
Automated Analysis, Validation and Suboptimal Code
Detection in Model Management Programs

Ran Wei
University of York

Deramore Lane, Heslington
York, United Kingdom

ran.wei@york.ac.uk

Dimitrios S. Kolovos
University of York

Deramore Lane, Heslington
York, United Kingdom

dimitris.kolovos@york.ac.uk

ABSTRACT
As MDE is increasingly applied to larger and more complex
systems, the models that MDE platforms need to manage
can grow significantly in size. Additionally, model manage-
ment programs that interact with such models become larger
and more complicated, which introduces further challenges
in ensuring their correctness and maintainability. This paper
presents an automated static analysis and validation frame-
work for languages of the Epsilon platform. By perform-
ing static analysis on model management programs written
in the Epsilon languages, this framework aims to improve
program correctness and development efficiency in MDE
development processes. In addition, by applying analysis
on model management programs, sub-optimal performance
patterns can be detected early in the development process
and feedback can be provided to the developers to enable
efficient management of large models.

1. INTRODUCTION
Model Driven Engineering (MDE) aims at raising the level
of abstraction at which software is developed, by promoting
models into first-class artefacts of the development process.
For MDE to be applicable in the large and complex sys-
tems, a set of model management tools and languages are
needed to enable developers to manage their models in an
automated and efficient manner. Typically, model manage-
ment tasks include validation, transformation, comparison,
merging and text generation [7].

The Epsilon platform [7] is a platform which provides a
broad range of model management languages built on top of
an extensible common imperative model query and modifi-
cation language called the Epsilon Object Language (EOL).
EOL is an interpreted language that supports optional typ-
ing of variables, operations, and operation parameters. This
provides a high degree of flexibility (for example, it enables
duck typing [6]) and eliminates the need for explicit type
casts, as typing-related information is currently only con-
sidered at runtime. On the other hand, the absence of a

Copyright c© 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.
BigMDE ’14, July 24, 2014 York, UK

static analyser for EOL and the languages that build atop
it, implies that a wide range of genuine errors that could be
detected at design time are only detected at runtime.

Beyond detecting type-related errors, a static analyser could
also be used to support advanced analysis capabilities, such
as code detection, to improve the performance of model
querying and transformation programs, particularly in the
context of processing large models.

The remainder of the paper is organised as follows. In Sec-
tion 2 we briefly motivate the need for static analysis capa-
bilities in model management languages, in particular the
Epsilon platform. In Section 3 we present the architecture
of a static analysis framework for the Epsilon platform and a
static analyser for the Epsilon Object Language. In Section
4 we present a sub-optimal code detection facility developed
atop the static analysis framework. In Section 5 we discuss
preliminary evaluation of our work. In Section 6 we dis-
cuss related work and in Section 7 we conclude and provide
directions for further work.

2. BACKGROUND
MDE allows developers to construct models which abstract
away from technical details, using concepts closely related to
the domain of interest to reduce accidental complexity. The
constructed models are then transformed into part (or all) of
the target system under development. Whilst Model Trans-
formation is considered to be the heart and soul of Model
Driven Engineering [12], other model management opera-
tions are equally important. Typically, such operations in-
clude model validation, model merging, model comparison,
etc.

2.1 Epsilon
Epsilon is a mature and well-established family of interop-
erable languages for model management. Languages in Ep-
silon can be used to manage models of diverse metamod-
els and technologies. The architecture of the Epsilon plat-
form is depicted in Figure 1. At the core of Epsilon is the
Epsilon Object Language (EOL) [9]. EOL is an impera-
tive language which reuses a part of the Object Constraint
Language OCL) but provides additional features such as
multiple model access, statement sequencing and groupings,
uniformity of function invocation, model modification, de-
bugging and error reporting. Although EOL can be used
as a general purpose model management language, its pri-
mary aim is to be reused in task-specific languages. Thus,



Figure 1: The basic structure of the Epsilon platform.

by extending EOL, a number of task-specific model man-
agement languages have been implemented, including those
for model transformation (ETL), model comparison (ECL),
model merging (EML), model validation (EVL), model refac-
toring (EWL) and model-to-text transformation (EGL).

