
Software Technologies: Applications and Foundations

STAF2014
July 24, 2014

York, United Kingdom

BigMDE 2014

2nd Workshop on Scalable Model Driven Engineering
(http://www.big-mde.eu)

Dimitris Kolovos, Davide Di Ruscio, Nicholas Matragkas, Juan De Lara, Istvan Rath,

Massimo Tisi (Eds.)

Preface

As Model Driven Engineering (MDE) is increasingly applied to larger and more complex
systems, the current generation of modelling and model management technologies are
being pushed to their limits in terms of capacity and efficiency. As such, additional
research and development is imperative in order to enable MDE to remain relevant with
industrial practice and to continue delivering its widely-recognised productivity, quality,
and maintainability benefits.

The second edition of the BigMDE workshop (http://www.big-mde.eu/) has been co-
located with the Software Technologies: Applications and Foundations (STAF 2014) con-
ference. BigMDE 2014 provided a forum for developers and users of modelling and model
management languages and tools where to discuss different problems and solutions related
to scalability aspects of MDE, including

• Working with large models

• Collaborative modelling (version control, collaborative editing)

• Transformation and validation of large models

• Model fragmentation and modularity mechanisms

• Efficient model persistence and retrieval

• Models and model transformations on the cloud

• Visualization techniques for large models

Many people contributed to the success of BigMDE 2014. We would like to truly
acknowledge the work of all Program Committee members, and reviewers for the timely
delivery of reviews and constructive discussions given the very tight review schedule. Fi-
nally, we would like to thank the authors, without them the workshop simply would not
exist.

July 24, 2014
York (UK)

Davide Di Ruscio
Juan De Lara

Dimitris Kolovos
Nicholas Matragkas

Istvan Rath
Massimo Tisi

Organizers

Dimitris Kolovos University of York (UK)
Davide Di Ruscio University of L’Aquila (Italy)
Nicholas Matragkas University of York (UK)
Juan De Lara Universidad Autonoma de Madrid (Spain)
Istvan Rath Budapest University of Technology and Economics (Hungary)
Massimo Tisi Ecole des Mines de Nantes (France)

Program Committee

Marko Boger University of Konstanz (Germany)
Marco Brambilla Politecnico di Milano (Italy)
Tony Clark University of Middlesex (UK)
Juan De Lara Universidad Autonoma de Madrid (Spain)
Marcos Didonet Del Fabro Universitade Federal du Parana (Brazil)
Davide Di Ruscio University of L’Aquila (Italy)
Jesús Garćıa Molina Universidad de Murcia (Spain)
Esther Guerra Universidad Autonoma de Madrid (Spain)
Dimitris Kolovos University of York (UK)
Tihamer Levendovszky Vanderbilt University (USA)
Nicholas Matragkas University of York (Uk)
Alfonso Pierantonio University of L’Aquila (Italy)
Istvan Rath Budapest University of Technology and Economics (Hungary)
Markus Scheidgen Humboldt-Universitat zu Berlin (Germany)
Seyyed Shah University of York (Uk)
Gerson Sunyé University of Nantes (France)
Jesús Sánchez Cuadrado Universidad Autonoma de Madrid (Spain)
Massimo Tisi INRIA and Ecole des Mines de Nantes (France)
Salvador Trujillo IKERLAN (Spain)
Daniel Varro Budapest University of Technology and Economics (Hungary)
Ed Willink Willink Transformations (UK)

3

Table of Contents

Hypersonic: Model Analysis and Checking in the Cloud 6
Vlad Acretoaie and Harald Störrle .

Towards an open set of real-world benchmarks for model queries and trans-
formations 14
Amine Benelallam, Massimo Tisi, István Ráth, Benedek Izsó and Dimitris Kolovos

LinTraP: Primitive Operators for the Execution of Model Transformations
with LinTra 23
Loli Burgueño, Eugene Syriani, Manuel Wimmer, Jeff Gray and Antonio Vallecillo

Improving memory efficiency for processing large-scale models 31
Gwendal Daniel, Gerson Sunyé, Amine Benelallam and Massimo Tisi

MONDO-SAM: A Framework to Systematically Assess MDE Scalability 40
Benedek Izsó, Gábor Szárnyas, István Ráth and Dániel Varró

Tool Support for Model Splitting using Information Retrieval and Model
Crawling Techniques 44
Daniel G. Strüber, Michael Lukaszczyk and Gabriele Taentzer

Automated Analysis, Validation and Suboptimal Code Detection in Model
Management Programs 48
Ran Wei and Dimitris Kolovos .

Hypersonic: Model Analysis and Checking in the Cloud

Vlad Acretoaie and Harald Störrle
Department of Applied Mathematics and Computer Science

Technical University of Denmark
rvac@dtu.dk, hsto@dtu.dk

ABSTRACT
Context: Modeling tools are traditionally delivered as mono-
lithic desktop applications, optionally extended by plug-ins
or special purpose central servers. This delivery model suf-
fers from several drawbacks, ranging from poor scalability
to difficult maintenance and the proliferation of “shelfware”.
Objective: In this paper we investigate the conceptual and
technical feasibility of a new software architecture for mod-
eling tools, where certain advanced features are factored out
of the client and moved towards the Cloud. With this ap-
proach we plan to address the above mentioned drawbacks
of existing modeling tools.
Method: We base our approach on RESTful Web services.
Using features implemented in the existing Model Analy-
sis and Checking (MACH) tool, we create a RESTful Web
service API offering model analysis facilities. We refer to
it as the Hypersonic API. We provide a proof of concept
implementation for the Hypersonic API using model clone
detection as our example case. We also implement a sample
Web application as a client for these Web services.
Results: Our initial experiments with Hypersonic demon-
strate the viability of our approach. By applying standards
such as REST and JSON in combination with Prolog as an
implementation language, we are able to transform MACH
from a command line tool into the first Web-based model
clone detection service with remarkably little effort.

Keywords
Hypersonic, MACH, Models in the Cloud, clone detection,
Web services, Prolog

1. INTRODUCTION
Until very recently, the only practically viable architecture

for modeling tools was the traditional rich client architecture
for desktop applications, sometimes complemented by spe-
cialized central servers, e. g., to provide model versioning
and group collaboration capabilities. Such modeling tools
are large, monolithical applications, even though some do
offer scripting facilities, application programming interfaces
(APIs), or a plug-in mechanism to allow for a certain de-
gree of extensibility. A typical example is NoMagic’s Mag-
icDraw [21], which can be extended through an API, and

BigMDE’14 July 24, 2014. York, UK.
Copyright c© 2014 for the individual papers by the papers’
authors. Copying permitted for private and academic pur-
poses. This volume is published and copyrighted by its edi-
tors.

complemented by the Teamwork Server plug-in [20] for cen-
tralized version control. With this type of modeling tools,
the main revenue source for tool vendors is the sale of per-
petual licenses for their product, possibly supplemented by
ongoing technical support fees. Both the rich client architec-
ture and the associated business model suffer from a series
of disadvantages, some of a generic nature and some more
specific to modeling tools.

In many other areas of computing, however, other, more
flexible architectures are commonplace today. In particu-
lar, recent technological developments have brought about
the widespread adoption of Cloud-based software architec-
tures. Typically, such architectures involve the deployment
of computationally intensive tasks to a centralized and fully
transparent shared pool of configurable computing resources
(i. e.,“the Cloud”) [18]. In this context, Web applications are
nowadays a widely used method of delivering software func-
tionality of many different kinds, including lightweight edi-
tors for parts of UML (e. g., GenMyModel [1], yUML [25]).
Though already attracting users, most such Web-based of-
ferings are currently not able to match traditional desktop
tools in terms of features. Nevertheless, modeling in the
Cloud does have the potential to address some important
problems, such as achieving scalability in relation to increas-
ingly large models and model repositories [16].

To realize this potential, we propose a solution where the
features required in a fully-fledged modeling environment are
hosted remotely and accessed in a transparent way. Playing
the role of basic building blocks for a modeling workflow,
these features should be accessible independently of each
other and across a variety of devices. Fig. 1 visualizes the
contrast between the widely used rich client architecture and
the solution we propose. The crucial part of this proposal
is the identification of features of a modeling environment
that should be executed locally, and of those that should be
executed on remote servers.

Arguably one of the most suitable application areas for
Cloud-based approaches in modeling is model analysis. We
select the requirements of this area as a background for con-
structing Hypersonic, a test vehicle for demonstrating our
proposed approach for the delivery of modeling services - in
this case, model analysis services. To implement Hypersonic,
we use the features offered by our existing model analysis
tool, MACH [27]. In its current form, MACH is a desktop
application with a textual user interface. As most desktop
applications, it requires installation prior to its usage, as
well as explicit user actions/approval for installing updates.
With Hypersonic, the features implemented in MACH be-

6

Client Client Client

Provider 1 Provider k

Provider x

Provider 1 Provider 1

Provider 1

Provider y

Le
ge

n
d

Component suitable for deployment
to remote server

Component suitable for deployment
to local client

. . .

. . .

Figure 1: Possible software architectures of model-
ing tools: most common solution today (left); mod-
eling in the Cloud with Hypersonic (right)

come RESTful Web services. They can be accessed remotely
from a wide range of clients, without requiring installation
or explicit user actions for installing updates. To demon-
strate the usefulness of our Web service API we also create
a sample client in the form of a responsive Web application.

In this paper we discuss the application scenarios and
business cases for Cloud-based modeling services, derive re-
quirements and constraints for the associated tools (Chap-
ter 2), propose a distributed architecture to satisfy these
requirements (Chapter 3), and report on a proof-of-concept
implementation (Chapter 4). We also provide an overview
of related work (Chapter 5) and summarize the conclusions
of our study (Chapter 6).

2. DEFINING HYPERSONIC

2.1 Analysing Requirements by Stakeholder
Moving modeling tools to the Cloud is not primarily moti-

vated by technological reasons, but by new application sce-
narios and business cases. In this section we analyze these
application scenarios and business cases to highlight the
advantages of our proposed architecture. We start by de-
scribing the status-quo, considering the stakeholders “tool
provider”, “modeler”, “IT administrator”, and “MBSD com-
munity”, where MBSD stands for Model Based Software De-
velopment. Observe that all of these stakeholders exist in
similar ways both in academic and commercial settings. We
argue that the current state of the MBSD tool landscape is
unsatisfactory for the stakeholders in several ways.

To a modeler, tools come as fixed packages: it is usually
not possible (or not practical) to use one aspect, the editor,
say, of one tool, and another aspect of a second tool. For
instance, if the modeler appreciates the editing facilities of
tool A, but that tool does not provide (adequate) code gen-
eration facilities, code generation may be difficult. It may
not be economically viable due to the cost of purchasing two
tools, or it may actually be impossible to use the editor of
tool A combined with the code generator of another tool,
unless both tools strictly adhere to model interchange stan-
dards. Also, from a modeler’s perspective, resource intensive
tasks may take an unreasonably long time to complete when

executed locally.
To an IT administrator, repeatedly deploying tools to a

large number of computers implies additional effort. Even if
this effort is not incurred by the actual deployment (that
might be expected to be taken care of by the modelers
themselves), it becomes inevitable when distributing up-
dates and fixes, help-desk services, and possibly ensuring
that the tool’s license usage is compliant with the agreement
entered in with the tool vendor.

To the tool provider, delivering a modeling solution as
a self-contained product with all the business logic on the
client side makes it difficult to support the wide array of
emerging computing devices. Migrating a large modeling
tool to a tablet, smartphone, or Web interface would likely
require extensive re-implementation, not to mention that
the hardware requirements of many modeling tools are still
prohibitive for mobile devices. Furthermore, separating the
highly critical (and sometimes highly innovative) and non-
critical functionalities of the application is cumbersome, yet
still achievable through plug-ins. The distribution of coun-
terfeit copies of the tool is also difficult to mitigate.

To the MBSD community, all of these factors are limiting,
in much the same way as superficial differences between pre-
UML modeling languages created niche markets for many
different tools that were more expensive and less powerful
than the UML tools that emerged after the unification of
mainstream modeling languages in the late 1990’s.

In a nutshell, the existing situation is suboptimal. Thus,
we propose a different architecture: compute-intensive fea-
tures and features with a high degree of innovation should
be deployed to and executed in the Cloud rather than on the
client machine. The client and server in this architecture are
coupled loosely, by Web services, so that providing a new
feature amounts to providing a new Web service. Such fea-
tures can include advanced model analysis tools, code and
report generation, and model transformation. Conversely,
features of smaller distinctive value and small change rates,
as well as features that require a higher degree of interac-
tivity, can continue to be implemented as part of the client
application. This will likely be the case for pure editing fea-
tures, which many commercial vendors already offer as free
community editions of their tools.

We have hinted at a set of criteria for determining which
features of a modeling tool should be executed locally, and
which would benefit from being migrated to the Cloud. Ta-
ble 1 summarizes these criteria and presents examples.

2.2 Benefits of Modeling in the Cloud
Several advantages can be achieved by breaking up today’s

monolithic modeling tools into one stable, remote part that
provides little added value distinguishing products (e. g.,
the editor), and a second, centralized part that comprises
more advanced features with a higher change rate and higher
distinctive value.

First, there are the advantages associated with thin-client
systems in general: maintaining one central server instead of
many remote clients reduces the work effort for IT adminis-
trators and ensures that modelers always have access to the
latest version of the modeling tool. It also becomes easier
to monitor license usage, which benefits administrators and
tool providers alike.

Second, there are advantages rooted in the specific proper-
ties of Cloud-based solutions. This includes the availability

7

Local Features Cloud-based Features

Property high interactivity & incidence high resource consumption

high degree of stability high degree of innovation

exchangeable features unique features

Examples editing reporting

simple syntax checking global consistency checking

automatic layout advanced model analysis

context specific help check in/out, locking

difference visualization difference computation

querying and navigation code generation

Table 1: Criteria for assigning features to a local client or remote Web service, together with examples

of considerable computational resources to each individual
user at reduced overall cost, as well as high scalability of the
available resources with an increasing number of users.

Third, a scenario in which some modeling facilities are
provided as services is conductive to model interchange stan-
dards conformance. In such a scenario, service providers
and client tool providers must both conform to model inter-
change standards such as the XML Metadata Interchange
(XMI, [22]) in order to meet the requirements of modelers.

Fourth, there are advantages brought about by changes
in the business model and enabling market mechanisms.
Today, the modeling tool market is dominated by compa-
nies providing feature-complete bundles. A new competitor
can only enter the market by providing a feature-complete
solution, which all but excludes small companies and aca-
demic tool providers. Innovative analysis methods, special-
ized code generators, and similar tools can only be provided
as plug-ins to one of the existing platforms, sometimes de-
pending on the approval of the platform owner. In contrast,
with a service-based architecture, tool providers can enter
the market at lower cost, since they only have to provide
their contribution per se, not a feature complete-tool. They
can also address a larger part of the market, as they provide
a generic Web service rather than a platform specific plug-
in that applies to only one modeling tool. Modelers, on the
other hand, can mix and match services as they like within
the limits of standardized exchange formats.

It is likely that the described change in dynamics of the
modeling tools market will inspire an increase in competi-
tiveness between existing tool providers, while at the same
time providing an incentive for new providers to enter the
market. Both these developments will likely lead to a higher
degree of innovation. This could translate into new concepts
from academia dissipating to industrial modeling at a faster
pace. Users will thus have both a financial and a technical
incentive to experiment with new features.

From a financial perspective, tool providers will be able to
bill features separately as subscription Web services. This
could reduce unit prices for customers, who only buy the fea-
tures they need, and may subscribe to services as they need
them. Spending on expensive “shelfware” can be reduced
or avoided altogether. For the supplier, this opens the per-
spective of a new business model in which a steady stream
of revenue is generated through subscription services, while
features of high distinctive value are much better protected
against counterfeiting.

It must be mentioned, though, that adopting a service-

based approach to modeling entails some trade-offs. Most
are caused by the distributed nature of the approach. For
instance, the process of uploading large models to a Cloud-
based service may constitute a performance bottleneck. Se-
curity and privacy are also new aspects that come into play,
considering that a centralized warehouse will store models
owned by different organizations. These organisations must
be able to trust that not only will their models not be acces-
sible to other users, but they will also be protected against
unauthorised mining by the modeling service provider. And,
perhaps most importantly, the usefulness of the solution is
dependent on a working Internet connection. Nevertheless,
these drawbacks are common to the majority of Software as
a Service (SaaS) solutions, and have not undermined this
architecture style’s acceptance.

2.3 A Test Case for Hypersonic
In Section 2.1 we have discussed which types of features

lend themselves to deployment as Web services. We now se-
lect one feature, clone detection, as a test case for exploring
the proposed architecture (i. e., the Hypersonic API). Our
selection is motivated by the following considerations.

• The feature is well researched, published, and imple-
mented (see [26] and [27], respectively), and has been
used by a large number of students in several courses
in which it has demonstrated its usefulness. So, the
feature is readily available and arguably valuable.

• Clone detection demands significant resources, as it is
based on semantic and structural model matching. For
large models, the latency implied by uploading a model
to the Cloud may be offset by savings in run-time
achieved by using a powerful machine in the Cloud.

• Detecting clones is an activity carried out as part of
the model quality assurance process. It is normally
not executed concurrently to other modeling activities.
Therefore, in some scenarios, a clone detection feature
is not required or even useful. For example, models
reverse-engineered from code do not require clone de-
tection if the code is known to be clone-free.

• It is a unique feature: no UML modeling tool cur-
rently offers a clone detection feature. This includes
research prototypes other than our own MACH tool.
It is therefore safe to assert that this feature provides
a high degree of innovation.

8

3. ARCHITECTURE
A first step towards the realization of the ideas presented

in Section 2 is the definition of a common Web service in-
terface accepted by all stakeholders. The details of such an
interface must be the result of a wide reaching discussion,
which is beyond the scope of this paper. Instead, we take
an exploratory approach and design a RESTful Web service
API for the purpose of Cloud-based model analysis. We
refer to this API as the Hypersonic API. By doing so, we
study the requirements and potential setbacks of processing
models via RESTful Web services.

In keeping with the REST architectural style [10], the
Hypersonic API exposes resources for clients to interact with
via HTTP requests. The two exposed resources are models
and model. The models resource plays the role of an access
point to Hypersonic’s model warehouse, whereas the model
resource represents a single model in the warehouse. These
resources are manipulated via HTTP requests, where the
HTTP method determines the operation to be performed.
In addition, the Hypersonic URL scheme specifies explicit
operations on the model resource as part of the request URL.
The list of supported operations is presented in Table 2.

This architectural approach allows physically decoupling
clients from the execution of the various analysis algorithms
exposed by the Hypersonic API. This aspect is part of the
motivation behind the creation of Hypersonic, since many
of these algorithms are resource demanding on models of
non-trivial size. By using such a Web service API, a large
variety of clients can have access to model analysis facili-
ties regardless of their hardware capabilities. Fig. 2 high-
lights this aspect, showing that different clients can access
existing analysis algorithms provided by the MACH tool via
the Hypersonic API wrapper. The only prerequisites for
API clients are HTTP support, the ability to process docu-
ments returned by the API, and, optionally, a model viewer.
Note that all of these prerequisites are entirely reasonable
for modern mobile devices.

Smartphone app

Web app

Desktop client

Modeling tool

plug-in

HTTP

HTTP

MACH

Hypersonic API

Figure 2: High-level architecture of Hypersonic

Additional non-functional considerations must be taken
into account to ensure the practicality of the Web service
API. Since using the API implies uploading entire models
to a remote server, security becomes an important factor.
With this in mind, the OAuth [11] authentication protocol
is a widely used solution that can provide some important
guarantees to Hypersonic users. The most important such
guarantee is that a user cannot gain access to the models up-

loaded by other users. When combined with a role-based au-
thentication policy, a sound authentication mechanism such
as OAuth is an effective way to manage model access rights.
At a technical level, implementing OAuth will require all
Hypersonic API clients to obtain an access token prior to
using the API. This process can be carried out through a
separate channel, such as a dedicated API management Web
application.

From a file format standpoint, Hypersonic currently sup-
ports models stored in the MDXML format, the XMI-based
native format of the MagicDraw modeling tool. That is to
say, some API requests (e. g., POST requests to the mod-
els resource) are expected to have an MDXML document as
payload. Most API response messages carry a JSON [12]
document as payload, representing either the result of an
analysis operation or a confirmation or error message.

The internal components involved in answering a call to
the Hypersonic API are presented in Fig. 3. The REST-
ful API component handles HTTP communication with re-
mote API clients and delegates all actual model processing
to the MACH component. It also forwards all models sent
by clients to the XMI2PL component, which performs a for-
mat translation from the MDXML format to the internal
Prolog-based file format described in [26]. Once translated,
models are stored in a dedicated model warehouse for future
analysis upon the client’s request. The MACH component
exposes several supported model analysis and checking al-
gorithms [27]. These algorithms can be applied on models
stored in the warehouse. The MACH component functions
as a self contained black-box, hiding all algorithm implemen-
tations from other components and returning the produced
results encoded as Prolog lists. The RESTful API compo-
nent handles the translation of these lists into JSON analysis
reports ready for consumption by the API client. All pro-
cessing components are executed inside a single instance of
the SWI-Prolog runtime [29], thus allowing seamless inter-
component communication.

The SWI-Prolog runtime should be deployed to either
a public or private Cloud platform. Since all models are
stored separately in a model warehouse, several instances
of the SWI-Prolog runtime can be deployed, assuming that
the model warehouse provides appropriate concurrent ac-
cess policies. Persistent model storage can be provided by a
separate Cloud storage service. Since models are stored as
XML and Prolog files, the storage service should support a
document-oriented database management system.

4. EVALUATION
To demonstrate the feasibility of the architecture described

in Section 3, a subset of the proposed Web service API has
been implemented and is publicly accessible1. Due to the
reasons elaborated on in Section 2.3, we have focused on a
Web service providing model clone detection as a minimum
useful scenario. Though important for a final release, we
have considered features such as user accounts and authen-
tication beyond the scope of our proof of concept. Both
the prototype API and the model warehouse are currently
hosted on a dedicated server. They do not benefit from
the scalability of a true Cloud deployment, although for the
current proof of concept this is hardly a limiting factor.

1The Hypersonic API is available at the following base URL:
http://hypersonic.compute.dtu.dk

9

Resource Method Req. payload Resp. payload Description

/models GET — JSON List all uploaded models.

/models POST MDXML JSON Upload a model.

/model/<id> GET — MDXML Download a model.

/model/<id> PUT MDXML JSON Replace a model.

/model/<id> DELETE — JSON Delete a model.

/model/<id>/clones GET — JSON Detect clones in a model.

/model/<id1>/diff/<id2> GET JSON JSON List differences between two
models. Options are specified in
the request payload.

/model/<id>/dump GET — JSON List model elements included in
a model.

/model/<id>/dump/<me id> GET JSON JSON List the details of a model ele-
ment. Options are specified in
the request payload.

/model/<id>/find/<string> GET JSON JSON Find a string in a model. Op-
tions are specified in the request
payload.

/model/<id>/frequency GET — JSON Compute the meta class fre-
quency distribution in a model.

/model/<id1>/similarity/<id2> GET JSON JSON Compute the similarity between
two models. Options are speci-
fied in the request payload.

/model/<id>/size GET JSON JSON Compute the size of a model.
Options are specified in the re-
quest payload.

Table 2: List of operations supported by the Hypersonic API

API

client

RESTful

API

XMI2PL

MACH

HTTP

HTTP

.json

.xmi

.xmi

.pl

.pl

Model

warehouse

SWI-Prolog

call(…)

[…]

Figure 3: Components which participate in responding to a Hypersonic API request

10

Fig. 4 represents a message exchange between a client and
the Hypersonic API. The purpose of this exchange is to per-
form clone detection on a model. First, the model is added to
the Hypersonic model warehouse by a POST request to the
models resource. Upon this request’s successful handling, a
new model resource representing the model is available to the
client. The resource has a unique identifier returned in the
JSON response document of the initial POST request. The
client then parses this document and extracts the identifier.
Thus, the client is subsequently able to use the identifier to
construct the appropriate URL for a GET request to the
clones operation of the identified model resource. The GET
request returns a list of clone candidates, also in the form of
a JSON document (see Listing 1).

Figure 4: HTTP message exchange for model clone
detection

The response document includes a model identifier, the
number of detected clones, and a list of discovered clone can-
didates. Each clone candidate is described by two model ele-
ments, where one is a possible clone of the other, a numeric
similarity metric computed for the two elements following
the approach presented in [26], and a clone “kind” identify-
ing the candidate as either a naturally occurring clone or a
seeded clone. Candidates also Clone candidates are returned
in the descending order of their similarity scores, i. e., the
most likely clone is the first one in the list.

Listing 1: JSON clone detection report
{

”model ”: ”1 ” ,
”cand idate s ”: 2 ,
”c l o n e s ”: [
{

”type 1 ”: ”package ” ,
” id 1 ”: 29 ,
”name 1 ”: ”Reserve Medium” ,
”type 2 ”: ”package ” ,
” id 2 ”: 938 ,
”name 2 ”: ”Reserve Medium” ,

” s i m i l a r i t y ”: 185 .7143 ,
”kind ”: ”natura l c l one ” ,

}
{

”type 1 ”: ”package ” ,
” id 1 ”: 189 ,
”name 1 ”: ”Lend Medium” ,
”type 2 ”: ”package ” ,
” id 2 ”: 1194 ,
”name 2 ”: ”Lend Medium” ,
” s i m i l a r i t y ”: 128 .7287 ,
”kind ”: ”natura l c l one ” ,

}
]

}
By conforming to the architecture presented in Fig. 3,

the effort required to implement the clone detection proof
of concept has been minimal. The RESTful API function-
ing as a wrapper around MACH’s existing clone detection
implementation consists of around 100 lines of Prolog code,
largely thanks to the comprehensive support offered by SWI-
Prolog for the HTTP protocol. Work on implementing the
remaining API calls described in Table 2 is ongoing, as is
work on the API management application that must be in
place in order to to enable user authentication in API calls.

As a preliminary validation of the API’s fitness for pur-
pose, we have created a simple, mobile device friendly Web
application as an API client2. The application supports se-
lecting a local model file, uploading it to the Hypersonic
model warehouse, and requesting a clone report which it
subsequently displays in tabular form. The application is
written in JavaScript and is executed entirely in the browser
(i. e., it does not rely on a server-side script for calling API
operations). Though it is so far basic in terms of functional-
ity, this sample client exemplifies our vision of Web service
driven modeling tools: using Web 2.0 technologies (REST,
JavaScript, JSON) to enable advanced model analysis out-
side the constraints of the desktop and of traditional mod-
eling environments.

