ : (2A)n −→ 2A is the power operation of f on 2A defined by:

f+(X1, . . . , Xn) := {y ∈ A | (∃x1 ∈ X1) . . . (∃xn ∈ Xn)[f(x1, . . . , xn) = y]}.

Definition 11. Let T ⊆ L, S ⊆ P a finite set of atoms and 0 ≤ n ≤ |S|. The weak
selective forgetting of n atoms from S in T is the theory

WSForgetnS(T ) :=
∨+
CnS⊆S

WForgetCnS (T ),

where
∨+ denotes the power operation of ∨.

In other words, if T1, . . . , Tk is an enumeration of the theories WForgetCnS (T ) for all
values of CnS , then WSForgetnS(T ) = {

∨
1≤j≤k αj | for each j, αj ∈ Tj}.

It is not difficult to see that, for Ωn as in Definition 5,

{w | Mod(T ) ∩Ωn(w) 6= ∅} ⊆ Mod(WSForgetnS(T )).

Finally, our definition is further supported by the fact that, for knowledge bases,
selective forgetting and weak selective forgetting produce the same results.

7 Concluding Remarks

The main contributions of the present paper can be summarized as follows: (i) defin-
ing a notion of selective indiscernibility, (ii) showing how to compute it via selective
forgetting, and (iii) presenting a logic in which to express and reason with dilation at
the object level and for which the reasoning problem can be reduced to entailment in
classical propositional logic plus standard forgetting.

Syntactically, selective forgetting is measured in terms of the number and selection
of atoms on which disagreement is allowed. It therefore provides a range of increasingly
tolerant upper bounds to a given theory, which can be applied to approximate reasoning
and nonmonotonic reasoning. To witness, we can define a belief contraction operator
based on the following observation:
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Lemma 6. Let K be a knowledge base. For every non-tautological α ∈ L, if ∅ 6= S ⊆
atm!(α), then there exists an n such that SForgetnS(K) 6|= α.

Hence, given appropriate S and n, selective forgetting of atoms in K delivers a weaker
knowledge base not entailing sentenceα. The results in Section 5 together with Lemma 6
suggest we can also bring such a contraction operator into the object language.

The present paper also opens up a number of avenues for future research:
An investigation of the dual case of selective remembering, and its relationship with

its semantic counterpart of lower approximations in a tolerance space, as well as the
corresponding operators of erosion, remain to be done. Likewise, lifting the proposi-
tional results obtained here to knowledge forgetting in modal logics [15] and to concept
and role forgetting in description logics [47] are worth investigating.

Another avenue for future exploration is the definition of different alternative no-
tions of entailment for LO and their relationship with various forms of reasoning.

Finally, from a knowledge representation and reasoning perspective, when one deals
with knowledge bases, issues related to modularization [14, 19, 22–24], knowledge base
revision and update [21, 25, 26] as well as knowledge base maintenance and version-
ing [18, 27, 29] show up. These are tasks that also make sense in the setting studied
in this paper. When moving beyond the classical case, though, such tasks have to be
reassessed and specific methods and techniques redesigned. This constitutes a thread
worthy of exploration.
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consequence. In: Fermé, E., Gabbay, D., Simari, G. (eds.) Trends in Belief Revision and
Argumentation Dynamics, Studies in Logic – Logic and Cognitive Systems, vol. 48, pp.
123–154. King’s College Publications (2013)

7. Boutilier, C.: Conditional logics of normality: A modal approach. Artificial Intelligence
68(1), 87–154 (1994)

8. Brink, C.: Power structures. Algebra Universalis 30, 177–216 (1993)
9. Britz, K., Casini, G., Meyer, T., Varzinczak, I.: Preferential role restrictions. In: Proceedings

of the 26th International Workshop on Description Logics. pp. 93–106 (2013)
10. Britz, K., Heidema, J., Varzinczak, I.: Constrained consequence. Logica Universalis 5(2),

327–350 (2011)
11. Britz, K., Varzinczak, I.: Defeasible modes of inference: A preferential perspective. In: Pro-

ceedings of the 14th International Workshop on Nonmonotonic Reasoning (NMR) (2012)
12. Britz, K., Varzinczak, I.: Defeasible modalities. In: Proceedings of the 14th Conference on

Theoretical Aspects of Rationality and Knowledge (TARK). pp. 49–60 (2013)
13. Chellas, B.: Modal logic: An introduction. Cambridge University Press (1980)
14. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies. In:

Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR). pp. 198–208. Morgan
Kaufmann (2006)

15. van Ditmarsch, H., Herzig, A., Lang, J., Marquis, P.: Introspective forgetting. Synthese
169(2), 405–423 (2009)

16. Dubois, D., Prade, H.: Similarity versus preference in fuzzy set-based logics. In: Orlowska,
E. (ed.) Modelling Incomplete Information: Rough Set Analysis, pp. 441–461. Physica-
Verlag (1998)

17. Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L.: A logical approach to interpolation
based on similarity relations. International Journal of Approximate Reasoning 17(1), 1–36
(1997)

18. Franconi, E., Meyer, T., Varzinczak, I.: Semantic diff as the basis for knowledge base ver-
sioning. In: Proceedings of the 13th International Workshop on Nonmonotonic Reasoning
(NMR) (2010)

19. Garson, J.: Modularity and relevant logic. Notre Dame Journal of Formal Logic 30(2), 207–
223 (1989)

20. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.: A non-monotonic description logic for
reasoning about typicality. Artificial Intelligence 195, 165202 (2012)

21. Hansson, S.: A Textbook of Belief Dynamics: Theory Change and Database Updating.
Kluwer Academic Publishers (1999)

22. Herzig, A., Varzinczak, I.: Domain descriptions should be modular. In: López de Mántaras,
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