Epsilon is metamodeling-technology agnostic [7], models writ-
ten in different modelling languages can be managed by Ep-
silon model management languages via the Epsilon Model
Connectivity (EMC) layer, which offers a uniform interface
for interacting with models of different modelling technolo-
gies. Currently, EMC drivers have been implemented to
support EMF [13], MDR, Z specifications in LaTeX using
CZT and plain XML. Epsilon is an Eclipse project and is
widely used both in the academia and the industry1.

2.2 Epsilon and static analysis
EOL supports optional typing of variables, operations and
operation parameters. The listing below demonstrates the
flexibility that this delivers using as an example, a program
that operates on an Ecore model. In line 1, an operation
called getName() is defined, its context type is Any, which
means that the operation can be invoked on objects/model
elements of any type. In line 2, the keyword self refers
to the object on which the operation is called, for exam-
ple, in the statement o.getName(), self refers to o. Thus in
line 2, the operation checks if the object is an instance of
ENamedElement, if it is, it will return self.name. A typi-
cal static analyser would complain in line 3 that ”self.name”
does not exist because the type of self is declared as Any,
not Ecore!ENameElement. However, this will never be a
problem at run-time due to the if condition in line 2.

1 operation Any getName() {
2 if(self.isTypeOf(Ecore!ENamedElement))
3 return self.name;
4 else return "Unnamed";
5 }

1http://eclipse.org/epsilon/users/

On the other hand, some genuine errors can also remain
hidden until runtime without the help of static analysis.
The listing below demonstrates an example of a genuine er-
ror. In line 1, a variable named o is defined to be of type
Ecore!EClass, and in line 2, o is assigned the value of a
random EClass in the Ecore model. In line 3, the program
tries to print the value property of o which does not exist
according to the Ecore metamodel. As such, an error will
be thrown at runtime.

1 var o : Ecore!EClass;
2 o = Ecore!EClass.all.first();
3 o.value.println();

As the size of such programs grow, locating genuine errors
becomes an increasingly difficult task. For example, the
EOL program that underpins the widely-used EuGENia tool
[10] consists of 1212 lines of code, that query and modify 4
models that conform to 4 different metamodels concurrently.
Performing code review on this code for genuine error detec-
tion is a time consuming process. Additionally, performing
changes is also difficult, as developers have to manually iden-
tify and manage dependencies and relations between build-
ing blocks (operations for example) of such programs. Such
tasks require effort and time [15]. For instance, to delete an
operation named F1 it is necessary to know if it is invoked
by any other operations or code blocks. Manually perform-
ing this task is error-prone.

Since model management programs interact with models,
performing static analysis on model management programs
can also help identify sub-optimal performance patterns in
the process of accessing models. Analysis can also help com-
prehend the model management programs. For example,
coverage analysis can be performed to find out which parts
of the metamodel of particular models are accessed, and
test cases can be generated based on this comprehension to
better test a model management program. With the poten-
tial benefits mentioned above, we propose and implement a
static analysis framework for Epsilon.



Figure 2: Detecting sub-optimal performance patterns from Abstract Syntax Trees.

3. TOWARDS A STATIC ANALYSIS FRAME-
WORK FOR EPSILON

In this section we discuss the proposed static analysis frame-
work in detail. The general idea of our approach can be il-
lustrated by Figure 2. We first transform the Homogeneous
Abstract Syntax Tree of an EOL program into a Heteroge-
neous Abstract Syntax Tree, we then apply resolution al-
gorithms (including variable resolution and type resolution)
to derive a Heterogeneous Abstract Syntax Graph, with its
elements connected to each other. We then perform pattern
detection to detect sub-optimal code. The aim of the frame-
work is to provide a generic static analysis facility for all
languages of the Epsilon platform. Since the core language
of the Epsilon platform is EOL, we first develop a static
analyser for EOL.

3.1 Deriving Heterogeneous Abstract Syntax
Trees

Currently, Epsilon provides an ANTLR [7] based parser for
EOL. The ANTLR parser produces homogeneous Abstract
Syntax Trees (AST) with each node containing a text and
an id, which the EOL execution engine consumes. To facil-
itate static analysis at a high level of abstraction, our first
step was to define an EMF-based metamodel for EOL and
to transform these homogeneous ASTs to models (heteroge-
neous trees) that conform to the EOL metamodel.

