Hypersonic: Model Analysis and Checking in the Cloud

Vlad Acretoaie and Harald Storrle
Department of Applied Mathematics and Computer Science
Technical University of Denmark
rvac@dtu.dk, hsto@dtu.dk

ABSTRACT

Context: Modeling tools are traditionally delivered as mono-
lithic desktop applications, optionally extended by plug-ins
or special purpose central servers. This delivery model suf-
fers from several drawbacks, ranging from poor scalability
to difficult maintenance and the proliferation of “shelfware”.
Objective: In this paper we investigate the conceptual and
technical feasibility of a new software architecture for mod-
eling tools, where certain advanced features are factored out
of the client and moved towards the Cloud. With this ap-
proach we plan to address the above mentioned drawbacks
of existing modeling tools.

Method: We base our approach on RESTful Web services.
Using features implemented in the existing Model Analy-
sis and Checking (MACH) tool, we create a RESTful Web
service API offering model analysis facilities. We refer to
it as the Hypersonic API. We provide a proof of concept
implementation for the Hypersonic API using model clone
detection as our example case. We also implement a sample
Web application as a client for these Web services.

Results: Our initial experiments with Hypersonic demon-
strate the viability of our approach. By applying standards
such as REST and JSON in combination with Prolog as an
implementation language, we are able to transform MACH
from a command line tool into the first Web-based model
clone detection service with remarkably little effort.

Keywords

Hypersonic, MACH, Models in the Cloud, clone detection,
Web services, Prolog

1. INTRODUCTION

Until very recently, the only practically viable architecture
for modeling tools was the traditional rich client architecture
for desktop applications, sometimes complemented by spe-
cialized central servers, e. g., to provide model versioning
and group collaboration capabilities. Such modeling tools
are large, monolithical applications, even though some do
offer scripting facilities, application programming interfaces
(APIs), or a plug-in mechanism to allow for a certain de-
gree of extensibility. A typical example is NoMagic’s Mag-
icDraw [21], which can be extended through an API, and

BigMDE’14 July 24, 2014. York, UK.
Copyright (© 2014 for the individual papers by the papers’
authors. Copying permitted for private and academic pur-
poses. This volume is published and copyrighted by its edi-
tors.

complemented by the Teamwork Server plug-in [20] for cen-
tralized version control. With this type of modeling tools,
the main revenue source for tool vendors is the sale of per-
petual licenses for their product, possibly supplemented by
ongoing technical support fees. Both the rich client architec-
ture and the associated business model suffer from a series
of disadvantages, some of a generic nature and some more
specific to modeling tools.

In many other areas of computing, however, other, more
flexible architectures are commonplace today. In particu-
lar, recent technological developments have brought about
the widespread adoption of Cloud-based software architec-
tures. Typically, such architectures involve the deployment
of computationally intensive tasks to a centralized and fully
transparent shared pool of configurable computing resources
(i. e., “the Cloud”) [18]. In this context, Web applications are
nowadays a widely used method of delivering software func-
tionality of many different kinds, including lightweight edi-
tors for parts of UML (e. g., GenMyModel [1], yUML [25]).
Though already attracting users, most such Web-based of-
ferings are currently not able to match traditional desktop
tools in terms of features. Nevertheless, modeling in the
Cloud does have the potential to address some important
problems, such as achieving scalability in relation to increas-
ingly large models and model repositories [16].

To realize this potential, we propose a solution where the
features required in a fully-fledged modeling environment are
hosted remotely and accessed in a transparent way. Playing
the role of basic building blocks for a modeling workflow,
these features should be accessible independently of each
other and across a variety of devices. Fig. 1 visualizes the
contrast between the widely used rich client architecture and
the solution we propose. The crucial part of this proposal
is the identification of features of a modeling environment
that should be executed locally, and of those that should be
executed on remote servers.