5. RELATED WORK
Model analysis is an activity typically performed in local,

non-distributed environments. As an example, the model
clone detection operation considered here as a proof of con-
cept has scarcely been addressed in itself, but is closely re-
lated to the intensely studied model matching and differenc-
ing operations. To name just a few proposals in this area,
SiDiff [14] presents a differencing algorithm targeting UML
Class Diagrams, while the approach presented in [19] targets
sequence charts, and [17] is a clone detection proposal aimed
at UML Sequence Diagrams. EMF DiffMerge [8] and EMF
Compare 3.0 [3] represent more generic approaches targeting
the Eclipse Modeling Framework (EMF, [9]).

With the increase in size of industrially relevant models
and the increase in complexity of the operations performed
on these models, the need for distributed, Cloud-enabled
modeling solutions has become apparent [5, 16]. So far, the
main driver behind Cloud-based modeling research has been

2The client application is available at http://www.compute.
dtu.dk/~rvac/hypersonic. It is currently under develop-
ment, and will be updated to support all operations of the
Hypersonic API as they are deployed.

11

Figure 5: Screenshot of the Hypersonic API client Web application

the promise of important performance and scalability gains
for all modeling activities. Perhaps the most fundamental of
these activities, model storage, has attracted several propos-
als, including ModelBus [4], EMFStore [15], and Morsa [23].
These are all remote model warehousing solutions offering
Web service access to the stored models.

More advanced activities such as model querying and trans-
formation have also been addressed. IncQuery-D [13] is a
tool which takes the established IncQuery tool and adapts
it to a scenario where it can be deployed and accessed in
the Cloud. The Morsa model repository also benefits from
a dedicated query language, MorsaQL [24]. A roadmap for
research on Cloud-based model transformations has been
presented in [7].

However, performance gains due to Cloud deployment are
only a part of the overall vision of Hypersonic. Rather than
focusing on the benefits to the application itself (i. e., model
analysis), Hypersonic emphasises the benefits brought by a
Cloud-based approach to the interface and availability of
this application. The idea of performing model analysis via
a RESTful Web service API has yet to receive significant
attention in the literature. The closest related proposal is
the EMF-REST project [6], aimed at automatically generat-
ing RESTful Web service interfaces for EMF models, much
like existing EMF tools generate Java APIs for such mod-
els. Like Hypersonic, EMF-REST uses JSON documents to
transport information about remotely stored models. Nev-
ertheless, while it does provide basic model manipulation
operations, EMF-REST is not designed as a model analysis
tool. Similarly to Hypersonic, EMF-REST is a tool under
ongoing development, one of its current limitations being the
lack of full support for HTTP methods other than GET.

6. CONCLUSIONS

6.1 Summary
In this paper we have discussed the application conditions,

benefits, and general business case for Cloud-based modeling
tools. In particular, we have presented a scenario in which
modeling capabilities are delivered as Web services to a wide
array of clients, ranging from desktop applications to Web
and mobile applications. We have contrasted this scenario
with the current status-quo of rich client desktop modeling
tools, reaching the conclusion that, in many respects, the
Cloud-based approach is superior.

To explore our proposal, we have introduced Hypersonic, a
RESTful Web service API aimed at offering high-throughput
processing for Cloud-based model analysis. We have imple-
mented this architecture and made it available online. Cur-
rently, the only service it offers is the detection of model
clones, a feature that was previously only available in the
MACH command line tool. Today, MACH is a stand-alone
desktop tool providing only a textual user interface. Through
the Hypersonic API, the features of MACH can be made
available over the Internet to any API client. As a proof
of concept for the utility of the API, we have developed a
Web application acting as a client to the Hypersonic API
and providing Web-based model analysis capabilities.

6.2 Future Work
The concepts presented in this paper offer us ample oppor-

tunities for future work. As a first step, we will continue the
development of the Hypersonic API with the aim of reach-
ing functional parity with the MACH model analysis tool.
Once this has been achieved, the API will be deployed to

12

a Cloud platform. In parallel, we will update the sample
Web-based API client to both validate and showcase the
model analysis features of Hypersonic. Second, in order to
become a practical tool, the API client must offer several
critical features such as user authentication and model se-
curity mechanisms. Third, we will carry out a systematic
performance evaluation of MACH in order to substantiate
the claim that Cloud-based model analysis can bring signif-
icant performance benefits. Finally, we intend to develop a
second client for the Hypersonic API in the shape of a plug-
in for MagicDraw. This will permit seamless integration of
our Web services approach with a commercial modeling tool
and complement our existing model querying MagicDraw
plug-in, MQ-2 [2]. As a parallel development, we envision
a Web service API similar to Hypersonic for RED, our re-
quirements engineering tool [28].

7. REFERENCES
[1] GenMyModel. http://www.genmymodel.com, retrieved

16.05.2014.

[2] V. Acretoaie and H. Störrle. MQ-2: A Tool for
Prolog-based Model Querying. In Proc. co-located
Events 8th Eur. Conf. on Modelling Foundations and
Applications (ECMFA’12), pages 328–331.

[3] M. Barbero. EMF Compare 3.0.
http://www.eclipse.org/emf/compare.

[4] X. Blanc, M.-P. Gervais, and P. Sriplakich. Model
Bus: Towards the Interoperability of Modelling Tools.
In Proc. European MDA Workshops: Foundations and
Applications (MDAFA’03/’04), volume 3599 of LNCS,
pages 17–32. Springer Berlin Heidelberg, 2005.

[5] H. Bruneliere, J. Cabot, F. Jouault, et al. Combining
Model-Driven Engineering and Cloud Computing. In
Proc. 4th Ws. on Modeling, Design, and Analysis for
the Service Cloud (MDA4ServiceCloud’10), 2010.

[6] J. Cabot. EMF-REST. http://emf-rest.com,
retrieved 16.05.2014.

[7] C. Clasen, M. D. Del Fabro, and M. Tisi.
Transforming Very Large Models in the Cloud: a
Research Roadmap. In Proc. First Intl. Ws.
Model-Driven Engineering on and for the Cloud
(CloudMDE’12), pages 3–12, 2012.

[8] O. Constant. EMF Diff/Merge.
http://wiki.eclipse.org/EMF_DiffMerge.

[9] Eclipse Foundation, Inc. Eclipse Modeling Framework
(EMF). http://eclipse.org/modeling/emf.

[10] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[11] Internet Engineering Task Force (IETF). IETF RFC
6749: The OAuth 2.0 Authorization Framework.
http://tools.ietf.org/html/rfc6749, 2012.

[12] Internet Engineering Task Force (IETF). IETF RFC
7159: The JavaScript Object Notation (JSON) Data
Interchange Format.
http://tools.ietf.org/html/rfc7159, 2014.

[13] B. Izsó, G. Szárnyas, I. Ráth, and D. Varró.
IncQuery-D: Incremental Graph Search in the Cloud.
In Proc. Ws. Scalability in Model Driven Engineering
(BigMDE’13), pages 4:1–4:4, New York, NY, USA,
2013. ACM.

[14] U. Kelter, J. Wehren, and J. Niere. A Generic
Difference Algorithm for UML Models. In K. Pohl,
editor, Proc. Natl. Germ. Conf. Software-Engineering
(SE’05), number P-64 in Lecture Notes in Informatics,
pages 105–116. Gesellschaft für Informatik e.V. 2005.

[15] M. Koegel and J. Helming. EMFStore: a Model
Repository for EMF models. In Proc. 32nd
ACM/IEEE Intl. Conf. on Software Engineering
(ICSE’10), volume 2, pages 307–308. ACM, 2010.

[16] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth,
D. Varró, M. Tisi, and J. Cabot. A Research
Roadmap Towards Achieving Scalability in Model
Driven Engineering. In Proc. Ws. Scalability in Model
Driven Engineering (BigMDE’13), pages 2:1–2:10,
New York, NY, USA, 2013. ACM.

[17] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting
duplications in sequence diagrams based on suffix
trees. In 13th Asia Pacific Software Engineering Conf.
(APSEC), pages 269–276. IEEE CS, 2006.

[18] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National
Institute of Standards and Technology, 2011.

[19] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and merging of statecharts
specifications. In Proc. 29th Intl. Conf. Software
Engineering (ICSE), pages 54–64. IEEE Computer
Society, IEEE Computer Society, 2007.

[20] NoMagic INC. MagicDraw Teamwork Server. http:
//www.nomagic.com/products/teamwork-server,
retrieved 16.05.2014.

[21] NoMagic INC. MagicDraw UML 17.0.3.
http://www.nomagic.com/products/magicdraw,
retrieved 16.05.2014.

[22] Object Management Group (OMG). OMG MOF 2
XMI Mapping Specification, Version 2.4.1.
http://www.omg.org/spec/XMI/2.4.1, 2013.

[23] J. E. Pagán, J. S. Cuadrado, and J. G. Molina. Morsa:
A Scalable Approach for Persisting and Accessing
Large Models. In Proc. 14th Intl. Conf. Model Driven
Engineering Languages and Systems (MODELS’11),
volume 6981 of LNCS, pages 77–92. Springer Berlin
Heidelberg, 2011.

[24] J. E. Pagán and J. G. Molina. Querying Large Models
Efficiently. Inf. Softw. Tech., pages 586–622, 2014.

[25] Pocketworks. yUML. http://yuml.me, retrieved
16.05.2014.

[26] H. Störrle. Towards Clone Detection in UML Domain
Models. J. Softw. Syst. Model., 12(2), 2013.

[27] H. Störrle. UML Model Analysis and Checking with
MACH. In 4th Intl. Ws. Academic Software
Development Tools and Techniques (WASDETT’13),
2013.

[28] H. Störrle and M. Kucharek. The Requirements Editor
RED. In ECOOP, ECSA and ECMFA 2013: Joint
Proceedings of Tools, Demos and Posters, pages 32–34,
2013. DTU Technical Report 2014-01.

[29] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager.
SWI-Prolog. Theory and Practice of Logic
Programming, 12(1-2):67–96, 2012.

13

Towards an Open Set of Real-World Benchmarks for Model
Queries and Transformations

Amine Benelellam
AtlanMod team

Inria, Mines-Nantes, Lina
Nantes, France

amine.benelallam@inria.fr

Massimo Tisi
AtlanMod team

Inria, Mines-Nantes, Lina
Nantes, France

massimo.tisi@inria.fr

István Ráth
Budapest University of

Technology and Economics
Budapest, Hungary
rath@mit.bme.hu

Benedek Izsó
Budapest University of

Technology and Economics
Budapest, Hungary

izso@mit.bme.hu

Dimitrios S. Kolovos
Enterprise Systems Group

University of York
York, United Kingdom

dimitris.kolovos@york.ac.uk

ABSTRACT
With the growing size and complexity of systems under design,
industry needs a generation of Model-Driven Engineering (MDE)
tools, especially model query and transformation, with the proven
capability to handle large-scale scenarios. While researchers are
proposing several technical solutions in this sense, the commu-
nity lacks a set of shared scalability benchmarks, that would sim-
plify quantitative assessment of advancements and enable cross-
evaluation of different proposals. Benchmarks in previous work
have been synthesized to stress specific features of model manage-
ment, lacking both generality and industrial validity. In this paper,
we initiate an effort to define a set of shared benchmarks, gather-
ing queries and transformations from real-world MDE case studies.
We make these case available to community evaluation via a public
MDE benchmark repository.

Categories and Subject Descriptors
D.2.2 [MANAGEMENT OF COMPUTING AND INFORMA-
TION SYSTEMS]: Design Tools and Techniques—Computer-aided
software engineering (CASE); D.2.8 [Software Engineering]: Met-
rics—performance measures, Complexity measures; K.6.3 [Computing
Milieux]: Software Management—Software selection

General Terms
Performance, Experimentation, Measurement

Keywords
Benchmarking, Very Large Models, Model transformations, Model
queries

1. INTRODUCTION

BigMDE ’14 July 24, 2014. York, UK.
Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

Over the past decade, technologies around Model-Driven Engineer-
ing (MDE) have been offering a systematic approach for software
development on top of models. This elegant approach conquered
an interesting popularity and engaged both researchers and indus-
trials. However MDE is not able yet to attract large-scale industrial
systems considering the serious scalability issues that the current
generation of MDE tools is facing, namely (i) the growing com-
plexity of systems under design, and (ii) the huge amount of data
they might represent. Therefore, there is a calling need to develop a
new generation of tools capable of managing, querying, and trans-
forming Very Large Models (VLMs). Existing empirical assess-
ment [7, 36, 21] has accredited that necessity indeed.

In spite of the advances on Model Transformation (MT) tools, ad-
ditional research studies are still needed in order to acquire the at-
tention of large-scale industrial systems. Aiming at improving per-
formance and computation cost, many works have been developed
around elaborating new features for existing model transformation
engines (e. g., Incrementality [18, 33, 9], and Parallelization [10,
38, 51]). Others [14] chose to develop new tools based on existing
frameworks effectively handling concurrency and parallelization.

One of the most computationally expensive tasks in modeling ap-
plications is the evaluation of model queries. While there exists a
number of benchmarks for queries over relational databases [52] or
graph stores [12, 50], modeling tool workloads are significantly dif-
ferent. Specifically, modeling tools use more complex queries than
typical transactional systems [29], and the real world performance
is affected by response time (i.e. execution time for a specific op-
eration such as validation or transformation) than throughput (i.e.
the amount of parallel transactions).

In order to overcome these limitations and achieve scalability in
MDE, several works [16, 37] drew research roadmaps advancing
the use of the Cloud for distributed and collaborative processing of
VLMs. Hence, in order to be able to compare this new generation
of tools and measure their performance, it is required to provide
a transformation benchmark that takes into consideration the well-
known scalability issues in MTs [35]. Likewise, benchmarks might
be a good reference to help engineers in choosing what fits the most
to their solution while developing new tools.

Most of existing benchmarks [32, 8, 54, 55] were more focused

14

on other properties than scalability (e. g., Transformation sequence
length, Transformation strategy, Matching size etc.). Moreover
these benchmarks do not provide neither any clue on how to mea-
sure transformation scalability from a theoretical point of view, nor
real-world case studies. In contrast to the former benchmarks, Izsó
et al. [29] are the first ones to provide a precise metrics to predict
the performance of graph queries – based on instance models and
query specification –, and therefore results in indicators that help
selecting the suitable technology. In addition, these benchmarks
are specific to either model transformation or model query. On
the other side, there exist some reference benchmarks for databases
with a higher level of maturity [15, 49]. In [15], Cattel et al. present
a benchmark OO1 to measure the performance of specific charac-
teristics of the most frequently used operations – according to feed-
backs from industrials – on engineering objects. This benchmark
come with a precise specification, measures, and evaluation indeed.
In [49] Schmidt et al. introduce XMark, a benchmark for XML data
management that copes with a large range of queries coming from
real world case scenarios. Each query comes to stress a particular
aspect of XML query engines.

In this paper we present a set of benchmarks for model transfor-
mation and query engines. Our proposal is to select a set of trans-
formations/queries from real-world cases and to make them avail-
able to large public. Two of the four benchmarks included deal
with model transformations, while the other two deal with model
queries. Models that feed each one of the benchmarks are of in-
creasing size, also different kinds/extensions. They are either con-
crete, coming from real projects (i. e., reverse engineered Java project
models) or generated using deterministic model instantiators. These
instantiators can be easily customized to be able to generate models
that suit the benchmarking of a specific feature.

These benchmarks are part of the results of the Scalable Modeling
and Model Management on the Cloud (MONDO)1 research project,
that aims at advancing MDE’s state of the art to tackle very large
models [37]. We plan to involve the community in order to build
a larger set of case studies covering additional properties/domains
(i. e., verification and simulation of critical systems).

The rest of the paper is organized as follows. In Section 2 we de-
scribe benchmarks from the state-of-the-art. In Section 3 we outline
the four different sets of benchmarks provided in the scope of the
paper. Section 4 describes usage and contribution modalities for
the repository. Finally, Section 5 provides a conclusion and reca-
pitulates the future plans for the benchmarks suite.

2. RELATED WORK
A few works in literature [54, 55, 31, 8] proposed benchmarks to
assist developers in selecting the most suitable query/transforma-
tion technology for their application scenarios. However only one
of the existing case studies is explicitly dedicated to the manipula-
tion of very large models ([31]) and none is based on benchmarks
queries and transformations based on real-world applications. In
this section we give a short overview of the related works, while in
the next section we introduce the real-world benchmarks proposed
within this paper.

One of the widely used benchmarks in MDE is Grabats’09 Re-
verse Engineering [31], where Jouault et al. proposed a case study
that consists of the definition of program comprehension operators

1http://www.mondo-project.org/

(i. e., queries over source code) using a graph or model transforma-
tion tool. One of the main challenges in the definition of program
comprehension operators as transformations is scalability with re-
spect to input size. This case study is divided into two independent
tasks (i) a simple filtering query that selects a subgraph of its in-
put according to a given condition, and (ii) a complex query that
computes a control flow graph and a program dependence graph.
These queries are performed over the JDTAST metamodel, the Java
metamodel used in early versions of MoDisco [13] to discover Java
projects. This benchmark comes with 5 different sets of increasing
size ranging from 7× 105 up to 5× 109.

The experiment in [54] compares the performance of three model
transformation engines: ATL, QVT-R, and QVT-O. This compar-
ison is based on two different transformation examples, targeting
meta-models with different structural representations: linear repre-
sentation (Class2RDBMS) and tree-like representation (RSS2ATOM).
The benchmarking set involves randomly generated input models
of increasing numbers of elements (up to hundreds of thousands).
Like the previous work [55], the benchmark sets are also tuned ac-
cording to a particular feature such as the size of input models, their
complexity (complex interconnection structure) and transformation
strategies. In order to study the impact of different implementation
strategies in ATL, the Class2RDBMS transformation was imple-
mented in different programming styles. The first one promotes
expressing input models navigation in the in the right-hand side of
the bindings, the second use ATL attribute helpers, and third uses
the imperative part of ATL.

The work [55] is considered one of the early systematic MDE bench-
marks dedicated to Graph Transformations (GT). It proposes a method-
ology for quantitative benchmarking in order to assess the perfor-
mance of GT tools. The overall aim is to uniformly measure the
performance of a system under a deterministic, parametric, and
especially reproducible environment. Four tools participated in
the experimentation: AGG, PROGRES, FUJABA and DB. Every
benchmarking set is tuned according to some features related on
one side to the graph transformation paradigms, and on the other
side to the surveyed tools. Thus, a benchmarking set is character-
ized by turning on/off these features. Bergmann et al. extended
this benchmark with incrementality. Two kinds of benchmarks
kind were carried out, simulation and synchronization, for which, a
benchmark-specific generators has been provided. The benchmarks
were run over different implementations of pattern matchers, VIA-
TRA/LS (Local Search), VIATRA/RETE, and GEN.NET with the
distributed mutual exclusion algorithm.

3. BENCHMARKS SET
The benchmarks set has the purpose to evaluate and validate a pro-
posed query and transformation engine. This set of benchmarks is
made public, with the intention to also help both research groups
and companies to assess their solutions.

In this section we describe the source, context and properties of the
benchmarks. The set of benchmarks is designed to cover the main
use cases for queries and transformations in model-driven applica-
tions. Table 1 summarizes the characteristics of the four bench-
marks in terms of type of computation (query/transformation) and
computational complexity (high/low).

Each one of the benchmarks either includes concrete source mod-
els, or a model generator that can be used to produce models of
different sizes in a deterministic manner. In the latter case, models

15

Table 1: Summary of the MONDO WP3 benchmarks

Benchmark Type Computational
complexity

Train benchmark query high
Open-BIM query/transformation low
ITM Factory transformation high
Transformation zoo transformation low

of different sizes can be generated, but seeds are provided to drive
the deterministic generators in producing the same models for each
user.

Each benchmark in the set is given a reference implementation that
has to be considered as a specification of the case semantics. Lan-
guages and technologies used for each reference implementation
may vary, including MDE-specific and general-purpose technolo-
gies.

Finally, while each benchmark defines the source/target relation
for each query or transformation, other aspects of the transforma-
tion runtime semantics are left open. For instance high-complexity
benchmarks can be run in batch or incremental mode, to test differ-
ent execution properties of the tool under study.

3.1 Train Benchmark
3.1.1 Context and objectives

The Train Benchmark [53, 1] is a macro benchmark that aims to
measure batch and incremental query evaluation performance, in
a scenario that is specifically modeled after model validation in
(domain-specific) modeling tools: at first, the entire model is val-
idated, then after each model manipulation (e.g., the deletion of a
reference) is followed by an immediate re-validation. The bench-
mark records execution times for four phases:

1. During the read phase, the instance model is loaded from
hard drive to memory. This includes the parsing of the input
as well as initializing data structures of the tool.

2. In the check phase, the instance model is queried to identify
invalid elements. This can be as simple as reading the results
from cache, or the model can be traversed based on some
index. By the end of this phase, erroneous objects need to
made available in a list.

3. In the edit phase, the model is modified to simulate effects
of manual user edits. Here the size of the change set can be
adjusted to correspond to small manual edits as well as large
model transformations.

4. The re-validation of the model is carried out in the re-check
phase similarly to the check phase.

The Train Benchmark computes two derived results based on the
recorded data: (1) batch validation time (the sum of the read and
check phases) represents the time that the user must wait to start to
use the tool; (2) incremental validation time consists of the edit and
re-check phases performed 100 times, representing the time that the
user spent waiting for the tool validation.

3.1.2 Models and metamodels
The Train Benchmark uses a domain-specific model of a railway
system that originates from the MOGENTES EU FP7 project, where
both the metamodel and the well-formedness rules were defined
by railway domain experts. This domain enables the definition of
both simple and more complex model queries while it is uncom-
plicated enough to incorporate solutions from other technological
spaces (e.g. ontologies, relational databases and RDF). This allows
the comparison of the performance aspects of wider range of query
tools from a constraint validation viewpoint.

The instance models are systematically and reproducibly generated
based on the metamodel and the defined complex model queries:
small instance model fragments are generated based on the queries,
and then they are placed, randomized and connected to each other.
The methodology takes care of controlling the number of matches
of all defined model queries. To break symmetry, the exact num-
ber of elements and cardinalities are randomized (with a fixed seed
to ensure deterministic reproducibility). In the benchmark mea-
surements, model sizes ranging from a few elements to 13 million
elements (objects and references combined) are considered.

This brings artificially generated models closer to real world in-
stances, and prevents query tools from efficiently storing or caching
of instance models. This is important in order to reduce the sam-
pling bias of the experiments. During the generation of the railway
system model, errors are injected at random positions. These er-
rors can be found in the check phase of the benchmark, which are
reported, and can be corrected during the edit phase. The initial
number of constraint violating elements is low (<1% of total ele-
ments).

3.1.3 Queries and transformations
Queries are defined informally in plain text (in a tool independent
way) and also formalized using the standard OCL language as a ref-
erence implementation (available on the benchmark website [1]).
The queries range from simple attribute value checks to complex
navigation operations consisting of several (4+) joins.

The functionally equivalent variants of these queries are formalized
using the query language of different tools applying tool based op-
timizations. As a result, all query implementations must return (the
same set of) invalid instance model elements.

In the edit phase, the model is modified to change the result set to be
returned by the query in the re-check phase. For simulating manual
modifications, the benchmark always performs a hundred random
edits (fixed low constant) which increases the number of erroneous
elements. An edit operation only modifies one model element at a
time - more complex model manipulation is modeled as a series of
edits.

The Train Benchmark defines a Java-based framework and appli-
cation programming interface that enables the integration of ad-
ditional metamodels, instance models, query implementations and
even new benchmark scenarios (that may be different from the
original 4-phase concept). The default implementation contains a
benchmark suite for queries implemented in Java, Eclipse OCL and
EMF-IncQuery.

Measurements are recorded automatically in a machine-processable
format (CSV) that is automatically processed by R [2] scripts. An
extended version of the Train Benchmark [29] features several (in-

16

stance model, query-specific and combined) metrics that can be
used to characterize the “difficulty” of benchmark cases numeri-
cally, and – since they can be evaluated automatically for other do-
main/model/query combinations – allow to compare the benchmark
cases with other real-world workloads.

3.2 Open-BIM
3.2.1 Context and objectives

This benchmark includes a model validation and a model trans-
formation in the context of construction models. The construction
industry has traditionally communicated building construction in-
formation (sites, buildings, floors, spaces, and equipment and their
attributes) through drawings with notes and specifications. BIM
(Building Information Model), a CAD (Computer Aided Design)
method, came to automate that process and enhance its operability
according to different tools, actors, etc. within the AECO (Archi-
tecture, Engineering, Construction, and Operations) industry. A
BIM model is a multi-disciplinary data specific model instance
which describes all the information pertinent to a building and its
components.

A BIM model is described using the IFC (Industry Foundation
Classes) specification, a freely available format to describe, ex-
change, and share information typically used within the building
and facility management industry sector. Intrinsically, IFC is ex-
pressed using the EXPRESS data definition language, defined as
ISO10303-11 by the ISO TC184/SC4 committee. EXPRESS rep-
resentations are known to be compact and well suited to include
data validation rules within the data specification.

3.2.2 Models and metamodel
The repository contains 8 real-world IFC data files with size rang-
ing from 40MB to 1GB. All the files represent real construction
projects and were used in production context. They contain a pre-
cise and detailed information about actors, approvals, buildings etc.
The data files, in EXPRESS format, are translated into EMF models
so that they can be used by EMF-based query and transformation
tools.

3.2.3 Queries and transformations
The Open-BIM use case includes a query benchmark and a trans-
formation benchmark:

IFC well-formedness rules. The IFC format describes, using
the EXPRESS language, the set of well-formed IFC models. The
EXPRESS notation includes, in a single specification, 1) the set
of element types and properties allowed in the data file, 2) the set
of well-formedness constraints that have to be globally satisfied.
When representing an IFC model in an EMF format these two parts
of the specification translate to 1) an Ecore metamodel defining
element and property types, 2) a set of constraints encoding the
well-formedness rules.

This benchmark involves validating the set of well-formedness rules
(2) over a given model, model that conforms to the IFC Ecore meta-
model (1). An Ecore metamodel is provided, coming from the
open-source BIMServer 2 project. The well-formedness rules are
given in EXPRESS format and are meant to be translated to the
query technology under evaluation.