As EOL is a reasonably complex language, we only intro-
duce the basic and novel parts of the EOL metamodel and
the EOL standard library. Figure 3 lists a number of basic
building blocks that constitute an EOL program. The fun-
damental element of the EOL metamodel is the EolElement
metaclass, as all other metaclasses in the EOL metamodel
directly or indirectly extend it, and contains information
related to the line and column numbers of the respective
text in an EOL program for traceability purposes. A Pro-
gram contains a number of Import(s), which are used to im-
port other programs. A Program also contains a number of
OperationDefinition(s) which define additional operations/-
functions on existing types. A Program contains a Block,
which contains a number of Statement(s). Expression is
also a fundamental element which is generally contained in
Statement(s) and other EolElement(s). For each of the Ex-
pression, there is a Type associated to it. The type of the
Expression is generally unknown at the time the source code
of a program is parsed into an EOL model, but is resolved
later in the type resolution process. In order to run an EOL

program that involves processing models, Epsilon currently
requires the user to select the required models/metamod-
els via a user interface at runtime. To facilitate accessing
models at design-time for static analysis, we introduce the
ModelDeclarationStatement to declare references to models
in the source code. The syntax of a model declaration state-
ment is as follows.

1 model library driver EMF {
2 nsuri = "http://library/1.0"
3 };

Like Epsilon, the static analysis framework is also technology-
agnostic. As such, beyond the model’s local name, a model
declaration statement defines the type of the model in ques-
tion (in this case EMF), as well as a set of model-type-
specific key-value parameters (in this case nsuri = http :
//library/1.0) that the framework can use to obtain the
model’s metamodel. We have currently implemented facili-
ties to support models defined using EMF and plain XML.
In the future we plan to extend the static analysis frame-
work with support for other types of models supported by
Epsilon, such as models defined in MDR, spreadsheets, etc.

With the metamodel defined, we developed a facility which
transforms the ANTLR based ASTs into models that con-
form to the EOL metamodel. It should be noted that at the
stage of AST to EOL model transformation, declared models
are not inspected. So at this stage, for the statement

1 var book : Book

it is only known that variable book is of type ModelElement-
Type whose elementName is Book. Later in the type res-
olution process, this information is used against declared
models so that the Book type can be resolved.

Comparing with our current approach, an alternative ap-
proach would have been to redefine EOL’s grammar using a
toolkit such as Xtext or EMFText which can automate the
source-code to model transformation process but we have
opted for an intermediate transformation instead in order
to reuse Epsilon’s robust and proven parsers.

3.2 Deriving Heterogeneous Abstract Syntax
Graphs



Figure 3: The basic structure the EOL metamodel.

With the EOL metamodel and the AST to EOL transfor-
mation defined, the next step of the process involves linking
elements of the EOL model (heterogeneous tree) constructed
in the previous phase to derive an abstract syntax graph. We
have created several facilities to achieve this.

3.2.1 EOL Visitor
To facilitate the traversal of different elements in the EOL
model and to support extensibility, we developed a facility
which generates Java visitor classes from Ecore metamodels.
We then generated visitor classes from the EOL metamodel
which provide a general mechanism to traverse all elements
in an EOL model. The EOL Visitor serves as the infrastruc-
ture of the static analysis framework, as all other facilities
in the static analysis framework extend the EOL visitors to
implement functionalities. The EOL visitor also provides
high extensibility as new analysis mechanisms can be imple-
mented simply by extending the EOL visitor.

3.2.2 Variable Resolver
The first phase of the static analysis on an EOL program in-
volves resolving identifiers to their definitions. Context-free
identifiers in EOL can refer to 1) declared variables/oper-
ation parameters and 2) undeclared variables provided by
the execution engine at run-time. For declared variables,
the variable resolver establishes links between the variable
declaration and its references. For example, in line 1 of the
listing provided below, a variable named a is declared. In
line 2, a is referenced. The variable resolver will establish a
link between the reference in line 2 and the declaration in
line 1.

1 var a : Integer;
2 a = 10;

Variable resolution also applies to parameters in operation
definitions. In the following listing, the variable resolver
will establish a link between the reference of the parameter
toPrint in line 2 and its declaration in line 1.

1 operation definedPrint(toPrint: String) : String {
2 toPrint.println();
3 }

There are also some implicit variables which are not declared
by the developer but are rather provided by the execution
engine. For example, the keyword self in an operation def-
inition refers to the object/model element on which the op-
eration is invoked. The following listing demonstrates how
self is used. The variable resolver will establish a link be-
tween self and the object on which printSelf is invoked.