Arguably one of the most suitable application areas for
Cloud-based approaches in modeling is model analysis. We
select the requirements of this area as a background for con-
structing Hypersonic, a test vehicle for demonstrating our
proposed approach for the delivery of modeling services - in
this case, model analysis services. To implement Hypersonic,
we use the features offered by our existing model analysis
tool, MACH [27]. In its current form, MACH is a desktop
application with a textual user interface. As most desktop
applications, it requires installation prior to its usage, as
well as explicit user actions/approval for installing updates.
With Hypersonic, the features implemented in MACH be-

Client Client

Provider 1 Provider k

Client

Provider 1

i Provider x Provider y

Provider 1

Provider 1

= Component suitable for deployment Component suitable for deployment
to remote server to local client

Legend

Figure 1: Possible software architectures of model-
ing tools: most common solution today (left); mod-
eling in the Cloud with Hypersonic (right)

come RESTful Web services. They can be accessed remotely
from a wide range of clients, without requiring installation
or explicit user actions for installing updates. To demon-
strate the usefulness of our Web service API we also create
a sample client in the form of a responsive Web application.

In this paper we discuss the application scenarios and
business cases for Cloud-based modeling services, derive re-
quirements and constraints for the associated tools (Chap-
ter 2), propose a distributed architecture to satisfy these
requirements (Chapter 3), and report on a proof-of-concept
implementation (Chapter 4). We also provide an overview
of related work (Chapter 5) and summarize the conclusions
of our study (Chapter 6).

2. DEFINING HYPERSONIC
2.1 Analysing Requirements by Stakeholder

Moving modeling tools to the Cloud is not primarily moti-
vated by technological reasons, but by new application sce-
narios and business cases. In this section we analyze these
application scenarios and business cases to highlight the
advantages of our proposed architecture. We start by de-
scribing the status-quo, considering the stakeholders “tool
provider”; “modeler”; “IT administrator”, and “MBSD com-
munity”, where MBSD stands for Model Based Software De-
velopment. Observe that all of these stakeholders exist in
similar ways both in academic and commercial settings. We
argue that the current state of the MBSD tool landscape is
unsatisfactory for the stakeholders in several ways.

To a modeler, tools come as fixed packages: it is usually
not possible (or not practical) to use one aspect, the editor,
say, of one tool, and another aspect of a second tool. For
instance, if the modeler appreciates the editing facilities of
tool A, but that tool does not provide (adequate) code gen-
eration facilities, code generation may be difficult. It may
not be economically viable due to the cost of purchasing two
tools, or it may actually be impossible to use the editor of
tool A combined with the code generator of another tool,
unless both tools strictly adhere to model interchange stan-
dards. Also, from a modeler’s perspective, resource intensive
tasks may take an unreasonably long time to complete when

executed locally.

To an IT administrator, repeatedly deploying tools to a
large number of computers implies additional effort. Even if
this effort is not incurred by the actual deployment (that
might be expected to be taken care of by the modelers
themselves), it becomes inevitable when distributing up-
dates and fixes, help-desk services, and possibly ensuring
that the tool’s license usage is compliant with the agreement
entered in with the tool vendor.

To the tool provider, delivering a modeling solution as
a self-contained product with all the business logic on the
client side makes it difficult to support the wide array of
emerging computing devices. Migrating a large modeling
tool to a tablet, smartphone, or Web interface would likely
require extensive re-implementation, not to mention that
the hardware requirements of many modeling tools are still
prohibitive for mobile devices. Furthermore, separating the
highly critical (and sometimes highly innovative) and non-
critical functionalities of the application is cumbersome, yet
still achievable through plug-ins. The distribution of coun-
terfeit copies of the tool is also difficult to mitigate.

To the MBSD community, all of these factors are limiting,
in much the same way as superficial differences between pre-
UML modeling languages created niche markets for many
different tools that were more expensive and less powerful
than the UML tools that emerged after the unification of
mainstream modeling languages in the late 1990’s.

In a nutshell, the existing situation is suboptimal. Thus,
we propose a different architecture: compute-intensive fea-
tures and features with a high degree of innovation should
be deployed to and executed in the Cloud rather than on the
client machine. The client and server in this architecture are
coupled loosely, by Web services, so that providing a new
feature amounts to providing a new Web service. Such fea-
tures can include advanced model analysis tools, code and
report generation, and model transformation. Conversely,
features of smaller distinctive value and small change rates,
as well as features that require a higher degree of interac-
tivity, can continue to be implemented as part of the client
application. This will likely be the case for pure editing fea-
tures, which many commercial vendors already offer as free
community editions of their tools.

We have hinted at a set of criteria for determining which
features of a modeling tool should be executed locally, and
which would benefit from being migrated to the Cloud. Ta-
ble 1 summarizes these criteria and presents examples.

