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Abstract. Conflict-directed clause learning (CDCL) is the basis of SAT
solvers with impressive performance on many problems. CDCL with
restarts (CDCL-R) has been shown to have essentially the same rea-
soning power as unrestricted resolution (formally, they p-Simulate each
other). We show that this property generalizes to multi-valued CNF for-
mulas. In particular, for Signed (or Multi-Valued) CNF formulas, and
Regular Formulas, we show that a natural generalization of CDCL-R to
these logics has essentially the same reasoning power as natural gener-
alizations of resolution from the literature. These formulas are possible
reduction targets for a number of multi-valued logics, and thus a possible
basis for efficient reasoning systems for these logics.

1 Introduction

Multi-valued logics are among the most established formal methods for rea-
soning with uncertainty. In this paper, we study a property relating resolution
proofs and a family of satisfiability algorithms for multi-valued CNF formulas,
as defined in, for example, [8, 3].

The dominant algorithm in modern SAT solvers is the conflict-directed clause
learning algorithm, introduced in [12], with restarts [10], here denoted CDCL-R.
Good solvers based on CDCL-R have remarkable performance on some classes
of problems. Consequently, many reasoning tasks are carried out by reduction to
propositional CNF, or by adaptation of CDCL to other families of formulas. It
has been shown that CDCL-R with unlimited restarts has, up to a small poly-
nomial factor, the same reasoning power as unrestricted propositional resolution
[14]. (It remains open whether restarts are essential or not.) Independently, using
essentially the same method plus a probabilistic argument, it was shown in [1]
that CDCL-R can refute any CNF formula with a width k resolution refutation
in time O(n2k+2).

Because most SAT solvers require input in CNF, it is standard to solve propo-
sitional logic reasoning problems by reduction to CNF. Validity or satisfiability
of many multi-valued and fuzzy logics (as well as annotated logics, and others)
can be reduced to Signed or Multi-Valued CNF formulas [7]. The main purpose of
this paper is to show that the result and method from [14] generalize naturally
to the Signed CNF setting. In particular, we present a natural generalization



of CDCL-R to Signed CNF, and show that this algorithm has essentially the
same reasoning power as standard binary resolution proofs for these formulas.
Our proof is essentially an adaptation of that in [14], with parts influenced by
[1], although our presentation is distinct. Rather than proceed from a detailed
examination of CDCL-R, we proceed from the key properties of resolution, to
a simplified derivation algorithm, and then to a highly abstracted version of
CDCL-R.

We assume the reader is familiar with the standard CDCL-R algorithm. (A
self-contained description of CDCL and its relationship to resolution can be
found in [13], among other places. The reader may also want to refer to [14] and
[1] for distinct presentations of the algorithm, as well as the original proofs ours is
based on, and [2], where a careful examination of the relation between resolution
and the implication graph method for obtaining conflict clauses appears.)

A number of algorithms and solvers for signed or multi-valued formulas, or
special cases of them, have been described in the literature. We leave a review
of these to a longer paper. Here we point out only that our algorithm, while
presented very differently, seems essentially the same as that described in [11],
but with the addition of restarts. As far as we know, restarts are essential to our
result. Restarts also seem to be essential in practical SAT solvers.

The organization of the paper is as follows. In Section 2 we define Signed
CNF formulas, the specific families of formulas we study, and binary resolution
for these formulas. The properties of resolution proofs which are central to the
proof are defined in Section 3. In Section 4 we describe an algorithm which
embodies the core reasoning in (our generalization of) CDCL-R, while Section 5
shows that repeated calls to this algorithm can refute formulas as efficiently
as resolution. In Section 6 we give our generalized CDCL-R algorithm, define
p-simulation and give the main theorem. We conclude briefly in Section 7.

2 Signed CNF Formulas and Resolution

Let D be a finite set of truth values and P a countably infinite set of multi-valued
propositional atoms. Signed CNF formulas for D are constructed from literals
of the form p∈S, where S is a non-empty proper subset of D and p ∈ P. (In the
literature on Signed CNF, literals are usually written S:p, but we prefer the set
notation for readability.) Formally S is a string of constant symbols, denoting
elements of D, enumerating the set S. This is typically glossed over, so that S
is used both for the set of truth values and the string representing it.

