Tool Support for Model Splitting using Information
Retrieval and Model Crawling Techniques

Daniel G. Striiber, Michael Lukaszczyk, Gabriele Taentzer
Philipps-University Marburg
Department for Mathematics and Computer Science
Hans-Meerwein-Str., 35032 Marburg, Germany

{strueber,lukaszcz22 taentzer}@informatik.uni-marburg.de

ABSTRACT

To facilitate the collaboration in large-scale modeling sce-
narios, it is sometimes advisable to split a model into a set
of sub-models that can be maintained and analyzed indepen-
dently. Existing automated approaches to model splitting,
however, suffer from insufficient consideration of the stake-
holder’s intentions and add a significant overhead for com-
prehending the created decompositions. We present a new
tool that aims to create more informed model decomposi-
tions by leveraging existing domain knowledge in the form
of textual descriptions. From the user perspective, the tool
comprises a textual editor for assembling the descriptions
and a visual editor for reviewing and post-processing the
generated splitting suggestions. We preliminarily evaluate
the tool in a case study involving a real-life model.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: Tools; D.2.8 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment

1. INTRODUCTION

As model-driven engineering is applied in ever-greater sce-
narios ranging over significant spans in time and space, the
maintenance obstacles induced by large models increase in
urgency. Large models without a proper decomposition are
hard to comprehend, to change, to reuse, and to collaborate
on. Even in projects where an initial decomposition is tai-
lored with great care, changing requirements may deem it
necessary to refactor for a finer-grained or even orthogonal
one. As the manual refactoring of large models is non-trivial
and expensive, this problem calls for automation.

Earlier automated approaches to model splitting, such as
those presented in [7, 12], suggest techniques based on anal-
ysis of strongly connected components or clusters, not ac-
counting for the semantics of the split and the intention
for performing it. To address this shortcoming, a recent ap-

BigMDE’ 14 July 24, 2014. York, UK

Copyright (C) 2014 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

proach proposed in [11] aims to create model decompositions
from existing domain knowledge in the form of textual de-
scriptions: The user provides a set of descriptive texts, each
describing one sub-model in the target decomposition. From
this input, a splitting suggestion is created using a combined
information retrieval and topology analysis approach. The
descriptions can be assembled from available requirement or
documentation artifacts. However, the input set is not re-
quired to be complete: In fact, the approach can support the
user in incrementally discovering sub-model descriptions.

The contribution of this paper is a tool and supporting semi-
automated user process making the outlined splitting tech-
nique available to modelers. We have tested it on large meta-
models in the magnitude of 100 to 250 classifiers. As design
goals, we target usability and extensibility for the splitting
of instances of arbitrary meta-models. The remainder of this
paper is divided as follows: In Section 2, we briefly illustrate
the underlying technique. The user process is shown in Sec-
tion 3. In Sections 4 and 5, we elaborate on the design goals
and implementation. In Section 6, we present a case study
preliminarily evaluating the proposed tool and user process.
We discuss related work and conclude in Sections 7 and 8.

2. BACKGROUND

In this section, we give a brief overview on model splitting
as perfomed by our tool. A detailed account is found in [11].

The technique, outlined in Fig. 1, takes three input param-
eters: The model to be split — in the proposed tool, an EMF
meta-model — a set of textual descriptions of each target
sub-model, and a completeness condition. The completeness
condition specifies whether the set of sub-model descriptions
is complete or partial. The technique creates a set of map-
pings from model elements to sub-models, calling it splitting
suggestion. In the case of a complete input set, each element

Model —
Model Splitting
—
Sub-model Information Model Splitting

descriptions || Retrieval Crawling suggestion
Y

Completeness J

condition
(

Figure 1: Underlying model splitting technique.

Input model Output sub-models
Start the splitting -
Perf litt
process @ erform splitting @
Derive a
splitting
suggestion

Define the splitting @ Review and post-process
description the splitting suggestion
@ O

Figure 2: Overview.

is assigned to one sub-model. In the partial case, some el-
ements may remain unassigned. The user can inspect the
unassigned elements to discover additional sub-models and
describe them, incrementally creating a complete split.

Information retrieval. To obtain an initial mapping be-
tween the model and the textual sub-model descriptions, we
apply an established statistical technique from information
retrieval research: Latent Static Analysis (LSA) [8]. For a
query (e.g., a sub-model description) over a fixed set of doc-
uments (e.g., a set of model element names), LSA scores the
relevance of each document to the input query. To compute
the scores, queries and documents are represented as vectors
and the similarity between the query vector and each docu-
ment vector is computed — intuitively speaking, the degree in
that they point in the same direction. Mathematically, this
is calculated in terms of the cosine, yielding a score between
0 and 1. The vector representation is based on a metrics
called term frequency-inverse document frequency (td—idf).