2.2 Benefits of Modeling in the Cloud

Several advantages can be achieved by breaking up today’s
monolithic modeling tools into one stable, remote part that
provides little added value distinguishing products (e. g.,
the editor), and a second, centralized part that comprises
more advanced features with a higher change rate and higher
distinctive value.

First, there are the advantages associated with thin-client
systems in general: maintaining one central server instead of
many remote clients reduces the work effort for IT adminis-
trators and ensures that modelers always have access to the
latest version of the modeling tool. It also becomes easier
to monitor license usage, which benefits administrators and
tool providers alike.

Second, there are advantages rooted in the specific proper-
ties of Cloud-based solutions. This includes the availability

LOCAL FEATURES

CLOUD-BASED FEATURES

simple syntax checking
automatic layout
context specific help
difference visualization

querying and navigation

PROPERTY || high interactivity & incidence high resource consumption
high degree of stability high degree of innovation
exchangeable features unique features

EXAMPLES || editing reporting

global consistency checking
advanced model analysis
check in/out, locking
difference computation
code generation

Table 1: Criteria for assigning features to a local client or remote Web service, together with examples

of considerable computational resources to each individual
user at reduced overall cost, as well as high scalability of the
available resources with an increasing number of users.

Third, a scenario in which some modeling facilities are
provided as services is conductive to model interchange stan-
dards conformance. In such a scenario, service providers
and client tool providers must both conform to model inter-
change standards such as the XML Metadata Interchange
(XMI, [22]) in order to meet the requirements of modelers.

Fourth, there are advantages brought about by changes
in the business model and enabling market mechanisms.
Today, the modeling tool market is dominated by compa-
nies providing feature-complete bundles. A new competitor
can only enter the market by providing a feature-complete
solution, which all but excludes small companies and aca-
demic tool providers. Innovative analysis methods, special-
ized code generators, and similar tools can only be provided
as plug-ins to one of the existing platforms, sometimes de-
pending on the approval of the platform owner. In contrast,
with a service-based architecture, tool providers can enter
the market at lower cost, since they only have to provide
their contribution per se, not a feature complete-tool. They
can also address a larger part of the market, as they provide
a generic Web service rather than a platform specific plug-
in that applies to only one modeling tool. Modelers, on the
other hand, can mix and match services as they like within
the limits of standardized exchange formats.

It is likely that the described change in dynamics of the
modeling tools market will inspire an increase in competi-
tiveness between existing tool providers, while at the same
time providing an incentive for new providers to enter the
market. Both these developments will likely lead to a higher
degree of innovation. This could translate into new concepts
from academia dissipating to industrial modeling at a faster
pace. Users will thus have both a financial and a technical
incentive to experiment with new features.

From a financial perspective, tool providers will be able to
bill features separately as subscription Web services. This
could reduce unit prices for customers, who only buy the fea-
tures they need, and may subscribe to services as they need
them. Spending on expensive “shelfware” can be reduced
or avoided altogether. For the supplier, this opens the per-
spective of a new business model in which a steady stream
of revenue is generated through subscription services, while
features of high distinctive value are much better protected
against counterfeiting.

It must be mentioned, though, that adopting a service-

based approach to modeling entails some trade-offs. Most
are caused by the distributed nature of the approach. For
instance, the process of uploading large models to a Cloud-
based service may constitute a performance bottleneck. Se-
curity and privacy are also new aspects that come into play,
considering that a centralized warehouse will store models
owned by different organizations. These organisations must
be able to trust that not only will their models not be acces-
sible to other users, but they will also be protected against
unauthorised mining by the modeling service provider. And,
perhaps most importantly, the usefulness of the solution is
dependent on a working Internet connection. Nevertheless,
these drawbacks are common to the majority of Software as
a Service (SaaS) solutions, and have not undermined this
architecture style’s acceptance.

