
Tool-supported fault localization in spreadsheets:
Limitations of current evaluation practice

Birgit Hofer
Graz University of Technology

8010 Graz, Austria
bhofer@ist.tugraz.at

Dietmar Jannach
TU Dortmund

44221 Dortmund, Germany
dietmar.jannach@udo.edu

Thomas Schmitz
TU Dortmund

44221 Dortmund, Germany
thomas.schmitz@udo.edu

Kostyantyn
Shchekotykhin

University Klagenfurt, Austria
kostya@ifit.uni-klu.ac.at

Franz Wotawa
Graz University of Technology

8010 Graz, Austria
wotawa@ist.tugraz.at

ABSTRACT
In recent years, researchers have developed a number of tech-
niques to assist the user in locating a fault within a spread-
sheet. The evaluation of these approaches is often based
on spreadsheets into which artificial errors are injected. In
this position paper, we summarize different shortcomings of
these forms of evaluations and sketch possible remedies in-
cluding the development of a publicly available spreadsheet
corpus for benchmarking as well as user and field studies to
assess the true value of the proposed techniques.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Spreadsheets; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids

General Terms
Spreadsheets, Debugging, Fault Localization

1. INTRODUCTION
Locating the true causes why a given spreadsheet program

does not compute the expected outcomes can be a tedious
task. Over the last years, researchers have developed a num-
ber of methods supporting the user in the fault localization
and correction (debugging) process. The techniques range
from the visualization of suspicious cells or regions of the
spreadsheet, and the application of known practices from
software engineering like spectrum-based fault localization
(SFL) or slicing, to declarative and constraint-based reason-
ing techniques [1, 3, 6, 7, 9, 11, 12, 16].

However, there is a number of challenges common to all
these approaches. Unlike other computer science sub-areas,
such as natural language processing, information retrieval
or automated planning and scheduling, no standard bench-
marks exist for spreadsheet debugging methods. The ab-
sence of commonly used benchmarks prevents the direct
comparison of spreadsheet debugging approaches. Further-
more, fault localization and debugging for spreadsheets re-
quire the design of a user-debugger interface. An important
question in this context is: what input or interaction can
realistically be expected from the user? Finally, the main
question to be answered is whether or not automated de-

bugging techniques actually help the developer as discussed
in [14] for imperative programs.

In this position paper, we discuss some limitations of the
current research practice in the field and outline potential
ways to improve the research practice in the future.

2. LACK OF BENCHMARK PROBLEMS
To demonstrate the usefulness of a new debugging tech-

nique, we need spreadsheets containing faults. Since no
public set of such spreadsheets exists, researchers often cre-
ate their own suite of benchmark problems, e.g., by apply-
ing mutation operators to existing correct spreadsheets [2].
Unfortunately, these problems are only rarely made pub-
licly available. This makes a comparative evaluation of ap-
proaches difficult and it is often unclear if the proposed tech-
nique is applicable to a wider class of spreadsheets.

In some papers, spreadsheets from the EUSES corpus1

are used for evaluations. As no information exists about the
intended semantics of these spreadsheets, mutations are ap-
plied in order to obtain faulty versions of the spreadsheets.
The spreadsheets in this corpus are however quite diverse,
e.g., with respect to their size or the types of the used formu-
las. Often only a subset of the documents is used in the eval-
uations and the selection of the subset is not justified well.
Even when the benchmark problems are publicly shared like
the ones used in [10], they may have special characteristics
that are advantageous for a certain method and, e.g., con-
tain only one single fault or use only certain functions or cell
data types.

A corpus of diverse benchmark problems is strongly needed
for spreadsheet debugging to make different research ap-
proaches better comparable and to be able to identify short-
comings of existing approaches. Such a corpus could be
incrementally built by researchers sharing their real-world
and artificial benchmark problems. In addition, since it is
not always clear if typical spreadsheet mutation operators
truly correspond to mistakes developers make, insights and
practices from the Information Systems field should be bet-
ter integrated into our research. This in particular includes
the use of spreadsheet construction exercises in laboratory
settings that help us identify which kinds of mistakes users
make and what their debugging strategies are, see, e.g., [4].

1http://esquared.unl.edu/wikka.php?wakka=
EUSESSpreadsheetCorpus



3. USABILITY AND USER ACCEPTANCE
Spreadsheet debugging research is often based on offline

experimental designs, e.g., by measuring how many of the
injected faults are successfully located with a given tech-
nique, see, e.g., [5]. In some cases, plug-ins to spreadsheet
environments are developed like in [1] or [11]. Similar to
plug-ins used for other purposes, e.g., spreadsheet testing,
the usability of these plug-ins for end users is seldom in the
focus of the research. The proposed plug-ins typically re-
quire various types of input from the user at different stages
of the debugging process. Some of these inputs have to be
provided at the beginning of the process and some can be
requested by the debugger during fault localization. Typical
inputs of a debugger include statements about the correct-
ness of values/formulas in individual cells [10], information
about expected values for certain cells [1, 3], specification of
multiple test cases [11], etc.