Model crawling. To create the splitting suggestion, we use
the model elements ranked highest by LSA as seeds. Starting
from these seeds, we crawl the model exhaustively to score
each model element’s relevance for each target sub-model.
Afterwards, each model element is assigned to the sub-model
it was deemed most relevant for, ties being broken randomly.
Model crawling extends an approach proposed in [9]. The
underlying intuition is that of a breadth-first search: We first
visit and score the seeds’ neighbours, then the neighbours’
neighbours, et cetera. Scores of newly accessed elements are
calculated based on the scores of previously scored elements.
The scoring formula accounts for topological properties, such
as the connectivity of newly accessed elements, and seman-
tic implications of the respective relationship types (e.g., in
meta-models, containment suggests strong connectivity).

3. USER PROCESS

The user process, shown in Fig. 2, comprises two manual
tasks (2 and 4) and three automated tasks (1, 3 and 5). The
manual tasks rely on human intelligence and domain knowl-
edge. They are facilitated by textual and visual tool support.
The automated tasks are triggered by context menu entries.

split model “"medical.ecore” into
? sub-model MedicalTeam { "Nurses are affiliated with a[]

sub-model Patients { "Unless new patients are in a
life-threatening situation, they must register at

the hospital. This involves scanning their health card,
which contains their name, address, and a unique health
card number. After registering they receive an early
diagnosis which they are classified as either an
inpatient or an gutpatient.” }

% sub-model Ward { "Wards have rooms for patients to stay(]

fine-tune

weight of generalization = @.44
weight of association = @.84

weight of containment = .26

weight of interface realization = ©.13
weight of enum instantiation = @.44
alpha = @.86

Figure 3: Defining the splitting description.

(1) Start the splitting process. Using a context menu
entry on the meta-model to be split, the user triggers the
creation of a splitting description file. The splitting descrip-
tion is automatically opened in a textual editor, shown in
Fig. 3. By default, the file contains a small usage example.

(2) Define the splitting description. Using the editor,
the user assembles the descriptions of the target sub-models.
For a comfortable user experience, the editor provides syn-
tax highlighting, static validation, and folding capabilities.
The textual editor is also used for configuration: Adding the
keyword partially and defining a numerical threshold, the
user can set the completeness condition in order to obtain
a partial split. Furthermore, the user can fine-tune inter-
nal parameters used during the execution of the underlying
technique. In Fig. 3, the weights assigned to different rela-
tionship types and the alpha exponent that shapes the scor-
ing function are modified. However, parameter tuning is an
optional feature: In [11], we identified a default combination
of parameter values that, when applied to six independent
class models, achieved an average accuracy of 80% in com-
parison to hand-tailored decompositions.

(3) Derive a splitting suggestion. Using a context menu
entry on the splitting description file, the user triggers the
automated creation of a splitting suggestion. A splitting
suggestion comprises a set of assignment entries, each hold-
ing a link to a model element, a link to a target sub-model,
and the relevance score. To compute the splitting sugges-
tion, the technique outlined in Section 2 is applied. The
splitting suggestion is persisted to the file system.

(4) Review and post-process the suggestion. To ob-
tain visual access to the splitting suggestion, the user can
now open the model in a model editor. The user activates
a dedicated layer called model splitting. This action trig-
gers the color-coding of model elements corresponding to the
splitting suggestion, shown in Fig. 4. As further visual aid,
the assignment of a model element is also displayed textually
above its name. For post-processing, the user may want to
change some assignments for model elements that were not
assigned to the proper target sub-model. This is done using

& model class disgram 2 < B

% ' 2% Palette

“ih!RQAE -2~
(> Bisting Eleme... ¢
% name : Estring
< description : EString ¥ Add
Remaye.
= Classifier
0. fdgards » B Class
0. card 1
0.4 cards []unr -
[Ward> > Feature
DisplayScanner
- Litena!
0. statifnary @ Opergtion
(= Relation
B “%. SuperType
<Patients» T} 0.7 physican
H patient 1) scapdter oy Beference
0.7 beds .
i = Dynamic
Wards «Medicalleams £/ Dynamic instance
= (= & or
* name : EString & Package
@ Package
(= Splitting Actions <
T T -
&, Assign

Figure 4: Reviewing and post-processing the split-
ting suggestion.

the palette tool entry Assign. When the user reassigns a
model element, the respective entry in the splitting sugges-
tion is automatically updated. It is worth mentioning that
if the user is not satisfied with the results, he or she may
iterate Steps 2 to 4 as often as required, tweaking the de-
scriptions and parameter settings. One important scenario
for this is the discovery of new sub-models: The user can
set the completeness condition to partial in Step 2 which
leads to some model elements not being assigned in Step 3.
The user inspects these elements in Step 4 to create new
sub-model descriptions.

