
Toward Interactive Spreadsheet Debugging

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach@tu-

dortmund.de

Thomas Schmitz
TU Dortmund, Germany
thomas.schmitz@tu-

dortmund.de

Kostyantyn
Shchekotykhin

University Klagenfurt, Austria
kostya@ifit.uni-klu.ac.at

ABSTRACT
Spreadsheet applications are often developed in a compara-
bly unstructured process without rigorous quality assurance
mechanisms. Faults in spreadsheets are therefore common
and finding the true causes of an unexpected calculation out-
come can be tedious already for small spreadsheets. The goal
of the Exquisite project is to provide spreadsheet developers
with better tool support for fault identification. Exquisite is
based on an algorithmic debugging approach relying on the
principles of Model-Based Diagnosis and is designed as a
plug-in to MS Excel. In this paper, we give an overview of
the project, outline open challenges, and sketch different ap-
proaches for the interactive minimization of the set of fault
candidates.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Spreadsheets;
D.2.8 [Software Engineering]: Testing and Debugging

1. INTRODUCTION
Spreadsheet applications are mostly developed in an un-

structured, ad-hoc process without detailed domain analysis,
principled design or in-depth testing. As a result, spread-
sheets might often be of limited quality and contain faults,
which is particularly problematic when they are used as de-
cision making aids. Over the last years, researchers have
proposed a number of ways of transferring principles, prac-
tices and techniques of software engineering to the spread-
sheet domain, including modeling approaches, better test
support, refactoring, or techniques for problem visualiza-
tion, fault localization, and repair [2, 5, 9, 13, 15].

The Exquisite project [12] continues these lines of research
and proposes a constraint-based approach for algorithmic
spreadsheet debugging. Technically, the main idea is to
translate the spreadsheet under investigation as well as user-
specified test cases into a Constraint Satisfaction Problem
(CSP) and then use Model-Based Diagnosis (MBD) [14] to
find the diagnosis candidates. In terms of a CSP, each can-
didate is a set of constraints that have to be modified to
correct a failure. In our previous works, we demonstrated
the general feasibility of the approach and presented details
of an MS Excel plug-in, which allows the user to interactively
specify test cases, run the diagnosis process and then explore
the possible candidates identified by our algorithm [12].

Using constraint reasoning and diagnosis approaches for
spreadsheet debugging – partially in combination with other
techniques – was also considered in [3, 4, 11]. While these

techniques showed promising results in helping users to lo-
cate faults in spreadsheets, a number of challenges remain.
In this paper, we address the question of how the end user
can be better supported in situations when many diagno-
sis candidates are returned by the reasoning engine. We
will sketch different interactive candidate discrimination ap-
proaches in which the user is queried by the system about
the correctness of individual cells’ values and formulas.

2. DIAGNOSING SPREADSHEETS

Algorithmic Approach.
In [14], Reiter proposed a domain-independent and logic-

based characterization of the MBD problem. A diagnos-
able system comprises a set of interconnected components
Comps, each of which can possibly fail. A system descrip-
tion SD specifies how components behave when they work
correctly, i.e., given some inputs, the definitions in SD and
Comps determine the expected outputs. In case the expected
outputs deviate from what is actually observed, the diagno-
sis problem consists of identifying a subset of Comps, which,
if assumed faulty, explains the observations.

Figure 1: A spreadsheet with an unexpected output

The main idea can be transferred to the spreadsheet do-
main as follows [12]. In the example shown in Figure 1,
the intended formula in cell C2 should be an addition, but
the developer made a typo. When testing the spreadsheet
with the inputs {A1=1, A2=6} and the expected output
{C1=20}, the user notices an unexpected output (36) in C1.
MBD reasoning now aims to find minimal subsets of the pos-
sibly faulty components – in our case the cells with formulas
– which can explain the observed discrepancy. A closer in-
vestigation of the problem reveals that only two minimal
explanations exist in our example if we only allow integer
values: “C1 is faulty” and “B2 is faulty”. The formula in
cell B1 alone cannot be the sole cause of the problem with
B2 and C1 being correct as 18 is not a factor of the ex-
pected value 20, i.e., there is no solution to the equation

B1 �18 � 20,B1 P N. Note that we assume that the constant
values in the spreadsheet are correct. However, our approach
can be easily extended to deal with erroneous constants.

In [12], we describe a plug-in component for MS Excel,
which relies on an enhanced and parallelized version of this
diagnostic procedure, additional dependency-based search
space pruning, and a technique for fast conflict detection.