In many cases, it remains unclear, if an average spread-
sheet developer will be willing or able to provide these inputs
since concepts like test cases do not exist in the spreadsheet
paradigm. Therefore, researchers have to ensure that a de-
veloper interprets the requests from the debugger correctly
and provides appropriate inputs as expected by the debug-
ger. One additional problem in that context is that user
inputs, e.g., the test case specifications, are usually consid-
ered to be reliable and most existing approaches have no
built-in means to deal with errors in the inputs.

Overall, we argue that offline experimental evaluations
should be paired with user studies whenever possible as
done, e.g., in [8] or [11]. Such studies should help us validate
whether our approaches are based on realistic assumptions
and are acceptable at least for ambitious users after some
training. At the same time, observations of the users’ be-
havior during debugging can be used to learn about their
problem solving strategies and to evaluate whether the tool
actually helped to find a fault.

Again, insights and practices both from the fields of In-
formation Systems and Human Computer Interaction should
be the basis for these forms of experiments.

4. FIELD RESEARCH
In addition to user studies in laboratory environments, re-

search on real spreadsheets as suggested in [15] is required
to determine potential differences between the experimental
usage of the proposed debugging methods and the everyday
use of such tools in companies or institutes. Error rates and
types found in practice could differ from what is observed in
user studies whose participants in many cases are students.
In [13], e.g., a construction exercise with business managers
was done to determine error rates. In addition, the user
acceptance of fault localization tools could vary strongly be-
cause of different expectations of professional users with re-
spect to the utilized tools. To ensure the usability for real
users, existing spreadsheets can be examined and question-
naires with users can be made, as done, e.g., in [7].

5. CONCLUSIONS
A number of proposals have been made in the recent liter-

ature to assist the user in the process of locating faults in a
given spreadsheet. In this position paper, we have identified
some limitations of current research practice regarding the
comparability and reproducibility of the results. As possi-

ble remedies to these shortcomings we advocate the develop-
ment of a corpus of benchmark problems and the increased
adoption of user studies of various types as an evaluation in-
strument. As experimental settings differ from real-life, we
additionally propose to use field studies to obtain insights
on how debugging methods are used in companies.

6. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A

Spreadsheet Debugger for End Users. In Proc. ICSE
2007, pages 251–260, 2007.

[2] R. Abraham and M. Erwig. Mutation Operators for
Spreadsheets. IEEE Trans. on Softw. Eng.,
35(1):94–108, 2009.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based debugging of spreadsheets. In Proc.
CibSE’12, pages 1–14, 2012.

[4] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM TOIS,
5(3):258–272, 1987.

[5] C. Chambers and M. Erwig. Automatic Detection of
Dimension Errors in Spreadsheets. J. Vis. Lang. &
Comp., 20(4):269–283, 2009.

[6] J. Cunha, J. a. P. Fernandes, H. Ribeiro, and J. a.
Saraiva. Towards a catalog of spreadsheet smells. In
Proc. ICCSA’12, pages 202–216, 2012.

[7] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting Professional Spreadsheet Users by
Generating Leveled Dataflow Diagrams. In Proc. ICSE
2011, pages 451–460, 2011.

[8] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and Visualizing Inter-Worksheet Smells in
Spreadsheets. In ICSE 2012, pages 441–451, 2012.

[9] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting Code Smells in Spreadsheet Formulas. In
Proc. ICSM 2012, pages 409–418, 2012.

[10] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In Proc.
FASE 2013, pages 68–82, 2013.

[11] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs - A constraint-based debugging
approach. Autom. Softw. Eng., to appear, 2014.

[12] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors - a
survey of automated approaches for spreadsheet QA.
Journal of Systems and Software, to appear, 2014.

[13] F. Karlsson. Using two heads in practice. In Proc.
WEUSE 2008, pages 43–47, 2008.

[14] C. Parnin and A. Orso. Are Automated Debugging
Techniques Actually Helping Programmers? In Proc.
ISSTA 2011, pages 199–209, 2011.

[15] S. G. Powell, K. R. Baker, and B. Lawson. A critical
review of the literature on spreadsheet errors. Decision
Support Systems, 46(1):128–138, 2008.

[16] J. Reichwein, G. Rothermel, and M. Burnett. Slicing
Spreadsheets: An Integrated Methodology for
Spreadsheet Testing and Debugging. In Proc. DSL
1999, pages 25–38, 1999.