1 operation Any printSelf() {
2 self.println();
3 }

It is important to note that at the stage of variable resolu-
tion, model element types are not resolved.

3.2.3 Type Resolver
In EOL there are several built-in primitive types (Boolean,
Integer, Real, String) and collection types (Set, Bag, Se-
quence and OrderedSet). There is also a built-in Map type
and the Any type. These types are all subclasses of Type
in the EOL metamodel. The resolution of the above types
is performed during the heterogeneous abstract syntax tree
derivation. There is also a subclass of Type in the EOL
metamodel called ModelElementType which includes typ-
ing information regarding models defined using different tech-
nologies. Such typing information should be determined by



EOL Visitor

AST2EOLEOL 
Metamodel

EOL Variable Resolver

EOL Type Resolver Metamodel 
Connectivity

EOL Abstract Syntax Tree

Figure 4: The architecture of the static analysis framework

accessing the corresponding models.

To support accessing metamodels at design-time, we intro-
duced ModelDeclarationStatements, which are flexible to
support models defined in different modelling technologies.
A model declaration defines the model’s name, aliases, the
modelling technology (driver) that the model conforms to,
and a set of driver-specific parameters. The listing below is
an example of ModelDeclarationStatement; it declares a
model named library with alias l and its driver to be EMF ,
it then specifies the EMF-specific namespace URI (nsuri)
of the model so that the analyser knows how to locate and
access its metamodel.

1 model library alias l driver EMF {nsuri = "http://
library/1.0"};

To facilitate uniform analysis of the structural information of
models of diverse modelling technologies, the static analysis
framework needs to convert type-related information from
different modelling technologies into a common representa-
tion. Instead of inventing a new representation, we have
decided to use EMF’s Ecore. As such, the static analysis
framework provides a modular architecture where pluggable
components are responsible for transforming different types
of model declarations into Ecore EPackages. For different
modelling technologies:

• For EMF models, return the registered EPackage by
looking up the metamodel nsURI property of the model
declaration.

• For plain XML, construct an EPackage by analysing
the contents of a sample model file specified by respec-
tive the model declaration parameter.

We have developed drivers for EMF models and plain XML
files, and a common interface which allows new drivers for
different modelling technologies to be integrated with the
static analysis framework. By accessing models/metamod-
els, the type resolver is able to resolve types with regards to
models/metamodels.

The variable resolver and type resolver constitute the in-
frastructure of the static analysis framework for the Epsilon
languages. The infrastructure is depicted in Figure 4. The
EOL Abstract Syntax Tree layer is provided by the EOL

engine, the AST2EOL layer uses the AST and the EOL
metamodel to translate the AST to an EOL model. The
EOL Variable Resolver and the EOL Type Resolver, both
make use of the EOL Visitor and the Metamodel Connec-
tivity layer (which is used to read metamodels) to establish
a fully type-resolved EOL model.

The static analysis infrastructure can be easily extended. As
proof of concept, we have also implemented all of the afore-
mentioned facilities for the Epsilon Transformation Language.
We extended the EOL metamodel to create an ETL meta-
model, with the ETL metamodel, we created the ETL visitor
facility; we extended the AST2EOL to create a AST2ETL
facility; we extended the EOL variable resolver and type re-
solver to create ETL variable and type resolvers. The EOL
and ETL static analysers can be found under the Epsilon
Labs open-source project [1].

4. SUBOPTIMAL CODE DETECTION
Rule-based model transformation languages usually rely on
query or navigation languages for traversing the source mod-
els to feed transformation rules with the required model ele-
ments. In [11], the authors suggest that in complex transfor-
mation definitions, a significant part of the transformation
logic is devoted to model navigation. In the context of large-
scale MDE processes, models can contain several millions of
elements. Thus, it is important to retrieve desired elements
in an efficient way. On top of the static analysis framework,
we have built a facility which is able to detect sub-optimal
performance patterns when navigating and retrieving model
elements. This facility performs pattern matching to detect
potential computationally heavy code in EOL (and poten-
tially all Epsilon languages). It does so by matching patterns
defined in the Epsilon Pattern Language (EPL) [8] against
fully resolved EOL abstract syntax graphs.

The structure of this facility is depicted in Figure 5. The
SubOptimalDetector has a EOLModel as input to perform
the detection; it makes use of the EPLEngine of the Ep-
silon platform to derive Abstract Syntax Trees, it has a set
of defined EPLPatterns (.epl scripts) using EPL, and a
logging facility (LogBook) to keep the warning messages it
generates for pattern matches.