A clause is a disjunction of literals, and a formula is a conjunction of clauses.
When convenient we identify clauses with sets of literals, and formulas with sets
of clauses. An assignment α for formula Γ and truth value set D is a function
mapping the propositional symbols in Γ to D. By “assignment”, we often mean
partial assignment. Assignment α satisfies literal p∈S if α(p) is in the subset of D
denoted by the string S. Definitions of satisfaction, implication, and equivalence
of CNF formulas follow in the standard manner [3]. The semantics of formulas



are multi-valued, in that models are multi-valued, but the connectives in Signed
CNF are classical. In complexity analyses, we will assume that D is fixed.

A number of variants of this basic logic have been studied. Typical variants
restrict the allowed literals, or impose structure on the truth set D. We consider
the following three. (Unfortunately, terminology is not uniform in the literature,
so our terms may correspond only roughly to those in some other papers.)

1. Multi-Valued CNF (MV-CNF): Formulas as just described, with the
requirement that each propositional symbol p occurs in at most one literal
in any clause.

2. Regular CNF over a lattice (Reg-CNF): Let D = 〈D,≺〉 be a lattice.
We call a literal p∈S regular for D iff S is either the upset ↑i = {s ∈ D |
i � s}, or the downset ↓i = {s ∈ D | s � i} of some i in D. A formula Γ is
regular for D if every literal in Γ is regular for D.

3. Regular CNF with Complements, over a total order (Reg-N-CNF):
Let D = 〈D,≺〉 be a set with total order. For each literal p∈S, there is some
i ∈ D for which S is ↑i, ↓i, or a complement of one of these, ↑i or ↓i.

For generic remarks, we use the term “signed CNF” or “signed formula”, and
we use one of these specific terms when remarks apply to a specific case.

Example 1. Consider the signed formulas with D = {0, 1}. These are equivalent
to classical CNF formulas.

Example 2. Consider regular formulas for D = 〈D,<〉, where, D is the set
{ 0

s−1 ,
1

s−1 ,
2

s−1 , . . .
s−1
s−1}, and < is the standard order on Q. Formulas for D cor-

respond to the standard multi-valued logics with finite truth value set, which
were the original motivation for the study of signed CNF formulas.

The complement of a regular atom is not necessarily regular, and may not
even be equivalent to any disjunction of regular atoms. Thus, the regular CNF do
not allow complements of literals. We included the third case, regular CNF over
a total order, with complements, because it corresponds naturally to standard
multi-valued logics. However, the proof for Multi-Valued CNF captures this case,
so we mention it directly only on occasion.

2.1 Signed Resolution

Let Signed Binary Resolution be the following derivation rule

p∈S ∨ A p∈R ∨ B

p∈(S ∩R) ∨ A ∨ B
(1)

We say the two antecedent (top) clauses in (1) were resolved on p to produce
the resolvent (bottom) clause. Two literals p∈S and p∈R clash if S 6= R. If R∩S
is non-empty, we call the literal p∈(R ∩ S) the residue, and otherwise we say that
the clash is annihilating. A pair of clashing literals which are annihilating are
inconsistent.



Rule (1) is the basis of resolution proof systems for our three families, but we
need two variants. In each case, a resolution derivation Π of clause C from a set
Γ of clauses is a sequence of clauses 〈C1, . . . , Cs〉, where each Ci is either in Γ or
derived from two earlier clauses in Π by the resolution rule, and Cs = C. The
length of the derivation is s. A refutation of Γ is a derivation of the empty clause,
denoted �. A resolution rule is sound and refutation complete for a family of
formulas if every formula in the family is unsatisfiable iff it has a refutation using
the rule.
Multi-Valued CNF: We obtain a sound and refutation-complete proof system
if we imbue rule (1) with implicit merging and annihilation [8]. That is:
1. Whenever (S ∩ R) is empty, the false “literal” p∈∅ is omitted from the

resolvent;
2. If two literals p∈S and p∈R with the same propositional symbol occur in

the resolvent, they are replaced by p∈(S ∪R).
Regular CNF: In this case, arbitrary literals on the same propositional symbol
cannot be merged because the result may not be regular. Hence, we allow
a clause to contain multiple literals on the same propositional symbol. The
following restricted signed resolution rule is sound and complete for regular
formulas over a lattice [4].