2https://github.com/opensourceBIM/BIMserver

IFC2BIMXML. BIMXML 3 is an XML format describing build-
ing data in a simplified spatial building model. The BIMXML
XML Schema was developed as an alternative to full scale IFC
models to simplify data exchanges between various AEC applica-
tions and to connect Building Information Models through Web
Services. It is currently used by several primary actors in the CAD
construction domain, including Onuma System (Onuma, Inc.), DDS
Viewer (Data Design System), vROC, Tokmo, BIM Connect, and
various plugins for CAD Applications (Revit, SketchUp, Archi-
CAD). The BIMXML specification includes an XML Schema4 and
documents the translation rules from the full IFC specification.

This benchmark involves performing the translation of a full IFC
model into the BIMXML format. Ecore metamodels for the source
and target models are provided.

3.3 ITM Factory
3.3.1 Context and objectives

This benchmark contains two transformations and a set of queries,
each addressing a different phase in a model-driven reverse engi-
neering process. The use case for this benchmark is taken from the
Eclipse MoDisco project.

MoDisco (Model Discovery) is the open-source Model Driven Re-
verse Engineering project lead by the company Soft-Maint. It uses
a two steps approach with a model discovery followed by model
understanding. The initial step consists in obtaining a model rep-
resentation of a specific view on the legacy system, whereas, the
second involves extracting useful information from the discovered
model. MoDisco requires high efficiency in handling large models,
especially these involved in reverse engineering of legacy systems.

3.3.2 Models and metamodel
Thanks to the MoDisco Java discoverer, we are able to extract
Java models up to 1.3GB, that conform to the Java metamodel
[39] defined in MoDisco (refinement of the JDTAST metamodel).
Those models are the input of the Java2KDM and Java code qual-
ity transformations, while, KDM output models are inputs for the
KDM2UML transformation. It is also possible to retrieve directly
KDM models using MoDisco. Because of confidentiality agree-
ments, Soft-Maint is not able to publish instance models derived
from their commercial projects. For this reason we choose to de-
rive instance models from the source code of open-source projects,
specifically from the Eclipse JDT plugins (org.eclipse.jdt.*). This
does not affect the relevance of the benchmark, as these plugins are
written by experienced developers with a quality standard that is
comparable to commercial projects.

Table 2 depicts the different models recovered against the discov-
ered plugins.

3.3.3 Queries and transformations
Java2KDM. This transformation takes place at beginning of al-
most every modernization process of a Java legacy system, it comes
just after the discovery of the Java model from Java projects (plug-
ins) using the MoDisco Java Discoverer. This transformation gen-
erates a KDM [44] (Knowledge Discovery Metamodel) model that
defines common metadata required for deep semantic integration of

3http://bimxml.org/
4http://www.bimxml.org/xsd/001/bimxml-001.xsd

17

Set1 org.eclipse.jdt.apt.pluggable.core
Set2 Set1 + org.eclipse.jdt.apt.pluggable.core

Set3 Set2 + org.eclipse.jdt.core+
org.eclipse.jdt.compiler + org.eclipse.jdt.apt.core

Set4
Set3 + org.eclipse.jdt.core.manipulation

+ org.eclipse.jdt.launching + org.eclipse.jdt.ui
+ org.eclipse.jdt.debug

Set5 org.eclipse.jdt.* (all jdt plugins)

Table 2: Discovered plugins per set

application life-cycle management tools. Java2KDM transforma-
tion is useful when the only available information on a Java source
code is contained in a Java model, even without the source code
it is then possible to get a KDM representation. This intermediate
model provides useful and precise information that can be used to
produce additional types of models.

KDM2UML. Based on the previously generated model, this trans-
formation generates a UML diagram in order to allow integrat-
ing KDM-compliant tools (i. e., discoverers) with UML-compliant
tools (e.g. modelers, model transformation tools, code generators,
etc.).

Java code quality. This set of code quality transformations
identify well-known anti-patterns in Java source code and fix the
corresponding issues by a model transformation. The input format
of the transformations is a model conforming to the Java meta-
model. For a specification for the transformations we refer the
reader to the implementations of these fixes in well-known code-
analysis tools like CheckStyle and PMD. Table 3 summarizes the
references to the documentation for each code fix considered in this
benchmark.

3.4 ATL Transformation Zoo
3.4.1 Context and objectives

The ATL project maintains a repository of ATL transformations
produced in industrial and academic contexts (ATL Transformation
Zoo [28]). These transformations are representative of the use of
model transformations for low-complexity tasks (i.e., low number
of transformation rules, lack of recursion, etc. . .).

In this benchmark we select a subset of the transformations in the
ATL Transformation Zoo based on their quality level and usage in
real-world applications. We specifically include only transforma-
tions that may be used in production environments. We automatize
the sequential execution of this subset and the generation of perfor-
mance analysis data.

3.4.2 Models and metamodels
For the aforementioned transformations, we do not have large enough
models that conform to the respective metamodels, and as such
we make use of a probabilistic model instantiator. This instantia-
tor takes as parameter a generation configuration specified by the
user. A generation configuration holds information such as 1) meta-
classes that should (not) be involved in the generation, 2) probabil-
ity distributions to establish how many instances should be gen-
erated for each metaclass, and which values should be assigned
to structural features. We provide a default generation configu-
ration, using uniform probability distributions for each meta-class
and structural feature. For some transformations we provide ad-hoc

probability distributions, exploiting domain knowledge over the in-
stances of the corresponding metamodel.

A generation configuration may come also with a seed that makes
the generation deterministic and reproducible. For each one of the
built-in generation configurations we provide a seed, producing the
exact set of models we used during our experimentation.

3.4.3 Queries and transformations

Ant to Maven. Ant [4] is an open source build tool (a tool ded-
icated to the assembly of the different pieces of a program) from
the Apache Software Foundation. Ant is the most commonly used
build tool for Java programs. Maven [5] is another build tool cre-
ated by the Apache Software Foundation. It is an extension of Ant
because ant Tasks can be used in Maven. The difference from Ant
is that a project can be reusable. This transformation [22] generates
a file for the build tool Maven starting from a file corresponding to
the build tool Ant.

CPL2SPL. CPL (Call Processing Language) is a standard script-
ing language for the SIP (Session Initiation Protocol) protocol. It
offers a limited set of language constructs. CPL is supposed to
be simple enough so that it is safe to execute untrusted scripts on
public servers [30]. SPL programs are used to control telephony
agents (e.g. clients, proxies) implementing the SIP (Session Ini-
tiation Protocol) protocol. Whereas, the CPL has an XML-based
syntax, the CPL2SPL transformation [24], provides an implemen-
tation of CPL semantics by translating CPL concepts into their SPL
equivalent concepts.

Graphcet2PetriNet. This transformation[25] establishes a bridge
between grafcet [17], and petri nets [43]. It provides an overview
of the whole transformation sequence that enables to produce an
XML petri net representation from a textual definition of a grafcet
in a PNML format, and the other way around.

IEEE1471 to MoDAF. This transformation example [3] real-
izes the transformation between IEEE1471-2000 [34] and MoDAF-
AV [11]. The IEEE1471 committee prescribes a recommended
practice for the design and the analysis of Architecture of Software
Intensive Systems. It fixes a terminology for System, Architec-
ture, Architectural Description, Stakeholder, Concerns, View ,and
Viewpoints concepts. MoDAF (Ministry of Defense Architecture
Framework) is based on the DoDAF (Department of Defense Ar-
chitecture Framework). DoDAF is a framework to design C4ISR
systems. MoDAF-AV (Architecture View) used several concepts
defined in the IEEE1471.

Make2Ant. Make (the most common build tool) is based on a
particular shell or command interface and is therefore limited to
the type of operating systems that use that shell. Ant uses Java
classes rather than shell-based commands. Developers use XML to
describe the modules in their program build. This benchmark [26]
describes a transformation from a Makefile to an Ant file.

18

MOF2UML. The MOF (Meta Object Facility)[45] is an OMG
standard enabling the definition of metamodels through common
semantics. The UML (Unified Modeling Language) Core standard
is the OMG common modeling language. Although, MOF is pri-
marily designed for metamodel definitions and UML Core for the
design of models, the two standards define very close notions. This
example [27] describes a transformation enabling to pass from the
MOF to the UML semantics. The transformation is based on the
UML Profile for MOF OMG specification.

OCL2R2ML. The OCL to R2ML transformation scenario [41]
describes a transformation from OCL (Object Constraint Language)
[46] metamodel (with EMOF metamodel) into a R2ML (REW-
ERSE I1 Rule Markup Language) metamodel. The Object Con-
straint Language (OCL) is a language that enables one to describe
expressions and constraints on object-oriented (UML and MOF)
models and other object modeling artifacts. An expression is an
indication or specification of a value. A constraint is a restric-
tion on one or more values of (part of) an object-oriented model
or system. REWERSE I1 Rule Markup Language (R2ML) is a
general web rule markup language, which can represent different
rule types: integrity, reaction, derivation and production. It is used
as pivotal metamodel to enable sharing rules between different rule
languages, in this case with the OCL.

UML2OWL. This scenario [42] presents an implementation of
the OMG’s ODM specification. This transformation is used to pro-
duce an OWL ontology, and its OWL Individuals from an UML
Model, and its UML Instances.

BibTeXML to DocBook. The BibTeXML to DocBook example
[23] describes a transformation of a BibTeXML [47] model to a
DocBook [56] composed document. BibTeXML is an XML-based
format for the BibTeX bibliographic tool. DocBook, as for it, is an
XML-based format for document composition.

DSL to EMF. This example [6] provides a complete overview
of a transformation chain example between two technical spaces:
Microsoft DSL Tools [40] and EMF. The aim of this example is
to demonstrate the possibility to exchange models defined under
different technologies. In particular, the described bridges demon-
strate that it should be possible to define metamodels and models
using both Microsoft DSL Tools and Eclipse EMF technologies.
The bridge between MS/DSL and EMF spans two levels: the meta-
model and model levels. At the level of metamodels, it allows to
transform MS/DSL domain models to EMF metamodels. At the
level of models, the bridge allows transforming MS/DSL models
conforming to domain models to EMF models conforming to EMF
metamodels. At both levels, the bridge operates in both directions.
A chain of ATL-based transformations is used to implement the
bridge at these two levels. The benefit of using such a bridge is the
ability to transpose MS/DSL work in EMF platform, and inversely.

4. THE MDE BENCHMARK REPOSITORY
The MDE Benchmark repository is the central storage area where
the artifacts of the benchmarks are archived for public access. These
artifacts, mainly text files, comprise large models and metamod-
els – typically represented in their XMI serialization – and model

transformations. To increase the visibility of these files we have
chosen to make them publicly available through the OpenSource-
Projects.eu (OSP) platform. The OSP platform is a software forge
dedicated to hosting Open Source projects created within EU re-
search projects.

The OSP platform provides, among other tools, a Git revision con-
trol system (RCS). Git repositories hosted in the OSP platform can
be easily navigated by a Web interface.

4.1 Benchmark structure
The MDE Benchmark repository is located at [48]. Inside this
repository every top level resource corresponds to a git submod-
ule, each, representing a different case study held in a separate git
repository.

Related resources for benchmarking a specific feature of a transfor-
mation engine are grouped in projects. A project is a self-contained
entity, and can be considered as the basic benchmarking unit. Projects
share a common internal structure that includes a short case de-
scription and a set of (optional) folders:

Short case description — A mandatory human-readable file de-
scribes the details of the test case, the file and directory struc-
ture, and any other important information (e. g., test cases can
evolve and additional information not considered at the point
of writing this document may be needed for executing the
benchmark).

Documentation — This directory stores the documentation about
the test case. The documentation of a test case may include,
among other information, a detailed description of the test
case, the foundations of the feature under testing, the build-
ing and execution instructions, etc.

Queries and Transformations — This directory stores the queries
and transformations, in source code form, that stress the fea-
ture under testing.

Models — This directory contains the model and metamodel de-
scriptions involved in the test transformation(s).

Input data — This directory contains the input data to be used by
the test case(s).

Expected data — In this directory we store the files that contain
the expected values that must be returned by the transforma-
tion. The expected data are compared with the actual output
of the transformation to determine if the test execution has
been successful or not.

Source code — In some situations, test cases may require addi-
tional code (such as Java code) to be executed. For example,
test cases may be automatically launched with the help of
third party libraries (such as JUnit), or test cases may exe-
cute external code following a black-box scheme. In this sit-
uations the additional code should be placed inside the /src
directory.

Libraries — This directory is used to store any additional third
party library (usually a binary file) required by the test case.

Scripts — Build and execution scripts should be placed under the
/build directory. Examples of such scripts are Ant files
[4], Maven files [5], Makefiles [20], bash shell scripts [19].

19

4.2 Submission guidelines
In order to increase the quality and soundness of the test cases avail-
able in the MDE Benchmark repository, we plan to keep it open to
further submissions from the MDE community.

We have defined a simple set of guidelines that must be followed
when contributing a new case study to guarantee that the quality of
the repository is maintained. Specifically:

• New contributions must include a comprehensive descrip-
tion of the case study. A rationale for its inclusion must
be provided, specially focusing on the differential aspects of
the proposed case study, compared to the already included
benchmarks.

• The sources, models, documentation and utility scripts must
be organized as described in Section 4.1.

• Contributions must be sent to the address mondo_team@
opengroup.org for their evaluation and approval.

5. CONCLUSION
This paper introduces the first open-set benchmark gathered from
real-world cases to stress scalability issues in model transformation
and query engines. These benchmark suite comes not only with
the aim of providing a point of reference against which industrials
and researchers might compare between different technologies to
choose what could suit their needs, but also to motivate the MDE
community to be part of its extension and contribute with additional
cases not covered by this set.

In our future work we plan to furnish a feature-based organization
of the benchmark in order to ease its use and enable efficient profit.
We also intend to provide theoretical background on how to mea-
sure transformations scalability. Another point would be to opti-
mize model instances generation to allow the generation of bigger
models, also to contribute to the repository with a live/real-time in-
stantiators for the consideration of infinite model transformations.

6. ACKNOWLEDGMENTS
This work is partially supported by the MONDO (EU ICT-611125)
project. The authors would like to thank UNINOVA and Soft-Maint
for their inputs, materials, and valuable discussions.

7. REFERENCES
[1] The train benchmark website.

https://incquery.net/publications/
trainbenchmark/full-results, 2013.

[2] The R project for statistical computing.
http://www.r-project.org/, 2014.

[3] Albin Jossic. ATL Transformation Example: IEEE1471 to
MoDAF, 2005. URL: http://www.eclipse.org/
atl/atlTransformations/IEEE1471_2_MoDAF/
IEEE1471_2_MoDAF.doc.

[4] Apache. Apache ant, 2014. URL:
http://ant.apache.org/.

[5] Apache. Apache maven project, 2014. URL:
http://maven.apache.org/.

[6] ATLAS group – LINA & INRIA. The Microsoft DSL to
EMF ATL transformation , 2005. URL: http://www.
eclipse.org/atl/atlTransformations/
DSL2EMF/ExampleDSL2EMF%5Bv00.01%5D.pdf.

[7] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a
large industrial contextŮmotorola case study. In Model
Driven Engineering Languages and Systems, pages 476–491.
Springer, 2005.

[8] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. A
benchmark evaluation of incremental pattern matching in
graph transformation. In Graph Transformations, pages
396–410. Springer, 2008.

[9] G. Bergmann, D. Horváth, and Á. Horváth. Applying
incremental graph transformation to existing models in
relational databases. In Graph Transformations, pages
371–385. Springer, 2012.

[10] G. Bergmann, I. Ráth, and D. Varró. Parallelization of graph
transformation based on incremental pattern matching.
Electronic Communications of the EASST, 18, 2009.

[11] B. Biggs. Ministry of defence architectural framework
(modaf). 2005.

[12] C. Bizer and A. Schultz. The Berlin SPARQL benchmark.
International Journal on Semantic Web & Information
Systems, 5(2):1–24, 2009.

[13] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot. Modisco: A
model driven reverse engineering framework. Information
and Software Technology, 56(8):1012 – 1032, 2014.

[14] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo. On the
concurrent execution of model transformations with linda. In
Proceedings of the Workshop on Scalability in Model Driven
Engineering, page 3. ACM, 2013.

[15] R. G. G. Cattell and J. Skeen. Object operations benchmark.
ACM Trans. Database Syst., 17(1):1–31, Mar. 1992.

[16] C. Clasen, M. D. Del Fabro, and M. Tisi. Transforming very
large models in the cloud: a research roadmap. In First
International Workshop on Model-Driven Engineering on
and for the Cloud, 2012.

[17] R. David. Grafcet: A powerful tool for specification of logic
controllers. Control Systems Technology, IEEE Transactions
on, 3(3):253–268, 1995.

[18] H. Giese and R. Wagner. From model transformation to
incremental bidirectional model synchronization. Software &
Systems Modeling, 8(1):21–43, 2009.

[19] GNU. Bourne-Again SHell manual, 2014. URL:
http://www.gnu.org/software/bash/manual/.

[20] GNU. GNU ‘make’, 2014. URL:
http://www.gnu.org/software/make/manual/.

[21] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical assessment of mde in industry. In
Proceedings of the 33rd International Conference on
Software Engineering, pages 471–480. ACM, 2011.

[22] INRIA. ATL Transformation Example: Ant to Maven, 2005.
URL: http://www.eclipse.org/atl/
atlTransformations/Ant2Maven/
ExampleAnt2Maven%5Bv00.01%5D.pdf.

[23] INRIA. ATL Transformation Example: BibTeXML to
DocBook, 2005. URL: http://www.eclipse.org/
atl/atlTransformations/BibTeXML2DocBook/
ExampleBibTeXML2DocBook%5Bv00.01%5D.pdf.

[24] INRIA. ATL Transformation Example: CPL to SPL, 2005.
URL: http://www.eclipse.org/atl/
atlTransformations/CPL2SPL/README.txt.

[25] INRIA. ATL Transformation Example: Grafcet to Petri Net,
2005. URL: http://www.eclipse.org/atl/
atlTransformations/Grafcet2PetriNet/

20

ExampleGrafcet2PetriNet[v00.01].pdf.
[26] INRIA. ATL Transformation Example: Make to Ant, 2005.

URL: http://www.eclipse.org/atl/
atlTransformations/Make2Ant/
ExampleMake2Ant[v00.01].pdf.

[27] INRIA. ATL Transformation Example: MOF to UML, 2005.
URL: http://www.eclipse.org/atl/
atlTransformations/MOF2UML/
ExampleMOF2UML[v00.01].pdf.

[28] Inria. Atl transformation zoo, 2014. URL: http://www.
eclipse.org/atl/atlTransformations/.

[29] B. Izsó, Z. Szatmári, G. Bergmann, Á. Horváth, and I. Ráth.
Towards precise metrics for predicting graph query
performance. In 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE),
pages 412–431, Silicon Valley, CA, USA, 11/2013 2013.
IEEE.

[30] F. Jouault, J. Bézivin, C. Consel, I. Kurtev, F. Latry, et al.
Building dsls with amma/atl, a case study on spl and cpl
telephony languages. In ECOOP Workshop on
Domain-Specific Program Development, 2006.

[31] F. Jouault, J. Sottet, et al. An amma/atl solution for the
grabats 2009 reverse engineering case study. In 5th
International Workshop on Graph-Based Tools, Zurich,
Switzerland, 2009.

[32] F. Jouault, J.-S. Sottet, et al. An amma/atl solution for the
grabats 2009 reverse engineering case study. In 5th
International Workshop on Graph-Based Tools, Grabats,
2009.

[33] F. Jouault and M. Tisi. Towards incremental execution of atl
transformations. In Theory and Practice of Model
Transformations, pages 123–137. Springer, 2010.

[34] E. Jouenne and V. Normand. Tailoring ieee 1471 for mde
support. In UML Modeling Languages and Applications,
pages 163–174. Springer, 2005.

[35] D. S. Kolovos, R. F. Paige, and F. A. Polack. The epsilon
transformation language. In Theory and practice of model
transformations, pages 46–60. Springer, 2008.

[36] D. S. Kolovos, R. F. Paige, and F. A. Polack. The grand
challenge of scalability for model driven engineering. In
Models in Software Engineering, pages 48–53. Springer,
2009.

[37] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth, D. Varró,
M. Tisi, et al. A research roadmap towards achieving
scalability in model driven engineering. In Proceedings of
the Workshop on Scalability in Model Driven Engineering,
page 2. ACM, 2013.

[38] G. Mezei, T. Levendovszky, T. Mészáros, and I. Madari.
Towards truly parallel model transformations: A distributed
pattern matching approach. In EUROCON 2009,
EUROCON’09. IEEE, pages 403–410. IEEE, 2009.

[39] MIA-Software. Modiscojava metamodel (knowledge
discovery metamodel) version 1.3, 2012. URL:
http://dev.eclipse.org/svnroot/modeling/
org.eclipse.mdt.modisco/main/branches/0_
11/org.eclipse.gmt.modisco.java/model/
java.ecore.

[40] Microsoft Corp. The DSL tools, 2014. URL: http:
//msdn.microsoft.com/vstudio/DSLTools/.

[41] Milan Milanovic. ATL Transformation Example: OCL to

R2ML, 2005. URL: http://www.eclipse.org/atl/
atlTransformations/OCL2R2ML/README.txt.

[42] Milan Milanovic. ATL Transformation Example: UML to
OWL, 2005. URL: http://www.eclipse.org/atl/
atlTransformations/UML2OWL/README.txt.

[43] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[44] OMG (Object Management Group). Kdm (knowledge
discovery metamodel) version 1.3, 2011. URL:
http://www.omg.org/spec/KDM/1.3/.

[45] OMG (Object Management Group). Mof (meta object
facility) version 2.4, 2011. URL:
http://www.omg.org/spec/MOF/2.4.

[46] OMG (Object Management Group). Ocl (object constraint
language) v2.0, 2011. URL:
http://www.omg.org/spec/OCL/2.0/PDF.

[47] L. Previtali, B. Lurati, and E. Wilde. Bibtexml: An xml
representation of bibtex. In V. Y. Shen, N. Saito, M. R. Lyu,
and M. E. Zurko, editors, WWW Posters, 2001.

[48] M. Project. Transformation benchmarks, 2014. URL:
http://opensourceprojects.eu/p/mondo/
d31-transformation-benchmarks/.

[49] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu,
and R. Busse. Xmark: A benchmark for xml data
management. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages
974–985. VLDB Endowment, 2002.

[50] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL performance benchmark. In Proc. of
the 25th International Conference on Data Engineering,
pages 222–233, Shanghai, China, 2009. IEEE.

[51] M. Tisi, S. Martinez, and H. Choura. Parallel execution of atl
transformation rules. In Model-Driven Engineering
Languages and Systems, pages 656–672. Springer, 2013.

[52] Transaction Processing Performance Council (TPC). TPC-C
Benchmark, 2010.

[53] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó,
I. Ráth, Z. Szatmári, and D. Varró. EMF-IncQuery: An
integrated development environment for live model queries.
Science of Computer Programming, 2014.

[54] M. Van Amstel, S. Bosems, I. Kurtev, and L. F. Pires.
Performance in model transformations: experiments with atl
and qvt. In Theory and Practice of Model Transformations,
pages 198–212. Springer, 2011.

[55] G. Varro, A. Schurr, and D. Varro. Benchmarking for graph
transformation. In Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, pages 79–88. IEEE,
2005.

[56] N. Walsh and R. Hamilton. DocBook 5: The Definitive
Guide. Definitive Guide Series. O’Reilly Media, 2010.

21

Table 3: List of Java code quality fixes
Rule Documentation
ConstantName http://checkstyle.sourceforge.net/config_naming.html#ConstantName
LocalFinalVariableName http://checkstyle.sourceforge.net/config_naming.html#LocalFinalVariableName
LocalVariableName http://checkstyle.sourceforge.net/config_naming.html#LocalVariableName
MemberName http://checkstyle.sourceforge.net/config_naming.html#MemberName
MethodName http://checkstyle.sourceforge.net/config_naming.html#MethodName
PackageName http://checkstyle.sourceforge.net/config_naming.html#PackageName
ParameterName http://checkstyle.sourceforge.net/config_naming.html#ParameterName
StaticVariableName http://checkstyle.sourceforge.net/config_naming.html#StaticVariableName
TypeName http://checkstyle.sourceforge.net/config_naming.html#TypeName
AvoidStarImport http://checkstyle.sourceforge.net/config_imports.html#AvoidStarImport
UnusedImports http://checkstyle.sourceforge.net/config_imports.html#UnusedImports
RedundantImport http://checkstyle.sourceforge.net/config_imports.html#RedundantImport
ParameterNumber http://checkstyle.sourceforge.net/config_sizes.html#ParameterNumber
ModifierOrder http://checkstyle.sourceforge.net/config_modifier.html#ModifierOrder
RedundantModifier http://checkstyle.sourceforge.net/config_modifier.html#RedundantModifier
AvoidInlineConditionals http://checkstyle.sourceforge.net/config_coding.html#AvoidInlineConditionals
EqualsHashCode http://checkstyle.sourceforge.net/config_coding.html#EqualsHashCode
HiddenField http://checkstyle.sourceforge.net/config_coding.html#HiddenField
MissingSwitchDefault http://checkstyle.sourceforge.net/config_coding.html#MissingSwitchDefault
RedundantThrows http://checkstyle.sourceforge.net/config_coding.html#RedundantThrows
SimplifyBooleanExpression http://checkstyle.sourceforge.net/config_coding.html#SimplifyBooleanExpression
SimplifyBooleanReturn http://checkstyle.sourceforge.net/config_coding.html#SimplifyBooleanReturn
FinalClass http://checkstyle.sourceforge.net/config_design.html#FinalClass
InterfaceIsType http://checkstyle.sourceforge.net/config_design.html#InterfaceIsType
VisibilityModifier http://checkstyle.sourceforge.net/config_design.html#VisibilityModifier
FinalParameters http://checkstyle.sourceforge.net/config_misc.html#FinalParameters
LooseCoupling http://pmd.sourceforge.net/pmd-5.1.0/rules/java/typeresolution.html#LooseCoupling
SignatureDeclareThrowsException http://pmd.sourceforge.net/pmd-5.1.0/rules/java/typeresolution.html#SignatureDeclareThrowsException
DefaultLabelNotLastInSwitchStmt http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#DefaultLabelNotLastInSwitchStmt
EqualsNull http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#EqualsNull
CompareObjectsWithEquals http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#CompareObjectsWithEquals
PositionLiteralsFirstInComparisons http://pmd.sourceforge.net/pmd-5.1.0/rules/java/design.html#PositionLiteralsFirstInComparisons
UseEqualsToCompareStrings http://pmd.sourceforge.net/pmd-5.1.0/rules/java/strings.html#UseEqualsToCompareStrings
IntegerInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#IntegerInstantiation
ByteInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#ByteInstantiation
ShortInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#ShortInstantiation
LongInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#LongInstantiation
BooleanInstantiation http://pmd.sourceforge.net/pmd-5.1.0/rules/java/migrating.html#BooleanInstantiation
SimplifyStartsWith http://pmd.sourceforge.net/pmd-5.1.0/rules/java/optimizations.html#SimplifyStartsWith
UnnecessaryReturn http://pmd.sourceforge.net/pmd-5.1.0/rules/java/unnecessary.html#UnnecessaryReturn
UnconditionalIfStatement http://pmd.sourceforge.net/pmd-5.1.0/rules/java/basic.html#UnconditionalIfStatement
UnnecessaryFinalModifier http://pmd.sourceforge.net/pmd-5.1.0/rules/java/unnecessary.html#UnnecessaryFinalModifier

22

LinTraP: Primitive Operators for the Execution of Model
Transformations with LinTra

Loli Burgueño
Universidad de Málaga

Malaga, Spain
loli@lcc.uma.es

Eugene Syriani
University of Alabama
Tuscaloosa AL, USA

esyriani@cs.ua.edu

Manuel Wimmer
Vienna University of

Technology
Vienna, Austria

wimmer@big.tuwien.ac.at
Jeff Gray

University of Alabama
Tuscaloosa AL, USA
gray@cs.ua.edu

Antonio Vallecillo
Universidad de Málaga

Malaga, Spain
av@lcc.uma.es

ABSTRACT
The problems addressed by Model-Driven Engineering (MDE)
approaches are increasingly complex, hence performance and
scalability of model transformations are gaining importance.
In previous work, we introduced LinTra, which is a platform
for executing out-place model transformations in parallel.
The parallel execution of LinTra is based on the Linda co-
ordination language, where high-level model transformation
languages (MTLs) are compiled to LinTra and eventually
executed through Linda. In order to define the compilation
modularly, this paper presents a minimal, yet sufficient, col-
lection of primitive operators that can be composed to (re-
)construct any out-place, unidirectional MTL.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.1.3 [Programming
Techniques]: Concurrent Programming; C.4 [Computer
Systems Organization]: Performance of systems

Keywords
Model Transformation, Linda, LinTra

1. INTRODUCTION
Model-Driven Engineering [2] is a relatively new paradigm
that has grown in popularity in the last decade. Although
there is a wide variety of approaches and languages with dif-
ferent characteristics and oriented to different types of model
transformations (MT), most model transformation engines
are based on sequential and local execution strategies. Thus,
they have limited capabilities to transform very large models
(with thousands or millions of elements), and provide even
less capabilities to perform the transformation in a reason-
able amount of time.