(5) Perform splitting. Given that the user is satisfied
with the post-processed splitting suggestion, the actual split-
ting can be triggered by the user. The user may choose from
two context menu entries: One for splitting the input model
into multiple physical resources, the other for splitting it
into sub-packages within the same resource.

4. DESIGN GOALS

In this section, we shortly discuss design goals that were
fundamental in the design of the proposed tool.

Extensibility. The underlying technique possesses an in-
nate extensibility that should be carried over to the end-user.
It is applicable to models conforming to arbitrary meta-
models, given that they fulfill two properties: (i) Model
elements must have meaningful textual descriptions that a
splitting description can be matched against. (ii) Except
for trivial reconciliation, constraints imposed by the meta-
model may not be broken in arbitrary sub-models. We ad-
dress this design goal by using a framework approach: To
customize the tool for a new meta-model, the user subclasses
a set of base classes. For instance, to define how input mod-
els are converted to a generic graph representation used dur-
ing crawling, they subclass a class named GraphBuilder.

Usability. The design of the tool is informed by Cognitive
Dimensions, a framework for the human-centered design of
languages and tools [6]: Providing an editable visual layer
on top of a standard editor is a major step towards visibility
— visual accessibility of elements and their relations — and
away from wviscosity — resistance to change. Closeness of

mapping is implemented by a domain-specific language for
splitting descriptions with custom editor support. Prema-
ture commitment is inhibited and progressive evaluation is
promoted by providing an incremental process that allows
tweaking with input values while receiving rapid feedback.
For traceability, our file-based approach to user input allows
to keep the splitting description and use it later, e.g., for
documentation purposes.

S. IMPLEMENTATION

Eclipse Modeling Framework [10] is the de-facto reference
implementation of the EMOF modeling standard. Conse-
quently, it was natural for us to design the new tool as an
extension for EMF. As such, it can be plugged into an exist-
ing Eclipse installation without further effort. For the split-
ting description editor, we leveraged the powerful code gen-
eration facilities of Xtext [5]. We defined a simple domain-
specific language for splitting descriptions. The editor with
its syntax highlighting and code completion features was
fully generated by Xtext. For customization, we added a
couple of checks (e.g., forbidden characters, uniqueness of
sub-model names). The visual splitting layer is an exten-
sion of EcoreTools 2.0 [2] which is based on the Sirius [4]
framework and, as of June 2014, determined to be part of
the new Eclipse release Luna 4.4. We used this new technol-
ogy as we benefit from its support for multiple viewpoints,
allowing us to tailor a splitting viewpoint to our needs.

6. CASE STUDY

In a case study, we investigated two research questions: (RQ1)
How efficient is the proposed tool in comparison to manual
splitting? (RQ2) Is the proposed tool usable?

6.1 Subjects and Task

Model: Ezxtended Joomla-Specific Language (eJSL) is a meta-
model for web applications based on the Joomla content
management system [3]. It comprises 116 classes, 39 enumer-
ations, 176 enumerated attributes, 41 generalizations, 145
containment references, and 47 plain references. eJSL was
designed by a doctoral student affiliated with our research
group we shall refer to as X. X has significant experience in
modeling language design. Previous to our work, X man-
ually split eJSL into five sub-models, calling them Pages,
Content, Menu, User, and Configuration. According to his
account, he invested a significant effort that spanned, among
other duties, over the course of two weeks. He printed the
diagram on paper, cut and reassembled fragments. After-
wards, he assigned colors to model elements in the diagram
editor and layouted them by hand.

Task: We instructed another software engineer, referred to
as Y, to decompose eJSL using the tool. Y is a doctoral
student with significant experience in modeling language de-
sign, but unrelated to eJSL and model splitting. We asked
X to provide the required domain knowledge in the form
of descriptive texts briefly explaining his intuitions for the
hand-tailored decomposition. The descriptions, each con-
sisting of 85 words on average, were handed to Y in a text
document. The task given to Y was to create a decompo-
sition that faithfully reflects the separation of concerns pro-
posed by the textual descriptions. We briefly instructed Y in
the usage of the tool based on the example shown in Fig. 3
and 4 and encouraged him to make use of post-processing.

6.2 Results

Efficiency. To approach (RQ1), we define efficient as re-
quiring a minimal amount of time to create an accurate re-
sult. Positing the hand-tailored split as perfectly accurate,
we measured accuracy of the tool-supported split in terms
of average F-measure, considering both precision and recall.
Accuracy was determined before and after post-processing:
During review of the initial splitting suggestion SI, Y reas-
signed five model elements to create the final suggestion S2.
From S1 to S2, precision increased from 82% to 86% and
recall from 84% to 88%, determining a rise in F-measure
from 83% to 87%. It took Y five minutes to create SI.
The reviewing and post-processing that brought the 4% gain
took further 55 minutes. Consequently, in terms of extra-
polated overall amount of time, tool-supported splitting out-
performed manual splitting.