(p∈↑i ∨ A) (p∈↓j ∨ B)
(A ∨B)

provided i 6� j. (2)

Regular CNF with Complements: The same as given for MV-CNF.

In the restriction for Regular formulas, and also in the case of Regular for-
mulas with negation, there are no residuals: the clashing literals are always
annihilated.

If Γ is a set of clauses and L a set or sequence of literals, we may write Γ,L
as an abbreviation for Γ ∪ {(l) | l ∈ L}. We say literal p∈S is at least as strong
as p∈R if S ⊆ R, and stronger if S ( R. If p∈S is at least as strong as p∈R,
then also (p∈S) |= (p∈R).

3 Empowering and Absorbed Clauses

The ability of CDCL-R to efficiently simulate resolution proofs is closely tied to
a property of resolution refutations involving unit resolution. (See [14, 1] for the
original versions, for classical CNF.) A unit clause is a clause with exactly one
literal, and unit resolution is the use of the resolution rule when at least one
antecedent is a unit clause. We write Γ `ur (l), or simply Γ `ur l, if (l) can be
derived from Γ by unit resolution alone. We write Γ `ur � if there is a refutation
of Γ using only unit resolution. As in the classical case, with appropriate data
structures, it is possible to check if Γ `ur l or Γ `ur � in linear time. In MV-CNF,
unit resolution does not necessarily annihilate the literal of the unit clause, unlike
in the classical case.



For a set or sequence of literals L, we denote by L the of literals which are
the complements of literals in L. In particular, if C is a clause, then C the set
of complements of literals in C. Thus, Γ,C `ur � indicates, intuitively, that the
restriction of Γ obtained by setting all literals of C false can be refuted by unit
propagation. For regular formulas, this operation is always defined, since the
complement of a regular literal need not be regular. For this case, we make use
of the following sets. For each sequence L = l1, l2, . . . lk of literals, L denotes the
set of sets of literals of the form C = (l′1, l

′
2, . . . l

′
k) where each l′i is inconsistent

with li. In particular, for each clause C = (l1, l2, . . . lk), we denote by C the set of
sequences of literals of the form L = l′1, l

′
2, . . . l

′
k (except order does not matter)

where each l′i is inconsistent with li.

Definition 1 (Empowering and Absorbed Clauses) Let Γ be a set of clauses
and C a clause with Γ |= C. For sets Γ of MV-CNF or Reg-N-CNF formulas
(those with complements) we say C is a-empowering for Γ iff C = (A ∨ a) and

1. Γ,C `ur �,
2. Γ,A 6 `ur �,
3. Γ,A 6 `ur b, for any literal b that is inconsistent with a.

For Reg-CNF, which does not have complements, we say that C is a-empowering
for Γ iff C = (A ∨ a) and

1. For some C ′ ∈ C, Γ,C ′ `ur �,
2. If A′ ∈ A then Γ,A′ 6 `ur �,
3. If A′ ∈ A, and b a literal inconsistent with a, then Γ,A′ 6 `ur b.

C is empowering for Γ if it is a-empowering, for some a ∈ C, and is absorbed
by Γ otherwise.

Intuitively, a clause C is empowering for Γ if Γ,C has a unit refutation, but
Γ,A does not, where C = (A ∨ a). Notice that Γ,C is Γ with one or more unit
clauses added, in contrast to Γ ∪ {C}, which is Γ with one more clause.

Lemma 1 (Existence of Empowering Clauses). Let Γ be a set of signed
clauses for which Γ 6`ur �, and Π a signed resolution refutation of Γ . Then Π
contains a clause that is empowering for Γ .

Proof. The first part may be expressed identically for formulas with or without
complements. Let C be the first clause in Π that does not satisfy condition 1
of Definition 1. Such a clause exists, because the � suffices if no earlier clause
does. C is the resolvent of two earlier clauses of Π, say C1 = (p∈S1 ∨ A1), and
C2 = (p∈S2 ∨ A2), where p∈S1 and p∈S2 clash. We claim one of C1 or C2 is
empowering for Γ . Both are logically implied by Γ , because they are in Π and
signed resolution is sound. Both satisfy condition 1 of Definition 1, by choice of
C.