BigMDE ’14 July 24, 2014. York, UK. Copyright @ 2014 for the individual
papers by the papers’ authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

In previous works [3, 4], we investigated concurrency and
distribution for out-place transformations to increase their
performance and scalability. Our approach, LinTra, is based
on Linda [8], a mature coordination language for parallel
processes that supports reading and writing data in par-
allel into distributed tuple spaces. A tuple space follows
the Blackboard architecture [5], which makes the data dis-
tributed among different machines transparent to the user.

To execute transformations on the LinTra architecture, Lin-
Tra specifies how to represent models and metamodels, how
the trace links between the elements in the input model and
the elements created from them are encoded for efficient re-
trieval, which agents are involved in the execution of the
MTs and their role, how the MTs are executed in parallel,
and how the models are distributed over the set of machines
composing the cluster where each MT is executed.

The implementation of several case studies using the Java
implementation of LinTra (jLinTra) is available on our web-
site1, together with the performance comparison with sev-
eral well-known model transformation languages (MTLs)
such as ATL [11], QVT-O [14] and RubyTL [7].

In order to hide the underlying LinTra architecture and in
order to ease the compilation from any existing out-place
MTL to the LinTra engine, in this paper we propose a col-
lection of minimal, yet sufficient, primitive operators that
can be composed to (re-)construct any out-place and uni-
directional MTL. These primitive operators encapsulate the
LinTra implementation code that makes the parallel and dis-
tributed execution possible, serving as an abstraction of the
implementation details of the general-purpose language in
which LinTra is implemented.

The rest of the paper is structured as follows. Section 2
introduces the collection of primitives. Section 3 illustrates
examples of primitive combinations in order to write MTs.
Section 4 discusses the related work to our approach. Fi-
nally, Section 5 presents our conclusions and an outlook on
future work.

1http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/MTBenchmark

23

2. COLLECTION OF PRIMITIVES
This section shortly introduces LinTra, presents the set of
primitive operators, and describes the mapping of the prim-
itive operators to LinTra.

2.1 Background on LinTra
LinTra uses the Blackboard paradigm [5] to store the input
and output models, as well as the required data to keep
track of the MT execution that coordinates the agents that
are involved in the process.

One of the keys of our approach is the model and metamodel
representation. In this representation, we assume that ev-
ery entity in the model is independent from another. Each
entity is assigned an identifier that is used for representing
relationships between entities and by the trace model. Rela-
tionships between entities are represented by storing in the
source entity the identifier(s) of its target entity(ies).

Traceability is frequently needed when executing an out-
place model transformation because the creation of an ele-
ment might require information about some other elements
previously transformed, or even information about elements
that will be transformed in the future. This means that
there might be dependencies that can affect the execution
performance, e.g., when one element needs access to an ele-
ment that has not been created yet. In LinTra, traceability
is implemented implicitly using a bidirectional function that
receives as a parameter the entity identifier (or all the entity
identifiers in the case that the match comprises more than
one entity) of the input model and returns the identifier of
the output entity(ies), regardless whether the output entities
have already been created or not. This means that LinTra
does not store information about the traces explicitly; thus,
the performance is not affected by the access to memory and
the search for trace information.

Together with the Blackboard, LinTra uses the Master-Slave
design pattern [5] to execute MTs. The master’s job is to
launch slaves and coordinate their work. Slaves are in charge
of applying the transformation in parallel to submodels of
the input model (i.e., partitions) as if each partition is a
complete and independent model. Since LinTra only deals
with out-place transformations, the complete input model is
always available. Thus, if the slaves have data dependencies
with elements that are not in the submodels they were as-
signed, they only have to query the Blackboard to retrieve
them.

2.2 Primitives
Two different kinds of primitives can be distinguished in Lin-
Tra: the primitive constructs to encapsulate the concurrent
execution platform and the primitive constructs needed by
the MTL.

Primitives for the Concurrent Platform. Despite the
fact that due the representation of models in LinTra, all
model elements are independent from each other, LinTra re-
quires the user to specify the size of every partition, i.e.,
how many elements belong to each one. Furthermore, al-
though there is no need of specifying how the elements are
partitioned or which elements belong to the same partition,
LinTra offers that possibility.

The PartitionCreator primitive receives the input model,
an OCL expression, OE, and the maximum number of model
entities, S, that each partition will contain. The Partition-
Creator queries the input model using OE and partitions
the resulting submodel into partitions of size S. The com-
bination of PartitionCreators with different OCL expres-
sions may lead to overlapping partitions; thus, the LinTra
engine checks internally that the intersection of all the par-
titions is empty and the union is the whole model. The
purpose of OE is to give the user the possibility to optimize
the MT execution.

Primitives for the Model Transformation Language.
The minimum set of primitive constructs needed to define
out-place model transformations are: Composer, Tracer, Cre-
ator, CondChecker, Finder, Declarer and Assigner.

Composer is a primitive that allows the grouping of a com-
bination of primitives and assigns the combination a name.
Its syntax is Composer <composerName> { <combination
of primitives> } and it is mainly used by the Tracer.

The Tracer provides access to the trace model needed by
out-place MT engines for linking the entities in the out-
put model. Given an input entity or set of entities that
match the pre-condition of a rule, the traces give access
to the entities that were created in the post-condition, and
vice versa. In this case, to identify which primitive belongs
to which rule, we propose to encapsulate them in a Com-

poser so that the Tracer receives as a parameter the name
of the Composer and the set of entities from the pre or post-
condition and gives the reference to the other entities. Its
signature is Tracer(composer : Composer, e : Entity) : Col-
lection(Entity) and Tracer(composer : Composer, e : Col-
lection(Entity)) : Collection(Entity). The Collection corre-
sponds to the four collection types in OCL: Set, OrderedSet,
Bag, and Sequence. Furthermore, in a Composer, more than
one element might be created; thus, in the Tracer, the con-
crete Creator might need to be specified given its name,
being its syntax Tracer(composer : Composer, e : Collec-
tion(Entity), creatorName : String) : Collection(Entity).

Creator creates an entity given its data type and its fea-
tures (attributes and bindings) and writes it in the Black-
board. The primitive receives as parameter the entity type
and a dictionary which stores the values of every feature.
The dictionary is a collection of key-value pairs where the
first element is the name of the feature and the second its
value. The type of the values received by the dictionary
are of two kinds: OCL primitive data types, which cor-
respond to the basic data types of the language (string,
boolean and numbers in their different formats), and the
types defined by all the classes given by the output meta-
model. Furthermore, the values can be an OCL collection of
the previous types. Its syntax is Creator(type : Factory, fea-
tures : Dictionary<feature : String, value: OCLDataType |
Entity>). Moreover, the Creator might have an optional
parameter of type String specifying its name, Creator(type
: Factory, features : Dictionary<feature : String, value:
[OCLDataType | Entity]>, name : String). This is needed
in case that it is referenced by a Tracer.

CondChecker allows the querying of the input model in the

24

Blackboard with an OCL expression that evaluates to a
boolean value. It receives as input the OCL expression,
queries the Blackboard and returns the result. Its signature
is CondChecker(expr : OCLExpression) : Boolean.

Finder allows the retrieval of elements from the Blackboard
that satisfy a constraint. It receives as a parameter an OCL
expression and returns the set of entities (submodel) that
fulfils the OCL expression. Its signature is Finder(expr :
OCLExpression) : Collection(Entity).

Declarer allows to create a global variable that can be ac-
cessed by its name from any other primitive and that is
accessed by all the Slaves involved in the transformation
process. Its syntax is Declarer(type : [OCLDataType | En-
tity], name : String). The value of the variable is set by
Assigner.

Assigner sets the value of a variable defined by Declarer.
Assigner receives as a parameter the name of the variable
and its value. Its syntax is Assigner(varName : String, value
: [OCLDataType | Entity | Creator]). In the case that the
second parameter is a Creator, the element is stored in the
Blackboard and the variable points to it. In case the variable
is stored in the Blackboard, every time it is updated, the
corresponding value in the Blackboard is overwritten. If
the second parameter is an OCL primitive data type or an
entity, the variable is stored in memory and accessed while
the MT is executed but it is not a persistent value in the
Blackboard.

Figure 1 shows a class diagram with all the primitives and
their relationships.

Figure 1: Primitives Class Diagram.

2.3 Integrating the Primitives with the LinTra
Engine

When executing a transformation with LinTra there are sev-
eral steps. Some of the steps are done automatically by the
engine and others require that the user gives certain guide-
lines on how to proceed by means of the primitives. Two
different phases can be distinguished: the setup and the MT
execution itself.

The semantics of some MTs might require that a certain set
of rules are applied to the whole input model before applying

or after having applied some others. This is the case, for
example, of top rules in QVT-R [14], and entrypoint and
endpoint rules in ATL [11]. In order to be able to express
this behaviour, in the setup phase, the rule schedule must
be extracted from the transformation given by the user and
a collection of rules (or rule layers) must be created. All the
rules belonging to the same layer can be executed in parallel,
but all rules in one layer must have terminated before rules
in a subsequent layer can begin.

Furthermore, during the setup, the transformation written
in a high-level MTL is compiled to the MTL primitives, and
the input model is parsed to the tuple space representation
and stored into the Blackboard. Then, the PartitionCre-

ator provided by the user is executed and the model parti-
tions are created. Finally, the tasks to be executed by the
slaves are created and stored in order in the Blackboard. A
task is a pair consisting of a rule layer and a model parti-
tion. The tasks are produced by computing all the possible
combinations between the partitions and the rule layers.

After the setup phase is finished, the LinTra MT engine
starts using the Master-Slave design pattern. The master
creates slaves that execute the tasks that share the same
rule layer and waits for all the tasks to be finished before
starting to execute the ones that involve the following layer.
Every slave executes the assigned task sequentially and all
the slaves work in parallel. The master behaviour after
launching the slaves is given by the pseudo-code presented
in Listing 1.

Listing 1: Master.
1 params : : I n t eg e r : nSlaves
2 index := 1
3 slavePool := createSlaves (nSlaves)
4 task := Blackboard . Tasks . dequeue ()
5 while (task != null){
6 while (task != null
7 and task . ruleLayer . index = index)
8 slave := slavePool . getIdleSlave () -- blocking
9 slave . execute (task)
10 task := Blackboard . Tasks . dequeue ()
11 }
12 join () -- wait for all the slaves to finish
13 -- before starting to transform the
14 -- tasks involving the next ruleLayer
15 index := index + 1
16 }

When a slave receives a task, it transforms the submodel
given by its partition with the rules given by its rule layer.
These rules are a collection of MT primitives. The code
executed by the slaves is shown in Listing 2. An overview of
how the system works can be seen in the activity diagram
presented in Figure 2.

Listing 2: Slave - execute method
17 for each e ∈ task . partition {
18 task . ruleLayer . transforms (e)
19 }

The sequential execution of a MT is a concrete scenario in
LinTra. There are several ways to achieve it. The MT is
executed sequentially either by not partitioning the input
model (therefore, only one task is created and executed se-
quentially by a single slave) or by launching only one slave

25

Figure 2: Activity Diagram of the Transformation
Process.

that transforms all the tasks.

A class diagram showing all the elements involved in LinTra
and how they are related to each other can be found in
Figure 3. It contains the Master and Slave where every
slave executes a Transformation which is a collection of MT
Primitives that accesses to a Blackboard which is composed
by Areas that contain both Tasks - formed by a Rule Layer
and Partitions - and and the Entities that belong to a certain
Model. MTLPrimitive in this diagram corresponds with the
root class in the diagram presented in Figure 1.

Figure 3: LinTra Class Diagram Metamodel.

3. EXAMPLES
This section demonstrates how the introduced primitives are
used for concrete transformation examples.

3.1 Activity Diagram to Petri Net
This case study is a simplification of the transformation from
UML Activity Diagrams to Petri Nets described in [15]. The
metamodels are represented in Figures 5 and 6 and, for sim-
plicity, only contain the elements needed by our simplified
transformation.

The MT simplification consists of an unaltered subset of
the original MT which focuses on transforming only sev-
eral elements belonging to the input model instead of the

Figure 4: Activity Diagram to Petri Net Transfor-
mation.

whole model. Every Initial Node is transformed to a pro-
cessing Place with one token, an Arc pointing to a Transition
and other Transition. Every Final Node is transformed to a
Transition, an Arc pointing to a Place and such Place. From
every Action Node, an entry Transition, an Arc pointing to a
Place, such Place, an Arc from it to another Transition, and
such Transition are created. Every Signal is transformed in
the same way as a Final Node and every Accept Signal as
an Initial Node but with no token. Activity Edges between
any kind of nodes are transformed as an Arc pointing to a
Place, the Place and another Arc coming from it. Every pair
Signal-Accept Signal with the same value for their feature
signalId are transformed in the same way as Activity Edges.
For a better understandability, the previous transformation
rules are represented graphically in Figure 4. Finally, only
one entity of PetriNet is created in the output model whose
name is the String “PNet” concatenated with the number
of arcs, the number of places and the number of transac-
tions in the output model after the whole transformation
process. All places, arcs and transitions must be linked to
that PetriNet entity.

Let us assume that the user does not specify how the enti-
ties are assigned to the different partitions and the partition
size is 100. The partition creator is invoked as Partition-
Creator(inModel, Entity.allInstances, 100). Let us suppose
that it returns three partitions, P = {p1, p2, p3}. From the
MT, the rule schedule is extracted and the rule layers are
created. Given the MT definition, three different rule lay-

26

Figure 5: Activity Diagram Metamodel.

Figure 6: Petri Net Metamodel.

ers are created: RL = [l1, l2, l3] where l1 contains the first
composer where a global variable for the unique Petri Net
that will be referenced by the rest of entities is created, in
l2 all the elements are created and in l3, the name of the
Petri Net is changed. Given the partitions and the layers,
the tasks to be executed are T = [T1, T2, T3], where T1 =
{(p1, l1), (p2, l1), (p3, l1)}, T2 = {(p1, l2), (p2, l2), (p3, l2)}
and T3 = {(p1, l3), (p2, l3), (p3, l3)}. We make the distinc-
tion between T1, T2 and T3 to clarify that all tasks in T1
are relative to l1, all tasks in T2 are relative to l2 and all
tasks in T3 are relative to l3 ; thus, until all tasks from T1
have been executed, tasks from T2 cannot start and until
all tasks in T2 have been executed, tasks from T3 cannot
start.

The compilation process from the high-level MT to the prim-
itives produces the code shown in Listings 3, 4, and 5.

Listing 3: MTL Primitives for the first rule layer
(l1).

1 Composer First {
2 Declarer (PetriNet , pNet)
3 Assigner (pNet ,
4 Creator (PetriNet , { [name , ’ PNet ’] }))
5 }

As the case study requires that only one PetriNet instance
is created and the rest of the elements in the output model
reference it, there is a need for a global variable that must
be available before the rest of the rules are applied. Listing
3 declares in line 1 a composer which, encapsulates the dec-
laration of a variable called pNet (line 2) and the creation

of the PetriNet entity (lines 3 and 4). Note that, as the en-
tity created is a persistent entity which is part of the output
model (instead of a temporary variable), the second param-
eter of the assigner is a creator, which means that the value
is stored in the Blackboard and the variable is a pointer to
it.

Listing 4 shows part of the primitives that compose the sec-
ond rule layer. In particular, this listing shows the collection
of primitives to transform ActionNodes and SignalNodes and
to match the output entities created from SignalNodes and
AcceptSignalNodes.

Lines 2, 21 and 33 show the condition checkers which impose
the pre-conditions that the entity, e, given by a task, has
to fulfil to be transformed by the set of primitives inside
the if the condition checker. For instance, given e, if the
condition checker in line 2 is fulfilled, it means that e is of
type SignalNode and from it, the entities specified by the
creators in lines 3, 5, 10, 12 and 17 will be created. For
example, in the creator in line 5, an Arc is created where
transition points to the entity created by the creator called
t1, place points to the entity created by creator p, toPlace
is set to true and net points to the element given by the
global variable pNet. The name of the creators is optional,
and in this example, it is only given when it is needed by a
tracer. For example, the tracer in line 6 gives the reference
to the entity created from e in ActNode by a creator called
t1.

A tracer can give the reference to an entity that has been
created either in the same composer or in a different com-
poser. It can also point either to a composer located in the
same rule layer or in a different rule layer. An example of the
first case is the tracer in line 39, which points to a creator
in the composer Signal.

The last composer encompasses the entities created by every
pair Signal-Accept Signal with the same signalId. This is a
particular case where from every entity, e, received in the
task and fulfilling the condition checker in line 33 (i.e. whose
type is SignalNode), it is needed to find in the Blackboard
all the elements of type AcceptSignalNode with the same
signal identifier as e. This is achieved by using the Finder
primitive in line 34.

Listing 4: MTL Primitives for the second rule layer
(l2).

1 Composer ActNode {
2 i f (CondChecker(e . oclIsTypeOf (ActionNode)))
3 Creator (Transition ,
4 { [name , e . name] , [net , pNet]} , ’ t1 ’)
5 Creator (Arc ,
6 { [transition ,Tracer (ActNode , e , ’ t1 ’)] ,
7 [place ,Tracer (ActNode , e , ’ p ’)] ,
8 [toPlace , true] ,
9 [net , pNet]})
10 Creator (Place ,
11 { [name , e . name] , [net , pNet] , [token , 0] } , ’ p ’)
12 Creator (Arc ,
13 { [transition ,Tracer (ActNode , e , ’ t2 ’)] ,
14 [place ,Tracer (ActNode , e , ’ p ’)] ,
15 [toPlace , fa l se] ,
16 [net , pNet]})
17 Creator (Transition ,
18 { [name , e . name] , [net , pNet]} , ’ t2 ’)
19 }

27

20 Composer Signal {
21 i f (CondChecker(e . oclIsTypeOf (SignalNode)))
22 Creator (Transition ,
23 { [name , e . name] , [net , pNet]} , ’ t ’)
24 Creator (Arc ,
25 { [transition ,Tracer (Signal , e , ’ t ’)] ,
26 [place , Tracer (Signal , e , ’ p ’)] ,
27 [toPlace , true] ,
28 [net , pNet]})
29 Creator (Place ,
30 { [name , e . name] , [net , pNet]} , ’ p ’)
31 }
32 Composer MatchSignals {
33 i f (CondChecker(e . oclIsTypeOf (SignalNode)))
34 for (a in Finder (AcceptSignalNode . allInstances
35 −>select (as | e . activityDiag = as . activityDiag
36 and e . signalId = a . signalId)
37 Creator (Arc ,
38 { [place ,
39 Tracer (Signal , e , ’ p ’)] ,
40 [transition ,
41 Tracer (MatchSignals , {e , a } , ’ t ’)] ,
42 [toPlace , fa l se] ,
43 [net , pNet]})
44 Creator (Transition ,
45 { [name , e . name+’−’+a . name] ,
46 [net , pNet]} , ’ t ’)
47 Creator (Arc ,
48 { [place ,
49 Tracer (AcceptSignal , e , ’ p ’)] ,
50 [transition ,
51 Tracer (MatchSignals , {e , a } , ’ t ’)] ,
52 [toPlace , true] ,
53 [net , pNet]})
54 }
55 . . .

Finally, once all the output entities have been created, the
third rule layer, where the name of the only PetriNet is
updated, can be executed. Listing 5 shows how it is done
using an Assigner and a Creator inside of it that overwrites
the value of the pNet.

Listing 5: MTL Primitives for the third rule layer
(l3).

1 Composer Last {
2 Assigner (pNet ,
3 Creator (PetriNet ,
4 { [name , pNet . name+(pNet . arcs . size ()
5 +pNet . places . size ()
6 +pNet . transitions . size ())]}))
7 }

The complete case study can be downloaded from our web-
site2. Note that, although the case study in [15] is an out-
place MT, i.e. the input and output metamodels are differ-
ent and the input model is not modified, the authors have
used an in-place MTL; thus, although the semantics of the
MT is the same, our solution is different to theirs.

3.2 Filtering Families
In this subsection, we introduce a second case study where
the input and output metamodel are the Family metamodel
shown in Figure 7. The MT consists of filtering the input
model so that the output metamodel is a subset of the input
model that contains only the families which have exactly two
daughters, two sons and their family members. This means
that the members belonging to families with more than two
daughters and two sons are not in the output model.

2http://atenea.lcc.uma.es/index.php?title=Main_
Page/Resources/Linda/ActivityDiag2PetriNet

Figure 7: Family Metamodel.

For example, this behaviour is done in ATL using a par-
ticular kind of rule called a lazy rule. Lazy rule are not
completely declarative, but they must be invoked explicitly.
In this way, the transformation for this example has a main
rule that checks if a family fulfilled the requirements and in
that case, a lazy rule that transforms its members is called.
Although in most of the cases there is a direct relation be-
tween rules in the high-level MTL and composers, this case
is an exception. With our collection of primitives, this is
done by means of a unique Composer.

Listing 6 shows the MTL primitives for this case study. An
entity, e, fulfils the condition in line 2, in line 5 a Family is
created. Then, the condition checkers in lines 11 and 15 and
creators in lines 12 and 16 transform every mother and father
of that family. All sons and daughters are transformed in
lines 20 and 24. Tracers in lines 6 and 7 reference creators
that can be invoked or not because they are inside ifs, in
the case that no entity is created, the reference points to
null. Tracers in lines 8 and 9 point to entities created inside
a for, those tracers return the pointers to all the elements
created in that creator. The complete case study can be
found on our website3.

Listing 6: MTL primitives for the Filtering Families
case study.

1 Composer R {
2 i f (CondChecker(e . oclIsTypeOf (Family)
3 and e . daughters . size ()=2
4 and e . sons . size ()=2))
5 Creator (Family , { [lastName , e . lastName] ,
6 [father , Tracer (R , e , ’ f ’)] ,
7 [mother , Tracer (R , e , ’ m ’)] ,
8 [daughters , Tracer (R , e , ’ ds ’)] ,
9 [sons , Tracer (R , e , ’ ss ’)]} ,
10 ’ fam ’)
11 i f (CondChecker(not e . father . isOclUndefined ()))
12 Creator (Member , { [name , e . father . name] ,
13 [familyFather , Tracer (R , e , ’ fam ’)]} ,
14 ’ f ’)
15 i f (CondChecker(not e . mother . isOclUndefined ()))
16 Creator (Member , { [name , e . mother . name] ,
17 [familyMother , Tracer (R , e , ’ fam ’)]} ,
18 ’ m ’)
19 for (daughter in e . daughters)
20 Creator (Member , { [name , daughter . name] ,
21 [familyDaughter , Tracer (R , e , ’ fam ’)]} ,
22 ’ ds ’)
23 for (son in e . sons)
24 Creator (Member , { [name , son . name] ,
25 [familySon , Tracer (R , e , ’ fam ’)]} ,
26 ’ ss ’)
27 }

3http://atenea.lcc.uma.es/index.php?title=Main_
Page/Resources/Linda/FilteringFamilies

28

4. RELATED WORK
With respect to the contribution of this paper, we first elab-
orate on related work considering the performance of model
transformations in general and concerning parallel execution
in particular and second we discuss how the work on primi-
tives for model transformations is extended by this work.

The performance of model transformations is now consid-
ered as an integral research challenge in MDE [12]. For
instance, Amstel et al. [18] considered the runtime perfor-
mance of transformations written in ATL and in QVT. In
[19], several implementation variants using ATL, e.g., using
either imperative constructs or declarative constructs, of the
same transformation scenario have been considered and their
different runtime performance has been compared. However,
these works only consider the traditional execution engines
following a sequential rule application approach. One line
of work we are aware of dealing with the parallel execu-
tion of ATL transformations is [6] where Clasen et al. out-
lined several research challenges when transforming models
in the cloud. In particular, they discussed how to distribute
transformations and elaborated on the possibility to use the
Map/Reduce paradigm for implementing model transforma-
tions. A follow-up work on this is presented in Tisi et al. [17]
where a parallel transformation engine for ATL is presented.