2.3 A Test Case for Hypersonic

In Section 2.1 we have discussed which types of features
lend themselves to deployment as Web services. We now se-
lect one feature, clone detection, as a test case for exploring
the proposed architecture (i. e., the Hypersonic API). Our
selection is motivated by the following considerations.

e The feature is well researched, published, and imple-
mented (see [26] and [27], respectively), and has been
used by a large number of students in several courses
in which it has demonstrated its usefulness. So, the
feature is readily available and arguably valuable.

e Clone detection demands significant resources, as it is
based on semantic and structural model matching. For
large models, the latency implied by uploading a model
to the Cloud may be offset by savings in run-time
achieved by using a powerful machine in the Cloud.

e Detecting clones is an activity carried out as part of
the model quality assurance process. It is normally
not executed concurrently to other modeling activities.
Therefore, in some scenarios, a clone detection feature
is not required or even useful. For example, models
reverse-engineered from code do not require clone de-
tection if the code is known to be clone-free.

e [t is a unique feature: no UML modeling tool cur-
rently offers a clone detection feature. This includes
research prototypes other than our own MACH tool.
It is therefore safe to assert that this feature provides
a high degree of innovation.

3. ARCHITECTURE

A first step towards the realization of the ideas presented
in Section 2 is the definition of a common Web service in-
terface accepted by all stakeholders. The details of such an
interface must be the result of a wide reaching discussion,
which is beyond the scope of this paper. Instead, we take
an exploratory approach and design a RESTful Web service
API for the purpose of Cloud-based model analysis. We
refer to this API as the Hypersonic API. By doing so, we
study the requirements and potential setbacks of processing
models via RESTful Web services.

In keeping with the REST architectural style [10], the
Hypersonic API exposes resources for clients to interact with
via HTTP requests. The two exposed resources are models
and model. The models resource plays the role of an access
point to Hypersonic’s model warehouse, whereas the model
resource represents a single model in the warehouse. These
resources are manipulated via HTTP requests, where the
HTTP method determines the operation to be performed.
In addition, the Hypersonic URL scheme specifies explicit
operations on the model resource as part of the request URL.
The list of supported operations is presented in Table 2.

This architectural approach allows physically decoupling
clients from the execution of the various analysis algorithms
exposed by the Hypersonic API. This aspect is part of the
motivation behind the creation of Hypersonic, since many
of these algorithms are resource demanding on models of
non-trivial size. By using such a Web service API, a large
variety of clients can have access to model analysis facili-
ties regardless of their hardware capabilities. Fig. 2 high-
lights this aspect, showing that different clients can access
existing analysis algorithms provided by the MACH tool via
the Hypersonic API wrapper. The only prerequisites for
API clients are HT'TP support, the ability to process docu-
ments returned by the API, and, optionally, a model viewer.
Note that all of these prerequisites are entirely reasonable
for modern mobile devices.

(1\
Smartphone app
(. J
() Hypersonic API
Web app yp

1) MACH
Desktop client

(. J
Modeling tool /

L plug-in

Figure 2: High-level architecture of Hypersonic

Additional non-functional considerations must be taken
into account to ensure the practicality of the Web service
API. Since using the API implies uploading entire models
to a remote server, security becomes an important factor.
With this in mind, the OAuth [11] authentication protocol
is a widely used solution that can provide some important
guarantees to Hypersonic users. The most important such
guarantee is that a user cannot gain access to the models up-

loaded by other users. When combined with a role-based au-
thentication policy, a sound authentication mechanism such
as OAuth is an effective way to manage model access rights.
At a technical level, implementing OAuth will require all
Hypersonic API clients to obtain an access token prior to
using the API. This process can be carried out through a
separate channel, such as a dedicated API management Web
application.

From a file format standpoint, Hypersonic currently sup-
ports models stored in the MDXML format, the XMI-based
native format of the MagicDraw modeling tool. That is to
say, some API requests (e. g., POST requests to the mod-
els resource) are expected to have an MDXML document as
payload. Most API response messages carry a JSON [12]
document as payload, representing either the result of an
analysis operation or a confirmation or error message.

The internal components involved in answering a call to
the Hypersonic API are presented in Fig. 3. The REST-
ful API component handles HTTP communication with re-
mote API clients and delegates all actual model processing
to the MACH component. It also forwards all models sent
by clients to the XMI2PL component, which performs a for-
mat translation from the MDXML format to the internal
Prolog-based file format described in [26]. Once translated,
models are stored in a dedicated model warehouse for future
analysis upon the client’s request. The MACH component
exposes several supported model analysis and checking al-
gorithms [27]. These algorithms can be applied on models
stored in the warehouse. The MACH component functions
as a self contained black-box, hiding all algorithm implemen-
tations from other components and returning the produced
results encoded as Prolog lists. The RESTful API compo-
nent handles the translation of these lists into JSON analysis
reports ready for consumption by the API client. All pro-
cessing components are executed inside a single instance of
the SWI-Prolog runtime [29], thus allowing seamless inter-
component communication.