We complete the argument for formulas with complements as follows. Both
satisfy condition 2 of Definition 1, because C = (p∈(S1 ∩ S2) ∨ A1 ∨ A2), so if



Γ,A1 `
ur

� or Γ,A2 `
ur

� then Γ,C `ur �, contradicting choice of C. Now, suppose
both C1 and C2 fail condition 3 of Definition 1. That is, for some R1 ⊂ S1 and
R2 ⊂ S2, we have Γ,A1 `

ur

(p∈R1) and Γ,A2 `
ur

(p∈R2). Resolving (p∈R2) and
(p∈R1) produces a unit clause containing atom p∈(R1 ∩R2), which is at least
as strong as p∈(S1 ∩ S2). Then Γ,C `ur �, again contradicting choice of C. So
at least one of C1 or C2 is empowering for Γ .

The completion for formulas without complements is the same, but messier:
Both C1 and C2 satisfy condition 2, because C = (p∈(S1 ∩ S2) ∨A1 ∨A2), so if
Γ,A′1 `

ur

� for some A′1 ∈ A1 or Γ,A′2 `
ur

� for some A′2 ∈ A2, then Γ,C ′ `ur �
for some C ′ ∈ C, contradicting choice of C. Now, suppose both C1 and C2 fail
condition 3. That is, for some A′1 ∈ A1, A′2 ∈ A2, R1 ⊂ S1 and R2 ⊂ S2, we
have that Γ,A′1 `

ur

(p∈R1) and Γ,A′2 `
ur

(p∈R2). Resolving (p∈R2) and (p∈R1)
produces a unit clause containing atom p∈(R1 ∩R2), which is at least as strong
as p∈(S1 ∩ S2). Then there is a C ′ ∈ C with Γ,C ′ `ur �, again contradicting
choice of C. So either C1 or C2 is empowering for Γ .

4 Probing with Learning

The core of the CDCL algorithm can be viewed as a back-and-forth between two
processes, one which guesses at partial assignments, and one which derives new
clauses. We first consider an algorithm, that we call Probe-and-Learn, which
embodies a “single round” of this interaction. Describing the algorithm requires
some terminology.

For multi-valued formulas, the guessing involves restrictions on assignments,
rather than assignments. We will call such restrictions “decision sequences”.

Definition 1. A decision sequence δ for D and Γ is a sequence δ = 〈a1, a2, . . . as〉
of distinct literals such that:

1. If p∈S appears in δ, then S ⊆ D, and p appears in Γ .
2. If ai is p∈S, then S̄ ∩

⋂
{R | p∈R = aj and j < i} 6= ∅. (That is, each

successive literal further restricts the possible assignments.)
3. The set of literals in δ is satisfiable.

For any non-empty decision sequence δ = 〈l1, . . . lk−1, lk〉, let δ− denote the
maximal proper prefix δ− = 〈l1, . . . lk−1〉.

Each decision sequence defines a set of truth assignments, namely those con-
sistent with each literal in the sequence. For any decision sequence δ and literal
l, we say that δ makes l false if no assignment consistent with δ is consistent
with l. δ makes l true if every assignment consistent with δ satisfies l.

Unit propagation is a central feature in CDCL algorithms, and in particular
of the “back-and-forth” process embodied in Probe-and-Learn. We will define
unit propagation for multi-valued formulas, as used in our algorithm, in terms
of decision sequences.



Definition 2 (UP(Γ, δ)) For any clause set Γ and decision sequence δ for Γ ,
we denote by UP(Γ, δ) the decision sequence δ′ defined by the fixpoint of the
following operation:

If Γ contains a clause C = (l∨B) where δ makes every literal of B false,
but neither makes l true or false, extend δ with l.

Unit propagation corresponds to unit resolution, in a context where we are
interested in collecting implied restrictions on truth assignments rather than
derived clauses. In particular, UP(Γ, δ) makes a clause of Γ false if and only if
Γ ∪ δ `ur �.

A second process, closely related to unit propagation, involves derivation of
clauses called asserting clauses.

Definition 2 (Conflict Clause and Asserting Clause). Clause C is an
asserting clause for clause set Γ and decision sequence δ iff
1. Γ,C `ur �, or in the case of Reg-CNF, for each A ∈ C, Γ,A `ur �;
2. For each literal a ∈ C, there is a literal β at least as strong as a, s.t. Γ, δ `ur β;
3. For exactly one literal a ∈ C, Γ, δ− 6`ur β, for any atom β at least as strong

as a.
C is a conflict clause for Γ and δ if it satisfies only the first two conditions.