There is also some work in the field of graph transformations
where multi-core platforms are used for the parallel execu-
tion of model transformation rules [1, 9] especially for the
matching phase of the left-hand side of graph transforma-
tion rules. A recent work exploiting the Bulk Synchronous
Parallel model for executing graph transformations based on
the Henshin transformation tool is presented in [13]. Finally,
model queries are executed for large models in a distributed
manner in an extension of EMF Inc-Query by combining in-
cremental graph search techniques and cloud computing [10].

With LinTra [3, 4], and its current implementation written
in Java, jLinTra4, we provide a framework to execute paral-
lel and distributed model transformations that requires all
MTs to be executed in Java. With the goal of designing
a Domain-Specific Language (DSL), we based our work on
T-Core [16], with specific focus on T-Core’s collection of
primitive operators that allows to write in-place MTs in an
intermediate level of abstraction which is between the high-
level MTLs and the low-level code used by the engines.

The main difference between T-Core and LinTraP is that
T-Core focuses on in-place MT while LinTra focuses on out-
place MT. This means that the nature of the problems to
address is different and also the way in which the MTs are
written. For instance, while in T-Core there exists the prim-
itive Rewriter that update the input model, in LinTra there
exists the primitive Creator that creates entities in the out-
put model.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a collection of primitives
which will be combined for running concurrent and dis-
tributed out-place model transformations using LinTra.

4http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/MTBenchmark

After having analyzed different high-level MTLs and the
LinTra characteristics and having discovered the complete
set of primitive operators, there are several other lines of
work we would like to explore. First, we will implement the
primitives and encapsulate the LinTra code written in Java
(jLinTra) into them. To achieve that, we will explore how
to formulate, in the most efficient way, the OCL constraints
using the methods available in LinTra to query the Black-
board. Second, we plan to create compilers from the most
common languages such as ATL or QVT-O to the primi-
tives, so that distributed models can be transformed in par-
allel reusing MTs written in those languages by means of
executing them in the LinTra engine. Third, we want to in-
vestigate some annotations for the high-level MTL, so that
the user can provide the engine details such as how the par-
allelization must be done, how the input model should be
partitioned, etc. to improve the performance of the trans-
formation. Finally, we plan to investigate the possibility of
creating a new and more specific high-level MTL for parallel
transformations.

6. REFERENCES
[1] G. Bergmann, I. Ráth, and D. Varró. Parallelization of

graph transformation based on incremental pattern
matching. ECEASST, 18, 2009.

[2] M. Brambilla, J. Cabot, and M. Wimmer.
Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers, 2012.

[3] L. Burgueño. Concurrent Model Transformations
based on Linda. In Proceedings of Doctoral Symposium
@ MODELS, pages 9–16, 2013.

[4] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo.
On the Concurrent Execution of Model
Transformations with Linda. In BigMDE Workshop @
STAF, 2013.

[5] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

[6] C. Clasen, M. Didonet Del Fabro, and M. Tisi.
Transforming Very Large Models in the Cloud: a
Research Roadmap. In Proceedings of CloudMDE
Workshop @ ECMFA, 2012.

[7] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa.
RubyTL: A Practical, Extensible Transformation
Language. In Proceedings of ECMFA, pages 158–172,
2006.

[8] D. Gelernter and N. Carriero. Coordination languages
and their significance. Commun. ACM, 35(2):96–107,
1992.

[9] G. Imre and G. Mezei. Parallel Graph
Transformations on Multicore Systems. In Proceedings
of MSEPT, pages 86–89, 2012.

[10] B. Izsó, G. Szárnyas, I. Ráth, and D. Varró.
IncQuery-D: Incremental Graph Search in the Cloud.
In Proceedings of BigMDE Workshop @ STAF, pages
4:1–4:4, 2013.

[11] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of
Computer Programming, 72(1-2):31–39, 2008.

[12] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth,

29

D. Varró, M. Tisi, and J. Cabot. A Research
Roadmap Towards Achieving Scalability in Model
Driven Engineering. In Proceedings of BigMDE
Workshop @ STAF, 2013.

[13] C. Krause, M. Tichy, and H. Giese. Implementing
Graph Transformations in the Bulk Synchronous
Parallel Model. In Proceedings of FASE, pages
325–339, 2014.

[14] OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Object
Management Group, 2011.

[15] E. Syriani and H. Ergin. Operational semantics of
UML activity diagram: An application in project
management. In Proceedings of MoDRE Workshop @
RE, pages 1–8, 2012.

[16] E. Syriani, H. Vangheluwe, and B. LaShomb. T-core:
a framework for custom-built model transformation
engines. Software & Systems Modeling, pages 1–29,
2013.

[17] M. Tisi, S. M. Perez, and H. Choura. Parallel
Execution of ATL Transformation Rules. In
Proceedings of MoDELS, pages 656–672, 2013.

[18] M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires.
Performance in Model Transformations: Experiments
with ATL and QVT. In Proceedings of ICMT, pages
198–212, 2011.

[19] M. Wimmer, S. Mart́ınez, F. Jouault, and J. Cabot. A
Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology,
11(2):2:1–40, 2012.

30

Improving Memory Efficiency for Processing Large-Scale
Models

Gwendal Daniel
AtlanMod team (Inria, Mines

Nantes, LINA)
gwendal.daniel@etu.univ-

nantes.fr

Gerson Sunyé
AtlanMod team (Inria, Mines

Nantes, LINA)
gerson.sunye@inria.fr

Amine Benelallam
AtlanMod team (Inria, Mines

Nantes, LINA)
amine.benelallam@inria.fr

Massimo Tisi
AtlanMod team (Inria, Mines

Nantes, LINA)
massimo.tisi@inria.fr

ABSTRACT
Scalability is a main obstacle for applying Model-Driven
Engineering to reverse engineering, or to any other activ-
ity manipulating large models. Existing solutions to persist
and query large models are currently inefficient and strongly
linked to memory availability. In this paper, we propose a
memory unload strategy for Neo4EMF, a persistence layer
built on top of the Eclipse Modeling Framework and based
on a Neo4j database backend. Our solution allows us to
partially unload a model during the execution of a query by
using a periodical dirty saving mechanism and transparent
reloading. Our experiments show that this approach enables
to query large models in a restricted amount of memory with
an acceptable performance.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Performance, Algorithms

Keywords
Scalability, Large models, Memory footprint

1. INTRODUCTION
The Eclipse Modeling Framework (EMF) is the de facto
standard for the Model Driven Engineering (MDE) com-
munity. This framework provides a common base for mul-
tiple purposes and associated tools: code generation [4, 12],
model transformation [9, 13], and reverse engineering [17, 6,
5].

BigMDE ’14 July 24, 2014. York, UK.
Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

These tools handle complex and large-scale models when
manipulating important applications, for example, during
reverse-engineering or software modernization through model
transformation. EMF was first designed to support model-
ing tools and has shown limitations in handling large models.
A more efficient persistence solution is needed to allow for
partial model loading and unloading, which are key points
when dealing with large models.

While several solutions to persist EMF models exist, most of
them do not allow partial model unloading and cannot han-
dle models that exceed the available memory. Furthermore,
these solutions do not take advantage of the graph nature
of the models: most of them rely on relational databases,
which are not fully adapted to store and query graphs.

Neo4EMF [3] is a persistence layer for EMF that relies on
a graph database and implements an unloading mechanism.
In this paper, we present a strategy to optimize the mem-
ory footprint of Neo4EMF. To evaluate this strategy, we
perform a set of queries on Neo4EMF and compare them
against two other persistence mechanisms, XMI and CDO.
We measure performances in terms of memory consumption
and execution time.

The paper is organized as follows: Section 2 presents the
background and the motivations for our unloading strategy.
Section 3 describes our strategy and its main concepts: dirty
saving, unloading, and extended on-demand loading. Sec-
tion 4 evaluates the performance of our persistence layer.
Section 5 compares our approach with existing solutions and
finally, Section 6 concludes and draws the future perspec-
tives of the tool.

2. BACKGROUND
2.1 EMF Persistence
As many other modeling tools, EMF has adopted XMI as
its default serialization format. This XML-based represen-
tation has the advantage to be human readable, but has
two drawbacks: (i) XMI sacrifices compactness for an un-
derstandable output and (ii) XMI files have to be entirely
parsed to get a readable and navigational model. The former
drawback reduces efficiency of I/O access, while the latter

31

increases the memory needed to load a model and limits
on-demand loading and proxy uses between files. XMI does
not provide advanced features such as model versioning or
concurrent modifications.

The CDO [8] model repository was built to solve those prob-
lems. It was designed as a framework to manage large mod-
els in a collaborative environment with a small memory foot-
print. CDO relies on a client-server architecture supporting
transactional accesses and notifications. CDO servers are
built on top of several persistence solutions, but in practice
only relational databases are used to store CDO objects.

2.2 Graph Databases
Graph databases are one of the NoSQL data models that
have emerged to overcome the limitations of relational databases
with respect to scale and distribution. NoSQL databases do
not ensure ACID properties, but in return, they are able to
handle efficiently large-scale data in a distributed environ-
ment.

Graph databases are based on nodes, edges, and proper-
ties. This particular data representation fits exactly to EMF
models, which are intrinsically graphs (each object can be
seen as a node and references as edges). Thus, graph databases
can store EMF models without a complex serialization pro-
cess.

3. NEO4EMF
Neo4EMF is a persistence layer built on top of the EMF
framework that aims at handling large-models in a scal-
able way. It provides a compatible EMF API and a graph-
database persistence backend based on Neo4j [16].
Neo4EMF is open source and distributed under the terms
of the (A)GPLv3 [1].

In previous work [3], we introduced the basic concepts of
Neo4EMF : model change tracking and on-demand loading.
Model change tracking is based on a global changelog that
stores the modifications done on a model during an execu-
tion (from creation to save). Tracking the modifications is
done using EMF notification facilities: the changelog acts
as a listener for all the objects and creates its entries from
the received notifications. Neo4EMF uses an on-demand
loading mechanism to load object fields only when they are
accessed. Technically, each Neo4EMF object is instantiated
as an empty container. When one of its fields (EReferences
and EAttributes) is accessed, the associated content is
loaded. This mechanism presents two advantages: (i) the
entire model does not have to be loaded at once and (ii)
unused elements are not loaded.

Neo4EMF does not use the EStore mechanism. Indeed,
EStore allows the EObject data storage to be changed by
providing a stateless object that translates model modifi-
cations and accesses into backend calls. Every generated
accessor and modifier delegates to the reflexive API. As
a consequence, EObjects have to fetch through the store
each time a field is requested, engendering several database
queries. On the contrary, Neo4EMF is based on regular
EObjects (with in-memory fields) which are synchronized
with a database backend.

In this paper we focus on Neo4EMF memory footprint. We
introduce a strategy to unload some parts of a processed
model and save memory during a query execution. In the
previous implementation, the on-demand loading mechanism
allows us to load only the parts of the model that are needed,
but there is no solution to remove unneeded objects from
memory, especially when they were changed but not saved
yet.

A reliable unload strategy needs to address two main issues:

• Accessibility: Contents of unloaded objects (attributes
and referenced objects) have to remain accessible through
standard EMF accessors.

• Transparency: The management of the object life
cycle has to be independent from users, but customiz-
able to fit specific needs, e. g., size of the Java virtual
machine, requirements on execution time, etc.

Our strategy faces these issues by providing a dirty-saving
mechanism, which provides temporary and transparent model
persistence. The object life cycle has also been modified to
include unloading of persisted elements.

In this next sections, we provide an overview of the changelog
used to record the modifications of the processed model.
Then, we present dirty saving, based on the basic Neo4EMF
save mechanism, and we describe the Neo4EMF object life
cycle. Finally, we describe the modifications done on the
on-demand loading feature to handle this new strategy.

3.1 Neo4EMF Changelog
Neo4EMF needs a mechanism to ensure synchronization be-
tween the in-memory model and its backend representation,
avoiding systematic unnecessary calls to the database.

Despite the existence in EMF of a modification tracking
mechanism, the ChangeRecorder class, we decided to de-
velop an alternative solution that minimizes memory con-
sumption.

Neo4EMF tracks model modifications in a changelog, a se-
quence of entries of five types:

Object creation: A new object has been created and at-
tached to a Neo4EMF resource.

Object deletion: An object has been deleted or removed
from a Neo4EMF resource.

Attribute modifications: Attribute setting and unsetting.

Reference addition: Assignment of a new single-valued
reference or addition of a new referenced object in a
multi-valued one.

Reference deletion: Unsetting a single-valued reference
or removing a referenced object in a multi-valued one.

We distinguish unidirectional and bidirectional reference mod-
ifications for performance reasons (they are not serialized the

32

same way during the saving process).
Figure 1 summarizes our changelog model. All changelog
entries are subclasses of Entry, which defines some shared
properties: the object concerned by the modification (for
instance the object containing a modified attribute or ref-
erence, or the new object in case of a CreateObject entry)
and a basic serialization method.

Attribute and reference modification entries (SetAttribute,
AddLink, RemoveLink and their subclasses) have three
additional fields to track fine-grained modifications: the up-
dated feature (attribute or reference identifier) which cor-
responds to the modified field of the concerned object, the
new and old values of the feature (if available).

This decomposition provides a direct access to the informa-
tion required during the serialization process, without ac-
cessing the concerned objects. The fine-grained entry man-
agement also decreases memory consumption. For instance
modifications on bidirectional references correspond to a sin-
gle changelog entry, while they needed two basic entries be-
fore. Serialization of those entries is also more efficient since
it reduces the number of database accesses.

In the previous version of Neo4EMF, we used the EMF noti-
fication framework to create changelog entries. This imple-
mentation had a major drawback: notifications were han-
dled in a dedicated thread, and we could not ensure that
all the notifications were sent to the changelog before its
serialization. This behavior could create an inconsistency
between the in-memory model and the saved one. This is
another reason we do not use the EMF ChangeRecorder
facilities, which relies on notifications.

In this new version, changelog entries are directly created
into the body of the generated methods. This solution re-
moves synchronization issues and is also more efficient, be-
cause entries are created directly, and all the information
needed to construct them is available in the method body
(current object, feature identifier, new and old values). We
also do not have to deal with the generic notification API,
which was resulting in a lot of casts and complex processing
to retrieve this information. Synchronizing the changelog
brings another important benefit: the causality between
model modifications and entries order is ensured and there
is no need to reorder the entry stack before its serialization.

Finally, we modify the changelog life cycle. In the previous
version, the changelog was a global singleton object, con-
taining the record of a full execution, mixing modifications
of multiple resources. This solution is not optimal because
saving is done per resource in EMF, and to save a single re-
source the entire modification stack needed to be processed
to retrieve the corresponding entries. We choose to create a
dedicated changelog into each Neo4EMF resource that han-
dles modifications only for the objects contained in the as-
sociated resource. This modification reduces the complexity
of the save processing: the resource changelog is simply it-
erated and its entries are then serialized into database calls.
The synchronized aspect of the changelog allows us to pro-
cess the entries in the order they are added, which was not
possible in the previous version.
Furthermore, associating a changelog with a resource en-

Figure 2: Excerpt of MoDisco Java Metamodel

Package

name : String

ClassDeclaration

name : String

owned_elements *

Comment

Content : String

comments
*

BodyDeclaration

name : String

body_declarations *

Figure 3: Sample instance of Java Metamodel

p1 : Package

name : "package1"

cl1 : ClassDeclaration

name : "class1"

owned_elements

b1 : BodyDeclaration

name : "body1"

body_declarations com1 : Comment

content : "comment1"
comments

com2 : Comment

name : "comment2"

comments

sures that, when the resource is deleted, all the related en-
tries are also deleted. In the previous version, entries could
not be deleted from the global changelog, and were kept in
memory during the execution.

3.2 Dirty Saving
Neo4EMF relies on a mapping between EMF entities and
Neo4j concepts to save its modifications. Figure 2 shows
an excerpt of the Java metamodel, used in the MoDisco [17]
project. This metamodel describes Java applications in terms
of Packages, ClassDeclarations, BodyDeclarations, and
Comments. A Package is a named container that gathers
a set of ClassDeclarations through its owned elements
composition. A ClassDeclaration is composed of a name,
a set of Comments and a set of BodyDeclarations.
Figure 3 shows a simple instance of this metamodel: a Pack-
age (package1), containing one ClassDeclaration, (class1).
This ClassDeclaration contains two Comments (comment1
and comment2) and one single BodyDeclaration (body1).
Figures 2, 3, and 4 show that:

Model elements are represented as nodes. Nodes with
identifier p1, cl1, b1, and com1 are examples corre-
sponding to p1, cl1, b1, and com1 in Figure 3. The
root node represents the entry point of the model (the
resource directly or indirectly containing all the other
elements) and is not associated to a model object.

Elements attributes are represented as node properties.
Node properties are 〈name, value〉 pairs, where name
is the feature identifier and value the value of the fea-
ture. Node properties can be observed for p1, cl1, and
b1.

Metamodel elements are also represented as nodes and
are indexed to facilitate their access. Metamodel nodes
have two properties: the metaclass name and the meta-
model unique identifier. P, Cl, B and Com are ex-
amples of metamodel element nodes, they correspond
to PackageDeclaration, ClassDeclaration, Body-
Declaration, and Comment, respectively in Figure 2

33

Figure 1: Changelog Metamodel

EObject

ChangeLog

Entry

process()

AddLink

updatedFeature : EReference
NewObject DeleteObject

SetAttribute

updatedFeature : EAttribute

RemoveLink

updatedFeature : EReference

BidirectionalAddLink UnidirectionalAddLink BidirectionalRemoveLink UnidirectionalRemoveLink

Figure 4: Sample instance database representation

ROOT
id = p1

name : 'package1'

IS_ROOT id = cl1

name : 'class1'

PACKAGE__OWNED_ELEMENTS

id=P

name = 'Package'
 nsURI = 'http://java'

INSTANCE_OF

id=b1

name : 'body1'CLASS__DECLARATION_BODY_DECLARATIONS

id=com1

content : 'comment1'

CLASS__DECLARATION_COMMENTS

id=com2

content : 'comment2'

CLASS__DECLARATION_COMMENTS

id=Cl

name = 'ClassDeclaration'
 nsURI = 'http://java'

INSTANCE_OF

id=B

name = 'BodyDeclaration'
 nsURI = 'http://java'

INSTANCE_OF

id=P

name = 'Comment'
 nsURI = 'http://java'

INSTANCE_OF

INSTANCE_OF

InstanceOf relationships are outgoing relationships be-
tween the elements nodes and the nodes representing
metaclasses. They represent the conformance of an
object instance to its class definition

References between objects are represented as relation-
ships. To avoid naming conflicts relationships are named
using the following convention:
class name reference name.

When a save is requested, changelog entries are processed to
update the database backend. Each entry is serialized into a
database operation. The CreateObject entry corresponds
to the creation of a new node and its meta-information
(instanceof to its meta-class, isRoot if the object is di-
rectly contained in the resource). All the fields of the object
are also serialized and directly saved in the database. A Se-
tAttribute entry corresponds to an update of the related
node’s property with the corresponding name. AddLink,
RemoveLink, and their subclasses respectively record the
creation and removal of a relationship, storing the contain-
ing class and feature name.

We decide to serialize at the same time a created object
and all its references and attributes. New objects need to

be entirely persisted, and there is no reason to record their
modifications before their first serialization (the final state
of the object is the one that needs to be persisted). This full
serialization behavior has the advantage of generating only
one single entry for a new object, independently from the
number of its modified fields.

This approach works well for small models, but has issues
when a large modification set needs to be persisted: the
changelog grows indefinitely until the user decides to save
it. This is typically the case in reverse engineering, where
the extracted objects are first all created in memory and
only afterwards they are saved.

To address this problem we introduce dirty-saving, a peri-
odical save action not requested by the user. The period
is determined by the changelog size, configurable through
the Neo4EMF resource. Since these save operations are not
requested by the user they have to ensure two properties:

• Reversibility: if the modifications are canceled or if
the user does not want to save a session the database
should rollback to an acceptable version. This version
is either (i) the previous regularly saved database if an
older version exists or (ii) an empty database.

34

• Persistability: if a regular save is requested by the
user, the temporary objects in the database have to
be definitely persisted. They can then constitute a
new acceptable version of the database if a rollback is
needed.

We introduce a new mapping for changelog entries with the
purpose of temporary dirty saving. This mapping is based
on the same entries as the regular mapping but the associ-
ated Neo4j concepts allow the system to easily extract dirty
objects and regular ones. In addition we create two indexes:
tmp_relationships and tmp_nodes which respectively con-
tain the dirty relationships and nodes (i. e., created in a dirty
saving session). Figure 5 summarizes the mapping between
changelog entries and neo4j concepts:

• CreateObject: creation of a new node (as in the reg-
ular saving process) and addition to the tmp_nodes

index.

• SetAttribute: creation of a dedicated node contain-
ing the dirty attributes. The idea is to keep a stable
version (i. e., the previous regularly saved version) to
easily reverse it. A SetAttribute relationship is cre-
ated to link the base object and its attribute node

• AddLink: creation of a generic AddLink relation-
ship, containing the reference identifier as a property.
This special relationship format is needed to easily pro-
cess dirty relationships and retrieve their correspond-
ing image if a regular save operation is requested

• RemoveLink: creation of a generic RemoveLink re-
lationship, containing the reference identifier as a prop-
erty. AddLink and RemoveLink relationships with
the same reference identifier and target object are mu-
tually exclusive to limit the number of temporary ob-
jects into the database

• DeleteObject: creation of a special Delete relation-
ship looping on the related node. The base version of
the node is kept alive if a rollback is needed.

The objective of this mapping is to preserve all the infor-
mation contained after a regular save, to easily handle a
rollback. That is why object deletion is done using a re-
lationship: if the modifications are aborted it is simpler to
remove the relationship than creating a new instance of the
node with backup information. We do not use a property to
tag deleted objects for performance reasons (access to node
properties is slower than edge navigation).
To persist definitely dirty objects in the database into regu-
larly saved ones a serialization process is invoked. As changelog
entries, each Neo4j element contains all the information needed
to create their regular equivalents: new objects are simply
removed from the tmp_nodes index, AddLink relationships
are turned into their regular version using their properties
and RemoveLink entries correspond to the deletion of their
existing regular version.

For example if we update the model given in Figure 3 by re-
moving com1 and creating a new BodyDeclaration body2

then calling a dirty save, the database will be updated as in
Figure 6. Note that a Delete relationship has been created
because the removed Comment is not contained in the re-
source anymore. Red relationships and nodes are indexed
respectively in tmp_relationships and tmp_nodes indexes.

This example shows that our mapping is built on top of the
existing one: there is no modification done on the previ-
ous version, represented with black nodes. This simplifies
the rollback process, which consists of a deletion of all the
temporary Neo4j objects.

3.3 Object Life Cycle
We modify the Neo4EMF object life cycle to enable unload-
ing. When a dirty saving is invoked, all the modifications
contained in the changelog are committed to the database.
Because of this persistence, persisted objects can be safely
released from memory and reloaded using on-demand load-
ing, if needed.

Figure 7 shows the different life cycle states of a Neo4EMF
object. When a Neo4EMF object is created it is New: it
has not been persisted into the database and cannot be re-
leased. When a save is requested or a dirty save is invoked,
the new object is persisted into the database and it is tagged
as Clear: all the known modifications related to the object
have been saved and it is fetchable from the database with-
out information loss. In this state the object can be removed
from memory without consistency issues. When a modifica-
tion is done on the object (setting an attribute or updating
a reference) then it is tagged as Modified.

Modified objects cannot be released, because their database-
mapped nodes do not contain the modified information. When
a save is processed, the Modified objects revert to Clear
state and can be released again. Loading objects also have
a particular state that avoids garbage collection of an object
when it is loading.

Figure 7: Neo4EMF EObject life cycle

To allow garbage collection of Neo4EMF objects, we use
Java Soft and Weak references to store object’s fields. Weak
and Soft referenced objects are eligible for garbage collection
as soon as there is no strong reference chain on them. The

35

Figure 5: Changelog to Neo4j entity mapping

ChangeLog Entry

EObject

1..*

AddLink

RemoveLink

SetAttribute

NewObject

DeleteObject

Neo4j::RelationshipType

+ name : String = "AddLink"
 + relName : String

Neo4j::RelationshipType

+ name : String = "RemoveLink"
 + relName : String

Neo4j::RelationshipType

+ name : String = "SetAttribute"

Neo4j::Node

Neo4j::RelationshipType

+ name : String = "Delete"

Figure 6: Database state after modifications

ROOT
id = p1

name : 'package1'

IS_ROOT id = cl1

name : 'class1'

PACKAGE__OWNED_ELEMENTS

id=b1

name : 'body1'
CLASS__DECLARATION_BODY_DECLARATIONS

id=com1

content : 'comment1'

CLASS__DECLARATION_COMMENTS

RemoveLink
rel='CLASS__DECLARATION_COMMENTS'

id=com2

content : 'comment2'

CLASS__DECLARATION_COMMENTS

id=b2

name : 'body2'

AddLink
rel='CLASS__DECLARATION_BODY_DECLARATIONS'

Delete

difference between the two kinds of references is the time
they can remain in memory. Weak references are collected
as soon as possible by the garbage collector, whereas Soft
references can be retained in memory as long as the garbage
collector does not need to free them (i.e., as long as there
is enough available memory). This particular behavior is
interesting for cache implementation and to optimize execu-
tion speed in a large available memory context. Reference
type (Weak or Soft) can be set through Neo4EMF resource
parameters.

In Section 3.1, we describe that changelog entries contain all
the information related to the serialization of the concerned
object. This information constitutes the strong reference
chain on the related object fields. When a save is done, en-
tries are processed and deleted, breaking the strong reference
chain and making objects eligible for garbage collection.

Neo4j’s objects are not impacted by this new life-cycle. The

database manages its objects life cycle through a policy de-
fined at the resource creation (memory or performance pref-
erences).

3.4 Extended On-Demand Loading
To handle the new architecture of our layer, we have to ex-
tend the on-demand loading feature to support temporary
persisted objects. On-demand loading uses two parameters:
(i) the object that handles the feature to load and (ii) the
identifier of the feature to load. This behavior implies that
a Neo4EMF object is always loaded from another Neo4EMF
object.

Figure 6 shows our Java metamodel instance state after a
dirty save. The database content is a mix between regularly
saved objects (in black) and dirty-saved ones (in red). Load-
ing referenced Comments instances from ClassDeclara-
tion cl1 is done in three steps to ensure the last dirty-saved

36

operations have been considered.
First, class declaration comments relationships are pro-
cessed and their end nodes are saved. Second, the AddLink
relationships containing the corresponding rel property are
processed and their end nodes are added to the previous
ones. This operation retrieves all the associated nodes for
the given feature, regular ones and dirty ones. Third, Re-
moveLink relationships are processed the same way and
their end nodes are removed from the loaded node set.