The SWI-Prolog runtime should be deployed to either
a public or private Cloud platform. Since all models are
stored separately in a model warehouse, several instances
of the SWI-Prolog runtime can be deployed, assuming that
the model warehouse provides appropriate concurrent ac-
cess policies. Persistent model storage can be provided by a
separate Cloud storage service. Since models are stored as
XML and Prolog files, the storage service should support a
document-oriented database management system.

4. EVALUATION

To demonstrate the feasibility of the architecture described
in Section 3, a subset of the proposed Web service API has
been implemented and is publicly accessible!. Due to the
reasons elaborated on in Section 2.3, we have focused on a
Web service providing model clone detection as a minimum
useful scenario. Though important for a final release, we
have considered features such as user accounts and authen-
tication beyond the scope of our proof of concept. Both
the prototype API and the model warehouse are currently
hosted on a dedicated server. They do not benefit from
the scalability of a true Cloud deployment, although for the
current proof of concept this is hardly a limiting factor.

IThe Hypersonic API is available at the following base URL:
http://hypersonic.compute.dtu.dk

Resource Method | Req. payload | Resp. payload | Description
/models GET — JSON List all uploaded models.
/models POST MDXML JSON Upload a model.
/model/<id> GET — MDXML Download a model.
/model/<id> PUT MDXML JSON Replace a model.
/model/<id> DELETE | — JSON Delete a model.
/model/<id> /clones GET — JSON Detect clones in a model.
/model/<id1>/diff/<id2> GET JSON JSON List differences between two
models. Options are specified in
the request payload.
/model/<id>/dump GET — JSON List model elements included in
a model.
/model/<id>/dump/<me_id> GET JSON JSON List the details of a model ele-
ment. Options are specified in
the request payload.
/model/<id>/find/<string> GET JSON JSON Find a string in a model. Op-
tions are specified in the request
payload.
/model/<id>/frequency GET — JSON Compute the meta class fre-
quency distribution in a model.
/model/<id1> /similarity /<id2> | GET JSON JSON Compute the similarity between
two models. Options are speci-
fied in the request payload.
/model/<id> /size GET JSON JSON Compute the size of a model.
Options are specified in the re-
quest payload.
Table 2: List of operations supported by the Hypersonic API
N I
i SWI-Prolog 1
I 1
| pl 1
I 1
' XMI2PL : Model
: ! @house
1 1
1
: xmi 1
Xxmi 1 1
I 1
call(...) 1 pl |
ﬂ-}m‘ 1
API RESTful 1
|
client AP L] MACH |
1
1 1
1
1

Figure 3: Components which participate in responding to a Hypersonic API request

Fig. 4 represents a message exchange between a client and
the Hypersonic API. The purpose of this exchange is to per-
form clone detection on a model. First, the model is added to
the Hypersonic model warehouse by a POST request to the
models resource. Upon this request’s successful handling, a
new model resource representing the model is available to the
client. The resource has a unique identifier returned in the
JSON response document of the initial POST request. The
client then parses this document and extracts the identifier.
Thus, the client is subsequently able to use the identifier to
construct the appropriate URL for a GET request to the
clones operation of the identified model resource. The GET
request returns a list of clone candidates, also in the form of
a JSON document (see Listing 1).

interaction Clone Detection [[f}f] Clone Detectionu

Hypersonic API

| 1: POST /models }

2: JSON(model_id=1)

|
|
|
3: GET /model/1/clones !

4. JSON(clones_list)

Figure 4: HTTP message exchange for model clone
detection

The response document includes a model identifier, the
number of detected clones, and a list of discovered clone can-
didates. Each clone candidate is described by two model ele-
ments, where one is a possible clone of the other, a numeric
similarity metric computed for the two elements following
the approach presented in [26], and a clone “kind” identify-
ing the candidate as either a naturally occurring clone or a
seeded clone. Candidates also Clone candidates are returned
in the descending order of their similarity scores, i. e., the
most likely clone is the first one in the list.