The Probe-and-Learn algorithm, is presented as Algorithm 1. It takes a clause
set Γ and decision sequence δ as an argument. If unit propagation from δ satisfies
Γ , the procedure returns. If unit propagation from δ makes a clause of Γ false,
we call this a conflict. If necessary, the procedure extends δ (by unspecified
means) until one of these cases holds. In the case of a conflict, the handle-
conflict procedure is called. Handle-conflict returns an asserting clause and an
appropriate prefix of δ. The newly derived clause C is constructed so that α
makes all literals but one false, so after adding it to Γ , unit propagation will
set at least one more literal and satisfy this clause. It is possible that further
propagation happens, and a sequence of new clauses is derived and added to Γ .

Algorithm 1: Probe And Learn
Input: Finite poset D, signed clause set Γ and decision sequence δ.
Output: Clause set Γ ′, and a decision sequence δ′

α← a minimal extension of δ s.t. either UP (Γ, α) |= Γ or Γ, α `ur � ;1

while UP (Γ, α) 6|= Γ and � 6∈ Γ and Γ, α `ur � do2

α,C ← handle-conflict(Γ, α). ;3

Γ ← Γ ∪ {C} ;4

end5

return Γ, α ;6

There is no restriction on the method by which handle-conflict can generate
an asserting clause. For correctness of Probe-and-Learn, it is sufficient that,
whenever the call handle-conflict(Γ, δ) returns δ′, C, then

1. δ′ is a proper prefix of δ;



2. C is an asserting clause for δ′, Γ , as defined in Definition 2, unless it is the
empty clause.

3. if C is the empty clause, δ is empty.

For the p-simulation results of Section 6.1, handle-conflict() must run in
polynomial time. For the concrete simulation bounds of Sections 5 and 6, it
must run in linear time (as is the case in the standard implementations in SAT
solvers.)

The standard “clause-learning schemes” used in CDCL SAT solvers involve
a resolution derivation closely connected to the unit propagation sequence that
establishes a conflict. A generalized version of this process can also be used in
our multi-valued handle-conflict. In the following sub-section, we demonstrate
the derivation of a particular one. (This one derives a clause analogous to the so-
balled “1UIP asserting clause”, which is the basis of the asserting clause derived
in most CDCL SAT solvers.)

4.1 Asserting Clause Derivation

We need to show that, whenever Algorithm 1 calls handle-conflict, an asserting
clause exists and can be constructed efficiently. For the formula with comple-
ments, this is trivial: If δ is a minimal decision sequence with Γ, δ `ur �, then δ,
the set of complements of decision literals, is an asserting clause for S = 〈Γ, δ〉.
For the case of regular formulas, we give a concrete construction, upon which
implementation of handle-conflict can be based. This construction is the gener-
alization of the standard method used in most CDCL SAT solvers.

Consider a decision sequence δ. We may carry out unit propagation in Γ
from δ, incrementally constructing extensions of δ by appending literals that unit
propagation sets. Each time we observe a clause C = (a∨A) for which the current
decision sequence makes every literal in A false but leaves a undetermined, we
append a to the decision sequence and call C the “reason for a”. A conflict
is detected when a literal that is inconsistent with a is already in the decision
sequence (in other words, C has been made false.) Let γ denote the resulting
decision sequence, up to but not including the conflicting literal. For each literal
l in γ, define the decision level of l to be the size of the minimum prefix δl of δ
such that Γ, δl `ur l. If l is in δ, then its decision level is its index in δ. If l is set
by unit propagation from Γ only its decision level is 0.

For signed formulas, when a conflict is detected, we must have a clause C =
(A∨ l), with l = p∈S, in which all atoms are made false by the sequence δl. This
does not entail existence of a clause (B ∨ p∈R), where R ∩ S = ∅. The reason
is that resolution steps need not be annihilating (there may be a residue of the
clashing literals). If a clause C = (A∨p∈R∨l), involved in unit propagation, is the
reason for extending the decision sequence with l, then some set of previously
derived unit clauses on the atom p annihilated p∈R. It does imply that the
collection of literals on propositional symbol p which appear on δl eliminate all
values in S as candidates for assignment to p. More precisely, among the literals
in δl is a sub-sequence of literals δp = 〈p∈R1, . . . p∈Rr〉 such that (∪Ri)∩S = ∅.