Attribute fetching behavior is a bit different: if a node repre-
senting an object has relationships to a dedicated attribute
node, then the data contained in this node is returned in-
stead of the base node property.

To improve the performances of our layer, we create a cache
that maps Neo4j identifiers to their associated object. When
on-demand loading is performed, the cache is checked first,
avoiding the cost of a database access. This cache is also
used to retrieve released objects.

4. EVALUATION
In this section, we evaluate how the memory footprint and
the access time of Neo4EMF scale in different large model
scenarios, and we compare it against CDO and XMI. These
experiments are performed over two EMF model extracted
with the MoDisco Java Discoverer [17]. Both models are ex-
tracted from Eclipse plug-ins: the first one is an internal tool
and the second one is the Eclipse JDT plugin. The result-
ing XMI files are 20 MB and 420 MB, containing respectively
around 80 000 and 1 700 000 elements.

4.1 Execution Environment
Experiments are executed on a computer running Windows
7 professional edition 64 bits. Interesting hardware ele-
ments are: an Intel Core I5 processor 3350P (3.5 GHz), 8 GB
of DDR3 SDRAM (1600 MHz) and a Seagate barracuda
7200.14 hard disk (6 GB/s). Experiments are executed on
Eclipse 4.3 running Java SE Runtime Environment 1.8.

To compare the three persistence solutions, we generate
three different EMF models from the MoDisco Java Meta-
model: (i) the standard EMF model, (ii) the CDO one and
(iii) the Neo4EMF one. We import both models from XMI
to CDO and Neo4EMF and we verify they contain the same
data after the import.

Neo4EMF uses an embedded Neo4j database to store its
objects. To provide a meaningful comparison in term of
memory consumption we choose to use an embedded CDO
server.

Experiment 1: Object creation. In this first exper-
iment, we execute an infinite loop of object creation and
simply count how many objects have been created before a
OutOfMemoryException is thrown. We choose a sim-
ple tree structure of three classes to instantiate from the
MoDisco Java metamodel: a parent ClassFile containing
1000 BlockComment and ImportDeclaration. The re-
sulting model is a set of independent element trees. For this
experiments we choose a 1 GB Java virtual machine and an
arbitrarily fixed changelog size of 100 000 entries. Table 1
summarizes the results.

Persistence Layer XMI CDO Neo4EMF

#Created Elements 22 939 780 4 378 990 >40 000 0001

Table 1: Number of Created Elements Before
Memory Overhead

Figure 8: Memory Consumption: Model Traversal
and Save (20 MB)

Note that the number given for Neo4EMF is an approxi-
mation: we stop the execution before any OutOfMemory
error. The average memory used to create elements was
around 500 MB and does not seem to grow. This perfor-
mance is due to the dirty-saving mechanism: created ob-
jects generate entries in the changelog. When the changelog
is full, changes are saved temporarily in the database, freeing
the changelog for next object creations.

Experiment 2: Model traversal. In this experiment, we
load a model and execute a traversal query that starts from
the root of the model, traverses all the containment tree and
modifies the name attribute of all NamedElements. All
the modifications are saved at the end of the execution. Dur-
ing the traversal, we measure the execution time for covering
the entire model and the average memory used to perform
the query. In addition, we measure the memory needed to
save the modifications at the end of the execution. Fig-
ures 8 and 9 summarize memory results. As expected, the
Neo4EMF traversal footprint is higher than the XMI one be-
cause we include the Neo4j embedded database and runtime
in our measures. Unloading brings a real interest when com-
paring the results with CDO: when removing unused (i. e.,
unreferenced) objects we save space and process the request
in a reduced amount of memory. For this experiment we
use a 4 GB Java virtual machine, with the ConcMarkSweepGC

garbage collector, recommended when using Neo4j.

Experiment 3: Time performance. This experiment is
similar to the previous one, but we focus on time perfor-
mances. We measure the time needed to perform traversal
and save. Figures 10 and 11 summarize the results. To
provide a fair comparison between full and on-demand load-
ing strategies we also include model loading time with the
traversal queries.

1The execution was stopped before any memory exception.

37

Figure 9: Memory Consumption: Model Traversal
and Save (420 MB)

Figure 10: 20 MB model traversal and save perfor-
mances

Neo4EMF save performances can be explained with dirty-
saving : during the traversal, entries are generated to track
the name modifications. These entries are then saved in the
database when the changelog is full, reducing the final save
cost. This behavior also explains a part of the traversal time
overhead, when compared to CDO: Neo4EMF traversal im-
plies database write access for dirty saving where CDO does
not, related I/O accesses considerably impact performance.

4.2 Discussion
The results of these experiments show that dirty-saving cou-
pled with on-demand loading decrease significantly the mem-
ory needed to execute a query. As expected, this memory
footprint improvement worsens the time performances of our
tool, in particular because of dirty-saving, which generates
several database calls. That is why we provide dirty sav-
ing configuration through the Neo4EMF resource. The ex-
periments also show that Neo4EMF is able to handle large
queries and modifications in a limited amount of memory,
compared to existing solutions.

Figure 11: 420 MB traversal and save performances

We also run our benchmarks on different operating sys-
tems (Ubuntu 12.04 and 13.10) and we find that CDO and
Neo4EMF time performances seem to be linked to the file
partition format (especially in I/O accesses): Neo4j has bet-
ter performances on these operating system (with a factor
of 1.5) and CDO has slower times (with approximately the
same factor). More investigation is needed to optimize our
tool in different contexts.

Our experiments show that Neo4EMF is an interesting al-
ternative to CDO to handle large models in memory con-
strained environment. On-demand loading and transpar-
ent unloading offer a small memory footprint (smaller than
CDO in our experiments), but our solution does not provide
advanced features like collaborative edition and versioning
provided by CDO.

The unload strategy is transparent for the user, but may be
intrusive in some cases, for instance if the hard-drive mem-
ory space is limited or the time performances are critical.
This is why we introduce configuration for dirty saving and
changelog size through the Neo4EMF resource.

5. RELATED WORK
Models obtained by reverse engineering with EMF-based
tools such as MoDisco [17, 5, 11] can be composed of mil-
lions of elements. Existing solutions to handle this kind of
models have shown clear limitations in terms of memory
consumption and processing.

CDO is the de facto standard to handle large models using
a server and a relational database. However, some exper-
iments have shown that CDO does not scale well to very
large models [2]. Pagán et al. [14, 15] propose to use NoSQL
databases to store models, especially because those kind of
databases should fit better to the interconnected nature of
EMF models.

Mongo EMF [7] is a NoSQL approach that stores EMF mod-
els in MongoDB, a document-oriented database. However,
Mongo EMF storage is different from the standard EMF
persistence backend, and cannot be used as is to replace an
other persistence solution in an existing system. Modifica-
tions on the client software are needed to integrate it.

38

Morsa [14] is an other persistence solution based on Mon-
goDB database. Similarly to Neo4EMF, Morsa uses a stan-
dard EMF mechanism to ensure persistence, but it uses a
client-server architecture, like CDO. Morsa has some sim-
ilarities with Neo4EMF, notably in its on-demand loading
mechanism, but does not use a graph database.

EMF Fragments [10] is another EMF persistence layer based
on a NoSQL database. The EMF Fragments approach is dif-
ferent from other NoSQL persistence solutions: it relies on
the proxy mechanism provided by EMF. Models are auto-
matically partitioned and loading is performed by partition.
Loading on demand is only performed for cross-partition
references. Another difference with Neo4EMF is that EMF
Fragments needs to annotate the metamodels to provide the
partition set, whereas our approach does not require model
adaptation or tool modification.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a strategy to optimize the mem-
ory footprint of Neo4EMF, a persistence layer designed to
handle large models through on-demand loading and trans-
parent unloading. Our experiments show that Neo4EMF is
an interesting alternative to CDO for accessing and query-
ing large models, especially in small available memory con-
text, with a tolerable performance loss. Neo4EMF does not
have collaborative model editing or model versioning fea-
tures, which biases our results: providing those features may
imply a more important memory consumption.

In future work, we plan to improve our layer by providing
partial collection loading, allowing the loading of large col-
lections subparts from the database. In our experiments, we
detected some memory consumption overhead in this par-
ticular case: when an object contains a huge number of ref-
erenced objects (through the same reference) and they are
all loaded at once.

We then plan to study the inclusion of attribute and refer-
ence meta-information directly in the database to avoid un-
necessary object loading: some EMF mechanisms, like is-

Set may induce load on demand of the associated attribute,
just in order to make a comparison. It could be interest-
ing to provide this information from the database without a
complete and costly object loading.

Finally, we want to introduce loading strategies such as
prefetching or model partitioning (using optional metamodel
annotations or a definition of the model usage) to allow users
to customize the object life cycle.

7. REFERENCES
[1] AtlanMod. Neo4EMF, 2014. url:

http://www.neo4emf.com/.

[2] K. Barmpis and D. S. Kolovos. Comparative analysis
of data persistence technologies for large-scale models.
In Proceedings of the 2012 Extreme Modeling
Workshop, XM ’12, pages 33–38, New York, NY, USA,
2012. ACM.

[3] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and
D. Launay. Neo4emf, a scalable persistence layer for
emf models. July 2014.

[4] L. Bettini. Implementing Domain-Specific Languages
with Xtext and Xtend. 2013.

[5] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot.
Modisco: A model driven reverse engineering
framework. Information and Software Technology,
56(8):1012 – 1032, 2014.

[6] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot.
Modisco: A generic and extensible framework for
model driven reverse engineering. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, pages 173–174, New
York, NY, USA, 2010. ACM.

[7] Bryan Hunt. MongoEMF, 2014. url:
https://github.com/BryanHunt/mongo-emf/wiki/.

[8] Eclipse Foundation. The CDO Model Repository
(CDO), 2014. url: http://www.eclipse.org/cdo/.

[9] INRIA and LINA. ATLAS transformation language,
2014.

[10] Markus Scheidgen. EMF fragments, 2014. url: https:
//github.com/markus1978/emf-fragments/wiki/.

[11] Modeliosoft Solutions, 2014. url:
http://www.modeliosoft.com/.

[12] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun,
L. Goubet, Y. Lussaud, and F. Allilaire. Acceleo user
guide, 2006.

[13] OMG. MOF 2.0 QVT final adopted specification
(ptc/05-11-01), April 2008.

[14] J. E. Pagán, J. S. Cuadrado, and J. G. Molina. Morsa:
A scalable approach for persisting and accessing large
models. In Proceedings of the 14th International
Conference on Model Driven Engineering Languages
and Systems, MODELS’11, pages 77–92, Berlin,
Heidelberg, 2011. Springer-Verlag.

[15] J. E. Pagán and J. G. Molina. Querying large models
efficiently. Information and Software Technology, 2014.
In press, accepted manuscript. url:
http://dx.doi.org/10.1016/j.infsof.2014.01.005.

[16] J. Partner, A. Vukotic, and N. Watt. Neo4j in Action.
O’Reilly Media, 2013.

[17] The Eclipse Foundation. MoDisco Eclipse Project,
2014. url: http://www.eclipse.org/MoDisco/.

39

MONDO-SAM: A Framework to Systematically
Assess MDE Scalability

Benedek Izsó, Gábor Szárnyas, István Ráth and Dániel Varró
Fault Tolerant Systems Research Group

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H-1117, Magyar Tudósok krt. 2.
Budapest, Hungary

{izso, szarnyas, rath, varro}@mit.bme.hu ∗

ABSTRACT
Processing models efficiently is an important productivity
factor in Model-Driven Engineering (MDE) processes. In or-
der to optimize a toolchain to meet scalability requirements
of complex MDE scenarios, reliable performance measures
of different tools are key enablers that can help selecting the
best tool for a given workload. To enable systematic and re-
producible benchmarking across different domains, scenar-
ios and workloads, we propose MONDO-SAM, an extensi-
ble MDE benchmarking framework. Beyond providing eas-
ily reusable features for common benchmarking tasks that
are based on best practices, our framework puts special em-
phasis on metrics, which enables scalability analysis along
different problem characteristics. To illustrate the practical
applicability of our proposal, we demonstrate how different
variants of a model validation benchmark featuring several
MDE tools from various technological domains have been
integrated into the system.

1. INTRODUCTION
As Model-Driven Engineering (MDE) has gained mainstream
momentum in complex system development domains over
the past decade, scalability issues associated to MDE tools
and technologies are nowadays well known [6]. To address
these challenges, the community has responded with a mul-
titude of benchmarks.

The majority of these efforts have been created by tool
providers for the purpose to measure performance develop-
ments of specific engines [8, 2]. As a notable exception,
the Transformation Tool Contest (TTC) [1] attempts cross-
technology comparison by proposing multiple cases which
are solved by the authors of (mainly EMF based) MDE tools.

∗This work was partially supported by the CERTIMOT
(ERC HU-09-01-2010-0003) and MONDO (EU ICT-611125)
projects partly during the fourth author’s sabbatical.

BigMDE’14 July 24, 2014. York, UK.
Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

TTC cases focus on measuring query and transformation ex-
ecution time against instance models of increasing size. TTC
promotes reproducibility by providing pre-configured virtual
machines on which individual tools can be executed; how-
ever, the very nature of this environment and the limited
resources make precise comparison difficult.

Benchmarks are also used outside of the MDE community.
The SP2Bench [7] and Berlin SPARQL Benchmark (BSBM)
[3] are SPARQL benchmarks over semantic databases (triple
stores). The first uses RDF models based on the real world
DBLP bibliography database, while the latter is centered
around an e-commerce case study. Both benchmarks scale
up in the size of models (up to 25M and 150B elements),
however SP2Bench does not consider model modifications,
and BSBM does not detail query and instance model com-
plexity. SPLODGE [4] is another similar approach, where
SPARQL queries were generated systematically, based on
metrics for a predefined dataset. Queries are scaled up
to three navigations (joins), but other metrics as the com-
plexity of the instance model were not investigated. The
common technological characteristics of these benchmarks is
that they are frequently run on very large computer systems
that are not accessible to most users, or rely on commercial
software components that are hard to obtain.

To summarize, currently available graph based benchmarks
are affected by two main issues: (i) technologically, they are
frequently built on virtualized architectures or have exotic
dependencies, making measurements hard to reproduce in-
dependently; and (ii) conceptually, they typically only ana-
lyze measurement results against a limited view of the prob-
lem: the execution time of a fixed task scaled against in-
creasing model size. As a result, the relative complexity of
current benchmarks can not be precisely quantified, which
makes them difficult to compare them to each other.

In previous work [5], we have found that other metrics (such
as various query complexity measures, instance model char-
acteristics, and the combination of these) can affect results
very significantly. Building on these results, in this pa-
per we propose the extensible MONDO-SAM framework
that is integrated into the official MONDO benchmark open
repository1. MONDO-SAM provides reusable benchmark-

1http://opensourceprojects.eu/p/mondo/
d31-transformation-benchmarks/

40

Results AnalyzeMeasureArtefactsGenerate

Benchmarking process

Model

Performance
diagrams

Real
world
apps Query

Scenario

Transf.

Execute
benchmark

Calculate
Metrics

Synthetic
generator

Perf. values

Metrics

Figure 1: Benchmarking process.

ing primitives (like metrics evaluation, time measurement,
result storage) that can be flexibly organized into bench-
marking workflows that are specific to a given case study.
MONDO-SAM also provides an API so that tehnologically
different tools can be integrated into the framework in a uni-
form way. A unique emphasis of the framework is built-in
support for metrics calculation that enables characteriza-
tion of the benchmarking problems as published in [5]. The
built-in reporting facility allows to investigate the scalabil-
ity of MDE tools along different metrics in diagrams. Fi-
nally, the entire framework and integrated case studies can
be compiled and run using the Maven build system, mak-
ing deployment and reproducible execution in a standard,
Java-enabled computing environment feasible.

2. OVERVIEW OF THE FRAMEWORK
2.1 A process model for MDE benchmarks
The benchmarking process for MDD applications is depicted
in Fig. 1. Inputs of the benchmark are the instance model,
queries run on the instance model, the transformation rules
or modification logics and a scenario definition (or workflow)
describing execution sequences. In this case, scenario can de-
scribe MDD use cases (like model validation, model trans-
formation, incremental code generation), including warmup
and teardown operations, if required. Inputs can also be
derived from real-world applications, or are synthetically
generated providing complete control over the benchmark.
Complexity of the input is characterized by metrics, while
scenario execution implementations are instrumented to mea-
sure resource consumption (wall-clock times, memory and
I/O usage). Finally, these measured values and calculated
metrics are visualized on diagrams automatically to find the
fastest tool, or to identify performance improvements of a
specific tool.

2.2 Architecture
The benchmark framework consisting of four components is
depicted in Fig. 2. The generator component allows syn-
thetic generation of benchmark inputs. The core module
handles configuration, domain-specific modules describe gen-
eration method of input data (like generation of instance
models, queries), and language-specific modules serialize gen-
erated logical artifacts into files (like EMF models or OCL
queries). The selected domain constrains languages, as do-
main description concepts must be supported. For exam-
ple transitivity or multi-level metamodeling is not supported
by EMF, but the latter is required by the e-commerce case

Benchmark architecture

generator

Railway generator

EMF

domain-
specific

language-
specific

core

tool-
specific

reusable
primitives

corebenchmark

M: EMF

M: Sesame

T: INCQUERYT: EclipseOCL T: Sesame

language-
specific

coremetrics

EMF-IQPL RDF-SPARQL

analyzer

S: validation

Q: SPARQL

Q: OCL

Q: EIQ

RDF
D: Railway

Figure 2: Benchmark framework architecture.

study of BSBM. Generated models should be semantically
equivalent, however, it is a question whether structural equal-
ity should be preserved. E.g. in certain cases EMF models
must have a dedicated container object with containment
relations to all objects which is not required in RDF.

2.3 Core features

Benchmark component. The benchmark component (in Fig. 2)
measures performance of different tools for given cases. A
case can be defined as a quintuple of (D,S,M,Q, T), where
D defines the domain, S the scenario, M the modification
and Q the query. The T modules implement tool specific
glue code and select D,S,M,Q. All modules reuse com-
mon functions of the core, like configuration (with default
values and tool-specific extensions), wall-clock time mea-
surement which is done with highest (nanosecond) precision
(that does not mean same accuracy), and momentary mem-
ory consumption, which are recorded in a central place. At
runtime, language-specific modifications (transformations),
queries, and instances of the selected domain must be avail-
able.

Model instantiator. A common aspect of the generator
and the benchmark module is reproducibility. In tool-specific
scenario implementations boundaries are well separated by
the scenario interfaces, and where generation or execution
is randomized, a pseudo-random generator is used with the
random seed set to a predefined value. However, nondeter-
ministic operations (like choosing an element from a set) and
tool implementations can disperse results between runs.

Metrics evaluator. To describe benchmark input with quan-
titative values, they are characterized by metrics which are
evaluated by the metrics component. Language specific im-
plementations analyze model-query pairs, and store calcu-
lated metric values centrally gathered by the core which are
analyzed later together with the measured values.

Result reporting and analysis. When measurement and
metrics data become available, the analyzer component (im-
plemented in R) automatically creates HTML report with
diagrams. To show scalability according to different mea-
sures, on the x axis metrics can be selected, while the y axis
represents resource consumption. Raw data can be post-

41

processed, i.e. dimensions can be changed (e.g. to change
time to ms dimension to reflect its accuracy), and derived
values can be calculated (e.g. the median of incremental
recheck steps, or total processing time).

2.4 Best Practices to Minimize Validity Threats
During the execution of the cases, noise coming from the
environment should be kept at minimum. Possible sources
of noise include the caching mechanisms of various compo-
nents (e.g. file system and the database management sys-
tem), warm-up effect of the runtime environment (e.g. the
Java Virtual Machine), scheduled tasks (e.g. cron) and swap-
ping. For large heaps, the Garbage Collector of the JVM can
block the run for minutes, so minimizing its call is advised
which is achieved by setting minimal and maximal heap size
to an equal value, thus eliminating GC calls at memory ex-
pansions.

In the implementation of framework components, only the
minimal amount of libraries should be loaded. On one hand,
proper organization of the dependencies is the responsibility
of the developer. On the other hand it is enforced by the
framework architecture, as tool-specific implementations are
independent, and functions as entry points calling the frame-
work that uses inversion of control (IoC) without the usage
of additional execution environments, such as OSGi.

To alleviate random disturbances, each test case is run sev-
eral times (e.g. ten times) by the framework and aggregated
by the analyzer.

3. INTEGRATED CASE STUDIES
The usability of the framework is demonstrated by four ex-
amples. Three variations of the previously published Train
Benchmark, and a new, soon to be released model compre-
hension benchmark are integrated into the framework.

3.1 Basic Train Benchmark
The first version of the Train Benchmark [9] compares the
performance of EMF-IncQuery with Eclipse OCL and its
incremental version, the OCL Impact Analyzer in an incre-
mental model validation use case. Instance models are gen-
erated from a railway domain, and four hand-written queries
(with different complexity) perform model validation tasks.
The scenario starts with a model loading phase, where the
instance is read from a file, followed by a check phase, where
a model validation query is executed (returning constraint
violating elements). Afterwards (to simulate a user in front
of an editor), multiple (100) edits and rechecks performed.
In this case batch, incremental validation time and memory
consumption was measured.

One kind of diagrams display execution times as the func-
tion of model and query metrics. Fig. 3 shows total exe-
cution time for a specific query and scenario in a logarith-
mic diagram for different tools. On the x axis model size
(the number of nodes and edges) is displayed, together with
the number of results, and the number of changes in the
result set. Although model size is the most influencing per-
formance factor during the load phase, in the check phase,
especially for incremental tools other metrics come into the
picture as most influencing factors, like the result set size,
or the number of variables in a query [5].

●

●

●

●

●

●

●

●

●

3438.19

7352.98

15725.21

33630.23

71922.22

153814.16

328949.78

703498.00

6k
24k
94
−9

12k
49k
193
−19

23k
90k
348
−34

43k
170k
642
−64

88k
347k
1301
−130

176k
691k
2k

−260

361k
1M
5k

−532

715k
2M
10k

−1062

1M
5M
21k

−2109

Nodes
Edges
Results

Modifications

Ti
m

e
[m

s]

Tools

●
Eclipse OCL
EMF−IncQuery
Java
Drools
Sesame

Total time of the phases RouteSensor (x,y:logscale), XForm

Figure 3: Required time to perform a task.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.19

1.60

13.75

118.13

1014.87

8719.18

74910.33

643587.46

0 25 50 75 100
Index

Ti
m

e
(m

s)

Tool
●

●

●

●

●

Drools
EclipseOCL
EMF−IncQuery
Java
Sesame

DetCheck Times − RouteSensor size=128 (y:logscale, x:continuous)

Figure 4: Check time during revalidations.

3.2 Extended Train Benchmark
The extended version is available online2 which introduces
new languages: in addition to EMF, RDF and GraphML
model formats were added. New tools (Drools, Sesame,
4store and Neo4j) were added, and queries were translated
to each tool’s native language. From now not all tools have
in-memory implementation, some use hard disk as storage,
so to lower disk overhead, memory filesystems were used for
storage. Also it should be noted that some databases com-
piled as JARs next to the benchmark code, some database
use native server daemons that are also handled by the
benchmark execution framework. In this case a new sce-
nario variation is defined, where after the batch validation,
larger modification is performed in one edit phase (to sim-
ulates automatic model correction), and finally recheck is
executed.

As the benchmark framework records every check and edit
time subsequently calls can be displayed on a diagram to
show its changes. Fig. 4 depicts such a case for tools at a
given model size and query. It can be observed that the
first query time is almost always the highest, probably due
to the lazy loading of classes and tool initialization. An-
other interesting point for the incremental EMF-IncQuery
and Drools tools is around the tenth check, where evalua-
tion times are dropped significantly. As the same queries
are executed, this may be attributed to the changed model
structure, or to the kicked in JIT compiler. This diagram
also shows the required warmup time for each tool, and its
changing in stages.

2https://incquery.net/publications/trainbenchmark/

42

Benchmark workflow

LoadGenerate Query Report

!12x
EMF, RDF
models

31x
queries

most
influencing

metrics
(3 tools)

(a) Metrics evaluation

Benchmark workflow – code model

Load RefactorCheck1 ReportCheckn

 !

Java
code

Code
patterns

Validation
performance

(b) Code model

Figure 5: Different use-cases of the framework

3.3 Model Metrics for Performance Prediction
In the article [5] tools are narrowed down to a basic Java
implementation, EMF-IncQuery, and Sesame. However,
for a modified metamodel nine new instances were generated
(belonging to different edge distributions). The benchmark
was extended with 31 queries scaling along 5 query metrics.
The goal of this paper was not to compare tool performances,
but to identify which metrics influence processing time and
memory usage the most. (See Fig. 5a.)

Detailed results are available in the paper, however it can
be noted that for the EMF-IncQuery tool the number of
matches, for Sesame the number of query variables showed
high correlation with the check time, and low correlation
of model size metrics that also emphasize considering other
aspects than model size.

3.4 ITM Factory
The fourth case (inspired by [10]) integrated into the frame-
work is currently under development, and it took another
domain from the field of software comprehension. Input of
the benchmark are not serialized models, but Java projects.
In the first step, source code is read into a software model,
transformations are code edits or complex refactor opera-
tions. After software modifications, correctness of the code
base is validated (Fig. 5b).

In the code modeling case similar investigations can be done,
however processing tools should scale in the lines of code
(and not in the number of nodes or edges). This also moti-
vates displaying performance as a function of different met-
rics.

4. CONCLUSION
In this paper we proposed MONDO-SAM, a framework that
provides common functions required for benchmarking, and
MDE-specific scenarios, models, queries and transformations
as reusable and configurable primitives. As the main focus,
integrated benchmark cases can be characterized by metrics,
which enables the reporting module to analyze the scal-

ability of tools against various complexity measures. We
demonstrated the versatility of the framework is demon-
strated by the integration of previous versions of the Train
Benchmark [9, 5] and a new benchmark from the code model
domain.

The extensible framework including the APIs, core compo-
nents and documentated samples is available as open source
code from the MONDO Git repository3.

5. REFERENCES
[1] Transformation tool contest.

www.transformation-tool-contest.eu, 2014.

[2] G. Bergmann, I. Ráth, T. Szabó, P. Torrini, and
D. Varró. Incremental pattern matching for the
efficient computation of transitive closure. In Sixth
International Conference on Graph Transformation,
volume 7562/2012, pages 386–400, Bremen, Germany,
09/2012 2012. Springer.