Listing 1: JSON clone detection report
{

?7m0del 77: 771777

"candidates”: 2,

"clones”: |

{

"type_1”: "package”,
7id_17: 29,
"name_1": "Reserve Medium”
"type_2”: "package”,
7id_27: 938,
"name_2”7: "Reserve Medium?”

"similarity ”: 185.7143,

?kind”: ”"natural clone”,
}
{
"type_1”: "package”,
7id_17: 189,
"name_1": "Lend Medium”,
"type_2”7: "package”,
7id_27: 1194,
"name_2”: ”Lend Medium?” ,
"similarity 7: 128.7287,
?kind”: ”"natural clone”,

By conforming to the architecture presented in Fig. 3,
the effort required to implement the clone detection proof
of concept has been minimal. The RESTful API function-
ing as a wrapper around MACH’s existing clone detection
implementation consists of around 100 lines of Prolog code,
largely thanks to the comprehensive support offered by SWI-
Prolog for the HTTP protocol. Work on implementing the
remaining API calls described in Table 2 is ongoing, as is
work on the API management application that must be in
place in order to to enable user authentication in APT calls.

As a preliminary validation of the APD’s fitness for pur-
pose, we have created a simple, mobile device friendly Web
application as an API client?. The application supports se-
lecting a local model file, uploading it to the Hypersonic
model warehouse, and requesting a clone report which it
subsequently displays in tabular form. The application is
written in JavaScript and is executed entirely in the browser
(i. e., it does not rely on a server-side script for calling API
operations). Though it is so far basic in terms of functional-
ity, this sample client exemplifies our vision of Web service
driven modeling tools: using Web 2.0 technologies (REST,
JavaScript, JSON) to enable advanced model analysis out-
side the constraints of the desktop and of traditional mod-
eling environments.

S. RELATED WORK

Model analysis is an activity typically performed in local,
non-distributed environments. As an example, the model
clone detection operation considered here as a proof of con-
cept has scarcely been addressed in itself, but is closely re-
lated to the intensely studied model matching and differenc-
ing operations. To name just a few proposals in this area,
SiDiff [14] presents a differencing algorithm targeting UML
Class Diagrams, while the approach presented in [19] targets
sequence charts, and [17] is a clone detection proposal aimed
at UML Sequence Diagrams. EMF DiffMerge [8] and EMF
Compare 3.0 [3] represent more generic approaches targeting
the Eclipse Modeling Framework (EMF, [9]).

With the increase in size of industrially relevant models
and the increase in complexity of the operations performed
on these models, the need for distributed, Cloud-enabled
modeling solutions has become apparent [5, 16]. So far, the
main driver behind Cloud-based modeling research has been

2The client application is available at http://www.compute.
dtu.dk/"rvac/hypersonic. It is currently under develop-
ment, and will be updated to support all operations of the
Hypersonic API as they are deployed.

== Hypersonic API client

S sww2.compute.dtu.di/~rvac/hypersonic/

Clone detection

Clone detection API client

Upload a MagicDraw (.mdxml) model to check for clone candidates.

Library Management System mdxml

D2 Type 2 Name 2

938 package Reserve Medium

1194 package Lend Medium

806 package return Medium

2454 operation changePassword

1733 operation remotesearchFromOtherLibraries

Clone ID Similarity score D1 Type 1 Name 1

1 1857143 29 package Reserve Medium
2 1287 189 package Lend Medium

3 104 82 package Return Medium
4 84 1688 operafion changePassword
5 82.8 1730 operafion remoieSearch

6 60 2452 property type

2502 property type

Figure 5: Screenshot of the Hypersonic API client Web application

the promise of important performance and scalability gains
for all modeling activities. Perhaps the most fundamental of
these activities, model storage, has attracted several propos-
als, including ModelBus [4], EMFStore [15], and Morsa [23].
These are all remote model warehousing solutions offering
Web service access to the stored models.

More advanced activities such as model querying and trans-
formation have also been addressed. IncQuery-D [13] is a
tool which takes the established IncQuery tool and adapts
it to a scenario where it can be deployed and accessed in
the Cloud. The Morsa model repository also benefits from
a dedicated query language, MorsaQL [24]. A roadmap for
research on Cloud-based model transformations has been
presented in [7].