Mark each literal, of each clause, involved in the unit propagation sequence, with
this sequence of literals. We begin with a clause C0 = C, and generate a sequence
of clauses Ci, by means of the following algorithm:

Algorithm 2: Signed-CNF 1UIP Clause Derivation
while C contains more than one literal with decision level |δ| do1

p∈S ← the last literal in δ which clashes with a literal in C;2

p∈R← a literal of C marked with p∈S;3

A← the reason for p∈S;4

C ← the resolvent of C and A;5

end6

return C7

Lemma 2. Each clause generated by Algorithm 2 is a conflict clause, and the
clause returned by the algorithm is an asserting clause, according to Definition 2.

Proof. Let C0, C1, . . . be the sequence of clauses derived by Algorithm 2. C0 is
trivially a conflict clause. Assume that Ci = (p∈S ∨ Bi) is a conflict clause,
that p∈R is the literal of Ci identified in line 3, and that A = (p∈S ∨ Ai) is
the reason for p∈S being added to the assignment. Then Ci+1 = (p∈(S ∩R) ∨
Bi ∨ Ai) is the resolvent of Ci and Ai. Clearly, for any C ′ ∈ Ci+1, Γ,C ′ `ur �,
because, intuitively, setting all literals of Ci+1 false makes A effectively unit,
thus setting p∈R, after which we use the fact that Ci is a conflict clause. Since
unit propagation from α makes Ci false and makes A unit, it also makes Ci+1

false. Thus, Ci+1 is a conflict clause.

The clause returned by this algorithm is the analog of the 1UIP clause used in
standard CDCL-R solvers, and we believe is the same clause as generated by the
method in [11]. If we modify the termination condition of the loop in Algorithm 2
to “C contains a literal not in δ”, this corresponds to the DECISION learning
scheme of classical CDCL. In this case the asserting clause returned contains
only literals which clash with decision literals.

4.2 Running Time of Probe-and-Learn

Proposition 1. Unit propagation and derivation of an asserting conflict clause
can be carried out in time linear in |Γ |.

Proposition 2. Let δ be a decision sequence for Γ s.t. Γ ∪ δ `ur �. Then

1. Probe-and-Learn(Γ, δ), using a poly-time handle-conflict, runs in time poly-
nomial in |Γ |.

2. Probe-and-Learn(Γ, δ), with linear-time handle-conflict, runs in time O(|Γ |2).

Proof. Each iteration of the body of the loop performs unit propagation and
executes handle-conflict, which performs the asserting clause derivation. On each
iteration of the loop, except possibly the terminating iteration in the case that



a satisfying assignment is found, α is set to a proper prefix of its previous value.
The maximum length of decision sequence is |D| · |Γ |. We assume D is fixed, so
the total time spent in the loop is O(|Γ | · (time for handle-conflict)).

5 Simulating Resolution with Probe-and-Learn

Here, we show that, for any resolution refutation Π of MV-CNF or Reg-CNF
formula Γ , there is a sequence of calls to probe-and-learn which refutes Γ in
time polynomial in the combined size of Π and Γ . We begin by showing that
any empowering clause can be absorbed by a sequence of calls to probe-and-
learn.

First, suppose that C = (A ∨ a) is an a-empowering clause for Γ . Let δ be
a decision sequence consisting of the literals of an element of A, in any order,
f ollowed by a literal which is inconsistent with a. If handle-conflict() uses the
DECISION learning scheme, then Probe-and-Learn(Γ, α) extends Γ with at least
one clause which is in δ, and thus it absorbs C.

When probe-and-learn does not use the DECISION learning scheme, it is
a little more complicated, because the clauses derived might not include any
literals based on atoms from C. However, with a suitable sequence of calls we
can be sure to derive clauses which make C absorbed.

Lemma 3. Suppose C = (A∨a) is a-empowering for Γ . Then there is a sequence
of calls to probe-and-learn which generate an extension Γ ′ of Γ such that C is
absorbed by Γ ′. Moreover, the total execution time for this sequence of calls is
polynomial in the size of Γ , provided the time for handle-conflict is also.