[3] C. Bizer and A. Schultz. The Berlin SPARQL
Benchmark. International Journal On Semantic Web
and Information Systems, 5(2), 2009.

[4] O. Görlitz, M. Thimm, and S. Staab. SPLODGE:
Systematic generation of SPARQL benchmark queries
for Linked Open Data. In C.-M. et al., editor, The
Semantic Web – ISWC 2012, volume 7649 of LNCS,
pages 116–132. Springer Berlin Heidelberg, 2012.

[5] B. Izsó, Z. Szatmári, G. Bergmann, Á. Horváth, and
I. Ráth. Towards precise metrics for predicting graph
query performance. In IEEE/ACM 28th International
Conference on Automated Software Engineering, pages
412–431, Silicon Valley, CA, USA, 2013. IEEE.

[6] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth,
D. Varró, M. Tisi, and J. Cabot. A research roadmap
towards achieving scalability in model driven
engineering. In Proceedings of the Workshop on
Scalability in Model Driven Engineering, BigMDE ’13,
pages 2:1–2:10, New York, NY, USA, 2013. ACM.

[7] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL performance benchmark. In
Proc. of the 25th International Conference on Data
Engineering, pages 222–233, Shanghai, China, 2009.
IEEE.

[8] M. Tichy, C. Krause, and G. Liebel. Detecting
performance bad smells for henshin model
transformations. In B. Baudry, J. Dingel, L. Lucio,
and H. Vangheluwe, editors, AMT@MoDELS, volume
1077 of CEUR Workshop Proceedings. CEUR, 2013.

[9] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth,
B. Izsó, I. Ráth, Z. Szatmári, and D. Varró.
EMF-IncQuery: An Integrated Development
Environment for Live Model Queries. Science of
Computer Programming, 2014. Accepted.

[10] Z. Ujhelyi, Á. Horváth, D. Varró, N. I. Csiszár,
G. Szőke, L. Vidács, and R. Ferenc. Anti-pattern
detection with model queries: A comparison of
approaches. In IEEE CSMR-WCRE 2014 Software
Evolution Week. IEEE, 02/2014 2014.

3https://opensourceprojects.eu/git/p/mondo/
trainbenchmark

43

Tool Support for Model Splitting using Information
Retrieval and Model Crawling Techniques

Daniel G. Strüber, Michael Lukaszczyk, Gabriele Taentzer
Philipps-University Marburg

Department for Mathematics and Computer Science
Hans-Meerwein-Str., 35032 Marburg, Germany

{strueber,lukaszcz22,taentzer}@informatik.uni-marburg.de

ABSTRACT
To facilitate the collaboration in large-scale modeling sce-
narios, it is sometimes advisable to split a model into a set
of sub-models that can be maintained and analyzed indepen-
dently. Existing automated approaches to model splitting,
however, suffer from insufficient consideration of the stake-
holder’s intentions and add a significant overhead for com-
prehending the created decompositions. We present a new
tool that aims to create more informed model decomposi-
tions by leveraging existing domain knowledge in the form
of textual descriptions. From the user perspective, the tool
comprises a textual editor for assembling the descriptions
and a visual editor for reviewing and post-processing the
generated splitting suggestions. We preliminarily evaluate
the tool in a case study involving a real-life model.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Tools; D.2.8 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment

1. INTRODUCTION
As model-driven engineering is applied in ever-greater sce-
narios ranging over significant spans in time and space, the
maintenance obstacles induced by large models increase in
urgency. Large models without a proper decomposition are
hard to comprehend, to change, to reuse, and to collaborate
on. Even in projects where an initial decomposition is tai-
lored with great care, changing requirements may deem it
necessary to refactor for a finer-grained or even orthogonal
one. As the manual refactoring of large models is non-trivial
and expensive, this problem calls for automation.

Earlier automated approaches to model splitting, such as
those presented in [7, 12], suggest techniques based on anal-
ysis of strongly connected components or clusters, not ac-
counting for the semantics of the split and the intention
for performing it. To address this shortcoming, a recent ap-

BigMDE’14 July 24, 2014. York, UK
Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

proach proposed in [11] aims to create model decompositions
from existing domain knowledge in the form of textual de-
scriptions: The user provides a set of descriptive texts, each
describing one sub-model in the target decomposition. From
this input, a splitting suggestion is created using a combined
information retrieval and topology analysis approach. The
descriptions can be assembled from available requirement or
documentation artifacts. However, the input set is not re-
quired to be complete: In fact, the approach can support the
user in incrementally discovering sub-model descriptions.

The contribution of this paper is a tool and supporting semi-
automated user process making the outlined splitting tech-
nique available to modelers. We have tested it on large meta-
models in the magnitude of 100 to 250 classifiers. As design
goals, we target usability and extensibility for the splitting
of instances of arbitrary meta-models. The remainder of this
paper is divided as follows: In Section 2, we briefly illustrate
the underlying technique. The user process is shown in Sec-
tion 3. In Sections 4 and 5, we elaborate on the design goals
and implementation. In Section 6, we present a case study
preliminarily evaluating the proposed tool and user process.
We discuss related work and conclude in Sections 7 and 8.

2. BACKGROUND
In this section, we give a brief overview on model splitting
as perfomed by our tool. A detailed account is found in [11].

The technique, outlined in Fig. 1, takes three input param-
eters: The model to be split – in the proposed tool, an EMF
meta-model –, a set of textual descriptions of each target
sub-model, and a completeness condition. The completeness
condition specifies whether the set of sub-model descriptions
is complete or partial. The technique creates a set of map-
pings from model elements to sub-models, calling it splitting
suggestion. In the case of a complete input set, each element

Model	Splitting

Figure 1: Underlying model splitting technique.

44

Define the splitting
description

Review and post-process
the splitting suggestion

Input model Output sub-models

Derive a
splitting

suggestion

Start the splitting
process

Perform splitting 1 5

2 4

3

Figure 2: Overview.

is assigned to one sub-model. In the partial case, some el-
ements may remain unassigned. The user can inspect the
unassigned elements to discover additional sub-models and
describe them, incrementally creating a complete split.

Information retrieval. To obtain an initial mapping be-
tween the model and the textual sub-model descriptions, we
apply an established statistical technique from information
retrieval research: Latent Static Analysis (LSA) [8]. For a
query (e.g., a sub-model description) over a fixed set of doc-
uments (e.g., a set of model element names), LSA scores the
relevance of each document to the input query. To compute
the scores, queries and documents are represented as vectors
and the similarity between the query vector and each docu-
ment vector is computed – intuitively speaking, the degree in
that they point in the same direction. Mathematically, this
is calculated in terms of the cosine, yielding a score between
0 and 1. The vector representation is based on a metrics
called term frequency-inverse document frequency (td–idf).

Model crawling. To create the splitting suggestion, we use
the model elements ranked highest by LSA as seeds. Starting
from these seeds, we crawl the model exhaustively to score
each model element’s relevance for each target sub-model.
Afterwards, each model element is assigned to the sub-model
it was deemed most relevant for, ties being broken randomly.
Model crawling extends an approach proposed in [9]. The
underlying intuition is that of a breadth-first search: We first
visit and score the seeds’ neighbours, then the neighbours’
neighbours, et cetera. Scores of newly accessed elements are
calculated based on the scores of previously scored elements.
The scoring formula accounts for topological properties, such
as the connectivity of newly accessed elements, and seman-
tic implications of the respective relationship types (e.g., in
meta-models, containment suggests strong connectivity).

3. USER PROCESS
The user process, shown in Fig. 2, comprises two manual
tasks (2 and 4) and three automated tasks (1, 3 and 5). The
manual tasks rely on human intelligence and domain knowl-
edge. They are facilitated by textual and visual tool support.
The automated tasks are triggered by context menu entries.

Figure 3: Defining the splitting description.

(1) Start the splitting process. Using a context menu
entry on the meta-model to be split, the user triggers the
creation of a splitting description file. The splitting descrip-
tion is automatically opened in a textual editor, shown in
Fig. 3. By default, the file contains a small usage example.

(2) Define the splitting description. Using the editor,
the user assembles the descriptions of the target sub-models.
For a comfortable user experience, the editor provides syn-
tax highlighting, static validation, and folding capabilities.
The textual editor is also used for configuration: Adding the
keyword partially and defining a numerical threshold, the
user can set the completeness condition in order to obtain
a partial split. Furthermore, the user can fine-tune inter-
nal parameters used during the execution of the underlying
technique. In Fig. 3, the weights assigned to different rela-
tionship types and the alpha exponent that shapes the scor-
ing function are modified. However, parameter tuning is an
optional feature: In [11], we identified a default combination
of parameter values that, when applied to six independent
class models, achieved an average accuracy of 80% in com-
parison to hand-tailored decompositions.

(3) Derive a splitting suggestion. Using a context menu
entry on the splitting description file, the user triggers the
automated creation of a splitting suggestion. A splitting
suggestion comprises a set of assignment entries, each hold-
ing a link to a model element, a link to a target sub-model,
and the relevance score. To compute the splitting sugges-
tion, the technique outlined in Section 2 is applied. The
splitting suggestion is persisted to the file system.

(4) Review and post-process the suggestion. To ob-
tain visual access to the splitting suggestion, the user can
now open the model in a model editor. The user activates
a dedicated layer called model splitting. This action trig-
gers the color-coding of model elements corresponding to the
splitting suggestion, shown in Fig. 4. As further visual aid,
the assignment of a model element is also displayed textually
above its name. For post-processing, the user may want to
change some assignments for model elements that were not
assigned to the proper target sub-model. This is done using

45

Figure 4: Reviewing and post-processing the split-
ting suggestion.

the palette tool entry Assign. When the user reassigns a
model element, the respective entry in the splitting sugges-
tion is automatically updated. It is worth mentioning that
if the user is not satisfied with the results, he or she may
iterate Steps 2 to 4 as often as required, tweaking the de-
scriptions and parameter settings. One important scenario
for this is the discovery of new sub-models: The user can
set the completeness condition to partial in Step 2 which
leads to some model elements not being assigned in Step 3.
The user inspects these elements in Step 4 to create new
sub-model descriptions.

(5) Perform splitting. Given that the user is satisfied
with the post-processed splitting suggestion, the actual split-
ting can be triggered by the user. The user may choose from
two context menu entries: One for splitting the input model
into multiple physical resources, the other for splitting it
into sub-packages within the same resource.

4. DESIGN GOALS
In this section, we shortly discuss design goals that were
fundamental in the design of the proposed tool.

Extensibility. The underlying technique possesses an in-
nate extensibility that should be carried over to the end-user.
It is applicable to models conforming to arbitrary meta-
models, given that they fulfill two properties: (i) Model
elements must have meaningful textual descriptions that a
splitting description can be matched against. (ii) Except
for trivial reconciliation, constraints imposed by the meta-
model may not be broken in arbitrary sub-models. We ad-
dress this design goal by using a framework approach: To
customize the tool for a new meta-model, the user subclasses
a set of base classes. For instance, to define how input mod-
els are converted to a generic graph representation used dur-
ing crawling, they subclass a class named GraphBuilder.

Usability. The design of the tool is informed by Cognitive
Dimensions, a framework for the human-centered design of
languages and tools [6]: Providing an editable visual layer
on top of a standard editor is a major step towards visibility
– visual accessibility of elements and their relations – and
away from viscosity – resistance to change. Closeness of

mapping is implemented by a domain-specific language for
splitting descriptions with custom editor support. Prema-
ture commitment is inhibited and progressive evaluation is
promoted by providing an incremental process that allows
tweaking with input values while receiving rapid feedback.
For traceability, our file-based approach to user input allows
to keep the splitting description and use it later, e.g., for
documentation purposes.

5. IMPLEMENTATION
Eclipse Modeling Framework [10] is the de-facto reference
implementation of the EMOF modeling standard. Conse-
quently, it was natural for us to design the new tool as an
extension for EMF. As such, it can be plugged into an exist-
ing Eclipse installation without further effort. For the split-
ting description editor, we leveraged the powerful code gen-
eration facilities of Xtext [5]. We defined a simple domain-
specific language for splitting descriptions. The editor with
its syntax highlighting and code completion features was
fully generated by Xtext. For customization, we added a
couple of checks (e.g., forbidden characters, uniqueness of
sub-model names). The visual splitting layer is an exten-
sion of EcoreTools 2.0 [2] which is based on the Sirius [4]
framework and, as of June 2014, determined to be part of
the new Eclipse release Luna 4.4. We used this new technol-
ogy as we benefit from its support for multiple viewpoints,
allowing us to tailor a splitting viewpoint to our needs.

6. CASE STUDY
In a case study, we investigated two research questions: (RQ1)
How efficient is the proposed tool in comparison to manual
splitting? (RQ2) Is the proposed tool usable?

6.1 Subjects and Task
Model: Extended Joomla-Specific Language (eJSL) is a meta-
model for web applications based on the Joomla content
management system [3]. It comprises 116 classes, 39 enumer-
ations, 176 enumerated attributes, 41 generalizations, 145
containment references, and 47 plain references. eJSL was
designed by a doctoral student affiliated with our research
group we shall refer to as X. X has significant experience in
modeling language design. Previous to our work, X man-
ually split eJSL into five sub-models, calling them Pages,
Content, Menu, User, and Configuration. According to his
account, he invested a significant effort that spanned, among
other duties, over the course of two weeks. He printed the
diagram on paper, cut and reassembled fragments. After-
wards, he assigned colors to model elements in the diagram
editor and layouted them by hand.

Task: We instructed another software engineer, referred to
as Y, to decompose eJSL using the tool. Y is a doctoral
student with significant experience in modeling language de-
sign, but unrelated to eJSL and model splitting. We asked
X to provide the required domain knowledge in the form
of descriptive texts briefly explaining his intuitions for the
hand-tailored decomposition. The descriptions, each con-
sisting of 85 words on average, were handed to Y in a text
document. The task given to Y was to create a decompo-
sition that faithfully reflects the separation of concerns pro-
posed by the textual descriptions. We briefly instructed Y in
the usage of the tool based on the example shown in Fig. 3
and 4 and encouraged him to make use of post-processing.

46

6.2 Results
Efficiency. To approach (RQ1), we define efficient as re-
quiring a minimal amount of time to create an accurate re-
sult. Positing the hand-tailored split as perfectly accurate,
we measured accuracy of the tool-supported split in terms
of average F-measure, considering both precision and recall.
Accuracy was determined before and after post-processing:
During review of the initial splitting suggestion S1, Y reas-
signed five model elements to create the final suggestion S2.
From S1 to S2, precision increased from 82% to 86% and
recall from 84% to 88%, determining a rise in F-measure
from 83% to 87%. It took Y five minutes to create S1.
The reviewing and post-processing that brought the 4% gain
took further 55 minutes. Consequently, in terms of extra-
polated overall amount of time, tool-supported splitting out-
performed manual splitting.

Usability. To approach (RQ2), we conducted an informal
interview. Y perceived the user process as comprehensible,
the description editor as easy to use and the color-coding as
useful. An activity found crucial during post-processing was
examining the direct neighbours of a model element. Y per-
ceived this task as cumbersome: He often had to navigate
for edge targets outside the visible scope. For future work,
we aim at dedicated support for this activity: On selection,
neighbourhood information should be instantly available in
a tool-tip displaying the names of adjacent elements. One
further suggestion by Y, the color-coding of edges, directly
made it into the current version. Y also invested consider-
able time in layouting, i.e., aligning the color-coded model
elements into groups – an activity outside of the scope of this
work. It is an interesting challenge to devise a layouting al-
gorithm that aligns the sub-models of a model as clusters.
Inspection of the false positives and negatives in S2 revealed
that 50% of them concerned enumerations, the other 50%
concerning classes. Y pointed out that enumerations were
hard to relate to classes visually as they are not connected
by edges. We consider representing enumerated attributes
as edges rather than class members in future work.

6.3 Validity
Threats to external validity – or generalizability – are the
size of the input model and the size of the test group. It re-
mains a question left to future work whether our tool scales
for meta-models of significantly more elements. However,
an analysis of publicly available meta-models1 indicates the
input model size to be typical for large meta-models de-
manding an adequate decomposition. The test group size
indeed precludes claims for generality, but allows to provide
tentative evidence for critical design weaknesses and bene-
fits. A potential threat to internal validity – or freeness from
systematic error – is the flow of information from the control
group to the test group. To mitigate this threat, we ascer-
tained in consultation with X that the textual descriptions
in vagueness and level of detail represented the intuitions for
splitting before the manual split was executed.

7. RELATED WORK
In this section, we discuss related tooling. A survey of work
related to the underlying approach is provided in [11].

1http://www.emn.fr/z-info/atlanmod/index.php/Ecore

In the Democles model composer [1], the user can iterate
the lattice of all permitted decompositions by unfolding en-
tries in a tree-like wizard. Graphical presentation of a split
is provided by an add-on graph visualization library. How-
ever, this visualization is read-only and not integrated with
a modeling editor, ruling out the re-assigning of model ele-
ments for post-processing as supported by the new tool.

The splitting tool proposed in [12] makes classic clustering
algorithms available for EMF models. It provides a wizard
for the selection and customization of algorithms. However,
except for numerical input parameters, the user cannot in-
fluence the generated results. The tool provides a tree-based
editor for the reassigning of model elements to target sub-
models, but does not present any visual feedback.

8. CONCLUSION
In this paper, we present a tool for the splitting of large
meta-models. The tool provides a textual editor that allows
defining the desired target sub-models by means of textual
descriptions. It generates a splitting suggestion that can be
reviewed and post-processed in a visual editor. Based on the
splitting suggestion, the input model can be automatically
split either into multiple resources or packages within one re-
source. The tool is open source and can be found, along with
the models mentioned in this paper, at https://www.uni-

marburg.de/fb12/swt/forschung/software. In the future,
we plan to apply the technique on other models than class
models, deeming it necessary to account for constraints.

9. REFERENCES
[1] Democles. http://democles.lassy.uni.lu/, May 2011.

[2] Ecoretools 2.0. http://www.eclipse.org/ecoretools/,
May 2014.

[3] Joomla. http://www.joomla.org/, May 2014.

[4] Sirius. http://www.eclipse.org/sirius/, May 2014.

[5] Xtext. http://www.eclipse.org/xtext/, May 2014.

[6] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a cognitive
dimensions framework. Journal of Visual Languages &
Computing, 7(2):131–174, 1996.

[7] P. Kelsen, Q. Ma, and C. Glodt. Models within
models: Taming model complexity using the
sub-model lattice. Fundamental Approaches to
Software Engineering, pages 171–185, 2011.

[8] T. K. Landauer, P. W. Foltz, and D. Laham. An
Introduction to Latent Semantic Analysis. Discourse
Processes, (25):259–284, 1998.

[9] M. P. Robillard. Automatic Generation of Suggestions
for Program Investigation. In Proc. of ESEC/FSE-13,
pages 11–20, 2005.

[10] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: Eclipse Modeling Framework.
Pearson Education, 2008.

[11] D. Strüber, J. Rubin, G. Taentzer, and M. Chechik.
Splitting models using information retrieval and model
crawling techniques. Fundamental Approaches to
Software Engineering, pages 47–62, 2014.

[12] D. Strüber, M. Selter, and G. Taentzer. Tool support
for clustering large meta-models. In Proceedings of the
Workshop on Scalability in Model Driven Engineering,
page 7. ACM, 2013.

47

Automated Analysis, Validation and Suboptimal Code
Detection in Model Management Programs

Ran Wei
University of York

Deramore Lane, Heslington
York, United Kingdom

ran.wei@york.ac.uk

Dimitrios S. Kolovos
University of York

Deramore Lane, Heslington
York, United Kingdom

dimitris.kolovos@york.ac.uk

ABSTRACT
As MDE is increasingly applied to larger and more complex
systems, the models that MDE platforms need to manage
can grow significantly in size. Additionally, model manage-
ment programs that interact with such models become larger
and more complicated, which introduces further challenges
in ensuring their correctness and maintainability. This paper
presents an automated static analysis and validation frame-
work for languages of the Epsilon platform. By perform-
ing static analysis on model management programs written
in the Epsilon languages, this framework aims to improve
program correctness and development efficiency in MDE
development processes. In addition, by applying analysis
on model management programs, sub-optimal performance
patterns can be detected early in the development process
and feedback can be provided to the developers to enable
efficient management of large models.

1. INTRODUCTION
Model Driven Engineering (MDE) aims at raising the level
of abstraction at which software is developed, by promoting
models into first-class artefacts of the development process.
For MDE to be applicable in the large and complex sys-
tems, a set of model management tools and languages are
needed to enable developers to manage their models in an
automated and efficient manner. Typically, model manage-
ment tasks include validation, transformation, comparison,
merging and text generation [7].

The Epsilon platform [7] is a platform which provides a
broad range of model management languages built on top of
an extensible common imperative model query and modifi-
cation language called the Epsilon Object Language (EOL).
EOL is an interpreted language that supports optional typ-
ing of variables, operations, and operation parameters. This
provides a high degree of flexibility (for example, it enables
duck typing [6]) and eliminates the need for explicit type
casts, as typing-related information is currently only con-
sidered at runtime. On the other hand, the absence of a

Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.
BigMDE ’14, July 24, 2014 York, UK

static analyser for EOL and the languages that build atop
it, implies that a wide range of genuine errors that could be
detected at design time are only detected at runtime.

Beyond detecting type-related errors, a static analyser could
also be used to support advanced analysis capabilities, such
as code detection, to improve the performance of model
querying and transformation programs, particularly in the
context of processing large models.

The remainder of the paper is organised as follows. In Sec-
tion 2 we briefly motivate the need for static analysis capa-
bilities in model management languages, in particular the
Epsilon platform. In Section 3 we present the architecture
of a static analysis framework for the Epsilon platform and a
static analyser for the Epsilon Object Language. In Section
4 we present a sub-optimal code detection facility developed
atop the static analysis framework. In Section 5 we discuss
preliminary evaluation of our work. In Section 6 we dis-
cuss related work and in Section 7 we conclude and provide
directions for further work.

2. BACKGROUND
MDE allows developers to construct models which abstract
away from technical details, using concepts closely related to
the domain of interest to reduce accidental complexity. The
constructed models are then transformed into part (or all) of
the target system under development. Whilst Model Trans-
formation is considered to be the heart and soul of Model
Driven Engineering [12], other model management opera-
tions are equally important. Typically, such operations in-
clude model validation, model merging, model comparison,
etc.

2.1 Epsilon
Epsilon is a mature and well-established family of interop-
erable languages for model management. Languages in Ep-
silon can be used to manage models of diverse metamod-
els and technologies. The architecture of the Epsilon plat-
form is depicted in Figure 1. At the core of Epsilon is the
Epsilon Object Language (EOL) [9]. EOL is an impera-
tive language which reuses a part of the Object Constraint
Language OCL) but provides additional features such as
multiple model access, statement sequencing and groupings,
uniformity of function invocation, model modification, de-
bugging and error reporting. Although EOL can be used
as a general purpose model management language, its pri-
mary aim is to be reused in task-specific languages. Thus,

48

Figure 1: The basic structure of the Epsilon platform.

by extending EOL, a number of task-specific model man-
agement languages have been implemented, including those
for model transformation (ETL), model comparison (ECL),
model merging (EML), model validation (EVL), model refac-
toring (EWL) and model-to-text transformation (EGL).

Epsilon is metamodeling-technology agnostic [7], models writ-
ten in different modelling languages can be managed by Ep-
silon model management languages via the Epsilon Model
Connectivity (EMC) layer, which offers a uniform interface
for interacting with models of different modelling technolo-
gies. Currently, EMC drivers have been implemented to
support EMF [13], MDR, Z specifications in LaTeX using
CZT and plain XML. Epsilon is an Eclipse project and is
widely used both in the academia and the industry1.

2.2 Epsilon and static analysis
EOL supports optional typing of variables, operations and
operation parameters. The listing below demonstrates the
flexibility that this delivers using as an example, a program
that operates on an Ecore model. In line 1, an operation
called getName() is defined, its context type is Any, which
means that the operation can be invoked on objects/model
elements of any type. In line 2, the keyword self refers
to the object on which the operation is called, for exam-
ple, in the statement o.getName(), self refers to o. Thus in
line 2, the operation checks if the object is an instance of
ENamedElement, if it is, it will return self.name. A typi-
cal static analyser would complain in line 3 that ”self.name”
does not exist because the type of self is declared as Any,
not Ecore!ENameElement. However, this will never be a
problem at run-time due to the if condition in line 2.

1 operation Any getName() {
2 if(self.isTypeOf(Ecore!ENamedElement))
3 return self.name;
4 else return "Unnamed";
5 }

1http://eclipse.org/epsilon/users/

On the other hand, some genuine errors can also remain
hidden until runtime without the help of static analysis.
The listing below demonstrates an example of a genuine er-
ror. In line 1, a variable named o is defined to be of type
Ecore!EClass, and in line 2, o is assigned the value of a
random EClass in the Ecore model. In line 3, the program
tries to print the value property of o which does not exist
according to the Ecore metamodel. As such, an error will
be thrown at runtime.

1 var o : Ecore!EClass;
2 o = Ecore!EClass.all.first();
3 o.value.println();

As the size of such programs grow, locating genuine errors
becomes an increasingly difficult task. For example, the
EOL program that underpins the widely-used EuGENia tool
[10] consists of 1212 lines of code, that query and modify 4
models that conform to 4 different metamodels concurrently.
Performing code review on this code for genuine error detec-
tion is a time consuming process. Additionally, performing
changes is also difficult, as developers have to manually iden-
tify and manage dependencies and relations between build-
ing blocks (operations for example) of such programs. Such
tasks require effort and time [15]. For instance, to delete an
operation named F1 it is necessary to know if it is invoked
by any other operations or code blocks. Manually perform-
ing this task is error-prone.

Since model management programs interact with models,
performing static analysis on model management programs
can also help identify sub-optimal performance patterns in
the process of accessing models. Analysis can also help com-
prehend the model management programs. For example,
coverage analysis can be performed to find out which parts
of the metamodel of particular models are accessed, and
test cases can be generated based on this comprehension to
better test a model management program. With the poten-
tial benefits mentioned above, we propose and implement a
static analysis framework for Epsilon.

49

Figure 2: Detecting sub-optimal performance patterns from Abstract Syntax Trees.