We have evaluated our approach in two ways. (A) We an-
alyzed the required running times using a number of spread-
sheets in which we injected faults (mutations). The results
showed that our method can find the diagnoses for many
small- and mid-sized spreadsheets containing about 100 for-
mulas within a few seconds. (B) We conducted a user study
in the form of an error detection exercise involving 24 sub-
jects. The results showed that participants who used the
Exquisite tool were both more effective and efficient than
those who only relied on MS Excel’s standard fault local-
ization mechanisms. A post-experiment questionnaire indi-
cated that both groups would appreciate better tool support
for fault localization in commercial tools [12].

The Problem of Discriminating Between Diagnoses.
While we see our results so far to be promising, an open

issue is that the set of diagnosis candidates can be large.
Finding the true cause of the error within a larger set of
possible explanations can be tedious and, finally, make the
approach impractical when a user has to inspect too many
alternatives. Since this is a general problem of MBD, the
question of how to help the user to better discriminate be-
tween the candidates and focus on the most probable ones
was in the focus of several works from the early days of MBD
research [7]. In the next section, we will propose two possible
remedies for this problem in the spreadsheet domain.

3. TOWARD INTERACTIVE DEBUGGING
Early works in MBD research were dealing with fault di-

agnosis of electrical circuits. In this domain, an engineer
can make additional measurements, e.g., of the voltage at
certain nodes. These measurements can then help to reduce
the set of candidates because some observations may rule
out certain explanations for the observed behavior.

Each measurement however induces additional costs or
effort from the user. One goal of past research was thus to
automatically determine “good” measurement points, i.e.,
those which help to narrow down the candidate space fast
and thus minimize the number of required measurements. In
[7], for example, an approach based on information theory
was proposed where the possible measurement points were
ranked according to the expected information gain.

3.1 Example
Figure 2 exemplifies how additional measurements (inputs

by the user) can help us to find the cause of a fault. The
example is based on the one from Figure 1. The user has
corrected the formula in C1 and added a formula in D1 that
should multiply the value of C1 by 10. Again, a typo was
made and the observed result in D1 is 30 instead of the
expected value of 200 for the input values {A1=1, A2=6}.

Given this unluckily chosen test case, MBD returns four
possible single-element candidates {B1}, {B2}, {C1}, and
{D1}, i.e., every formula could be the cause. To narrow
down this set, we could query the user about the correctness
of the intermediate results in the cells B1, B2, and C1.

Figure 2: Another faulty spreadsheet

If we ask the user for a correct value of B1, then the user
will answer “2”. Based on that information, B1 can be ruled
out as a diagnosis and the problem must be somewhere else.
However, if we had asked the user for the correct value of C1,
the user would have answered“20”and we could immediately
infer that {D1} remains as the only possible diagnosis.

The question arises how we can automatically determine
which questions we should ask to the user. Next, we sketch
two possible strategies for interactive querying.

3.2 Querying for Cell Values
The first approach (Algorithm 1) is based on interactively

asking the user about the correct values of intermediate cells
as done in the example1.

Algorithm 1: Querying cell values

Input: A faulty spreadsheet P, a test case T
S = Diagnoses for P given T
while |S| ¡ 1 do

foreach intermediate cell c P P not asked so far do
val = computed value of c given T
count(c) = 0
foreach Diagnosis d P S do

CSP 1 � CSP of P given T z Constraints(d)
if CSP 1 Y tc � valu has a solution then

inc(count(c))

Query user for expected value v of the cell c where
count(c) is minimal

T � T Y tc � vu
S = Diagnoses for P given T

The goal of the algorithm is to minimize the number of re-
quired interactions. Therefore, as long as there is more than
one diagnosis, we determine which question would help us
most to reduce the set of remaining diagnoses. To do so, we
check for each possible question (intermediate cell c), how
many diagnoses would remain if we knew that the cell value
val is correct given the test case T . Since every diagnosis
candidate d corresponds to a relaxed version CSP 1 of the
original CSP, where the latter is a translation of the spread-
sheet P and the test case T , we check if CSP 1 together
with the assignment tc � valu has a solution. Next, we
ask the user for the correct value of the cell for which the
smallest number of remaining diagnoses was observed. The
user-provided value is then added to the set of values known
to be correct for T and the process is repeated.

To test the approach, we used a number of spreadsheets
containing faults from [12], measured how many interactions

1Actually, a user-provided range restriction for C1 (15 C1
 25) would have been sufficient in the example.

Scenario #C #F #D IRand Min
Sales forecast 143 1 89 46.7 11
Hospital form 38 1 15 7.6 5
Revenue calc. 110 3 200 11.8 9
Example Fig. 3 170 1 85 50.3 12

Table 1: Results for querying cell values.

it requires to isolate the single correct diagnosis using Algo-
rithm 1 and compared it to a random measurement strategy.