Usability. To approach (RQ2), we conducted an informal
interview. Y perceived the user process as comprehensible,
the description editor as easy to use and the color-coding as
useful. An activity found crucial during post-processing was
examining the direct neighbours of a model element. Y per-
ceived this task as cumbersome: He often had to navigate
for edge targets outside the visible scope. For future work,
we aim at dedicated support for this activity: On selection,
neighbourhood information should be instantly available in
a tool-tip displaying the names of adjacent elements. One
further suggestion by Y, the color-coding of edges, directly
made it into the current version. Y also invested consider-
able time in layouting, i.e., aligning the color-coded model
elements into groups — an activity outside of the scope of this
work. It is an interesting challenge to devise a layouting al-
gorithm that aligns the sub-models of a model as clusters.
Inspection of the false positives and negatives in S2 revealed
that 50% of them concerned enumerations, the other 50%
concerning classes. Y pointed out that enumerations were
hard to relate to classes visually as they are not connected
by edges. We consider representing enumerated attributes
as edges rather than class members in future work.

6.3 Validity

Threats to external validity — or generalizability — are the
size of the input model and the size of the test group. It re-
mains a question left to future work whether our tool scales
for meta-models of significantly more elements. However,
an analysis of publicly available meta-models' indicates the
input model size to be typical for large meta-models de-
manding an adequate decomposition. The test group size
indeed precludes claims for generality, but allows to provide
tentative evidence for critical design weaknesses and bene-
fits. A potential threat to internal validity — or freeness from
systematic error — is the flow of information from the control
group to the test group. To mitigate this threat, we ascer-
tained in consultation with X that the textual descriptions
in vagueness and level of detail represented the intuitions for
splitting before the manual split was executed.

7. RELATED WORK

In this section, we discuss related tooling. A survey of work
related to the underlying approach is provided in [11].

Thttp:/ /www.emn.fr/z-info/atlanmod/index.php/Ecore

In the Democles model composer [1], the user can iterate
the lattice of all permitted decompositions by unfolding en-
tries in a tree-like wizard. Graphical presentation of a split
is provided by an add-on graph visualization library. How-
ever, this visualization is read-only and not integrated with
a modeling editor, ruling out the re-assigning of model ele-
ments for post-processing as supported by the new tool.

The splitting tool proposed in [12] makes classic clustering
algorithms available for EMF models. It provides a wizard
for the selection and customization of algorithms. However,
except for numerical input parameters, the user cannot in-
fluence the generated results. The tool provides a tree-based
editor for the reassigning of model elements to target sub-
models, but does not present any visual feedback.

8. CONCLUSION

In this paper, we present a tool for the splitting of large
meta-models. The tool provides a textual editor that allows
defining the desired target sub-models by means of textual
descriptions. It generates a splitting suggestion that can be
reviewed and post-processed in a visual editor. Based on the
splitting suggestion, the input model can be automatically
split either into multiple resources or packages within one re-
source. The tool is open source and can be found, along with
the models mentioned in this paper, at https://www.uni-
marburg.de/fb12/swt/forschung/software. In the future,
we plan to apply the technique on other models than class
models, deeming it necessary to account for constraints.

9. REFERENCES

[1] Democles. http://democles.lassy.uni.lu/, May 2011.

[2] Ecoretools 2.0. http://www.eclipse.org/ecoretools/,

May 2014.

3] Joomla. http://www.joomla.org/, May 2014.

4] Sirius. http://www.eclipse.org/sirius/, May 2014.

5] Xtext. http://www.eclipse.org/xtext/, May 2014.

6] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a cognitive
dimensions framework. Journal of Visual Languages €
Computing, 7(2):131-174, 1996.

[7] P. Kelsen, Q. Ma, and C. Glodt. Models within
models: Taming model complexity using the
sub-model lattice. Fundamental Approaches to
Software Engineering, pages 171-185, 2011.

[8] T. K. Landauer, P. W. Foltz, and D. Laham. An
Introduction to Latent Semantic Analysis. Discourse
Processes, (25):259-284, 1998.

[9] M. P. Robillard. Automatic Generation of Suggestions
for Program Investigation. In Proc. of ESEC/FSE-183,
pages 11-20, 2005.

[10] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF': Eclipse Modeling Framework.
Pearson Education, 2008.

[11] D. Striiber, J. Rubin, G. Taentzer, and M. Chechik.
Splitting models using information retrieval and model
crawling techniques. Fundamental Approaches to
Software Engineering, pages 47-62, 2014.

[12] D. Striiber, M. Selter, and G. Taentzer. Tool support
for clustering large meta-models. In Proceedings of the
Workshop on Scalability in Model Driven Engineering,
page 7. ACM, 2013.