3. TOWARDS A STATIC ANALYSIS FRAME-
WORK FOR EPSILON

In this section we discuss the proposed static analysis frame-
work in detail. The general idea of our approach can be il-
lustrated by Figure 2. We first transform the Homogeneous
Abstract Syntax Tree of an EOL program into a Heteroge-
neous Abstract Syntax Tree, we then apply resolution al-
gorithms (including variable resolution and type resolution)
to derive a Heterogeneous Abstract Syntax Graph, with its
elements connected to each other. We then perform pattern
detection to detect sub-optimal code. The aim of the frame-
work is to provide a generic static analysis facility for all
languages of the Epsilon platform. Since the core language
of the Epsilon platform is EOL, we first develop a static
analyser for EOL.

3.1 Deriving Heterogeneous Abstract Syntax
Trees

Currently, Epsilon provides an ANTLR [7] based parser for
EOL. The ANTLR parser produces homogeneous Abstract
Syntax Trees (AST) with each node containing a text and
an id, which the EOL execution engine consumes. To facil-
itate static analysis at a high level of abstraction, our first
step was to define an EMF-based metamodel for EOL and
to transform these homogeneous ASTs to models (heteroge-
neous trees) that conform to the EOL metamodel.

As EOL is a reasonably complex language, we only intro-
duce the basic and novel parts of the EOL metamodel and
the EOL standard library. Figure 3 lists a number of basic
building blocks that constitute an EOL program. The fun-
damental element of the EOL metamodel is the EolElement
metaclass, as all other metaclasses in the EOL metamodel
directly or indirectly extend it, and contains information
related to the line and column numbers of the respective
text in an EOL program for traceability purposes. A Pro-
gram contains a number of Import(s), which are used to im-
port other programs. A Program also contains a number of
OperationDefinition(s) which define additional operations/-
functions on existing types. A Program contains a Block,
which contains a number of Statement(s). Expression is
also a fundamental element which is generally contained in
Statement(s) and other EolElement(s). For each of the Ex-
pression, there is a Type associated to it. The type of the
Expression is generally unknown at the time the source code
of a program is parsed into an EOL model, but is resolved
later in the type resolution process. In order to run an EOL

program that involves processing models, Epsilon currently
requires the user to select the required models/metamod-
els via a user interface at runtime. To facilitate accessing
models at design-time for static analysis, we introduce the
ModelDeclarationStatement to declare references to models
in the source code. The syntax of a model declaration state-
ment is as follows.

1 model library driver EMF {
2 nsuri = "http://library/1.0"
3 };

Like Epsilon, the static analysis framework is also technology-
agnostic. As such, beyond the model’s local name, a model
declaration statement defines the type of the model in ques-
tion (in this case EMF), as well as a set of model-type-
specific key-value parameters (in this case nsuri = http :
//library/1.0) that the framework can use to obtain the
model’s metamodel. We have currently implemented facili-
ties to support models defined using EMF and plain XML.
In the future we plan to extend the static analysis frame-
work with support for other types of models supported by
Epsilon, such as models defined in MDR, spreadsheets, etc.

With the metamodel defined, we developed a facility which
transforms the ANTLR based ASTs into models that con-
form to the EOL metamodel. It should be noted that at the
stage of AST to EOL model transformation, declared models
are not inspected. So at this stage, for the statement

1 var book : Book

it is only known that variable book is of type ModelElement-
Type whose elementName is Book. Later in the type res-
olution process, this information is used against declared
models so that the Book type can be resolved.

Comparing with our current approach, an alternative ap-
proach would have been to redefine EOL’s grammar using a
toolkit such as Xtext or EMFText which can automate the
source-code to model transformation process but we have
opted for an intermediate transformation instead in order
to reuse Epsilon’s robust and proven parsers.

3.2 Deriving Heterogeneous Abstract Syntax
Graphs

50

Figure 3: The basic structure the EOL metamodel.

With the EOL metamodel and the AST to EOL transfor-
mation defined, the next step of the process involves linking
elements of the EOL model (heterogeneous tree) constructed
in the previous phase to derive an abstract syntax graph. We
have created several facilities to achieve this.

3.2.1 EOL Visitor
To facilitate the traversal of different elements in the EOL
model and to support extensibility, we developed a facility
which generates Java visitor classes from Ecore metamodels.
We then generated visitor classes from the EOL metamodel
which provide a general mechanism to traverse all elements
in an EOL model. The EOL Visitor serves as the infrastruc-
ture of the static analysis framework, as all other facilities
in the static analysis framework extend the EOL visitors to
implement functionalities. The EOL visitor also provides
high extensibility as new analysis mechanisms can be imple-
mented simply by extending the EOL visitor.

3.2.2 Variable Resolver
The first phase of the static analysis on an EOL program in-
volves resolving identifiers to their definitions. Context-free
identifiers in EOL can refer to 1) declared variables/oper-
ation parameters and 2) undeclared variables provided by
the execution engine at run-time. For declared variables,
the variable resolver establishes links between the variable
declaration and its references. For example, in line 1 of the
listing provided below, a variable named a is declared. In
line 2, a is referenced. The variable resolver will establish a
link between the reference in line 2 and the declaration in
line 1.

1 var a : Integer;
2 a = 10;

Variable resolution also applies to parameters in operation
definitions. In the following listing, the variable resolver
will establish a link between the reference of the parameter
toPrint in line 2 and its declaration in line 1.

1 operation definedPrint(toPrint: String) : String {
2 toPrint.println();
3 }

There are also some implicit variables which are not declared
by the developer but are rather provided by the execution
engine. For example, the keyword self in an operation def-
inition refers to the object/model element on which the op-
eration is invoked. The following listing demonstrates how
self is used. The variable resolver will establish a link be-
tween self and the object on which printSelf is invoked.

1 operation Any printSelf() {
2 self.println();
3 }

It is important to note that at the stage of variable resolu-
tion, model element types are not resolved.

3.2.3 Type Resolver
In EOL there are several built-in primitive types (Boolean,
Integer, Real, String) and collection types (Set, Bag, Se-
quence and OrderedSet). There is also a built-in Map type
and the Any type. These types are all subclasses of Type
in the EOL metamodel. The resolution of the above types
is performed during the heterogeneous abstract syntax tree
derivation. There is also a subclass of Type in the EOL
metamodel called ModelElementType which includes typ-
ing information regarding models defined using different tech-
nologies. Such typing information should be determined by

51

EOL Visitor

AST2EOLEOL
Metamodel

EOL Variable Resolver

EOL Type Resolver Metamodel
Connectivity

EOL Abstract Syntax Tree

Figure 4: The architecture of the static analysis framework

accessing the corresponding models.

To support accessing metamodels at design-time, we intro-
duced ModelDeclarationStatements, which are flexible to
support models defined in different modelling technologies.
A model declaration defines the model’s name, aliases, the
modelling technology (driver) that the model conforms to,
and a set of driver-specific parameters. The listing below is
an example of ModelDeclarationStatement; it declares a
model named library with alias l and its driver to be EMF ,
it then specifies the EMF-specific namespace URI (nsuri)
of the model so that the analyser knows how to locate and
access its metamodel.

1 model library alias l driver EMF {nsuri = "http://
library/1.0"};

To facilitate uniform analysis of the structural information of
models of diverse modelling technologies, the static analysis
framework needs to convert type-related information from
different modelling technologies into a common representa-
tion. Instead of inventing a new representation, we have
decided to use EMF’s Ecore. As such, the static analysis
framework provides a modular architecture where pluggable
components are responsible for transforming different types
of model declarations into Ecore EPackages. For different
modelling technologies:

• For EMF models, return the registered EPackage by
looking up the metamodel nsURI property of the model
declaration.

• For plain XML, construct an EPackage by analysing
the contents of a sample model file specified by respec-
tive the model declaration parameter.

We have developed drivers for EMF models and plain XML
files, and a common interface which allows new drivers for
different modelling technologies to be integrated with the
static analysis framework. By accessing models/metamod-
els, the type resolver is able to resolve types with regards to
models/metamodels.

The variable resolver and type resolver constitute the in-
frastructure of the static analysis framework for the Epsilon
languages. The infrastructure is depicted in Figure 4. The
EOL Abstract Syntax Tree layer is provided by the EOL

engine, the AST2EOL layer uses the AST and the EOL
metamodel to translate the AST to an EOL model. The
EOL Variable Resolver and the EOL Type Resolver, both
make use of the EOL Visitor and the Metamodel Connec-
tivity layer (which is used to read metamodels) to establish
a fully type-resolved EOL model.

The static analysis infrastructure can be easily extended. As
proof of concept, we have also implemented all of the afore-
mentioned facilities for the Epsilon Transformation Language.
We extended the EOL metamodel to create an ETL meta-
model, with the ETL metamodel, we created the ETL visitor
facility; we extended the AST2EOL to create a AST2ETL
facility; we extended the EOL variable resolver and type re-
solver to create ETL variable and type resolvers. The EOL
and ETL static analysers can be found under the Epsilon
Labs open-source project [1].

4. SUBOPTIMAL CODE DETECTION
Rule-based model transformation languages usually rely on
query or navigation languages for traversing the source mod-
els to feed transformation rules with the required model ele-
ments. In [11], the authors suggest that in complex transfor-
mation definitions, a significant part of the transformation
logic is devoted to model navigation. In the context of large-
scale MDE processes, models can contain several millions of
elements. Thus, it is important to retrieve desired elements
in an efficient way. On top of the static analysis framework,
we have built a facility which is able to detect sub-optimal
performance patterns when navigating and retrieving model
elements. This facility performs pattern matching to detect
potential computationally heavy code in EOL (and poten-
tially all Epsilon languages). It does so by matching patterns
defined in the Epsilon Pattern Language (EPL) [8] against
fully resolved EOL abstract syntax graphs.

The structure of this facility is depicted in Figure 5. The
SubOptimalDetector has a EOLModel as input to perform
the detection; it makes use of the EPLEngine of the Ep-
silon platform to derive Abstract Syntax Trees, it has a set
of defined EPLPatterns (.epl scripts) using EPL, and a
logging facility (LogBook) to keep the warning messages it
generates for pattern matches.

In this section, we present the sub-optimal detection facility.
We provide several examples that illustrate potential sub-
optimal performance patterns in the context of large scale
model manipulation. We then present and explain a sub-

52

Figure 5: The structure of the sub-optimal performance detection facility

optimal performance pattern defined in EPL. It should be
noted that this facility targets EOL programs, however, it
can be easily extended to cope with programs written in
other Epsilon languages as discussed earlier.

The examples we present are all based on a simple Library
metamodel illustrated in Figure 6. The Library metamodel
contains two simple metaclasses, Author and Book. An Au-
thor has a first name, a surname and a number of published
Books where a Book has a name and an Author. The asso-
ciation between Author and Book is bidirectional, they are
books and authors respectively.

Figure 6: The Library metamodel

4.1 Inverse navigation
A frequent operation in EOL is to retrieve all model elements
of a specific type by using the .all property call which can
be a computationally heavy operation to perform as models
grow in size. By analysing the metamodel of the model
under question, bidirectional relationships between model
elements can be used to avoid such heavy computations.

1 var a = Author.all.first;
2 var books = Book.all.select(b|b.author = a);
3 var aBook = Book.all.selectOne(b|b.author = a);

The listing above demonstrates a potential performance bot-
tleneck. In line 1, an Author is retrieved from the model.
In line 2, all instances of type Book are retrieved and then
a conditional select is performed to find the books that are
written by Author ’a’. However, since the relationship be-
tween Author and Book is bidirectional, this can be replaced
by the (more efficient) statement:

1 var books = a.books;

Thus the complexity of the operation all is reduced from n
to 1 given that n is the number of Books in the model under

question. It is also the case for the selectOne operation in
line 3, which can be rewritten as:

1 var aBook = a.books.first();

4.2 Compound select operations
Another computationally-heavy pattern is the presence of
compound select operations on the same collection.

1 var authors = Author.all.select(a|a.first_name =
2 ’William’).select(a|a.surname = ’Shakespeare’);

Listing 1: a potential performance overhead using
compound select operations

Listing 1 demonstrates such operations. In line 1, all of the
Authors are retrieved first, then a select operation is per-
formed to select all Authors whose first names is William,
then another select operation is performed to select all Authors
whose surname is Shakespeare. The complexity of this op-
eration is n2 given that n is the number of Authors in the
model under question. However, the condition of both the
select operations can be put together to form a single select
operation. And the statement above can be written as

1 var authors = Author.all.select(a|a.first_name =
2 ’William’ and a.surname = ’Shakespeare’);

the complexity of this operation is therefore n as the collec-
tion of the Authors is only traversed once.

4.3 Select operation on unique collections
Performing select operations on unique collections (sets) can
sometimes be inefficient depending on the condition of the
select operation.

1 var authorOne = Author.all.first;
2 var authorTwo = Author.all.last;
3 var bookOne = authorOne.books.first;
4 var bookSet : Set(Book);
5 bookSet.addAll(authorTwo.books);
6 bookSet.select(b|b = bookOne);

Listing 2: Select operation on unique collection

53

Figure 7: The model representation for Book.all.select(b|b.name = a)

Listing 2 demonstrates an inefficient and computationally
expensive select operation. In Line 1 and 2, two Authors are
retrieved from the model; in line 3, a Book is retrieved from
authorOne’s publications; in line 4, a Set called bookSet is
created and in line 5, all of the Books that authorTwo pub-
lished are added to bookSet. In line 6 the select operation
iterates through all of the books in the bookSet and find the
ones that match the bookOne. However, the bookSet is a
unique collection, which means that all of the elements in it
only appear once. Therefore, it is not necessary to perform
a select operation but rather a selectOne operation, as the
select operation would return at most one result eventually.
The complexity of the select operation is n given that n
is the number of books that authorTwo published; If the
select operation is replaced with selectOne, the complexity
of it would be 1 for the best case scenario and n for the worst
case scenario (n/2 for the average case).

4.4 Collection element existence
In some cases, checking existence of an element inside a col-
lection can be written in inefficient ways.

1 if(Book.all.select(b|b.name = "EpsilonBook")
2 .size() > 0) {
3 "There is a book called EpsilonBook".println();
4 }

Listing 3: Collection element existence

Listing 3 demonstrates such a scenario. In line 1, the con-
dition of the if statement retrieves all instances of Book,
then selects the ones with the name EpsilonBook, and cal-
culates the size of it then evaluates if the size is greater
than 0. This operation eventually checks for the existence
of a book named EpsilonBook. Thus, this operation can be
more efficiently re-written as:

1 Book.all.exists(b|b.name = "EpsilonBook")

4.5 Select the first element in a collection

Listing 4 demonstrates another example of sub-optimal EOL
code.

1 var anEpsilonBook = Book.all.select(b|b.name =
2 "EpsilonBook").first();

Listing 4: Select an element in a collection

In line 1, a select operation is performed on all of the in-
stances of Book to filter out the books with the name ’Ep-
silonBook’, then a first operation is performed to select the
first one of the collection returned by select. This can be
more efficiently re-written as:

1 var anEpsilonBook = Book.all.selectOne(b|b.name =
2 "EpsilonBook");

to avoid traversing all of the instances of Book.

4.6 A sub-optimal performance pattern
In this section we present a sub-optimal performance pattern
which is written in the Epsilon Pattern Language (EPL). To
understand how this pattern works, it is first important to
understand what is contained in an EOL model for a certain
EOL program.

4.6.1 Understanding an EOL model
Figure 7 illustrates a fragment of an EOL model which rep-
resents the statement below.

1 Book.all.select(b|b.author = a);

Firstly, invocations of the select() operation in the EOL
metamodel are represented by the FOLMethodCallExpression
(FirstOrderLogic method call) metaclass; it has a name (an
instance of NameExpression) and an iterator (an instance
of V ariableExpression). In this case, the name is ’select’
and the iterator is ’b’.

54

The select operation has a condition, in this case, it is an
instance of EqualsOperatorExpression. The lhs (left hand
side) of it is an instance of PropertyCallExpression, whose
target (an instance of NameExpression) is ’b’ and property
(an instance of NameExpression) is ’author’; the rhs (right
hand side) of it is ’a’ (an instance of NameExpression). Both
the lhs and rhs of the EqualsOperatorExpression have re-
solvedTypes, in this case, they are both Author (instances
of ModelElementTypes).

The target of the FOLMethodCallExpression is an in-
stance of PropertyCallExpression with its target as Book
(an instance of NameExpression) and its property as all (an
instance of NameExpression). The types of these expres-
sions, altogether with some irrelevant details are omitted
for the purpose of the discussion.

4.6.2 The EPL pattern
In Listing 5, we define an EPL pattern to match occurences
of the pattern described above. In lines 2-6, a guard is de-
fined to look for a FOLMethodCallExpression the name
of which is either ’select’ or ’selectOne’; the type of the
condition should be EqualsOperatorExpression; its target
should be an instance of PropertyCallExpression; and the
property of the PropertyCallExpression should be ’all’.

In lines 8-10, a guard is defined to look for an instance of
EqualsOperatorExpression in the condition of the FOL-
MethodCallExpression found previously, the lhs of which
should be an instance of PropertyCallExpression.

Lines 12-14 specify that the resolvedType of the lhs should
be an instance of ModelElementType. In lines 16-18, it
specifies that the resolvedType of the rhs should be an in-
stance of ModelElementType. In lines 20-24, it specifies
that the type of the lhs and the rhs should be the same.

Lines 26-37 perform the match of the pattern. This part
firstly fetches the EReference from the lhs of the condition
(in this case, ’b.author’, it is an EReference because as
previously discussed, all metamodels are converted to EMF
metamodels for uniformity). The EReference is then in-
spected; if it is not null and it has an eOpposite reference,
the pattern continues to check if the type of the eOpposite
of the reference is the type of the rhs of the condition (in
this case, ’author’).

In lines 39-47, a helper method is defined to help look for an
EReference given an EClass and a name; its implementa-
tion is straightforward.

1 pattern InverseNavigation
2 folcall : FOLMethodCallExpression
3 guard: (folcall.method.name = ’select’ or folcall.

method.name = ’selectOne’)
4 and folcall.conditions.isTypeOf(

EqualsOperatorExpression)
5 and folcall.target.isTypeOf(PropertyCallExpression)
6 and folcall.target.property.name = ’all’,
7
8 condition : EqualsOperatorExpression
9 from: folcall.condition

10 guard: condition.lhs.isTypeOf(
PropertyCallExpression)

11

12 lhs : PropertyCallExpression
13 from: condition.lhs
14 guard: lhs.resolvedType.isTypeOf(ModelElementType),
15
16 rhs : NameExpression
17 from: condition.rhs
18 guard: rhs.resolvedType.isTypeOf(ModelElementType),
19
20 lhsType : ModelElementType
21 from: lhs.resolvedType,
22 rhsType : ModelElementType
23 from: rhs.resolvedType
24 guard: lhsType.ecoreType = rhsType.ecoreType
25 {
26 match {
27 var r = getReference(lhs.target.resolvedType.

ecoreType, lhs.property.name);
28 if(r.upperBound = 1 and r.eOpposite <> null and

r <> null)
29 {
30 if(r.eOpposite.eType = lhs.target.resolvedType

.ecoreType)
31 {
32 return true;
33 }
34 }
35 return false;
36 }
37 }
38
39 operation getReference(class: Any, name:String)
40 {
41 for(r in class.eReferences)
42 {
43 if(r.name = name)
44 return r;
45 }
46 return null;
47 }

Listing 5: EPL pattern for inverse navigation

4.6.3 The Java pattern
Our original attempt to construct the sub-optimal perfor-
mance detection facility was to define patterns using Java,
we defined a method in Java to achieve the same function
described above. The equivalent Java implementation is 76
lines of code with a long chain of If statements which makes
it very difficult to comprehend. With the EPL approach,
the patterns are more comprehensible. Developers can con-
tribute to the pattern pool by defining their own EPL pat-
terns and registering them with the framework through ap-
propriate extension points.

5. TOOL SUPPORT
The static analyser proposed in this paper is a pragmatic
static analyser. The flexibility of EOL allows its users to
write code with optional typings that always work at run-
time. Reporting errors on such cases are not desirable for
EOL, especially on legacy EOL code that is proven to work
with extensive testing. Thus the design decision was to al-
low such behaviour and delegate the resolution to the EOL
execution engine. We applied the static analyser on a large
EOL program (Ecore2GMF.eol) that underpins the Euge-
nia tool [10] for evaluation. We allow optimistic typing -
when Any type is encountered in assignments, operation
calls and property calls, we provide a warning message to

55

Figure 8: EOL Editor Screen Shot

notify the user that there might be potential type incom-
patibility issues at run-time. With this configuration, anal-
ysis on Ecore2GMF.eol which consists of 1212 lines of code
generates 126 warning messages. This result shows that the
static analyser supports plausible legacy code. At the same
time, it provides reasonable warning messages when optional
typing is used.

After evaluating the static analyser, we evaluate the sub-
optimal performance detection facility. Figure 8 provides a
screenshot of the editor we implemented by extending the
existing EOL Eclipse-based editor. The lines of code with
warnings represent matches of the patterns discussed above.
The implementation of the editor is able to extract and dis-
play the warning messages generated by the detection facil-
ity. The sub-optimal performance detection facility is not
only able to detect patterns that incur performance over-
heads, but also provide suggestions on how to rewrite the
code. An example warning message is shown in line 8, the
warning message suggests to rewrite the operation as:

1 Author.all.select(a|a.first_name = "William" and a.
surname = "Shakespeare")

The rest of the patterns function as expected.

6. RELATED WORK
There are several automated analysis and validation tools for
model management programs. In [14] the authors propose
a generic static analysis framework for model transforma-
tions specified in VIATRA2 Textual Command Language
(VTCL [2]). The latest static analysis framework detects
common errors and type related errors regarding models.
However, the VIATRA2 framework provides limited sup-
port for other metamodelling technologies as it uses its own
modelling language (VTML) and store the metamodels in
the model space. Additionally, VTCL is not as flexible as
EOL; it does not provide optional typing mechanisms as
EOL does.

Acceleo [4] provides static analysis mechanisms for syntax
highlighting, content assistant, and model related error de-
tection. However, to the best of our knowledge, it does not
support modelling technologies other than EMF.

Xtend [3] also provide static analysis facilities which are used
to detect syntax and built-in type-related errors, model re-
lated type information validations are not included.

In [15], a static analysis tool is proposed to detect errors in
model transformations written in the Atlas Transformation
Language (ATL), the tool presented is used to convert an
ATL program into a model, but no validation algorithms are
implemented on this tool to our best knowledge.

The latest release of ATL IDE [5] provides a static analy-
sis facility, it resolves the types of variables including built-
in ATL types and types related to metamodels. The ATL
IDE also provides code-completion of operation calls and
metamodel element navigations. However, the static analy-
sis is not responsible to provide any errors on type incom-
patibilities as it adopts an optimistic and flexible approach.
The ATL platform also provides limited support for multiple
modelling technologies other than EMF.

In [11], ways of deriving optimisation patterns from bench-
marking OCL operations for model querying and navigation
are proposed and several optimisation patterns are identi-
fied, including short-circuit boolean expressions, opposite
relationship navigation, operations on collections, etc.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have reported on our work on designing and
developing a static analysis framework for the core language
of Epsilon (EOL). The focus of our report is mostly on the
sub-optimal detection facility of the static analysis frame-
work. However, it is to be noted that the static analysis
framework is able to detect various type-related errors that
may occur using EOL. The static analysis framework follows
a pragmatic approach so as not to compromise the flexibility

56

of the Epsilon languages. As a result, it can generate false
negatives (problems that exist but cannot be detected by
the static analyser). To minimise the number of false neg-
atives, a more strict coding style is encouraged - to avoid
the use of Any type as much as possible, so that the static
analyser can perform more accurate analysis. This is clearly
a trade-off to make; to obtain better error reporting, devel-
opers need to write more boilerplate code with explicit type
casting, while to obtain better flexibility, developers need
to bare with the fact that the analyser may produce false
negatives that emerge at run-time.

It should be noted that the sub-optimal performance de-
tection facility is only one application of the static analysis
framework for Epsilon. In the future, we plan to look into
facilities such as program comprehension, metamodel cov-
erage analysis, impact analysis, etc. We will also look into
the possibility of pre-loading models and look for more fine-
grained performance patterns for EOL programs.

8. REFERENCES
[1] Epsilon labs. https://epsilonlabs.googlecode.com/

svn/trunk/StaticAnalysis/.

[2] A. Balogh and D. Varró. Advanced model
transformation language constructs in the VIATRA2
framework. In Proceedings of the 2006 ACM
symposium on Applied computing, pages 1280–1287.
ACM, 2006.

[3] P. Friese and B. Kolb. Validating Ecore models using
oAW Workflow and OCL. Eclipse Summit Europe,
2007.

[4] J.-M. Gauthier, F. Bouquet, A. Hammad, F. Peureux,
et al. Verification and Validation of Meta-Model Based
Transformation from SysML to VHDL-AMS. In
MODELSWARD 2013, 1st Int. Conf. on
Model-Driven Engineering and Software Development,
pages 123–128, 2013.

[5] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of
computer programming, 72(1):31–39, 2008.

[6] A. Koenig and B. Moo. Templates and duck typing.
Dr. Dobbs, June, 2005.

[7] D. Kolovos. An extensible platform for specification of
integrated languages for model management. PhD
thesis, University of York, 2008.

[8] D. Kolovos, L. Rose, R. Paige, and
A. Garcıa-Domınguez. The Epsilon Book. Structure,
178, 2010.

[9] D. S. Kolovos, R. F. Paige, and F. A. Polack. The
Epsilon Object Language (EOL). In Model Driven
Architecture–Foundations and Applications, pages
128–142. Springer, 2006.

[10] L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia
live: a flexible graphical modelling tool. In Proceedings
of the 2012 Extreme Modeling Workshop, pages 15–20.
ACM, 2012.

[11] J. Sánchez Cuadrado, F. Jouault, J. Garćıa-Molina,
and J. Bézivin. Deriving ocl optimization patterns
from benchmarks. Electronic Communications of the
EASST, 15, 2008.

[12] S. Sendall and W. Kozaczynski. Model transformation:
The heart and soul of model-driven software

development. Software, IEEE, 20(5):42–45, 2003.

[13] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: eclipse modeling framework.
Pearson Education, 2008.

[14] Z. Ujhelyi, A. Horváth, and D. Varró. A generic static
analysis framework for model transformation
programs. Technical report, Technical report,
Budapest University of Technology and Economics,
2009.

[15] A. Vieira and F. Ramalho. A static analyzer for model
transformations. In 3rd International Workshop on
Model Transformation with ATL, Zurich, Switzerland,
2011.

57

	Article 5
	Article 7
	Article 9
	Article 6
	Article 12
	Article 2
	Article 11