In this section, we present the sub-optimal detection facility.
We provide several examples that illustrate potential sub-
optimal performance patterns in the context of large scale
model manipulation. We then present and explain a sub-



Figure 5: The structure of the sub-optimal performance detection facility

optimal performance pattern defined in EPL. It should be
noted that this facility targets EOL programs, however, it
can be easily extended to cope with programs written in
other Epsilon languages as discussed earlier.

The examples we present are all based on a simple Library
metamodel illustrated in Figure 6. The Library metamodel
contains two simple metaclasses, Author and Book. An Au-
thor has a first name, a surname and a number of published
Books where a Book has a name and an Author. The asso-
ciation between Author and Book is bidirectional, they are
books and authors respectively.

Figure 6: The Library metamodel

4.1 Inverse navigation
A frequent operation in EOL is to retrieve all model elements
of a specific type by using the .all property call which can
be a computationally heavy operation to perform as models
grow in size. By analysing the metamodel of the model
under question, bidirectional relationships between model
elements can be used to avoid such heavy computations.

1 var a = Author.all.first;
2 var books = Book.all.select(b|b.author = a);
3 var aBook = Book.all.selectOne(b|b.author = a);

The listing above demonstrates a potential performance bot-
tleneck. In line 1, an Author is retrieved from the model.
In line 2, all instances of type Book are retrieved and then
a conditional select is performed to find the books that are
written by Author ’a’. However, since the relationship be-
tween Author and Book is bidirectional, this can be replaced
by the (more efficient) statement:

1 var books = a.books;

Thus the complexity of the operation all is reduced from n
to 1 given that n is the number of Books in the model under

question. It is also the case for the selectOne operation in
line 3, which can be rewritten as:

1 var aBook = a.books.first();

4.2 Compound select operations
Another computationally-heavy pattern is the presence of
compound select operations on the same collection.

1 var authors = Author.all.select(a|a.first_name =
2 ’William’).select(a|a.surname = ’Shakespeare’);

Listing 1: a potential performance overhead using
compound select operations

Listing 1 demonstrates such operations. In line 1, all of the
Authors are retrieved first, then a select operation is per-
formed to select all Authors whose first names is William,
then another select operation is performed to select all Authors
whose surname is Shakespeare. The complexity of this op-
eration is n2 given that n is the number of Authors in the
model under question. However, the condition of both the
select operations can be put together to form a single select
operation. And the statement above can be written as

1 var authors = Author.all.select(a|a.first_name =
2 ’William’ and a.surname = ’Shakespeare’);

the complexity of this operation is therefore n as the collec-
tion of the Authors is only traversed once.

4.3 Select operation on unique collections
Performing select operations on unique collections (sets) can
sometimes be inefficient depending on the condition of the
select operation.

1 var authorOne = Author.all.first;
2 var authorTwo = Author.all.last;
3 var bookOne = authorOne.books.first;
4 var bookSet : Set(Book);
5 bookSet.addAll(authorTwo.books);
6 bookSet.select(b|b = bookOne);

Listing 2: Select operation on unique collection



Figure 7: The model representation for Book.all.select(b|b.name = a)

Listing 2 demonstrates an inefficient and computationally
expensive select operation. In Line 1 and 2, two Authors are
retrieved from the model; in line 3, a Book is retrieved from
authorOne’s publications; in line 4, a Set called bookSet is
created and in line 5, all of the Books that authorTwo pub-
lished are added to bookSet. In line 6 the select operation
iterates through all of the books in the bookSet and find the
ones that match the bookOne. However, the bookSet is a
unique collection, which means that all of the elements in it
only appear once. Therefore, it is not necessary to perform
a select operation but rather a selectOne operation, as the
select operation would return at most one result eventually.
The complexity of the select operation is n given that n
is the number of books that authorTwo published; If the
select operation is replaced with selectOne, the complexity
of it would be 1 for the best case scenario and n for the worst
case scenario (n/2 for the average case).

4.4 Collection element existence
In some cases, checking existence of an element inside a col-
lection can be written in inefficient ways.