The results given in Table 1 show that for the tested exam-
ples the number of required interactions can be measurably
lowered compared to a random strategy. The sales forecast
spreadsheet, for example, comprises 143 formulas (#C) and
contains 1 fault (#F). Using our approach, only 11 cells
(Min) have to be inspected by the user to find the diagnosis
explaining a fault within 89 diagnosis candidates (#D). Re-
peated runs of the randomized strategy lead to more than
45 interactions (IRand) on average.

As our preliminary evaluation shows, the developed heuris-
tic decreases the number of user interaction required to find
the correct diagnosis. In our future work, we will also con-
sider other heuristics. Note however that there are also prob-
lem settings in which all possible queries lead to the same
reduction of the candidate space. Nonetheless, as the ap-
proach shows to be helpful at least in some cases, we plan
to explore the following extensions in the future.

 Instead of asking for expected cell values we can ask
for the correctness of individual calculated values or
for range specifications. This requires less effort by the
user but does not guarantee that one single candidate
can be isolated.

 Additional test cases can help to rule out some can-
didates. Thus, we plan to explore techniques for au-
tomated test-case generation. As spreadsheets often
consist of multiple blocks of calculations which only
have few links to other parts of the program, one tech-
nique could be to generate test cases for such smaller
fragments, which are easier to validate for the user.

3.3 Querying for Formula Correctness
Calculating expected values for intermediate cells can be

difficult for users as they have to consider also the cells pre-
ceding the one under investigation. Thus, we propose ad-
ditional strategies in which we ask for the correctness of
individual formulas. Answering such queries can in the best
case be done by inspecting only one particular formula.

1. We can query the user about the elements of the most
probable diagnoses as done in [16], e.g., by limiting the
search depth and by estimating fault probabilities.

2. In case of multiple-fault diagnoses, we can ask the user
to inspect those formulas first that appear in the most
diagnoses. If one cell appears in all diagnoses, it must
definitely contain an error.

3. After having queried the user about the correctness of
one particular formula, we can search for copy-equiva-
lent formulas and ask the user to confirm the correct-
ness of these formulas.

Figure 3: A small extract of a faulty spreadsheet
with structurally identical formulas

The rationale of this last strategy, which we will now
discuss in more detail, is that in many real-world spread-
sheets, structurally identical formulas exist in neighboring
cells, which, for example, perform a row-wise aggregation of
cell values. Such repetitive structures are one of the ma-
jor reasons that the number of diagnosis candidates grows
quickly. Thus, when the user has inspected one formula,
we can ask him if the given answer also applies to all copy-
equivalent formulas, which we can automatically detect.

In the example spreadsheet shown in Figure 3 the user
made a mistake in cell M13 entering a minus instead of the
intended plus symbol. A basic MBD method would in the
worst case and depending on the test cases return every
single formula as equally ranked diagnosis candidates. When
applying the value-based query strategy of Section 3.2, the
user would be asked to give feedback on the values of M1 to
M12, which however requires a lot of manual calculations.

With the techniques proposed in this section, the formulas
of the spreadsheet would first be ranked based on their fault
probability. Let us assume that our heuristics say that users
most probably make mistakes when writing IF-statements.
In addition, the formula M13 is syntactically more complex
as those in M1 to M12 and thus more probable to be faulty.

Based on this ranking, we would, for example, ask the
user to inspect the formula of G1 first. Given the feedback
that the formula is correct, we can ask the user to check the
copy-equivalent formulas of G1 to L12. This task, however,
can be very easily done by the user by navigating through
these cells and by checking if the formulas properly reflect
the intended semantics, i.e., that the formulas were copied
correctly. After that, the user is asked to inspect the formula
M13 according to the heuristic which is actually the faulty
one. In this example, we thus only needed 3 user interactions
to find the cause of the error. In a random strategy, the user
would have to inspect up to half of the formulas in average
depending on the test case. The evaluation of the described
techniques is part of our ongoing work.

3.4 User Acceptance Issues
Independent of the chosen strategy, user studies have to

be performed to assess which kinds of user input one can re-
alistically expect, e.g., for which problem scenarios the user
should be able to provide expected (ranges of) values for
intermediate cells. In addition, the spreadsheet inspection
exercise conducted in [12] indicates that users follow differ-
ent fault localization strategies: some users for example start
from the inputs whereas others begin at the “result cells”.
Any interactive querying strategy should therefore be care-
fully designed and assessed with real users. As a part of a
future work we furthermore plan to develop heuristics to se-
lect one of several possible debugging techniques depending
on the users problem identification strategy.

4. ADDITIONAL CHALLENGES
Other open issues in the context of MBD-based debug-

ging that we plan to investigate in future work include the
following aspects.