However, performance gains due to Cloud deployment are
only a part of the overall vision of Hypersonic. Rather than
focusing on the benefits to the application itself (i. e., model
analysis), Hypersonic emphasises the benefits brought by a
Cloud-based approach to the interface and availability of
this application. The idea of performing model analysis via
a RESTful Web service API has yet to receive significant
attention in the literature. The closest related proposal is
the EMF-REST project [6], aimed at automatically generat-
ing RESTful Web service interfaces for EMF models, much
like existing EMF tools generate Java APIs for such mod-
els. Like Hypersonic, EMF-REST uses JSON documents to
transport information about remotely stored models. Nev-
ertheless, while it does provide basic model manipulation
operations, EMF-REST is not designed as a model analysis
tool. Similarly to Hypersonic, EMF-REST is a tool under
ongoing development, one of its current limitations being the
lack of full support for HT'TP methods other than GET.

6. CONCLUSIONS

6.1 Summary

In this paper we have discussed the application conditions,
benefits, and general business case for Cloud-based modeling
tools. In particular, we have presented a scenario in which
modeling capabilities are delivered as Web services to a wide
array of clients, ranging from desktop applications to Web
and mobile applications. We have contrasted this scenario
with the current status-quo of rich client desktop modeling
tools, reaching the conclusion that, in many respects, the
Cloud-based approach is superior.

To explore our proposal, we have introduced Hypersonic, a
RESTful Web service API aimed at offering high-throughput
processing for Cloud-based model analysis. We have imple-
mented this architecture and made it available online. Cur-
rently, the only service it offers is the detection of model
clones, a feature that was previously only available in the
MACH command line tool. Today, MACH is a stand-alone
desktop tool providing only a textual user interface. Through
the Hypersonic API, the features of MACH can be made
available over the Internet to any API client. As a proof
of concept for the utility of the API, we have developed a
Web application acting as a client to the Hypersonic API
and providing Web-based model analysis capabilities.

6.2 Future Work

The concepts presented in this paper offer us ample oppor-
tunities for future work. As a first step, we will continue the
development of the Hypersonic API with the aim of reach-
ing functional parity with the MACH model analysis tool.
Once this has been achieved, the API will be deployed to

a Cloud platform. In parallel, we will update the sample
Web-based API client to both validate and showcase the
model analysis features of Hypersonic. Second, in order to
become a practical tool, the API client must offer several
critical features such as user authentication and model se-
curity mechanisms. Third, we will carry out a systematic
performance evaluation of MACH in order to substantiate
the claim that Cloud-based model analysis can bring signif-
icant performance benefits. Finally, we intend to develop a
second client for the Hypersonic API in the shape of a plug-
in for MagicDraw. This will permit seamless integration of
our Web services approach with a commercial modeling tool
and complement our existing model querying MagicDraw
plug-in, MQ-2 [2]. As a parallel development, we envision
a Web service API similar to Hypersonic for RED, our re-
quirements engineering tool [28].

7. REFERENCES

[1] GenMyModel. http://www.genmymodel.com, retrieved
16.05.2014.

[2] V. Acretoaie and H. Stérrle. MQ-2: A Tool for
Prolog-based Model Querying. In Proc. co-located
Events 8th Eur. Conf. on Modelling Foundations and
Applications (ECMFA’12), pages 328-331.

[3] M. Barbero. EMF Compare 3.0.
http://www.eclipse.org/emf/compare.

[4] X. Blanc, M.-P. Gervais, and P. Sriplakich. Model
Bus: Towards the Interoperability of Modelling Tools.
In Proc. European MDA Workshops: Foundations and
Applications (MDAFA’08/°04), volume 3599 of LNCS,
pages 17-32. Springer Berlin Heidelberg, 2005.

[5] H. Bruneliere, J. Cabot, F. Jouault, et al. Combining
Model-Driven Engineering and Cloud Computing. In
Proc. Jth Ws. on Modeling, Design, and Analysis for
the Service Cloud (MDA/ServiceCloud’10), 2010.

[6] J. Cabot. EMF-REST. http://emf-rest.com,
retrieved 16.05.2014.