Proof. Let δ be a decision sequence from A, followed by a literal which is in-
consistent with a. Probe-and-learn must extend Γ = Γ0 to a set Γ1 by adding
at least one derived clause, which (because it is an asserting clause) has fewer
literals than δ. As long as C remains empowering for Γi, we call probe-and-learn
again as follows. On each repetition, since C is still a-helpful, no conflict is found
until after a is asserted. It follows that each asserting clause derived has a differ-
ent asserted atom, so the number of repetitions is bounded by the product of |Γ |
and |D|. Moreover, eventually a itself, or some atom stronger than a, will be the
asserted atom, at which point C is no longer a-helpful. If C is still helpful, we
repeat for each atom b for which C is still b-helpful, after which C is no longer
helpful for Γ . The entire sequence of calls requires time polynomial in |Γ |.

To see that an appropriate sequence of calls to probe-and-learn can refute
Γ in time not much longer than the size of some given refutation, we identify a
sequence of empowering clauses, and absorb each.

Lemma 4. Let Γ be a set of signed clauses, and Π a resolution refutation of
Γ . Then, there is a sequence of calls to probe-and-learn, which refutes Γ in
time polynomial in the combined sizes of Γ and Π, provided handle-conflict is
polynomial time.



Proof. We generate a sequence Γ0 . . . Γs of supersets of Γ , with Γ0 = Γ , as
follows. If Γi `

ur

�, we are done. Otherwise, let A be the first clause in Π that is
empowering for Γi. By Lemma 3, there is a sequence of calls to probe-and-learn
which generates a superset of Γi for which A is not empowering. Let this be
Γi+1. The total execution time is polynomial at most |Π| times a polynomial in
|Γ |.

6 CDCL with Restarts

The CDCL algorithm with restarts (CDCL-R) can be described in terms of a
sequence of calls to Probe-And-Learn. This is illustrated by Algorithm 3.

Algorithm 3: Conflict-Directed Clause Learning with Restarts (CDCL-R)
Input: finite poset D and finite set Φ of signed clauses for D.
Output: SAT or UNSAT
Γ ← Φ // Clause set, initialized to the input clauses. ;1

δ ← 〈〉 // Decision sequence, initialized to empty. ;2

repeat3

Γ, δ ← Probe-and-Learn(D, Γ, δ) ;4

if UP (δ) |= Γ then5

return SAT6

if δ = 〈〉 then7

return UNSAT8

if Time to Restart then9

δ ← 〈〉10

end11

While many details have been abstracted away, Algorithm 3 is essentially the
algorithm implemented by most CDCL-based solvers. It begins with the empty
decision sequence. In the first call to Probe-and-Learn, the decision sequence
is extended until a clause is made false, after which clause learning and back-
jumping are carried out (by handle-conflict, in Probe-and-Learn). In subsequent
executions of the loop body, the decision sequence resulting from the most recent
handle-conflict is extended until either a satisfying assignment is produced, or
Probe-and-learn again finds a conflict.

At this level of abstraction, the signed version and classical version are not
distinguishable, except for the input parameter D. We make D argument to
Probe-and-Learn to make explicit the fact that Probe-and-Learn (and, in par-
ticular, handle-conflict), must be appropriate to D and the class of formulas in
question. Further, if D is of size 2, then with appropriate choice for Probe-and-
Learn, this algorithm is equivalent to the classical CDCL. Our algorithm does
not allow for deletion of learned clauses, because the proof does not allow for
this, but this can be trivially added.

Since CDCL-R can be viewed simply as a repeated application of Probe-and-
Learn, with possible restarts, it is straightforward to see that CDCL-R can be



guided to refute a formula with a resolution refutation Π in time polynomial in
the size of Π.

Definition 3 (Extended Decision Sequence for CDCL-R) An extended de-
cision sequence for CDCL-R on input Γ , is a finite sequence of symbols satisfy-
ing:

1. each symbol is either a literal of Γ or the distinguished symbol R, (for “restart”),
2. each maximal sub-sequence without an R is a decision sequence for Γ .

We may take two views on extended decision sequences. On one view, we
may take it as a record or witness of an actual execution of CDCL-R. On the
other, we may view it as a string to control an intended execution of CDCL-R.

Lemma 5. If Γ has a resolution refutation of size s, then there is an execution
of CDCL-R on input Γ which refutes Γ in time polynomial in s.