Probability-Based Ranking.
Another approach to discriminate between diagnoses is

to try to rank the sometimes numerous candidates in a way
that those considered to be the most probable ones are listed
first. Typically, one would for example list diagnoses candi-
dates of smaller cardinality first, assuming that single faults
are more probable than double faults. In addition, we can
use fault statistics from the literature for different types of
faults to estimate the probability of each diagnosis. In the
spreadsheet domain, we could also rely on indicators like
formula complexity or other spreadsheet smells [10], the lo-
cation of the cell within the spreadsheet’s overall structure,
results from Spectrum-Based Fault Localization [11], or the
number of recent changes made to a formula. User studies
in the form of spreadsheet construction exercises as done in
[6] can help to identify or validate such heuristics.

Problem Encoding and Running Times.
For larger problem instances, the required running times

for the diagnosis can exceed what is acceptable for inter-
active debugging. Faster commercial constraint solvers can
alleviate this problem to some extent. However, also au-
tomated problem decomposition and dependency analysis
methods represent a powerful means to be further explored
to reduce the search complexity.

Another open issue is that in works relying on a CSP-
encoding of the spreadsheets, e.g., [3, 11] and our work,
the calculations are limited to integers, which is caused by
the limited floating-point support of free constraint solvers.
More research is required in this area, including the incor-
poration of alternative reasoning approaches like, e.g., linear
optimization.

User Interface Design.
Finally, as spreadsheet developers are usually not pro-

grammers, the user interface (UI) design plays a central
role and suitable UI metaphors and a corresponding non-
technical terminology have to be developed. In Exquisite,
we tried to leave the user as much as possible within the
known MS Excel environment. Certain concepts like “test
cases” are, however, not present in modern spreadsheet tools
and require some learning effort from the developer. The
recent work of [8] indicates that users are willing to spend
some extra effort, e.g., in test case specification, to end up
with more fault-free spreadsheets.

How the interaction mechanisms actually should be de-
signed to be usable at least by experienced users, is largely
open in our view. In previous spreadsheet testing and de-
bugging approaches like [1] or [2], for example, additional
input was required by the user. In-depth studies about the
usability of these extensions to standard spreadsheet envi-
ronments are quite rare.

5. SUMMARY
In this paper, we have discussed perspectives of constraint

and model-based approaches for algorithmic spreadsheet de-
bugging. Based on our insights obtained so far from the

Exquisite project, we have identified a number of open chal-
lenges in the domain and outlined approaches for interactive
spreadsheet debugging.

Acknowledgements
This work was supported by the EU through the programme
“Europäischer Fonds für regionale Entwicklung - Investition
in unsere Zukunft” under contract number 300251802.

6. REFERENCES
[1] R. Abraham and M. Erwig. AutoTest: A Tool for

Automatic Test Case Generation in Spreadsheets. In
Proceedings VL/HCC 2006, pages 43–50, 2006.

[2] R. Abraham and M. Erwig. GoalDebug: A
Spreadsheet Debugger for End Users. In Proc. ICSE
2007, pages 251–260, 2007.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based Debugging of Spreadsheets. In Proc.
CIbSE 2012, pages 1–14, 2012.

[4] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer,
R. Spörk, C. Mühlbacher, and F. Wotawa. The Right
Choice Matters! SMT Solving Substantially Improves
Model-Based Debugging of Spreadsheets. In Proc.
QSIC 2013, pages 139–148, 2013.

[5] S. Badame and D. Dig. Refactoring meets Spreadsheet
Formulas. In Proc. ICSM 2012, pages 399–409, 2012.

[6] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM TOIS,
5(3):258–272, 1987.

[7] J. de Kleer and B. C. Williams. Diagnosing Multiple
Faults. Artificial Intelligence, 32(1):97–130, 1987.

[8] F. Hermans. Improving Spreadsheet Test Practices. In
Proc. CASCON 2013, pages 56–69, 2013.

[9] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting Professional Spreadsheet Users by
Generating Leveled Dataflow Diagrams. In ICSE
2011, pages 451–460, 2011.

[10] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting Code Smells in Spreadsheet Formulas. In
Proc. ICSM 2012, pages 409–418, 2012.

[11] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In Proc.
FASE 2013, pages 68–82, 2013.

[12] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs - A constraint-based debugging
approach. Autom Softw Eng, to appear, 2014.

[13] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors - a
survey of automated approaches for spreadsheet QA.
Journal of Systems and Software, to appear, 2014.

[14] R. Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32(1):57–95, 1987.

[15] G. Rothermel, L. Li, C. Dupuis, and M. Burnett.
What You See Is What You Test: A Methodology for
Testing Form-Based Visual programs. In Proc. ICSE
1998, pages 198–207, 1998.

[16] K. Shchekotykhin, G. Friedrich, P. Fleiss, and
P. Rodler. Interactive ontology debugging: Two query
strategies for efficient fault localization. Journal of
Web Semantics, 12-13:788–103, 2012.