1 if(Book.all.select(b|b.name = "EpsilonBook")
2 .size() > 0) {
3 "There is a book called EpsilonBook".println();
4 }

Listing 3: Collection element existence

Listing 3 demonstrates such a scenario. In line 1, the con-
dition of the if statement retrieves all instances of Book,
then selects the ones with the name EpsilonBook, and cal-
culates the size of it then evaluates if the size is greater
than 0. This operation eventually checks for the existence
of a book named EpsilonBook. Thus, this operation can be
more efficiently re-written as:

1 Book.all.exists(b|b.name = "EpsilonBook")

4.5 Select the first element in a collection

Listing 4 demonstrates another example of sub-optimal EOL
code.

1 var anEpsilonBook = Book.all.select(b|b.name =
2 "EpsilonBook").first();

Listing 4: Select an element in a collection

In line 1, a select operation is performed on all of the in-
stances of Book to filter out the books with the name ’Ep-
silonBook’, then a first operation is performed to select the
first one of the collection returned by select. This can be
more efficiently re-written as:

1 var anEpsilonBook = Book.all.selectOne(b|b.name =
2 "EpsilonBook");

to avoid traversing all of the instances of Book.

4.6 A sub-optimal performance pattern
In this section we present a sub-optimal performance pattern
which is written in the Epsilon Pattern Language (EPL). To
understand how this pattern works, it is first important to
understand what is contained in an EOL model for a certain
EOL program.

4.6.1 Understanding an EOL model
Figure 7 illustrates a fragment of an EOL model which rep-
resents the statement below.

1 Book.all.select(b|b.author = a);

Firstly, invocations of the select() operation in the EOL
metamodel are represented by the FOLMethodCallExpression
(FirstOrderLogic method call) metaclass; it has a name (an
instance of NameExpression) and an iterator (an instance
of V ariableExpression). In this case, the name is ’select’
and the iterator is ’b’.



The select operation has a condition, in this case, it is an
instance of EqualsOperatorExpression. The lhs (left hand
side) of it is an instance of PropertyCallExpression, whose
target (an instance of NameExpression) is ’b’ and property
(an instance of NameExpression) is ’author’; the rhs (right
hand side) of it is ’a’ (an instance of NameExpression). Both
the lhs and rhs of the EqualsOperatorExpression have re-
solvedTypes, in this case, they are both Author (instances
of ModelElementTypes).

The target of the FOLMethodCallExpression is an in-
stance of PropertyCallExpression with its target as Book
(an instance of NameExpression) and its property as all (an
instance of NameExpression). The types of these expres-
sions, altogether with some irrelevant details are omitted
for the purpose of the discussion.

4.6.2 The EPL pattern
In Listing 5, we define an EPL pattern to match occurences
of the pattern described above. In lines 2-6, a guard is de-
fined to look for a FOLMethodCallExpression the name
of which is either ’select’ or ’selectOne’; the type of the
condition should be EqualsOperatorExpression; its target
should be an instance of PropertyCallExpression; and the
property of the PropertyCallExpression should be ’all’.

In lines 8-10, a guard is defined to look for an instance of
EqualsOperatorExpression in the condition of the FOL-
MethodCallExpression found previously, the lhs of which
should be an instance of PropertyCallExpression.

Lines 12-14 specify that the resolvedType of the lhs should
be an instance of ModelElementType. In lines 16-18, it
specifies that the resolvedType of the rhs should be an in-
stance of ModelElementType. In lines 20-24, it specifies
that the type of the lhs and the rhs should be the same.

Lines 26-37 perform the match of the pattern. This part
firstly fetches the EReference from the lhs of the condition
(in this case, ’b.author’, it is an EReference because as
previously discussed, all metamodels are converted to EMF
metamodels for uniformity). The EReference is then in-
spected; if it is not null and it has an eOpposite reference,
the pattern continues to check if the type of the eOpposite
of the reference is the type of the rhs of the condition (in
this case, ’author’).

In lines 39-47, a helper method is defined to help look for an
EReference given an EClass and a name; its implementa-
tion is straightforward.