Proof. (Sketch) The only change to the strategy for repeated Probe-and-Learn
given above is that, after each Probe-and-Learn call we restart, so that Probe-
and-Learn is always called with the empty decision sequence. Thus, instead of
implementing the strategy for probes by setting the arguments to Probe-and-
Learn, we do it by having Probe-and-Learn select (on line 1) the decision se-
quence specified by the strategy.

6.1 Proof Complexity and p-Simulation

Propositional proof complexity is the study of the relative power of proof systems
for propositional logic, measured by minimum length of proofs for tautological
formulas. The abstract definition of propositional proof system introduced in the
seminal paper of Cook and Reckow [6], can be trivially adapted to refutation
proofs for unsatisfiable signed CNF formulas (or, indeed, any co-NP complete
set).

Definition 4 A refutation proof system for signed CNF formulas for domain D
is a set of strings L (the proofs) with a polytime function VL (a verifier for L)
such that VL(x) = Γ if x is an L-proof that Γ is unsatisfiable, and VL(x) = ⊥
otherwise.

Proof system A p-simulates proof system B if there exists a polynomial func-
tion poly(), such that for every unsatisfiable formula Γ and every B-proof ΠB

of Γ , there is an A-proof ΠA of Γ with |ΠA |≤ poly(|ΠB |).
As a simplifying convention, we require that the minimum size of a proof of

Γ is |Γ |. This is not standard in proof complexity, but is necessary for relevance
to practical satisfiability algorithms, and is followed also in, e.g., [2, 5, 9, 14].
This is because a formula may be large but have a tiny proof. However, any
reasonable satisfiability solver begins by reading the entire formula. Moreover,
any reasonable CDCL-R-style solver begins by executing unit propagation, which
may visit the entire formula.



To view a satisfiability algorithm as a proof system, we may take any trace of
the algorithm on an unsatisfiable clause set Γ as a proof of the unsatisfiability of
Γ , provided that the trace reflects the running time of the algorithm, and that
we can efficiently verify that the trace corresponds to an execution that reports
“unsatisfiable”. For present purposes, we may use extended decision sequences
as CDCL-R proofs.

Theorem 1. CDCL-R for MV-CNF (resp. Reg-CNF), with polytime handle-
conflict, p-simulates signed resolution for MV-CNF (resp. Reg-CNF).

Proof. (Sketch) To show that CDCL-R p-simulates resolution, we show that
for any resolution refutation Π of clause set Γ , there is an extended decision
sequence δ s.t., when CDCL-R is executed in accordance with δ on input Γ , it
runs in time polynomial in the length of Π, and reports UNSAT. This is given
to us by Lemma 5.

Corollary 1 (Pipatsrisawat & Darwiche) CDCL-R p-simulates resolution.

To see this, it is enough to observe that signed formulas and resolution, when
|D| = 2, are equivalent to the classical case. We state this corollary to point out
that our result is indeed a generalization of that in [14].

Theorem 2. Signed resolution p-simulates CDCL-R for MV-CNF and Reg-
CNF formulas, with 1UIP handle-conflict.

Proof. (Sketch) Consider an execution of CDCL-R that halts and outputs “UN-
SAT”, and let σ the extended decision sequence corresponding to this execution.
The size of σ is certainly polynomial in the length of execution. The set of clauses
produced by handle-conflict, together with the input clauses, together with the
clauses generated by unit propagation when unsatisfiability is finally determined,
constitute a resolution refutation. A symbol of σ is consumed for every clause
produced by handle-conflict, so the set of learned clauses at the end is of size
polynomial in the size of σ. The set of unit clauses derived by unit propagation
at the end is certainly polynomial in the size of the set of learned clauses plus the
input set. It follows that the entire refutation is of size polynomial in |Γ |+ |σ|.

7 Discussion

We have presented a natural generalization of the SAT algorithm known as
CDCL with restarts to signed CNF formulas. Adapting the proofs from [14, 1]
we showed that the algorithm p-simulates natural forms of binary resolution for
these formulas. In particular, our proof applies to general multi-valued CNF for-
mulas, to regular formulas when the truth value set is a lattice, and to regular
formulas with complements when the truth value set has a total order. Consid-
eration of implementation is beyond the scope of this paper, but we consider the
algorithm to be effectively implementable, and thus a possible basis for practical
model-finding or theorem-proving systems.
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