[7] C. Clasen, M. D. Del Fabro, and M. Tisi.
Transforming Very Large Models in the Cloud: a
Research Roadmap. In Proc. First Intl. Ws.
Model-Driven Engineering on and for the Cloud
(CloudMDE’12), pages 3-12, 2012.

[8] O. Constant. EMF Diff/Merge.
http://wiki.eclipse.org/EMF_DiffMerge.

[9] Eclipse Foundation, Inc. Eclipse Modeling Framework
(EMF). http://eclipse.org/modeling/enf.

[10] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[11] Internet Engineering Task Force (IETF). IETF RFC

6749: The OAuth 2.0 Authorization Framework.

http://tools.ietf.org/html/rfc6749, 2012.

Internet Engineering Task Force (IETF). IETF RFC

7159: The JavaScript Object Notation (JSON) Data

Interchange Format.

http://tools.ietf.org/html/rfc7159, 2014.

[13] B. Izs6, G. Szdrnyas, I. Rath, and D. Varrd.
IncQuery-D: Incremental Graph Search in the Cloud.
In Proc. Ws. Scalability in Model Driven Engineering
(BigMDE’13), pages 4:1-4:4, New York, NY, USA,
2013. ACM.

12

[14] U. Kelter, J. Wehren, and J. Niere. A Generic
Difference Algorithm for UML Models. In K. Pohl,
editor, Proc. Natl. Germ. Conf. Software-Engineering
(SE’05), number P-64 in Lecture Notes in Informatics,
pages 105-116. Gesellschaft fiir Informatik e.V. 2005.

[15] M. Koegel and J. Helming. EMFStore: a Model
Repository for EMF models. In Proc. 32nd
ACM/IEEE Intl. Conf. on Software Engineering
(ICSE’10), volume 2, pages 307-308. ACM, 2010.

[16] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Rath,

D. Varré, M. Tisi, and J. Cabot. A Research
Roadmap Towards Achieving Scalability in Model
Driven Engineering. In Proc. Ws. Scalability in Model
Driven Engineering (BigMDE’13), pages 2:1-2:10,
New York, NY, USA, 2013. ACM.

[17] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting
duplications in sequence diagrams based on suffix
trees. In 18th Asia Pacific Software Engineering Conf.
(APSEC), pages 269-276. IEEE CS, 2006.

[18] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National
Institute of Standards and Technology, 2011.

[19] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and merging of statecharts
specifications. In Proc. 29th Intl. Conf. Software
Engineering (ICSE), pages 54—64. IEEE Computer
Society, IEEE Computer Society, 2007.

[20] NoMagic INC. MagicDraw Teamwork Server. http:
//www.nomagic.com/products/teamwork-server,
retrieved 16.05.2014.

[21] NoMagic INC. MagicDraw UML 17.0.3.
http://www.nomagic.com/products/magicdraw,
retrieved 16.05.2014.

[22] Object Management Group (OMG). OMG MOF 2
XMI Mapping Specification, Version 2.4.1.
http://wuw.omg.org/spec/XMI/2.4.1, 2013.

[23] J. E. Pagdn, J. S. Cuadrado, and J. G. Molina. Morsa:
A Scalable Approach for Persisting and Accessing
Large Models. In Proc. 14th Intl. Conf. Model Driven
Engineering Languages and Systems (MODELS’11),
volume 6981 of LNCS, pages 77-92. Springer Berlin
Heidelberg, 2011.

[24] J. E. Pagdn and J. G. Molina. Querying Large Models
Efficiently. Inf. Softw. Tech., pages 586-622, 2014.

[25] Pocketworks. yUML. http://yuml.me, retrieved
16.05.2014.

[26] H. Storrle. Towards Clone Detection in UML Domain
Models. J. Softw. Syst. Model., 12(2), 2013.

[27] H. Storrle. UML Model Analysis and Checking with
MACH. In 4th Intl. Ws. Academic Software
Development Tools and Techniques (WASDETT’13),
2013.

[28] H. Stérrle and M. Kucharek. The Requirements Editor
RED. In ECOOP, ECSA and ECMFA 2013: Joint
Proceedings of Tools, Demos and Posters, pages 32-34,
2013. DTU Technical Report 2014-01.

[29] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager.
SWI-Prolog. Theory and Practice of Logic
Programming, 12(1-2):67-96, 2012.