1 pattern InverseNavigation
2 folcall : FOLMethodCallExpression
3 guard: (folcall.method.name = ’select’ or folcall.

method.name = ’selectOne’)
4 and folcall.conditions.isTypeOf(

EqualsOperatorExpression)
5 and folcall.target.isTypeOf(PropertyCallExpression)
6 and folcall.target.property.name = ’all’,
7
8 condition : EqualsOperatorExpression
9 from: folcall.condition

10 guard: condition.lhs.isTypeOf(
PropertyCallExpression)

11

12 lhs : PropertyCallExpression
13 from: condition.lhs
14 guard: lhs.resolvedType.isTypeOf(ModelElementType),
15
16 rhs : NameExpression
17 from: condition.rhs
18 guard: rhs.resolvedType.isTypeOf(ModelElementType),
19
20 lhsType : ModelElementType
21 from: lhs.resolvedType,
22 rhsType : ModelElementType
23 from: rhs.resolvedType
24 guard: lhsType.ecoreType = rhsType.ecoreType
25 {
26 match {
27 var r = getReference(lhs.target.resolvedType.

ecoreType, lhs.property.name);
28 if(r.upperBound = 1 and r.eOpposite <> null and

r <> null)
29 {
30 if(r.eOpposite.eType = lhs.target.resolvedType

.ecoreType)
31 {
32 return true;
33 }
34 }
35 return false;
36 }
37 }
38
39 operation getReference(class: Any, name:String)
40 {
41 for(r in class.eReferences)
42 {
43 if(r.name = name)
44 return r;
45 }
46 return null;
47 }

Listing 5: EPL pattern for inverse navigation

4.6.3 The Java pattern
Our original attempt to construct the sub-optimal perfor-
mance detection facility was to define patterns using Java,
we defined a method in Java to achieve the same function
described above. The equivalent Java implementation is 76
lines of code with a long chain of If statements which makes
it very difficult to comprehend. With the EPL approach,
the patterns are more comprehensible. Developers can con-
tribute to the pattern pool by defining their own EPL pat-
terns and registering them with the framework through ap-
propriate extension points.

5. TOOL SUPPORT
The static analyser proposed in this paper is a pragmatic
static analyser. The flexibility of EOL allows its users to
write code with optional typings that always work at run-
time. Reporting errors on such cases are not desirable for
EOL, especially on legacy EOL code that is proven to work
with extensive testing. Thus the design decision was to al-
low such behaviour and delegate the resolution to the EOL
execution engine. We applied the static analyser on a large
EOL program (Ecore2GMF.eol) that underpins the Euge-
nia tool [10] for evaluation. We allow optimistic typing -
when Any type is encountered in assignments, operation
calls and property calls, we provide a warning message to



Figure 8: EOL Editor Screen Shot

notify the user that there might be potential type incom-
patibility issues at run-time. With this configuration, anal-
ysis on Ecore2GMF.eol which consists of 1212 lines of code
generates 126 warning messages. This result shows that the
static analyser supports plausible legacy code. At the same
time, it provides reasonable warning messages when optional
typing is used.

After evaluating the static analyser, we evaluate the sub-
optimal performance detection facility. Figure 8 provides a
screenshot of the editor we implemented by extending the
existing EOL Eclipse-based editor. The lines of code with
warnings represent matches of the patterns discussed above.
The implementation of the editor is able to extract and dis-
play the warning messages generated by the detection facil-
ity. The sub-optimal performance detection facility is not
only able to detect patterns that incur performance over-
heads, but also provide suggestions on how to rewrite the
code. An example warning message is shown in line 8, the
warning message suggests to rewrite the operation as:

1 Author.all.select(a|a.first_name = "William" and a.
surname = "Shakespeare")

The rest of the patterns function as expected.

6. RELATED WORK
There are several automated analysis and validation tools for
model management programs. In [14] the authors propose
a generic static analysis framework for model transforma-
tions specified in VIATRA2 Textual Command Language
(VTCL [2]). The latest static analysis framework detects
common errors and type related errors regarding models.
However, the VIATRA2 framework provides limited sup-
port for other metamodelling technologies as it uses its own
modelling language (VTML) and store the metamodels in
the model space. Additionally, VTCL is not as flexible as
EOL; it does not provide optional typing mechanisms as
EOL does.

Acceleo [4] provides static analysis mechanisms for syntax
highlighting, content assistant, and model related error de-
tection. However, to the best of our knowledge, it does not
support modelling technologies other than EMF.

Xtend [3] also provide static analysis facilities which are used
to detect syntax and built-in type-related errors, model re-
lated type information validations are not included.

In [15], a static analysis tool is proposed to detect errors in
model transformations written in the Atlas Transformation
Language (ATL), the tool presented is used to convert an
ATL program into a model, but no validation algorithms are
implemented on this tool to our best knowledge.

The latest release of ATL IDE [5] provides a static analy-
sis facility, it resolves the types of variables including built-
in ATL types and types related to metamodels. The ATL
IDE also provides code-completion of operation calls and
metamodel element navigations. However, the static analy-
sis is not responsible to provide any errors on type incom-
patibilities as it adopts an optimistic and flexible approach.
The ATL platform also provides limited support for multiple
modelling technologies other than EMF.

In [11], ways of deriving optimisation patterns from bench-
marking OCL operations for model querying and navigation
are proposed and several optimisation patterns are identi-
fied, including short-circuit boolean expressions, opposite
relationship navigation, operations on collections, etc.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have reported on our work on designing and
developing a static analysis framework for the core language
of Epsilon (EOL). The focus of our report is mostly on the
sub-optimal detection facility of the static analysis frame-
work. However, it is to be noted that the static analysis
framework is able to detect various type-related errors that
may occur using EOL. The static analysis framework follows
a pragmatic approach so as not to compromise the flexibility



of the Epsilon languages. As a result, it can generate false
negatives (problems that exist but cannot be detected by
the static analyser). To minimise the number of false neg-
atives, a more strict coding style is encouraged - to avoid
the use of Any type as much as possible, so that the static
analyser can perform more accurate analysis. This is clearly
a trade-off to make; to obtain better error reporting, devel-
opers need to write more boilerplate code with explicit type
casting, while to obtain better flexibility, developers need
to bare with the fact that the analyser may produce false
negatives that emerge at run-time.

It should be noted that the sub-optimal performance de-
tection facility is only one application of the static analysis
framework for Epsilon. In the future, we plan to look into
facilities such as program comprehension, metamodel cov-
erage analysis, impact analysis, etc. We will also look into
the possibility of pre-loading models and look for more fine-
grained performance patterns for EOL programs.

8. REFERENCES
[1] Epsilon labs. https://epsilonlabs.googlecode.com/

svn/trunk/StaticAnalysis/.

[2] A. Balogh and D. Varró. Advanced model
transformation language constructs in the VIATRA2
framework. In Proceedings of the 2006 ACM
symposium on Applied computing, pages 1280–1287.
ACM, 2006.

[3] P. Friese and B. Kolb. Validating Ecore models using
oAW Workflow and OCL. Eclipse Summit Europe,
2007.

[4] J.-M. Gauthier, F. Bouquet, A. Hammad, F. Peureux,
et al. Verification and Validation of Meta-Model Based
Transformation from SysML to VHDL-AMS. In
MODELSWARD 2013, 1st Int. Conf. on
Model-Driven Engineering and Software Development,
pages 123–128, 2013.

[5] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of
computer programming, 72(1):31–39, 2008.

[6] A. Koenig and B. Moo. Templates and duck typing.
Dr. Dobbs, June, 2005.

[7] D. Kolovos. An extensible platform for specification of
integrated languages for model management. PhD
thesis, University of York, 2008.

[8] D. Kolovos, L. Rose, R. Paige, and
A. Garcıa-Domınguez. The Epsilon Book. Structure,
178, 2010.

[9] D. S. Kolovos, R. F. Paige, and F. A. Polack. The
Epsilon Object Language (EOL). In Model Driven
Architecture–Foundations and Applications, pages
128–142. Springer, 2006.

[10] L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia
live: a flexible graphical modelling tool. In Proceedings
of the 2012 Extreme Modeling Workshop, pages 15–20.
ACM, 2012.

[11] J. Sánchez Cuadrado, F. Jouault, J. Garćıa-Molina,
and J. Bézivin. Deriving ocl optimization patterns
from benchmarks. Electronic Communications of the
EASST, 15, 2008.

[12] S. Sendall and W. Kozaczynski. Model transformation:
The heart and soul of model-driven software

development. Software, IEEE, 20(5):42–45, 2003.

[13] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: eclipse modeling framework.
Pearson Education, 2008.

[14] Z. Ujhelyi, A. Horváth, and D. Varró. A generic static
analysis framework for model transformation
programs. Technical report, Technical report,
Budapest University of Technology and Economics,
2009.

[15] A. Vieira and F. Ramalho. A static analyzer for model
transformations. In 3rd International Workshop on
Model Transformation with ATL, Zurich, Switzerland,
2011.


